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Letter from the Editor-in-Chief

Our revels now are ended.
William Shakespeare, THE TEMPEST

Dear Readers, 

To those of you who have not heard the news, this issue marks the start of a
hiatus for the Journal of Transportation and Statistics. What this means is
that, because of budget cuts, we do not expect to receive funding to publish
the journal during the next few years.  The value of JT&S was never the ques-
tion. Senior management of the Research and Innovative Technology Admin-
istration understood the contribution made by all involved in this work;
however, difficult decisions had to be made and funding was only available
for core projects.

I would like to thank everyone who participated in this venture, particularly
the authors from around the world who, through these nine years, provided
excellent research in the field of statistical and economic analysis in transpor-
tation.  JT&S was able to showcase new and innovative techniques to mea-
sure aspects of transportation and present data and other information not
available elsewhere. The reviewers of the articles strengthened the quality of
work published. Our distinguished Editorial Board provided support, insight,
and valuable advice that led to the continual improvement of the journal. Our
dedicated Associate Editors (David Chien, Caesar Singh, Jeffery Memmott,
and Kay Drucker) worked hard to ensure the quality of the published articles.
I would also like to thank Jennifer Brady, our Data Review Editor, for high-
lighting new data from the Bureau of Transportation Statistics, and Vincent
Yao, our Book Review Editor.

The publishing staff, which over the years included Marsha Fenn, Dorinda
Edmondson, William Moore, Alpha Glass, Martha Courtney, Lorisa Smith,
Susan Hoffmeyer, Deborah Moore, and Darcy Herman, produced a profes-
sional publication that rivaled its counterparts in the academic environment.
Special thanks go to Marsha Fenn, the Managing Editor, who was an integral
part of the journal from its inception. And, finally, the quality standards estab-
lished by the previous Editors-in-Chief, David L. Greene, David Banks, and
John V. Wells, made my work a simpler task.

Finally, let me thank you, the readers, for without you the journal would have
been pointless.  I hope you found the articles to be informative, engaging, and
interesting.  Thank you for your support, and I hope our paths will cross in
the future.

PEG YOUNG, Ph.D.
Editor-in-Chief, JT&S
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Impacts of Productivity Changes in Air Transportation on 

Profits, Prices, and Labor Compensation: 1990–2001 

ABSTRACT

The objective of the paper is to assess the impacts of
productivity changes in air transportation since
1990 in three basic economic areas: 1) industry
profits, 2) consumers/users of air transportation ser-
vices, and 3) industry employees. In this regard, an
analysis is initially carried out between productivity
measures and industry profits. Comparisons are
also made between the general price level of the
economy and several price indexes of the air trans-
portation subsector. Also, an evaluation is con-
ducted of labor compensation in air transportation,
the U.S. economy, and other transportation indus-
tries. The analysis results in several findings. First,
there is a marked association between productivity
changes in air transportation and industry profits.
Second, the benefit of productivity increases in air
transportation does not seem to have transferred to
consumers of air passenger services in the form of
lower prices. On the other hand, users of scheduled
cargo services did seem to benefit from lower prices.
Finally, a portion of the benefit of productivity
increases went to industry labor in the form of rela-
tively high levels of labor compensation. 

KEYWORDS: Air transportation, productivity, profits, prices,
labor compensation.

ANTHONY D. APOSTOLIDES

Bureau of Transportation Statistics
Research and Innovative Technology Administration
U.S. Department of Transportation
Washington, DC 20590
anthony.apostolides@dot.gov
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INTRODUCTION

The objective of this paper is to measure productiv-
ity and assess the impact of productivity increases in
air transportation in three economic areas: 1) indus-
try profits, 2) consumers, and 3) airline employees. 

According to economic theory, changes in pro-
ductivity in an industry (firm) can affect profits,
prices, and labor compensation. Increases in pro-
ductivity are expected to result in higher profits for
the industry. Subsequently, there can be positive
impacts on consumers and on the employees of the
industry. 

In elaborating on the above theoretical frame-
work, the basic benefit of increased productivity is
that more output can be produced with the same
quantity of inputs (some inputs can be of improved
quality). Alternatively, the same output can be pro-
duced with fewer resources. Other things being
equal, this results in a bigger difference between
total revenues and total costs, and thus higher prof-
its for the industry. The existence of higher profits
can subsequently be followed by three effects: 

1. the firms in the industry can keep a portion of
the increased profits for internal use; 

2. the firms can decrease prices for their service
to the consumers, or—perhaps more likely—
they may increase prices less than they would
in the absence of productivity increases; and 

3. the firms can provide higher compensation to
their employees (in the form of higher wages
and/or fringe benefits). 

The assessment of this paper applies this theoreti-
cal framework to the air transportation subsector.
Greater profits benefit the air carriers directly. With
regard to users, a decrease in prices for passengers
increases their real incomes. For shippers of air
freight, a decrease in prices reduces their (distribu-
tion) costs. In addition, higher profits resulting in
increased labor compensation for airline employees
raises real incomes. Such increases in real incomes,
to consumers and labor, are the important contribu-
tions of greater productivity. Increases in real
incomes lead to more consumption, which contrib-
utes to the economy’s growth. 

High increases of productivity imply a higher
likelihood that the above effects would occur. A
decline in productivity could reverse the positive

effects of a productivity increase, resulting in
declines in labor wages and, in extreme cases, bank-
ruptcies of companies, accompanied by job losses.

Data and Period of Analysis

The paper uses a consistent set of the most recent
data available—for the 1990 to 2001 period. These
data refer to the main variables needed for the
industry analysis: productivity (labor and multifac-
tor), profits, prices (various types), and labor com-
pensation. Additional data used relate to the U.S.
business sectors and the U.S. economy. 

Industry data used in this paper are classified
under the North America Industry Classification
System (NAICS). Labor productivity is examined
for three transportation industries/subsectors: air
transportation data refer to NAICS industry num-
ber 481, line-haul railroads refer to NAICS 48211,
and general freight trucking long-distance refer to
NAICS 48412. Comparisons are also made with the
U.S. business sector. The words “industry” and
“subsector” are used interchangeably in the paper.

LABOR AND MULTIFACTOR 
PRODUCTIVITY

This section examines changes in labor and multi-
factor productivity in the U.S. air transportation
subsector during the 1990 to 2001 period. It also
examines data on productivity of the U.S. economy
and the two other transportation subsectors—rail-
roads and trucking.

Labor productivity is defined as output per unit
of labor and is calculated by dividing output by a
measure of labor input used in the production of the
output. For air transportation, output is measured
in terms of passenger-miles and ton-miles; and for
rail and trucking, output is measured in terms of
ton-miles. Labor productivity can be affected by fac-
tors that include improved labor skills and training
as well as by physical capital per worker.

Multifactor productivity relates to the productiv-
ity of all the inputs used in the production process.
These include labor, capital (with land), and inter-
mediate inputs. Multifactor productivity is a more
comprehensive measure of productivity than labor
productivity. It indicates the overall production effi-
ciency of an industry as it relates to increases in
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industry output that are not accounted for by
increases in the factor inputs. The analysis of the
specific impacts, or potential benefits, of productiv-
ity increases in an industry is the basic objective of
this study.

To evaluate labor productivity in air transporta-
tion, data on levels of labor productivity in that
industry, over time, are plotted in figure 1. These
data indicate that labor productivity increased from
1990 until 1997, when it reached its peak. In 1998,
labor productivity declined and stayed at this lower
level until 2000. In 2001, it declined again, quite
significantly. This was affected by the drop in out-
put/demand as a result of the catastrophic events of
September 11, 2001 (9/11), and by a recession in
that year.

To compare labor productivity in air transporta-
tion with the other two transportation industries
and the U.S. business sector, relevant data are plot-
ted in figure 2. There, one can observe that between
1990 and 2000 (and with the exception of 1991 to
1993), labor productivity in air transportation
increased faster than in long-distance trucking and
the U.S. business sector. In 2001, however, labor
productivity in air transportation declined while
that of the U.S. business sector increased.

Rail transportation was the one subsector in
which labor productivity increased faster than labor
productivity in air transportation. Rail transporta-
tion had continual increases in labor productivity
over time. In fact, labor productivity in this subsec-
tor continued to increase in 2001 even as it declined
in air transportation and trucking.   

In order to make comparisons from another per-
spective, growth rates of labor productivity are pre-
sented in table 1. These growth rates show that,
over the 1990 to 2000 period, labor productivity in
air transportation grew at a higher annual rate
(2.4%) than it did in the U.S. business sector (2.0%)
and in trucking (1.7%). 

Between 1990 and 2001, however, the growth
rate for air transportation was lower (1.6%) than
that of the U.S. business sector (2%) and just above
trucking (1.4%). These data also indicate a signifi-
cant drop in the annual growth rate of labor pro-
ductivity in air transportation between 1990 and
2000 (2.4%) and 1990 and 2001 (1.6%). This sud-

den drop when 2001 data are included reflects the
significant impact of 9/11 on this subsector. After
that date, output of air transportation dropped
immediately and significantly while the labor force
in air transportation also declined, but with a time
lag. In both time periods, rail transportation experi-
enced the highest growth rate of labor productivity.
Air transportation productivity, in 2001, was
affected more adversely than productivity in the
U.S. economy and in the trucking industry, and sig-
nificantly more adversely than in the railroad indus-

FIGURE 1  Labor Productivity in Air Transportation

Source: The data on which this chart is based were obtained from 
Bureau of Labor Statistics internet site, section on Productivity, 
subsection on Productivity and Costs.

FIGURE 2  Labor Productivity in Transportation and 
the U.S. Business Sector

Source: The data on which this chart is based were obtained from 
Bureau of Labor Statistics internet site, section on Productivity, 
subsection on Productivity and Costs.
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try. There was a recession in 2001 that affected the
economy and output of industries; air transporta-
tion would seem to have been particularly affected
by the events of 9/11. Nevertheless, labor productiv-
ity in air transportation increased significantly over
the analysis period.

Multifactor Productivity

With regard to multifactor productivity (MFP), the
plots presented in figure 3 show that MFP in air
transportation was at higher levels than that of the
U.S. business sector over the period of analysis, indi-
cating higher growth rates. Over 1990 to 2000,
multifactor productivity in air transportation grew
at an annual rate of 1.9% while in the U.S. private
business sector it grew at an annual rate of 0.9%
(appendix table 1). 

These data indicate that, over 1990 to 2000,
both labor and multifactor productivity in air trans-
portation generally increased. The same observation
applies to the 1990 to 2001 period, with the qualifi-
cations noted. The paper proceeds to assess the
impacts of this productivity increase in the three
areas mentioned previously— profits of air carriers,
prices paid by users, and labor compensation of air-
line employees. 

PRODUCTIVITY AND PROFITABILITY

The basic equation illustrating the calculation of
profit of an enterprise is: 

Profit = total revenues – total costs. 
Total revenues consist of the quantity of items sold
multiplied by the price per item. In air transporta-
tion, the items would relate to tickets for passengers
or tons-miles of freight. Total costs are composed of
fixed and variable costs. For air carriers, fixed costs

would include the periodic payments made for the
purchase of an airplane, while variable costs would
include fuel and labor costs. 

The basic source for data on profits in air trans-
portation (net income after taxes) is the Bureau of
Transportation Statistics (BTS), Office of Airline
Information (OAI). These data can be obtained
from TranStats, a database on the BTS Internet site
that provides data on net income for various sizes of
airlines (Majors, National, Regionals, and Small).
Also, the Airline Quarterly Financial Review, by the
Office of the Secretary of Transportation, presents
profit data for Major air carriers. 

Table 2 presents annual data on productivity and
profits in air transportation for the analysis period.
These data indicate that, particularly since 1995,
operations in the air transportation industry resulted
in profits that were  maintained over time, up to year

TABLE 1  Growth Rates of Labor Productivity in Transportation
(Growth rates—average annual percentage rate)

1990–
2000

1990–
2001

1990–
1995

1995–
2000

1995–
2001

Air transportation 2.4 1.6 4.2 0.6 –0.6
Line-haul railroads 5.2 5.3 5.7 4.6 5.0

General freight trucking—
long distance 1.7 1.4 1.5 2.0 1.3

U.S. business sector 2.0 2.0 1.4 2.6 2.5

Source: The data on which these growth rates are based were obtained from the Bureau of Labor Statistics 
Internet site, section on Productivity, subsection on Productivity and Costs

FIGURE 3  Multifactor Productivity in Air 
Transportation and U.S. Business Sector

Source: Data on which this chart is based were obtained from 
Bureau of Labor Statistics Internet site, section on Productivity, 
subsection on Multifactor Productivity.
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2000. In 2000, industry profits declined although
they were still positive. In 2001, industry profits
became negative; they were affected significantly by
the events of 9/11, which suddenly reduced demand
for air travel, and the industry was not able to
reduce costs proportionately.

The data in this table indicate that there is an
association between increases in the productivity
measures and profits of the air transportation sub-
sector. From 1995 to 1997, industry productivity
(labor and MFP) increased, and industry profits
increased. One also notes that 1997 was the year in
which air transportation earned the highest amount
of profits, and in that year the industry experienced
the highest level of labor productivity. During 1998,
productivity (labor and MFP) decreased and profits
decreased; and during 1999, productivity increased
and profits increased. Finally, during 2001, produc-
tivity decreased and profits decreased, affected by
the events of 9/11. On the other hand, MFP
increased in 1994 and 2000, but industry profit
declined during these years. Overall, these data are
consistent with economic theory predicting a rela-
tionship between productivity and profits.

In order to quantify the association between
profits and productivity, Spearman rank correlation
coefficients were calculated, and they are presented
in appendix table 2. An asterisk next to the coeffi-
cient indicates significance at the 95% level, given
the number of observations (Kvanli 1988, chapter
4). All four coefficients relating to labor productiv-

ity and profits indicate a positive and significant
association between the two variables at the 95%
level. These coefficients range from 0.77 to 0.83,
which shows a substantial association between the
two variables.

The rank correlation coefficient is lower between
multifactor productivity and profits. One of the four
coefficients calculated between these variables is sig-
nificant at the 95% level (0.74). The calculation of
this coefficient does not include data for 2001. The
rank correlation between MFP and profits of
Majors (OST data) for 1994 to 2001 is 0.45; when
data for 2001 are dropped, the coefficient increases
to 0.61. 

Therefore, visual observation and correlation
coefficients indicate a rather marked association
between productivity and profits in air transporta-
tion.1 This substantiates and is consistent with eco-
nomic theory, which predicts the basic benefit of

TABLE 2  Productivity and Profits in Air Transportation

Year
Labor 

productivity
Multifactor 

productivity

Net income 
($millions, 
all carriers)

Net income 
($millions, 

Majors)

1992 105.0
1993 109.3 100.4 $272

1994 117.2 106.9 ($344) ($578)
1995 123.0 111.2 $2,340 $2,235
1996 127.5 115.4 $2,804 $2,779

1997 129.0 116.7 $5,168 $5,488
1998 125.9 115.5 $4,531 $4,577
1999 126.7 117.6 $5,357 $5,075

2000 126.7 121.1 $2,533 $2,599
2001 118.6 116.1 ($8,171) ($7,139)

Note: Numbers in parentheses (in columns 3 and 4) indicate losses.

Sources: For data in columns 1 and 2, same as chart 1 and 2. For data in column 3, from BTS, 
TranStats (on the Internet); data refer to all air carriers. For data in column 4, from DOT, Airline 
Quarterly Financial Review; data refer to Majors.

1 In addition, regression analysis was used to estimate the
relationship between profits (dependent variable) and pro-
ductivity (independent variable). Better results were
obtained when data for year 2001 were dropped. The esti-
mated equation using profits from TranStats and labor
productivity is: 
Profits (OAI) = f (Labor Productivity) n = 8 
Profits = –28,845.11 + 257.20 Labor Productivity 

(9,425.23) (76.43)
 t-statistic –3.06  3.37
 Adjusted R-squared = 0.60
 Durbin-Watson= 1.93
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productivity increases (in an industry) is a rise in
profits.

PRODUCTIVITY AND PRICES

Rising profits of an industry can impact industry
prices. If the price of air transportation were to
decrease, or increase by slower rates, as a result of
greater productivity, then the users of air transpor-
tation services would benefit. Lower prices for con-
sumers/passengers increase the purchasing power of
consumers’ incomes, that is, increase their real
income and thus their standard of living. Lower
prices for producers of goods that use air transporta-
tion services for freight shipments would contribute
to lower costs for these producers, and thus higher
profits. The occurrence and extent of lower  prices—
or slower growth of prices—as a result of productiv-
ity increases are more likely in industries character-
ized by a relatively high degree of competition. 

In order to evaluate the relationship between pro-
ductivity and prices in air transportation, an initial
comparison is made of price changes in that indus-
try, over time, with price changes in the general
economy. The objective is to assess whether greater
productivity in air transportation was accompanied
by relatively small price increases, or price declines,
compared with prices in the general economy. If
that occurred, there would be indications that a por-
tion of the benefit from productivity increases
(higher profits) went to consumers/users of air
transportation services. 

Table 3 presents relevant price data for the econ-
omy and air transportation. Prices in the general
economy are measured by the Consumer Price
Index (CPI), while the prices of air transportation
services are measured by several price indexes to
cover the various segments of the industry. These
segments are consumers/passengers and entities
using air cargo services. One price index is the CPI
for air transportation (CPI-AT), which measures the
prices that consumers pay for air transportation ser-
vices (column 5). This index includes domestic and
international air travel. Data are also presented for
three other price indexes: the Producer Price Index
(PPI) for scheduled passenger service—domestic and
international (in column 7 of the table); the PPI for
scheduled passenger service—domestic (column 9);

and the PPI for scheduled air cargo (column 11).
Growth rates of prices are computed in the columns
next to the indexes.

The Bureau of Labor Statistics (BLS) publishes
the CPI for the economy and both a CPI and a PPI
for airfares. The CPI for commercial air travel is
based on prices listed by the airlines in the SABRE
system, a reservation system used by many travel
agencies. This index measures changes in the prices
paid by consumers for airline trips, including taxes
and any distribution costs not received by the air
carriers, such as travel agents’ fees. The PPI-Air
Travel measures changes in revenues received by
producers of airline trips. 

The CPI-Air Travel includes trips purchased from
foreign carriers while the PPI-Air Travel excludes
these. Monthly prices for the two programs are
gathered from different data sources: CPI prices
come from the SABRE system, while PPI prices are
gathered directly from airline pricing departments.

The data in table 3 show that, since 1990, prices
of air transportation for scheduled passenger service
increased significantly faster than the CPI of the
economy. Moreover, prices of domestic passenger
service increased substantially faster than prices of
domestic and international services, combined. The
data indicate that while the CPI rose by 36% over
the 1990 to 2001 period, prices of passenger service
increased by 61% based on the CPI-airline fare,
which includes domestic and international air
travel; by 81% for PPI-domestic and international;
and by 101% for PPI-domestic service.

On the other hand, prices of scheduled air cargo
increased by a substantially lower percentage than
the general price level. These prices rose by less than
10% over the period of analysis, compared with
CPI growth of 36%. Consequently, prices of air
cargo also increased by a significantly lower per-
centage than prices in the passenger segment of the
air transportation industry. 

These data indicate that although productivity
and profits went up in air transportation, prices for
passenger service also tended to increase at rela-
tively high rates. In this segment of the industry, the
providers of transportation services appear to have
kept that part of the benefit of productivity
increases. 
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On the other hand, it appears that the providers of
scheduled air cargo services returned a portion of the
benefit of rising productivity to users of these services
in the form of relatively lower price hikes. Prices in
this segment of the airline industry increased signifi-
cantly less than the CPI of the economy or the indus-
try passenger segment. In fact, several times during
the period of analysis, there occurred price decreases
in scheduled air cargo services.

In explaining price changes in the passenger and
cargo segments of the air transportation subsector
over time, one notes that in the case of passenger
service it is the consumers/passengers (typically indi-
vidually) who are dealing with the providers of air
services (air carriers). The individual consumers do
not possess much market power with which to
negotiate prices for the services they buy—although
in recent periods, the Internet has provided more
information on ticket prices. 

The air transportation industry would be charac-
terized as an oligopoly in the national market or
regional markets. Also, a number of mergers and
acquisitions in the industry in the 1980s and 1990s
resulted in a substantially smaller number of domes-
tic air carriers. According to economic theory, the
fewer the number of sellers in an industry, the lower
the degree of competition to affect restraints in price
increases. This seems to apply to the passenger seg-
ment of air transportation.

On the other hand, the purchasers of scheduled
air cargo services tend to be business enterprises,
often of substantial size, that typically have good
information on the available prices for these ser-
vices. They also tend to provide substantial and
repeat business to the providers of air cargo services.
Therefore, these enterprises can have substantial
market power to use in obtaining advantageous
prices for freight transportation services. 

Recently, BTS began calculating its own Air
Travel Price Index (ATPI).2 This index measures
prices actually paid by passengers rather than prices
published in airline price schedules. Data are pre-
sented in appendix table 3 to enable comparisons
between the ATPI and other price indexes from BLS
for 1995 to 2001. These calculations show two
results:

1. The ATPI increased significantly less than the
CPI, the CPI-airfare, or the PPI-Air Transpor-
tation. A recent article that compared the U.S.-
Origin ATPI with the BLS Air Travel Index
found a significant difference between their
increases. The authors stated that this was
probably due mainly to: 1) the different meth-
odologies/formulas used in the creation of the
indexes, and 2) the ATPI’s inclusion of special
discount fares (Lent and Dorfman 2005).

These price changes shown by the ATPI
indicate that the benefits of productivity
increases also accrued to the consumers of air
transportation. This is different than the
results based on BLS price indexes. This may
be a topic for future research.

2. Within the ATPI, the ATPI U.S.-Origin
increased substantially more than the ATPI-
Foreign, which actually declined. Both sets of
price indexes—the CPI-Air and PPIs from
BLS, and the ATPI—indicate that prices of
domestic air transportation increased faster
than prices of international air travel. In
attempting to explain such differences, one
notes that typically increasing prices would be
affected by increasing production costs or by
the degree of competition in the industry. The
production costs of domestic and international
travel would not be expected to diverge signif-
icantly over time. The other factor is the
degree of competition. Available information
indicates that the degree of competition in
domestic air transportation has decreased in
the domestic market over the period of
analysis. 

In this regard, a study by U.S. Department of
Transportation (DOT 1999), which covered 1992
to 1997, stated a number of findings indicating such
a situation. These findings include:

2 There are three primary ATPI series. The U.S. Origin
ATPI measures changes in the cost of itineraries originat-
ing in the United States, whether the destinations are
domestic or international. The Foreign-Origin ATPI mea-
sures changes in the cost of itineraries within a foreign ori-
gin and a U.S. destination. The Full-Scope ATPI combines
the domestic and foreign-origin itineraries. The CPI-Air
Fare and ATPI both cover domestic and international
travel. However, the CPI is U.S.-Origin only; thus, it is
more limited in scope than the Full-Scope ATPI.
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1. In short-distance markets without low-fare
competition, inflation adjusted fares are sub-
stantially higher (26%), not lower, than pre-
deregulation fares. These markets account for
about one-fourth of total domestic passengers.

2. There was a reversal of growth in low-fare
competition in the last year of the period—
1997. Markets with low-fare competition
have significantly lower fares on average—
often less than one-half—than similar markets
without such competition. 

3. One observes high fares in short distance mar-
kets at hub airports where one major network
airline has a dominant market share. Average
fares at some of these airports can be 50% to
60% higher when compared with more com-
petitive markets. 

4. New entrants in the airline industry experi-
enced difficulties that can contribute to a
decrease in low-fare competition. A number of
factors make it difficult for new airlines to
enter a hub market. These factors include:
higher frequency service made available by
hub-and-spoke systems; frequent flyer pro-
grams; travel agent commissions bonuses
(overrides); and lack of gates and ticket
counter or takeoff and landing slots for new
competitors at certain airports. 

The DOT study “concluded that unfair exclu-
sionary practices have been a key reason that com-
petition from new low-fare carriers has not been
able to penetrate concentrated hubs...” (USDOT
1999, p.8). In addition, another study assessed
predatory pricing in air transportation (Oster and
Strong 2001). This study found that the early years
of airline deregulation were characterized by peri-
ods of significant competition among the major
established airlines as well as by competition from
new-entrant carriers and from carriers formerly
confined to intrastate markets. However, in the mid-
to late-1980s, considerable industry consolidation
occurred as a result of a wave of mergers. A number
of these mergers involved the acquisition of larger
carriers such as Frontier, Republic, Eastern, Ozark,
Western, and Piedmont. 

Following these mergers, the source of deregula-
tion’s benefits began to change. The benefits gradu-

ally became more attributable to the actions of a
small number of low-fare carriers rather than to the
actions of major network airlines. By the late 1990s,
the domestic route networks of major airlines had
become fairly stable and were built around hub air-
ports, typically dominated by a single carrier. These
hub-based networks established geographic areas in
which each major network airline has substantial
presence and market power, especially in short-haul
smaller markets.

Some of the responses of the incumbent network
carriers to entry by low-fare carriers resulted in con-
cerns, by government and others, about the use of
predatory pricing or unfair methods of competition.
In one example (described in more detail in appen-
dix 4), after a new, low-fare airline entered a partic-
ular market, the major network carrier responded
by adding more flights on the entrant’s network, by
offering bonus miles, by offering special agent com-
mission overrides,3 and by matching the fares of the
entrant in that particular market. As a result, within
one month after the entrant began service, losses
forced it to reduce its service to one flight a day, and
soon thereafter, it exited the market altogether.

The study also examined 12 cases during the
1994 to 1997 period that involved short- to
medium-haul flights and entailed a major network
carrier hub, at one or both ends, and a new entrant
(Oster and Strong 2001, p.10). The main features of
the cases are described in appendix 5. The results
include the lowering of average fares by the major
carriers after the new entry, the exiting of the
entrants, and the subsequent increase in fares by the
major carriers. The authors of the study point out
that predatory practices may be a rational strategy
in the airline industry because short-run revenue
losses may be recouped in the longer term. Such
aggressive responses by major network incumbents
to new entry can drive entrants from specific routes.
Moreover, they provide a signal to other prospective

3 Travel Agent Commission Overrides (TACOS) are spe-
cial bonus commissions paid by an airline to travel agents
as a reward for booking a targeted proportion or number
of passengers on that airline. Such overrides, of which
travelers are typically not aware, provide incentives to
travel agents to steer some travelers from one airline to
another. These overrides can also serve as a barrier to
entry.



10 JOURNAL OF TRANSPORTATION AND STATISTICS V9, N1 2006

entrants that despite high fares being charged in a
number of markets, any new entry will be met with
a response that renders unprofitable the entrant’s
operation. This results in barriers to entry that can
contribute to higher prices.

From the perspective of the consumers, there
have been complaints by the Consumer Federation
of America (CFA) with regard to competition and
prices in air transportation. In testimony to Con-
gress, Mark N. Cooper, the Director of Research of
CFA, pointed out that 25 states filed comments in
support of the DOT’s antipredation rule that identi-
fied 15 airports at which the dominant firm had a
market share in excess of 70%. Another half dozen
airports had a dominant carrier, with 50% to 70%
market share (Cooper 2001). 

Mr. Cooper noted that airline markets are gener-
ally highly concentrated, and most routes have
fewer than four carriers. He pointed to one study
which found that, measured at the airports, the Hir-
schman-Herfindahl Index (HHI) was just under
3,300; this is equivalent to three airlines per airport.
However, when measured by city pairs, the HHI
was over 5,000—the equivalent of 2 airlines per
route.4 He noted that because there is a high level of
concentration, one should not be surprised to find
that anticompetitive behavior and changes in mar-
ket structure have a significant impact on fares.
Exercising market power is easy in such highly con-
centrated markets.

With regard to competition in the international
market, a DOT study found that as transatlantic
deregulation unfolds, competition intensifies and
provides price benefits to consumers. This was
apparently affected by open skies bilateral agree-
ments that have provided carriers the operating flex-
ibility necessary to improve and expand services.
This new flexibility for carriers to respond to mar-
ketplace demands has led to downward pressure on

prices, due both to increased supply and increased
competition (USDOT OST 2000, p.2).

Data for 1996 to 1999 show decreases in price
fares in international air travel. During this time
period, average fares (not adjusted for inflation) to
open-sky countries declined by 20% (compared
with 1996). Moreover, they decreased by various
percentages that approached 15% in connecting
markets beyond European gateways (USDOT OST
2000, p.3).

In summary, we can see that in using BLS price
data, prices of passenger service rose higher than the
CPI. Thus, it would appear that the air carriers kept
that part of the benefit of the productivity increase.
On the other hand, prices of air cargo services
increased relatively slowly. Thus, the users of these
services were able to benefit from greater productiv-
ity in the industry.

Within the passenger segment of the air transpor-
tation industry, price data indicate that prices for
domestic air transportation services rose faster than
for international air transportation. This seems to
be consistent with studies that indicated a trend
toward decreased competition in the domestic mar-
ket segment, resulting from increased concentration
in the industry and predatory pricing behavior of
network carriers toward low-cost entrants. In the
international segment, a government study showed
prices to have declined during several years in the
decade of the 1990s.

PRODUCTIVITY AND LABOR 
COMPENSATION

The other potential effect of increasing productivity
in an industry (or firm) is for a portion of the benefit
to go to the employees in the form of higher labor
compensation (wages and fringe benefits). In order
to evaluate this possibility for air transportation,
data are presented in table 4 on compensation per
worker for that industry and for the U.S. economy
(average labor compensation for all civilian work-
ers), as well as for line-haul railroads and general
freight trucking. These data are in current and con-
stant dollars. In current dollars, they indicate that
labor compensation in air transportation grew rela-
tively faster, over time, than in the overall economy
and in the two other transportation industries.

4 Ibid. Cooper 2001. The HHI is calculated by expressing
the market share of each firm in the industry as a percent-
age, squaring these figures, and adding them. For exam-
ple, if in an industry, two firms control 50% of the market
each, the index would be 50 squared + 50 squared = 2500
+ 2500 = 5000. For an industry in which each of four
firms controls 25% percent of the market, the HHI would
be: 25 squared + 25 squared + 25 squared + 25 squared =
625 + 625 + 625 + 625 = 2500.
Source: Case and Fair, 1994, pp. 378.
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Labor compensation in air transportation was sig-
nificantly higher than the U.S. average over the
period of analysis. Over 1991 to 2001, labor com-
pensation in air transportation increased by 37%,
while for the U.S. economy, it increased by 35%.
Moreover, during 1990 to 2001, labor compensa-
tion in air transportation increased by 43% in nom-
inal dollars, while compensation in rail increased by
38%, and in trucking it increased by 30%. 

In real terms, one observes a similar phenome-
non. Real labor compensation in air transportation
outpaced inflation, and it increased faster than the
mean compensation for the economy, and in the
two other transportation industries.

The air transportation subsector is characterized
by volatility, with booms and busts, and labor com-
pensation to some extent can be affected by those
cyclical movements. In order to check the robust-
ness of the results, percentage rates of change were
calculated with different starting and ending years.
The results are shown in the bottom part of table 4.

It can be observed in the table that in every case,
except one (for the 1992 to 2001 period compared
to railroads), labor compensation in air transporta-
tion has the highest percentage increase compared
to the economy as well as rail and trucking.

Thus, productivity increases in air transportation
were accompanied by relatively rapid rises in labor
compensation compared with the U.S. economy and
the two transportation industries. Labor compensa-
tion increases in air transportation would have been
affected by a more productive industry. Labor com-
pensation could also have been affected by the exist-
ence of labor unions that would attempt to
maximize income of their members. This factor is
examined below.

The air transportation labor force is character-
ized by well-entrenched unions in various segments
of the industry. All the major airlines have union
representation in at least part of their labor force
(USGAO 2003). The various labor groups that
unions typically represent include pilots, flight

TABLE 4  Labor Compensation per Employee
(In current and constant dollars)

In current dollars In constant dollars

Year
Air 

transportation
Line-haul 
railroads

General 
freight 

trucking, 
long 

distance
U.S. 

economy
CPI 

(1982–84=100)
Air 

transportation
Line-haul 
railroads

General 
freight 

trucking, 
long 

distance
U.S. 

economy

1990  $47,815  $50,236  $30,092 130.7  $36,584  $38,436  $23,024 

1991  $49,799  $51,947  $30,605  $34,216 136.2  $36,564  $38,140  $22,471  $25,122 

1992  $52,084  $52,461  $32,482  $35,922 140.3  $37,123  $37,392  $23,151  $25,603 

1993  $53,844  $54,322  $31,746  $37,190 144.5  $37,263  $37,593  $21,970  $25,737 

1994  $56,286  $56,256  $32,738  $38,064 148.2  $37,980  $37,959  $22,090  $25,684 

1995  $58,485  $58,439  $32,961  $37,877 152.4  $38,376  $38,346  $21,628  $24,854 

1996  $59,419  $60,701  $32,358  $38,854 156.9  $37,871  $38,688  $20,623  $24,764 

1997  $60,742  $62,259  $34,882  $39,978 160.5  $37,846  $38,791  $21,733  $24,908 

1998  $61,350  $64,328  $35,842  $41,101 163.0  $37,638  $39,465  $21,989  $25,215 

1999  $62,771  $64,700  $37,196  $42,203 166.6  $37,678  $38,835  $22,326  $25,332 

2000  $64,736  $66,782  $38,746  $44,013 172.2  $37,593  $38,782  $22,501  $25,559 

2001  $68,350  $69,351  $39,147  $46,072 177.1  $38,594  $39,159  $22,105  $26,015 

Percentage change over time

1990–2001 42.9 38.1 30.1 35.5 5.5 1.9 –4.0

1991–2001 37.3 33.5 27.9 34.7 30.0 5.6 2.7 –1.6 3.6

1992–2001 31.2 32.2 20.5 28.3 26.2 4.0 4.7 –4.5 1.6

1990–2000 35.4 32.9 28.8 31.8 2.8 0.9 –2.3

1990–1999 31.3 28.8 23.6 27.5 3.0 1.0 –3.0

1990–1998 28.3 28.1 19.1 24.7 2.9 2.7 –4.5

Key: CPI = Consumer Price Index.

Sources: Industry data were obtained from BLS staff (personal communication). 

Note: Data for the U.S. economy (all civilian workers) were computed as follows: compensation per hour (BLS website) x 2,080 (hours per year).
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attendants, mechanics, and dispatchers. Sometimes
unions represent customer-service agents and cleri-
cal workers, aircraft and baggage handling person-
nel, and flight instructors. Different unions may
represent a given employee craft or class at different
airlines. The existence of strong labor unions has
been described in a recent study related to bank-
ruptcy proceedings of a major airline (United Air-
lines 2002). 

A study by the General Accounting Office points
out that although the Railway Labor Act is designed
to bring about settlement without unions resorting
to strikes, negotiations between the airlines and
their unions have sometimes been contentious, and
strikes have occurred. Since 1990, negotiations have
been marked by nonstrike work actions on the part
of unions, such as sickouts and work slowdowns.
These actions are designed to place economic pres-
sure on airlines (USGAO 2003, p.1). 

In the years since deregulation, the frequency of
strikes has declined, but the number of nonstrike
work actions has increased. Seventy-five percent of
strikes occurred prior to 1990. By comparison, all
identified nonstrike work actions—such as sickouts
or refusals to work overtime—and all (six) presiden-
tial interventions occurred after 1990 (USGAO
2003, p.9). Moreover, the length of time to negoti-
ate airline contracts has increased since deregula-
tion, and particularly since 1990. From 1978 to
1989, the median contract negotiation was 9
months while the median negotiation length from
1990 to 2002 increased to 15 months (USGAO
2003, p.10). Consequently, the activities of strong
labor unions in air transportation would have
exerted a significant influence in the relatively rapid
growth of labor compensation in that industry.

CONCLUSIONS 

The paper assesses the benefits of productivity
increases in air transportation during the period
1990 to 2001. The choice of this time period is
based on the availability of productivity data that
are central to the analysis. The benefits of produc-
tivity are shown through subsequent impacts on
profits, prices, and labor compensation. The evalua-
tion of these three impacts is dependent on produc-

tivity data; therefore, the data for assessing those
impacts are for the same time period. 

The results show that labor and multifactor pro-
ductivity in the air transportation subsector gener-
ally increased since 1990 and up to 2000.
Productivity increases are expected to result in
higher industry profits. Subsequently, a portion of
this benefit may be passed on to consumers/users of
the industry’s services, in the form of lower prices,
and/or to industry employees, in the form of higher
labor compensation. 

There is an association between productivity and
profits in the industry. This applies particularly with
regard to labor productivity. The increases in labor
and multifactor productivity over the period of
analysis tended to be accompanied by increased
industry profits, which can subsequently impact
prices and labor compensation. 

With respect to productivity and prices, it
appears that consumers of scheduled passenger ser-
vices did not obtain that part of the benefit of pro-
ductivity increases. Prices for consumers/passengers
continued to increase (rather than decrease) rela-
tively rapidly over time—while noting the different
conclusion provided by ATPI data. On the other
hand, commercial users of scheduled air cargo ser-
vices obtained a portion of the benefit from produc-
tivity increases as prices for those services increased
relatively slowly or declined. 

In explaining why consumers of scheduled pas-
senger services did not benefit from productivity
increases while commercial users of freight services
did, one may note that in the case of passenger ser-
vices, it is the consumers (individually) who are
dealing with the providers of the service. Prices are
affected by the relative bargaining power of the
buyer and seller and the degree of competition in
the industry. The industry is an oligopoly, which
implies a relatively low level of competition. More-
over, mergers/acquisitions and bankruptcies reduced
the number of air carriers over time, further lessen-
ing the degree of industry competition. On the other
hand, businesses that purchase scheduled air cargo
services tend to have substantial bargaining power
(including repeat business) and a good knowledge
of prices. These factors can be used to obtain advan-
tageous prices for freight transportation.
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Another finding with respect to price is that
prices for domestic air travel are shown to have
increased considerably faster, over the period of
analysis, than prices of international air travel. The
analysis indicates that this was affected by a trend
toward decreased competition in the domestic mar-
ket, a result of mergers and thus fewer larger firms
who, according to various studies, put up aggressive
responses to the entry of low-cost air carriers. With
this situation in the domestic market, and with
other things constant in the international market,
one could explain the evolution of domestic and
international prices. In addition, in open-sky coun-
tries, prices for international air travel declined over
a period of years during the 1990s.

With regard to productivity and compensation,
the analysis indicates that a part of the benefit of the
productivity increase in air transportation went to
the employees of air carriers, in the form of higher
labor compensation. This can be observed in terms
of levels and changes over time in compensation. In
terms of levels, labor compensation in air transpor-
tation was significantly higher than the average for
the U.S. economy. In addition, labor compensa-
tion—in nominal and real terms—in air transporta-
tion increased at relatively high rates during the
period of analysis. It increased faster than the U.S.
average and in the other transportation subsec-
tors—railroads and trucking. One also notes that
the relatively strong degree of unionization in air
transportation would have been instrumental in
labor obtaining a substantial portion of the benefit
of increased productivity.
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APPENDIX TABLE 1  Growth of Multifactor Productivity in Air Transportation
(Annual percentage rates)

1990–
2000 

1990–
2001

1990–
1995 

1995–
2000 

1995–
2001

Air transportation 1.9 1.4 2.1 1.7 0.7
U.S. private business sector 1.0 0.8 0.6 1.3 0.9

Source: The data on which these growth rates are based were obtained from the Bureau of Labor Statistics 
Internet site, section on Productivity, subsection on Multifactor Productivity.

APPENDIX TABLE 2  Spearman Rank Correlation Coefficients

Years
Labor productivity 
and profits (OAI)

Labor 
productivity and 

profits (OST)

Multifactor 
productivity and 

profits (OAI)
Multifactor productivity 

and profits (OST)

1993–2001 0.79 * 0.53

1994–2001 0.83 * 0.45

1993–2000 0.77 * 0.74 *
1994–2000 0.78 * 0.61

Key: OAI = Office of Airline Information; OST = Office of the Secretary of Transportation.

Notes: For columns 1 and 3, profit data were obtained from TranStats. For columns 2 and 4, profit data (for Majors) were obtained from Airline 
Quarterly Financial Review (various issues).

* Significant at the 95 percent level. There is a 5% chance of concluding that a positive or negative association exists when in fact it does not.
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APPENDIX 4

The example involved the Reno-Minneapolis mar-
ket. In this case, the major network carrier had pre-
viously served that market but had withdrawn from
it. However, after a new airline entered the market,
the major network carrier responded in several
ways. First, it added new service overlaid on the
entrant’s network. This included three new daily
nonstop flights from the same origin (Reno) to three
different destinations; these were markets served by
the entrant and not previously served by the network
carrier. Moreover, the network carrier announced
that it would begin a second daily flight from the
same origin to one of the three destinations (Seattle).
In addition, the network carrier announced that it
would offer bonus frequent flier miles for the resi-
dents of the city of origin (Reno) on the routes that it
offered from that city. It also stated that it would
offer special travel agent commission overrides on
flights to and from the city of origin. 

 Two days after the above actions, the network
carrier also announced air fares to match the fares
of the low-cost entrant on the Reno to Minneapolis
route. It had initially announced lower fares than
the fares of the entrant. It also announced that its
fares for nonstop flights between several cities
would be the same as those of the entrant’s connect-
ing service via Reno. 

The entrant began service from Reno to Minne-
apolis service on April 1, as originally intended, but
by May 20 losses forced it to reduce its service to

one flight a day. On June 1, 1993, Reno Air exited
the Reno to Minneapolis market. The fares of the
network carrier between several cities had dropped
sharply in response to the entry of the new small air-
line into the Reno to Minneapolis market. However,
following the exit of the new airline from that mar-
ket, these fares increased quickly and steadily. In
two to three quarters, the fares of the network car-
rier had increased to a level higher than before the
entry of the new entrant. (Source: Oster and Strong,
2001, pp. 9-13)

APPENDIX 5

 In 10 of the 12 cases, the new entrant’s fare was at
least 50 percent lower than the average fare of the
incumbent(s) during the quarter preceding entry. In
three-fourths of the cases, within two quarters of
new entry, the average fare of the incumbent fell by
1/3 or more. The new entrant exited, in half the
cases, within eight quarters after entry. In three of
the six cases where the entrant exited, average fares
then rose to above pre-entry levels; while in the
other three markets, average fares increases above
the level of the entry period.

 With regard to revenue, in five of the six cases in
which the new entrant exited from the market, total
incumbent revenues were higher eight quarters later,
and had increased sufficiently to offset any revenue
losses that came from additional low-fare traffic
during the period in which the new entrant was in
the market. (Source: Cooper, 2001)
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Speed as a Risk Factor in Serious Run-off-Road Crashes: 

Bayesian Case-Control Analysis with Case Speed Uncertainty

ABSTRACT

In the United States, the imposition and subsequent
repeal of the 55 mph speed limit has led to an ener-
getic debate on the relationship between speed and
the risk of being in a (fatal) crash. In addition,
research done in the 1960s and 1970s suggested
that crash risk is a U-shaped function of speed, with
risk increasing as one travels both faster and slower
than what is average on a road. This paper describes
two case-control analyses of run-off-road crashes,
one using data collected in Adelaide, Australia, and
the other using data from Minnesota. In both analy-
ses the speeds of the case vehicles were estimated
using accident reconstruction techniques while the
speeds of the controls were measured for vehicles
traveling the crash site under similar conditions.
Bayesian relative risk regression was then used to
relate speed to crash risk, and uncertainty in the
case speeds was accounted for by treating these as
additional unknowns with informative priors. Nei-
ther dataset supported the existence of a U-shaped
relationship, although risk of a serious or fatal run-
off-road crash clearly tended to increase as speed
increased.
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INTRODUCTION

Determining appropriate speed limits is a problem
that continues to exercise engineers, elected officials,
and interested citizens, and at first glance this issue
seems fairly simple. Compared to a slower vehicle, a
vehicle traveling at high speed will go farther while
the driver is reacting, take longer to stop, be more
likely to sideslip for a given steering angle, and need
to absorb more kinetic energy to protect its occu-
pants. This suggests that, other things equal, slower
speeds are safer, but complicating this issue is a
series of observational studies which claim to find
that the crash risk for slow moving vehicles is as
high or higher than that of speeding vehicles
(Solomon 1964; Cirillo 1968; West and Dunn 1971;
Harkey et al. 1990). Each of these studies employs
what is essentially a case-control design, where esti-
mates of speeds from a sample of crash-involved
vehicles (the cases) are compared with speeds from a
sample of vehicles not involved in crashes (the con-
trols). These studies have been subjected to a range
of methodological criticisms, and there is no consen-
sus on whether the observed associations between
low speed and crash risk reflect actual causal pro-
cesses, or are simply methodological artifacts. 

In this paper, we begin by briefly reviewing these
studies along with some more recent work. Based
on this review we identify three related methodolog-
ical issues that should be addressed in a case-control
study of speed and crash risk. The first issue arises
because the causal role of high (and low) speed
probably differs for different crash processes, and to
understand this causal role we should conduct sepa-
rate studies of different types of crashes. This leads
to the second issue because breaking a dataset down
by type of crash often leads to small samples for
which statistical methods based on large-sample
asymptotics may not be applicable. The third issue
stems from the fact that estimating the speeds of the
case vehicles most often requires an after-the-fact
reconstruction of the crash. The speed estimates
produced by a crash reconstruction are to some
degree uncertain, and this uncertainty should be
allowed for in a case-control analysis. We then illus-
trate how a Bayesian analysis can address all of
these issues by testing for the existence of a U-
shaped relationship between speed and relative

crash risk using two small case-control samples of
serious and fatal run-off-road crashes. 

Review of Case-Control Studies of 
Speed and Crash Risk

Summaries and detailed critiques of the studies by
Solomon (1964), Cirillo (1968), and West and
Dunn (1971) have been given by Shinar (1998) and
Kloeden et al. (1997). In Solomon's (1964) study
the pre-crash speeds of approximately 10,000 vehi-
cles involved in crashes on some 600 miles (960 km)
of two-lane and four-lane highways were obtained
from crash records, from reports by the drivers
involved, from witness statements, or from esti-
mates provided by the police officers who were
called to the scenes post hoc. Speed and traffic vol-
ume data were collected on these same highway
stretches, and the ratios of the fraction of crash-
involved vehicles with speeds in a given range to
that of vehicle-miles of travel for that range were
computed. These involvement rates were then plot-
ted against the speed ranges’ deviations from the
average speed, producing a striking U-shaped rela-
tionship. For daytime crashes, the involvement rates
were lowest for speeds about 10 mph (16 km/h)
faster than the average, while speeds 30 mph (48
km/h) lower than average had involvement rates
about 300 times greater than the lowest values.
Involvement rates also increased for speeds greater
than 10 mph (16 km/h) above the average but not
as dramatically as for the lower speeds. In a later
study Cirillo (1968) found a similar pattern for rear-
end, angle, and sideswipe crashes on U.S. Interstate
highways, and more recently Harkey et al. (1990)
again found a U-shaped relationship between
involvement rate and deviation from average speed
for a sample of highway sites in North Carolina and
Colorado.

These are provocative findings, but their impor-
tance depends on whether or not they correctly
identify low speed as a cause of crashes. One poten-
tial limitation of these studies, which was pointed
out in Shinar (1998) and Kloeden et al. (1997), con-
cerns the data collection procedure. In Solomon's
original study the speeds of vehicles making turns
were included for the case vehicles but not for the
control vehicles. In Cirillo's study attention was
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restricted to crashes involving multiple vehicles trav-
eling in the same direction, and on freeways these
sorts of crashes tend to occur in congested condi-
tions, which are characterized by reduced speeds. It
is not clear what traffic conditions were present
when the control speed data were collected but if
traffic was uncongested then a situation similar to
that of Solomon's study could arise. Finally, Harkey
et al. (1990) explicitly stated that their control speed
data were collected so as to guarantee that drivers
were traveling at essentially freeflow speeds. Clearly
this sampling procedure will tend to produce a
higher fraction of low speeds in the case sample,
without necessarily illuminating the role of low
speed as a causal factor. For instance, a driver who
slows down in order to turn or because of traffic
congestion and is then involved in a crash will obvi-
ously have a lower speed than will freely moving
drivers, but this does not entail that the slow speed
actually caused the crash. 

In addition, in each of these studies the procedure
used to estimate the speeds of the case vehicles dif-
fered from that used to estimate speeds for the con-
trols. Because measurement operations are almost
always subject to some degree of error, this use of
different estimation procedures means that the mea-
surement error effect on the cases may be different
than that for the controls. It is not now possible to
assess the extent of measurement error in these stud-
ies, and so we cannot say with certainty whether or
not measurement error effects have biased their
results. However, a striking example of the potential
effect of measurement error has been given by
White and Wilson (1970), who showed that
involvement rate curves similar to Solomon's can be
produced by making plausible assumptions about
speed measurement errors, even if actual crash risk
is independent of speed.

We can hope, but probably should not expect,
that a single study will provide the conclusive
answer to a policy question. A more realistic expec-
tation is that after a study's findings are presented, a
process of critical discussion will identify potential
weaknesses, and new studies addressing these weak-
nesses will then be conducted. Over time then our
strongest findings should more closely approximate
truth. Some limitations of the Solomon and Cirillo

studies were in fact known by 1970, and West and
Dunn (1971) described an effort to improve on this
earlier work. In West and Dunn’s study, investiga-
tion teams visited the crash sites and estimated the
case vehicle speeds using crash reconstruction meth-
ods. An attempt was also made at using data from
nearby magnetic loop detectors to determine some
case vehicle speeds, but this was apparently success-
ful only in 9 of 36 attempts. What is interesting
about West and Dunn’s results is that although they
still found a U-shaped relation between deviation
from average speed and involvement rate, the esti-
mated involvement rates were all of the same order
of magnitude. That is, the estimated rates for the
slowest vehicles were only about six times larger
than for vehicles traveling near the average speed,
compared to the increase of several hundred times
found in the Solomon, Cirillo, and Harkey et al.
studies. 

More recently, important advances in the appli-
cation of case-control methods to study crash risk
have been made by the former Road Accident
Research Unit (RARU) at the University of Adelaide
(Moore et al. 1995; Kloeden et al., 1997, 2001,
2002). The RARU studies explicitly used case-con-
trol designs, where the speeds of the case vehicles
were estimated using crash reconstruction methods,
while the speeds of the controls were obtained by
sampling vehicles traversing the crash locations
under conditions similar to those present when the
crashes occurred. In Kloeden et al. (1997) all crash
locations had posted speed limits of 60 km/h (38
mph), all crashes occurred during daylight and dry
weather conditions, and vehicles slowing to make
turning maneuvers were excluded from the sample.
Nonparametric estimates of relative crash risk were
then computed for speeds ranging from 35 km/h to
85 km/h (22 mph to 53 mph), and although relative
risk tended to increase as speeds increased above 60
km/h (38 mph) there was no evidence of increased
risk for lower speeds. In Kloeden et al. (2001) this
approach was applied to crashes occurring on rural
roads, and in Kloeden et al. (2002) the original data
were reanalyzed using parametric logit models. In
both later studies, relative crash risk tended to
increase as speed increased but no heightened risk
for lower speeds was found. 
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Carrying on the process of critical discussion and
improvement, we can identify two ways in which
these findings might be further strengthened. The
first arises from the fact that in all the studies con-
sidered so far, crashes of different types were com-
bined to compute estimates of relative risk. Because
one can reasonably expect that the causal effect of
speed might differ for different types of crashes, it is
possible that estimates computed by aggregating
crash types will be influenced by the relative fre-
quency of the different crash types in the sample.
Inspection of table 4.4 in Kloeden et al. (1997) sug-
gests that the difference between case and control
speeds does vary across crash types with, for exam-
ple, run-off-road crashes showing a pronounced
difference while pedestrian crashes show little differ-
ence. One should consider then whether different
types of crashes show different relationships
between relative risk and speed, but simply disag-
gregating the RARU's data by crash type leads to
relatively small numbers of cases for each type.
Standard statistical methods (e.g., Hosmer and
Lemeshow 2000), which are based on the large-
sample asymptotic properties of estimators, will not
necessarily be applicable.

The second avenue for improvement arises from
the use of crash reconstruction methods to estimate
the case speeds. Although this is a substantial
improvement over what was done in earlier studies,
in practice the evidence available from a crash inves-
tigation is rarely sufficient to determine all quanti-
ties needed to compute an estimate of speed. For
example, the formula

(1)

where g = gravitational acceleration,  = vehicle
speed, d = measured skid mark length, and  = tire/
pavement friction coefficient, can be used to estimate
a vehicle's speed, but only if one also has an estimate
for . Knowing the composition of the road and that
it was dry can allow one to arrive at a plausible range
for  (Fricke 1990), but the actual value characteriz-
ing an actual crash will still be to some degree uncer-
tain. This situation becomes even more complicated if
we allow that the measured skid mark length is at best
an uncertain estimate of the actual braking distance.
The estimates produced by a crash reconstruction are

thus subject to uncertainties, and the appropriate way
to account for these uncertainties is still something of
an open question. In Davis (1999; 2003) we have
illustrated how this can be accomplished by treating
crash reconstruction as an exercise in Bayesian infer-
ence. Here the reconstructionist's expert opinion
regarding plausible values for crash variables is cap-
tured using prior probability distributions, and a
model of the crash can then be combined with mea-
surements to update these prior distributions, via
Bayes theorem. The result is a posterior probability
distribution over the values of the crash variables. 

Both of these issues, accounting for the differen-
tial uncertainty in the case speed estimates and anal-
ysis of small samples, can be addressed using
Bayesian methods. We will illustrate this using two
datasets, where the cases were vehicles involved in
fatal or severe run-off-road crashes, and where
Bayesian crash reconstruction methods were used to
compute posterior probabilities for each case vehi-
cle's initial speed. The case vehicle speeds were then
combined with speed measurements for vehicles not
involved in crashes (controls), leading to a case-con-
trol problem. The posterior speed distributions from
the crash reconstructions were used as informative
prior distributions for the case vehicle speeds, and
logistic regression modeling was then used to test
whether or not a U-shaped relationship existed
between speed and risk in run-off-road crashes. 

A "Failure Rate" Model for 
Run-off-Road Crashes

As noted above, we will use logistic regression to test
for the possibility of a U-shaped relation between
speed and crash risk, but before proceeding we
would like to show how standard assumptions used
in crash analysis lead to the logit model. To see this,
assume first that run-off-road crashes arise when (a)
a driver finds himself or herself in a crash avoiding
situation, and (b) the driver's evasive action is not
successful. As a driver traverses a section of road,
crash avoidance situations are assumed to arise ran-
domly, with density . The success of the evasive
action is assumed to depend on the vehicle's speed,
denoted by , in a manner such that the probability
of crash given  is approximately proportional to
exp(g( )), for some function g(.). This leads to a
proportional hazards model with hazard function

ν 2μgd=
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(2)

Now if X denotes a random variable giving the dis-
tance traveled until being in a crash, the probability
of being in a crash while traversing a section of road
of length x is simply

(3)

If run-off-road crashes are rare (i.e., 0 <  x <<1) (3)
can be approximated as

(4)

which is the probability that the value 1 is taken on
by a Poisson random variable Y with expected value

(5)

If we then condition on Y = 0 or 1 (so that no one
can crash more than once), we get

(6)

a logit model.

Case-Control Analyses

Two sources provided the data on run-off-road
crashes used in this study. The first was the case-
control study conducted by the Road Accident
Research Unit (RARU) at the University of Adelaide
(Kloeden et al., 1997), which, as we noted earlier,
reported data for 151 case vehicles involved in seri-
ous or fatal crashes on roads with 60 km/h speed
limits. For each case vehicle, four control vehicles
were selected by randomly sampling vehicles using
the crash site at times when conditions were similar
to those when the crash occurred. Control speeds
were measured using laser speed guns while the case
speeds were estimated using crash reconstruction
techniques. Of the 151 cases, 14 were single vehicle
run-off-road crashes, and of these 8 involved colli-
sions with objects, where it was possible to measure
the deformation (crush) suffered by the vehicles. For
two others the case vehicles left measurable yaw
marks near the points where the drivers lost control
of their vehicles. 

 As noted above, crash reconstructions are sub-
ject to nontrivial uncertainties, and the probability

calculus can be used as a logic for reasoning about
these. Our general approach to estimating case vehi-
cle speeds for the RARU data was to develop proba-
bilistic versions of the deterministic methods used
by the RARU researchers, and this was done by
supplementing their measurements with training
data, treating the case vehicle speeds as missing val-
ues to be estimated. For the fixed-object crashes, the
training sample consisted of 19 staged collisions
conducted by the National Highway Traffic Safety
Administration (NHTSA), reported in Nystrom and
Kost (1992). For the yaw-mark crashes, the training
sample was 40 measured speeds and yaw radii tabu-
lated in Semon (1995). 

 First, for the fixed-object crashes, the following
variant of Nystrom and Kost's (1992) model was
used to relate measured crush to impact speed 

(7)

Where
c = measured crush

 = impact speed
 = highest impact speed producing no crush

(taken to be 5 mph)
w = vehicle weight

 = coefficients to be estimated
 = error.

The error term  allows for differences between
measured and predicted crush, and was assumed to
be normally distributed with mean equal to 0 and
unknown variance . Because six of the case vehi-
cles left measurable skid-marks prior to collision, it
was also necessary to account for speed lost while
skidding. Treating the measured skid-mark as an
error-prone observation, its expected value was
computed using the RARU's formula

(8)

where
 = denotes the vehicles initial speed

L = fraction of kinetic energy retained between
the initiation of braking and the point where the
skid-mark begins (taken by the RARU to be 0.8),

 = coefficient of tire/pavement friction.
Garrot and Guenther (1982) conducted an exten-

sive comparison of measured versus theoretical
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skid-marks, and the differences between these
showed a coefficient of variation approximately
equal to 0.11. Following the approach described in
Davis (2003), the measured skid-mark was assumed
to have a log normal distribution, with the mean
equal to the natural log of the theoretical length
given in equation (8), and a normal variance of
0.01. This gives a coefficient of variation for the
measurement error equal to approximately 0.1. 

In addition to the likelihood functions for the
measured crush and skid lengths, Bayesian analysis
requires a prior distribution for the unknown quan-
tities. For estimating the speeds of the fixed-object
crash vehicles, the following hierarchical prior dis-
tribution was used:

 ~ Normal (0, 106),
 ~ Normal (0, 106),
 ~ Inverse Gamma (0.001, 0.001),

 and  ~ Normal ( , ), 
 ~ Normal (40 mph,106), 
 ~ Inverse Gamma (0.001, 0.001), and
 ~ Uniform (0.45, 1.0).

With the exception of , all these are commonly
used “uninformative” priors. For , the lower
bound characterizes a dry, travel polished asphalt
pavement while the upper bound characterized a
dry, new concrete pavement (Fricke 1990). As noted
earlier, all crashes in the RARU sample occurred in
dry weather.

Compared to the fixed-object crash model, the
yaw-mark model was simpler, but still based on the
principle of imputing unknown speeds. Treating the
radius of the yaw mark as an error-prone measure-
ment caused by the speed, the standard critical
speed formula leads to

(9)

where
r = measured yaw radius,

 = vehicle's speed,
 = friction coefficient, and
 = measurement error.

The error term  was assumed to be normally dis-
tributed with mean equal to zero, and unknown
variance . As stated earlier, 40 experimental tests
having information on observed speed and radius of
curvature were used as a training dataset for esti-

mating the value of . The two RARU cases were
then treated as similar to the 40 tests but with miss-
ing speeds. The following priors were used:

 ~ Normal ( , ), 
 ~ Normal (50,106), 
 ~ Inverse Gamma (0.001, 0.001), and
 ~ Uniform (0.45,1).

Posterior distributions for the case vehicle speeds
were then computed using the Markov Chain
Monte Carlo program WinBUGS (Spiegelhalter et
al., 2000), and details of the WinBUGS models have
been given in Davis and Davuluri (2002). Table 1
summarizes the case and control data for the 10
RARU crashes.

The second dataset was taken from a set of 46
fatal crashes occurring on Minnesota state high-
ways between January 1, 1997 and June 30, 2000.
These were all fatal crashes reported during this
time period which occurred near a location where
the Minnesota Department of Transportation col-
lected automatic vehicle speed data, and for which
crash investigation data could be obtained from the
Minnesota State Patrol. The automatic speed data
were used to produce control speeds by randomly
sampling from the speed measurements taken dur-
ing an hour when conditions were judged to be sim-
ilar to those present when the crash occurred. Of
the 46 crashes, 22 involved loss of control and run-
ning off the road, and of these 9 resulted in colli-
sions with other vehicles, 10 resulted in rollover, and
3 resulted in collisions with fixed objects. For 10 of
these it was possible to use crash reconstruction
methods to estimate initial speeds. For two, initial
speeds were estimated from measured yaw marks
using the method described above, while for five a
tripped rollover model described in Cooperrider et
al. (1990) and Martinez and Schlueter (1996) was
adapted to estimate initial speeds. This method
divides the roll-over into rolling, tripping, and pre-
tripping phases, and then works backward from the
vehicle's rest position to estimate the speed at the
beginning of each phase. For the three remaining
Minnesota crashes, straightforward application of
either the yaw-mark mark method or the tripped
rollover model was not possible, but special features
of these crashes still permitted estimates of initial
speeds. In one crash, where the case vehicle jumped
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a ditch, the fall equation (Fricke 1990) was used to
estimate speed at the ditch's edge. In another, where
the driver was thrown from the vehicle upon its
striking a fence, Searle's (1993) throw equation was
used to estimate the vehicle's speed at the fence. In
the third, where a driver lost control and rolled his
vehicle after being rear-ended, we were able to esti-
mate an initial speed for the rear-ending vehicle
from skid and yaw marks. Table 2 summarizes the
case and control data for the 10 Minnesota run-off-
road crashes. Example code illustrating our recon-
struction methods is available from the first author
on request.

As indicated in the Introduction, one of the unre-
solved issues in the debate on speed versus crash risk
concerns whether or not crash risk is a U-shaped
function of speed, with vehicles traveling at atypi-
cally low and high speeds having increased crash
risk. If we accept that the role of speed may vary for
different types of crashes, depending on the opera-
tive processes and circumstances, then appropriate
tests for the possibility of a U-shaped relationship
should be carried out using data disaggregated by
crash type. Otherwise, there is the possibility of
obscuring the speed effect by combining processes
where speed is and is not causal, or of producing an
apparent U-shaped relationship by mixing situa-
tions where high speed is causal with other situa-
tions where low speed is causal. Disaggregating by
type of crash reduces sample sizes however, but as
argued earlier, a simple proportional hazards model

relating speed, distance traveled, and crash risk
leads to a prospective logit model

(10)

The parameter b0 can be taken as summarizing the
effects of those features shared by the cases and con-
trols at a given location, while the function g(v,b)
describes how crash risk varies with speed and a
vector of parameters b. Assuming first that both the
case and the control speeds are known without
error, the fact that the cases and controls are
matched by location means that a matched case-
control approach can be used, which leads to a like-
lihood contribution from site k of the form 

(11)

(e.g., Hosmer and Lemeshow 2000). Here 
denotes the case vehicle speed at site k, while 
j > 0 denotes the corresponding speeds for the con-
trol vehicles. The likelihood function obtained as
the product of equation (11) over all case-control
sets would then provide the basis for either a Baye-
sian or a classical approach to estimation. If the case
speeds are only known up to some probability dis-
tribution, they then become additional quantities to
be estimated, and by using those distributions as
priors Bayesian estimation is in principle straightfor-
ward. In all our analyses, the priors for the case
vehicle speeds were taken to be normal distribu-

TABLE 1  Posterior Means and Standard Deviations for the Speeds of the 
Case Vehicles, and the Measured Speeds for the Control Vehicles, 
for 10 Road Accident Research Unit Run-off Road Crashes. 
All Speeds are in Miles per Hour.

Case speeds  Control speeds

Crash no. Mean Standard deviation 1 2 3 4

1 43.4 4.1 34 35 38 38
2 41.5 3.9 27 30 34 38
3 48.3 4.3 30 34 35 39

4 53.2 3.3 32 34 37 42
5 54.8 4.5 37 43 38 30
6 86.9 9.0 37 37 38 38

7 41.5 2.4 33 34 38 43
8 38.7 2.3 31 40 40 42
9 59.2 3.4 39 39 42 43

10 62.5 3.2 34 38 39 43
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tions, with means and standard deviations as given
in tables 1 and 2. 

Estimating the Risk Functions

In the simplest case, a test as to whether or not the
risk function is U-shaped can be carried out by com-
paring a quadratic form for the function g(.) 

(12)

to a linear form

. (13)

Looking first at the Minnesota crashes, Bayes esti-
mates for the linear model (13) were computed
using the Markov Chain Monte Carlo routine Win-
BUGS with  being fixed, for each case-control
set, to the average speed for that set's control popu-
lation. When we attempted to estimate the qua-
dratic model, however, the MCMC routine was
unstable, producing chains with poor mixing prop-
erties, and the simulated values for  and 
tended to be highly correlated with each other. At
least one reason for this can be seen in figure 1,
which shows a contour plot of the marginal log-
likelihood as a function of  and . The narrow
ridge-shape of this log-likelihood indicates that the
data tend to be uninformative about  over a range
of values, including zero. For the relative risk func-
tion to be U-shaped, however,  must be positive,
so additional MCMC runs were conducted with the

prior for  constrained to have support only on the
non-negative real numbers. Table 3 displays poste-
rior estimation summaries for the linear and con-
strained quadratic models as fit to the Minnesota
run-off-road data. 

The results shown in table 3 indicate that the lin-
ear and constrained quadratic models provided
roughly equivalent fits to the Minnesota data. The
posterior deviances have similar distributions, and
the values of the deviance information criteria (DIC)
(Spiegelhalter et al. 2002) were approximately
equal. Because a convex parabola and a straight line
have different implications for the relationship
between speed and crash risk, the rough equivalence
of these two models may seem contradictory. The
contradiction is resolved by looking at the point of
minimum risk, which for the quadratic model
occurs at a speed equal to . Substitut-
ing the posterior means for  and  into this
expression reveals that for the quadratic model min-
imum risk occurs at about a speed between 10 and
11 mph below the average for the controls. Because
most (97 out of 100) of the control speeds in table 2
were above these values, what happened was that
the quadratic model achieved parity with the linear
model simply by being monotonically increasing
over the range of the available data. More particu-
larly, the results in table 3 do not appear to support
earlier claims that minimum risk tends to occur near
the mean or median of the control speeds.   

For the RARU data, the Markov Chain Monte
Carlo simulations showed poor mixing even when

TABLE 2  Posterior Means and Standard Deviations for the Speeds of the Case Vehicles, and Measured 
Speeds of the Control Vehicles, for 10 Minnesota Run-off Road Crashes. All Speeds are in 
Miles per Hour.

Case speeds Control speeds

Crash no. Mean
Standard 
deviation 1 2 3 4 5 6 7 8 9 10

1 69.8 5.6 58 58 66 50 56 65 60 70 72 54
2 71.0 5.0 57 53 38 55 65 51 59 61 55 56
3 71.4 4.4 69 75 82 77 75 82 78 70 77 71

4 81.4 2.1 69 75 89 70 75 77 87 65 77 71
5 59.8 3.6 52 60 56 55 56 56 58 53 54 62
6 80.8 2.1 69 78 71 82 80 70 69 70 70 78

7 74.5 5.0 85 78 85 71 83 72 85 71 63 79
8 67.7 4.0 69 68 65 56 72 75 75 69 70 70
9 80.4 1.7 77 81 78 77 72 75 74 80 70 76

10 73.3 4.0 73 73 71 75 80 82 78 70 87 77
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attempting to fit the linear model, and again study-
ing a plot of the marginal log-likelihood function
was informative. Figure 3 shows this, and the dis-
tinctive feature here is how the log-likelihood flat-
tens out for higher values of , indicating that the
matched case-control data contain no information
about how large  is. The reason for this is found
by inspecting table 1, where it can be seen that most
controls speeds are below the posterior mean speed
for their corresponding cases, and none are greater
than two standard deviations above this mean. To
work around this problem, it was decided to supple-

ment the control speeds with those obtained at all
other sites in the RARU study. We considered this
acceptable because, unlike the Minnesota data, the
RARU data were collected under similar road and
weather conditions. This produced an unmatched
case control study with 10 cases and 604 controls.
As with the Minnesota data, WinBUGS was used to
compute Bayesian estimates of the parameters for
the linear and quadratic models, along with mea-
sures of goodness of fit, and these are displayed in
table 4. Again, the linear and quadratic models
appeared to fit the data about equally well, but the

FIGURE 1  Contour Plot of Log Likelihood Function of Quadratic Model Fit to the Minnesota Data 

TABLE 3  Bayesian Parameter Estimates and Goodness of Fit Measures for the Linear and 
Constrained Quadratic Models Applied to the Minnesota Data

Linear model (Constrained) quadratic model
Parameter/
measure Mean 2.5 percentile 97.5 percentile Mean 2.5 percentile 97.7 percentile

b1 0.19 0.03 0.46 –0.014 –0.013 0.381

b2 — — — 0.006 0.0003 0.016

Deviance 40.3 29.5 47.9 40.6 30.8 48.5
DIC 41.1 40.3
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interpretation is more clear cut. For both the linear
and quadratic models the estimates of the intercept
and the coefficient for the linear term were essen-
tially equal, while the coefficient for the quadratic
term in the quadratic model was essentially centered
at zero. The linear and quadratic models thus
achieved comparable fits by relying only on the lin-
ear terms. 

To summarize, for both the Minnesota crashes
and the RARU's crashes it appeared that at least
over a typical range of speeds, risk of being in a seri-
ous or fatal run-off-road crash increases as speed
increases. If, in fact, there are situations where low
speeds are dangerous, these likely involve processes

or conditions different from those that characterize
the crashes in these samples.

SUMMARY AND CONCLUSION

In the introduction we indicated that a salient issue
with regard to the role of speed in road crashes con-
cerns the existence of a U-shaped relationship
between speed crash risk. Despite extensive
research, a clear resolution of this issue has yet to be
achieved. The view we have adopted is that at least
some of the current confusion may result from: 1)
aggregating crashes that are caused by fundamen-
tally different processes, and 2) failure to account

FIGURE 2  Matched Case Control Log Likelihood as a Function of b1 for 
Linear Model Fit to Road Accident Research Unit Data

TABLE 4  Bayesian Parameter Estimates and Goodness of Fit Measures for Linear and 
Quadratic Models Applied to the RARU Data.

Linear model  Quadratic model
Parameter/
measure Mean 2.5 percentile 97.5 percentile Mean 2.5 percentile 97.7 percentile

b0 –7.35 –10.64 –5.29 –7.66 –11.72 –5.36

b1 0.54 0.33 0.84 0.55 0.15 1.11

b2 — — — 0.0018 –0.018 0.025

deviance 36.33 26 48 36.3 25.6 48.5
DIC 40 39.6
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for uncertainty in an analysis. In this paper, we have
showed how pioneering work conducted at the
RARU could be combined with recent advances in
computation for Bayesian statistical models in order
to apply case-control methods to studies with rela-
tively small numbers of cases. Applying the method
to two case-control samples, each with 10 serious or
fatal run-off-road crashes, we found that these data
did not support the existence of a U-shaped rela-
tionship between speed and crash risk, although risk
did tend to increase as a function of speed. 

One implication of this study appears to be that,
as common sense tells us, high speed in and of itself
is not sufficient to cause a crash. For the 10 Minne-
sota crashes, other drivers were observed traveling
the same road under the same conditions as fast or
faster than the crash-involved drivers without being
involved in a fatal crash. A reasonable interpreta-
tion would be that some type of triggering event,
which places the driver in a crash-avoiding situa-
tion, is also necessary. This is consistent with
Hauer's pyramid (1997, p. 19), which distinguishes
normal driving from conflict situations, and from
those situations resulting in crashes. Study of the
Minnesota crash reports revealed events such as the
appearance of a deer in the driver's path, the merg-
ing of a slower moving vehicle into the driver’s lane,
driver distraction leading to a need to avoid a rear-
ending collision, and loss of control following the
driver’s turning to interact with a child in the back
seat. The logit model used in this paper assumed
that such situations arise randomly with a rate that
perhaps differs for different roadways. This parame-
ter was absorbed into the logit model's constant
term, and it is well-known that this term cannot be
identified from case-control data alone. Because this
parameter was not needed in testing for a U-shaped
relation between speed and risk, this did not handi-
cap our analysis. (In more traditional crash recon-
struction, one in essence conditions on the
occurrence of the crash avoidance event, so again it
is not necessary to determine how this event arose.)
A more complete understanding of how crashes
occur however will eventually require determining
how crash-avoidance situations arise. At present,
though, our ability to model these does not appear

to be as well-developed as our ability to model what
happens once a crash sequence has started.

Finally, these results should caution us against
using aggregated data to make overly general state-
ments about crash causation. It may be that in other
scenarios low speed is a causal factor of crashes.
The challenge now is first to identify those scenar-
ios, and then to demonstrate in actual instances how
low speed caused these crashes.
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Speed Estimation for Air Quality Analysis

ABSTRACT

Average speed is an essential input to the air quality
analysis MOBILE6 model for the calculation of
emissions factors. Traditionally, speed is obtained
from travel demand models; however, such models
are not usually calibrated to speeds. Furthermore,
for rural areas where such models are not available,
no reliable method is available for estimating speed.
In this study, we developed a procedure based on
the model in the Highway Economic Requirement
System to estimate average speed using as input var-
ious data such as roadway characteristics and traffic
conditions. The model was confirmed to be power-
ful based on the statistical comparisons between the
estimated and measured speeds. Various implemen-
tation issues including the impact of data quality
and potential applications are also discussed. 

BACKGROUND

The increasing use of motor vehicles has resulted in
a much degraded air quality in recent decades. The
Clean Air Act requires transportation planners to
monitor and assess the performance of transporta-
tion systems regularly; while the enactment of the
Clean Air Act Amendments of 1990 signified the
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importance of combining travel demand and air
pollutant emissions forecasting. 

The commonly used air quality analysis model,
MOBILE6, provides estimates of current and future
emissions from highway motor vehicles. It has been
employed by most states in compliance with the
U.S. Environmental Protection Agency (EPA)
requirement. MOBILE6 is an emissions factor
model that employs information such as vehicle
classification and age distribution, average operat-
ing speed, and vehicle-miles of travel (VMT). The
outputs of the model include emissions factors for
hydrocarbons (HC), carbon monoxide (CO), nitro-
gen oxides (NOx), carbon dioxide (CO2), particu-
late matter (PM), and toxic pollutants from cars,
trucks, and motorcycles under various conditions
(Cook and Glover 2002). Even though MOBILE6
has national default values for each category, area-
specific inputs on a variety of parameters are pre-
ferred (e.g., annual mileage accumulation by vehicle
class, average speed distribution by hour and road-
way type, distribution of VMT by roadway type,
and distribution of VMT by vehicle class). 

Among the parameters required by the model,
average speed is the most important because emis-
sions rates are highly sensitive to changes in speed.
Furthermore, the emissions rates of the three major
pollutants, HC, CO, and NOx, are also very sensi-
tive to VMT by time of day and average speed
(Tang et al. 2003). This calls for an accurate esti-
mate of average operating speed.

Various methodologies can be applied to speed
estimation. Dowling et al. (1997) provide a compre-
hensive review of these methods. Here, we briefly
discuss several commonly used methods.

The standard Bureau of Public Roads (BPR)
equation was developed in the 1960s. Even though it
does not accurately reflect the relationship between
volume and speed, it has been widely used as a sim-
ple tool to predict mean speed, as shown in the fol-
lowing equation. 

where
S = predicted mean speed
FFS = free-flow speed 

v  = volume
c  = practical capacity
a  = 0.15
b  = 4
The free-flow speed, capacity, and volume can be

determined by creating various lookup tables based
on area and facility types. The uniform parameter
values for a and b do not distinguish facilities in dif-
ferent types. This method could result in an estima-
tion error of approximately 40% (Dowling et al.
1997). 

Several improvements have been made to
enhance the accuracy of the standard BPR equation.
Separate curves were fitted for urban interrupted
facilities. Data on critical segments of the facility
replaced the facility averages. Based on an updated
speed-flow relationship, the value of a was set at
0.05 for signalized facilities and 0.20 for all other
facilities, while the value of b was set at 10. Further-
more, free-flow speed was estimated using an equa-
tion instead of the lookup table. 

Despite the improved performance of the
enhanced BPR technique, BPR-type equations are
not capable of addressing the spill-back of physical
queues formed at urban interrupted facilities. There-
fore, this method should be limited to long-range
planning applications that do not usually require
high precision (Dowling et al. 1997).

The ARTPLAN technique is a planning proce-
dure developed by the Florida Department of Trans-
portation and is powerful in dealing with urban
facilities controlled by signals (Dowling et al. 1997).
Subsequently, the model was expanded to cover
urban streets with stop sign control and conditions
in which demand exceeds capacity. A similar proce-
dure for rural facilities with interrupted flows was
also created. Although the ARTPLAN technique
outperforms the enhanced BPR technique for mean
speed estimation on urban uninterrupted facilities, it
still produces large errors. For example, it was
observed that for urban arterials the estimation
error could be up to 25% or 33% (Dowling et al.
1997).

In Kentucky, travel demand models (TDMs) are
the primary tool for obtaining average speed esti-
mates. These models were developed for large
urbanized areas such as Louisville, Lexington, and

S
FFS
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the Northern Kentucky area. Some smaller urban-
ized areas also have their own TDMs. The enhanced
BPR function is used in the model (Bostrom and
Mayes 2003). However, these models do not pres-
ently include procedures for calibrating speeds. Fur-
thermore, Kentucky currently has no reliable
procedure for estimating speeds in areas without a
TDM. Bostrom and Mayes (2003) provide a sum-
mary of the air quality attainment issues and high-
way speed estimation for MOBILE6 in Kentucky. 

The objective of this research was to develop a
procedure to estimate average speed on different
roadway types. This paper evaluates the perfor-
mance of such a procedure by comparing the esti-
mated speeds with speed data collected in the field.
Several issues that arose during the implementation
of the model will also be discussed. 

RESEARCH APPROACH

Based on the requirements of the air quality analysis
and available data, we developed a procedure based
on the internal speed model of the national version
(v3.26) of the Highway Economic Requirement Sys-
tem (HERS) (USDOT 2000b), from which the state
version (HERS-ST) is derived. HERS is a cost and
benefit analysis tool that uses engineering standards
and economic criteria to provide decision support
on future infrastructure investment levels. HERS
consists of a number of internal models that gener-
ate intermediate parameters for the cost and benefit
analysis. One of the parameters is a speed model
that calculates average effective speed (AES) for
each segment of a roadway. This information can
subsequently be used to calculate the costs of travel
time, the external costs, and the total vehicle operat-
ing costs. 

The HERS speed model requires many data items
on facilities and traffic. Such information includes
roadway geometric parameters, pavement condi-
tion, speed limit, traffic control devices, and traffic
composition. Since HERS was designed to run
based on the format of the Highway Performance
Measurement System (HPMS) sample data, most
required data items are available, at least for the
sample segments. 

The HERS speed model uses an aggregate proba-
bilistic limiting velocity model to determine the free-

flow speed (FFS) on a roadway. The delay due to
traffic control devices or the presence of other vehi-
cles on a uninterrupted facility is estimated based on
facility type. The average AES is then obtained from
the FFS and the delay. Figure 1 shows the general
procedure for estimating average effective speed.
The complete procedure for the HERS speed model
can be found in the HERS Technical Report v3.26
(USDOT 2000b). 

Based on the HERS speed model, an Excel macro
was programmed to calculate the AES for each
roadway segment. The average speeds were then
grouped by county and by functional class for the
purpose of air quality analysis. 

CASE STUDY AND MODEL VALIDATION

Input Data

We tested the HERS speed model using the data
from the 2002 HPMS extract for Kentucky. This set
includes state and locally owned roadways with a
total of over 9,000 segments and over 13,500 miles.
The mileage breakdown by functional class is
shown in table 1. In addition to the data items in the
HPMS format, the HERS speed model also needs
information on heavy vehicle percentages by vehicle
type on the segments (as specified in USDOT
2000b). However, these data are unavailable for
most segments. Therefore, a lookup table was cre-
ated to estimate this information based on the state-
wide heavy vehicle distribution by functional class
and the total heavy vehicle percentages on each
segment. 

Model Validation

In order to evaluate the performance of the speed
model, we compared the estimates to the field data
collected through various efforts. Limited speed
data are available in Kentucky, especially after 1995
when the speed limit compliance program was dis-
continued by the Federal Highway Administration
(Bostrom and Mayes 2003). 

Two primary sources of speed data exist in Ken-
tucky. One is a study of the impact of speed limit
changes on highway safety, in which extensive speed
data were collected on various roads in Kentucky
(Agent et al. 1997). Another is a recent effort to col-
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lect speed data in Christian County, Kentucky.
Although these data were not collected in the same
year as the HPMS data extract used for the HERS
model, they were chosen to be compared with the
model output because they are the most complete
sets (in terms of covering various roadway types) of
speed data. This time mismatch may introduce some
errors to the validation process, especially at the seg-
ment level. However, the error at the route (a
sequence of segments) level could be less due to the
smoothing effect of the aggregation. Additionally, in
an attempt to offset the impact of the mismatched
time periods, several items (e.g., signal density) in the
input data file, to which the speed output may be
very sensitive, were updated during the validation
process based on field data from Christian County.

This case is also discussed in a later section to illus-
trate the importance of having accurate input data. 

In the 1997 study, speed data were collected on
86 sample routes, covering all highway functional
classes except for local roads and rural minor collec-
tors. Based on the beginning and ending mile points
for each of these routes, the matching sequence of
segments was extracted from the 2002 HPMS data.
The average effective speeds for these segments can
be obtained via implementing the HERS speed
model. The overall average speed for each route
containing multiple segments was estimated as total
mileage traveled divided by total time spent on the
route. Table 2 lists a few sample roadways for
which the comparison between measured and esti-
mated speeds was made. 

FIGURE 1  Estimating Average Effective Speed

Key:
VCURVE = the maximum allowable speed on a curve
VROUGH = the maximum allowable ride-severity speed
VSPLIM = the maximum speed resulting from the speed limit
FFS = free-flow speed
FFSUP = free-flow speed on an uphill
D = delay
AES = average effective speed

START

VCURVE VROUGH VSPLIM

FFS

FFS = FFSUP

EXIT

Use FFS to calculate delay Uphill

Calculate FFS

Calculate delay

D-sign D-signal D-multilane D-2-lane D-3-lane

Delay due to traffic control AES = 1/(1/FFS+D/1000) Delay on uninterrupted facilities

N
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For rural Interstates with a 65 mile-per-hour
(mph) speed limit, the differences between the esti-
mated and measured speeds ranged from –0.2 mph
to 5.9 mph. For urban Interstates and other arterials
with a speed limit of 55 mph, such differences
ranged from –11.4 mph to 2.2 mph. A paired t-test
was chosen to test the equality of the underlying
population means between the model output and
measured samples. Prior to the test, preliminary
analyses were conducted to ensure that the data did
not violate the assumptions of the test. The first
assumption was that the paired differences should
be independent of each other, which was satisfied
because the speed data came from different roads.
Secondly, the paired differences should be normally
distributed. The normal probability plot for the

paired differences was constructed in which the
close agreement with the straight line was observed.
Then, the Lilliefors test for goodness of fit to a nor-
mal distribution was conducted. Under the signifi-
cance level , the hypothesis that the paired
difference has a normal distribution was accepted. 

After the assumptions were confirmed, the paired
t-test was conducted. With a p value of 5.6 × 10-5,
the result recommended that we reject the null
hypothesis that the two sets of speeds are from pop-
ulations with equal means. In other words, the esti-
mated and measure speeds were statistically
different. However, the test also showed that the
average measured speeds were no more than 1.1
mph higher than that of the estimated speeds when

 = 0.05. The p value at this time was 0.08 and the
t statistic was 1.77 and was lower than the critical t
statistic (1.99 in this case). The 95% confidence
interval for the average difference between the mea-
sured and estimated speeds was (0.18, 3.59). This
implies that the extent of the differences between
estimates and measurements was not very large,
although the difference was statistically significant.

To eliminate the potential impact of the speed
limit on the sample means, paired t-tests were con-
ducted for sample groups with different speed lim-
its. Under the significance level of 0.05, test results
showed that for roadways with a 65 mph speed
limit (i.e., rural Interstates), the average estimated
speed was approximately 1 mph higher than the
average measured speed. The 95% confidence inter-

TABLE 1  Sample Data Summary

Functional class
Numbers of 
segments Mileage

1 115 533

2 822 2,052
6 979 1,633
7 3,138 6,932

8 0 0
9 0 0
11 91 229

12 48 87
14 1,270 661
16 2,009 996

17 535 411
19 0 0
Total 9,007 13,534

α

α

TABLE 2  Speed Comparison Based on the 1997 Speed Study

Route
Functional 

class
Speed 
limit

Measured 
speed

Estimated 
speed

I 24 1,11 65 68.5 71.2
I 64 1,11 65 68.4 69.7

I 65 Jefferson 11 55 59.8 60.7
I 471 Campbell 11,12 55 59.6 61.8
Mountain 9000 2 65 68.3 64.4

Purchase 9003 2,7,12 65 67.0 71.7
W. Kentucky 9001 2,12,14 65 69.2 71.3
US 60, Grayson-Ashland 7 55 54.7 54.9

US 150, Bardstown-Danville 2,6,14 55 59.0 54.3
KY 10, Vanceburg-US 23 2 55 57.6 55.4
KY 15, Whitesburg-Campton 2,7,14 55 58.5 53.9
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val for the difference between the estimated and
measured speeds was (0.69 mph, 2.97 mph) for
these roads. For roadways with a speed limit of 55
mph, the HERS speed model underestimated the
speed by approximately 2 mph. The 95% confi-
dence interval for the difference between the two
was (–3.84 mph, –1.74 mph) for these roads.
Although the differences between the estimated and
measured speeds were statistically significant, the
absolute estimation errors were not substantial as
indicated by the mean difference and the confidence
intervals. 

A larger difference was observed between the
estimated and measured speeds on roads with lower
functional classes. This was primarily attributable
to the model’s sensitivity to various factors such as
traffic signal density. A detailed discussion on this
topic will be presented in the next section. 

In 2005, Christian County in Kentucky was des-
ignated by EPA as a nonattainment area. It became
crucial to obtain accurate speed estimates for differ-
ent types of roadways in this county in order to
establish the future emissions budget. Speed data
were collected during a three-month period in sum-
mer 2004 on a number of roadways throughout the
county. The effort covered approximately 50% of
the total mileages (both state and locally main-
tained) and over 70% of state-maintained facilities

in the county. The sample segments were selected
based on the recommendation in FHWA’s Travel
Time Collection Handbook (Turner et al. 1998).
Each road was traveled at least twice, once during
the peak and once during the offpeak periods. 

The HERS model was tested on the same high-
way segments in Christian County on which the
speed survey was conducted. Table 3 shows the
comparison between the estimated and measured
speeds for several sample roadways in the county.
The differences between the two sets of speeds were
mostly within 5 mph with few exceptions. However,
the paired t-test could not be applied in this case
because the data violated the assumption that the
paired differences between the two sets of speeds
should be normally distributed. 

Therefore, nonparametric tests need to be used,
because they do not usually make distributional
assumptions. The most commonly used alternative
for the paired t-test is the Wilcoxon paired signed
rank test. The Wilcoxon signed rank test first sorts
the absolute values of the differences (between esti-
mated and measured speeds) from smallest to larg-
est, and then assigns ranks to these absolute values
starting with the smallest as rank 1. The sum of the
ranks of the positive differences is then calculated.
When the null hypothesis (i.e., the median difference
in paired data is zero) is true, the sum of the ranks

TABLE 3  Speed Comparison Based on the 2004 Christian County Survey

Route
Functional 

class Speed limit
Measured 

speed
Estimated 

speed

I 24 1 65 72.0 71.8

E 9004 2 65 68.5 72.1
US 41 6 25/35/45/55 53.1 51.1
KY 91 7 55 58.0 58.5

KY 164 7 45 51.2 47.8
KY 1026 8 35 40.5 46.7
KY 1027 8 40 38.4 42.7

CR 1031 9 40 38.9 39.9
CR 1053 9 45 44.8 47.5
I 0024 11 65 74.3 72.0

US 41A 14 25/35/45/55 42.3 35.6
US 68B 14 45 55.1 60.8
KY 115 16 35/45 39.1 39.8

KY 380 16 35 30.8 25.2
KY 911 17 35 36.8 34.9
KY 1007 17 45 32.2 27.3

KY 400 19 35 32.4 37.9
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of all positive differences is approximately the same
as that of the negative differences. The Wilcoxon
signed rank test was conducted to compare the esti-
mated and measured speed data. With a p-value of
0.40 under  = 0.05, the test did not find enough
evidence to reject the null hypothesis that the under-
lying population speeds had the same median.
When the population distribution is symmetric (as
was the case for Christian County data), the median
is approximately equal to the mean. The test was
also conducted for sample differences in each func-
tional class. It subsequently recommended the
acceptance of the null hypotheses as well. 

Considering the speed variation on highways by
various functional classes, the speed samples were
grouped according to roadway functional class. The
speed sample size and mileage are summarized in
table 4 together with the aggregated average speeds
from the HERS model and field measurement in
Christian County. 

IMPLEMENTATION ISSUES

An Excel-based software tool was developed to
implement the HERS speed model on highway data
stored in the HPMS format. Additional data items,
such as truck percentage breakdowns by truck type,
were prepared separately. The tool calculates the
average effective speed for each segment and then
aggregates them to the county level for each func-
tional class. Specifically, the average travel time on
each segment was estimated from the segment
length and the average effective speed. The county-

wide average speed was then calculated as total dis-
tance traveled (i.e., total length of all segments) in a
functional class divided by total travel time on the
road segments in that functional class. 

Data Quality

Although the HERS speed model performed very
well in estimating the average speed for each road-
way segment, its accuracy at the county, regional, or
state level is largely dependent on the availability
and accuracy of the input data. 

Availability
The HERS model uses highway inventory data in
the HPMS sample format to calculate the average
speed. However, such data are not available for all
highways. Usually, most state-maintained highways
are inventoried, but not much information is avail-
able for those that are locally maintained unless
they are HPMS sample sections. Moreover, many
state-maintained roads that are in lower functional
classes may not have been inventoried. An accurate
estimate of speed would call for adequate samples in
each functional class. Intensive effort might be nec-
essary to ensure that enough data are available, par-
ticularly for roadways in lower functional classes.

Accuracy  
The accuracy of the input data also affects the per-
formance of the speed model. Like any model, the
validity of the speed model output depends on the
validity of the input. Some inconsistencies were
found in the HPMS extract. For example, the sum

TABLE 4  Christian County Speeds Comparison

Functional class
Sample 

size Mileage
Estimated 

speed (mph)
Measured 

speed (mph)

1 2 17.3 70.7 71.2

2 6 35.1 56.4 60.3
6 2 7.6 51.1 53.1
7 6 52.4 54.0 54.7

8 30 175.6 47.1 48.5
9 74 188.6 35.7 41.2
11 1 3.3 72.0 74.3

12 — — — —
14 7 15.9 35.7 38.8
16 26 51.6 31.2 30.5

17 7 15.6 29.6 32.5
19 64 68.2 23.0 23.2

α
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of the curve (or grade) lengths must equal the seg-
ment length (USDOT 2000a); however, a number of
segments did not satisfy this requirement. Further-
more, the unavailability of curve (or grade) data on
some segments is treated by the speed model as if
the segment was all tangent (or leveled), because
both scenarios would have a “0” code in the curve
(or grade) class fields. However, these segments may
not indeed be curve-free (or leveled) as indicated by
the horizontal (or vertical) alignment adequacy rat-
ing. In other words, the HERS speed model does
not distinguish the “no data” scenario from the “no
curve (or grade)” scenario. In order to improve the
accuracy of the model output, efforts should be
made to assure the accuracy of each data item. 

Special attention should be paid to the accuracy
of data items, such as the density of traffic control
devices, because they tend to have a significant
impact on the delay estimates. During the model
validation process, significant differences between
the estimated and measured speeds were observed
on several roads. Table 5 lists several roads in Chris-
tian County with “Initial AES” estimates signifi-
cantly different from the observed speeds at the
same sites. Further investigation revealed that there
are some differences in the density of traffic control
devices, speed limit, and lane width between the
2002 data extract and the information collected in
2004. After the input file was updated based on the
latest information, the HERS model produced an
updated output (also shown in table 5). Significant
improvement of estimation accuracy can be seen on
many of these roadways. 

The HERS model is also quite sensitive to the
speed limit, which is one of the parameters used to
calculate the free-flow speed. The maximum speed
resulting from the speed limit (VSPLIM) is assumed
to be at least 6 mph above the speed limit in the
HERS speed model. 

In Kentucky, the default speed limit for rural
highways other than the Interstates and four-lane
highways with a median is 55 mph. However, the
prevailing speed may be severely restricted by the
presence of sharp curves which, as discussed earlier,
may not be accurately reported in the HPMS sample
data. Nevertheless, the adjustment of the posted
speed limit to reflect the prevailing operating speed
may not be made on all segments. This is also recog-
nized in the HPMS Field Manual (USDOT 2000a)
in that it uses the horizontal alignment adequacy
rating to describe the curves with design speed less
than the prevailing speed limit. Under this circum-
stance, using the posted speed limits in the data
table would yield an unreasonably higher VSPLIM.
Combined with the incomplete curve data, which
will over-estimate the maximum allowable speed on
a curve (VCURVE), higher (and less accurate) esti-
mates of FFS and AES will result.

On the other hand, the item “weighted design
speed” in the HPMS data file contains the design
speeds weighted by the length of horizontal curves
and tangents on a segment. For a number of road-
way segments in Kentucky, the weighted design
speed could be as low as 40 mph while the posted
speed limit is 50 mph. Therefore, in order to reduce
the estimation error, in such cases, the effective

TABLE 5  Speed Comparison with Changes in Traffic Control Devices

Route
Function 

class
Measured 

speed (mph)
Initial AES 

(mph)
Updated 

AES (mph) Change

US 41A 2 43.7 60.4 41.3 12 signals added

US 68 2 47.9 59.9 46.1 9 signals added, lower speed limits (up to 
30 mph reduction)

KY 107 7 47.4 52.3 52.4 2 stop signs added
KY 109 7 46.2 59.6 55.6 11 signals added
KY 164 7 51.2 56.5 48.2 Lower speed limit (up to 10 mph reduction)

KY 380 16 32.0 23.2 25.2 1 signal removed
US 41 16 31.6 39.5 35.2 1 signal added, lane width reduced
KY 911 17 36.8 30.0 34.9 1 signal removed

KY 1007 17 32.0 27.9 32.0 Speed limit increased (up to 10 mph)

Key: AES = average estimated speed.
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speed limit (the lower one between the weighted
design speed and posted speed limit) should be used.

Because other factors such as annual average
daily travel (AADT) and truck traffic percentage
and composition would also affect the average
speed, a full-range sensitivity analysis for this model
will require an extensive amount of speed data col-
lected in the field. Nevertheless, this study demon-
strates the sensitivity of the HERS model as well as
the significance of data quality assurance efforts. 

Applications 

The HERS speed model was applied to the Ken-
tucky statewide highway inventory data in the
HPMS format. Then we grouped average speeds by
county and functional class for air quality analysis
application. However, a county-level sample size
may be too limited to provide reliable speed esti-
mates for each county. 

Alternatively, all 120 counties in Kentucky were
divided into 3 major groups according to demo-
graphic, economic, and topographical characteris-
tics. Although Kentucky is largely a rural state, it
contains three major metropolitan areas (Louisville,
Northern Kentucky, and Lexington) with typical
urban traffic patterns. The eastern Kentucky area is
mostly mountainous with many slow-moving coal
trucks on the highways; therefore, the statewide
speed distribution was obtained for three types of
areas—urban, mountainous, and other rural areas
(table 6). The areawide speeds by functional class

could then be used to represent the countywide
speed distribution. This method preserves the char-
acteristics of each type of area while ensuring a rela-
tively larger sample size to smooth out the impact of
stochastic variation, which may result from the lim-
ited sample size for one specific county. 

The average speed estimates obtained from the
HERS model can be used in various applications. In
the short term, it can be used as an input to the
MOBILE6 model to compute the emissions factor
for various automobile-related pollutants. In the
long run, if the input data items, such as pavement
condition and AADT are updated using their pro-
jected values for future years, the HERS speed
model will produce the projected average speeds on
these roads. Such speeds can be used to estimate the
emissions budget for future years. 

In addition to air quality-related analysis, speed
data can also be used as part of the highway perfor-
mance measures. The data provide quantitative sup-
plements to the traditional level-of-service indices
and serve as the basis for the estimation of travel
time, all highly desirable information on highway
performance. 

CONCLUSION AND FUTURE RESEARCH

The speed estimation procedure developed in this
study is based on the HERS speed model. It uses the
HPMS data format to compute speed on each road-
way segment. The free-flow speed was first esti-
mated and then adjusted based on delay experienced

TABLE 6  Statewide Average Speeds by Area Type and Functional Class

HPMS functional class
Average speed

Statewide Urbanized Mountainous Other

1 Rural Interstate 69.2 70.0 68.5 69.2
2 Rural Principle arterial 55.4 59.1 52.4 56.6
6 Rural Minor arterial 45.2 47.0 39.7 46.5

7 Rural Major collector 44.3 46.8 38.9 46.2
8 Rural Minor collector N/A N/A N/A N/A
9 Rural Local N/A N/A N/A N/A

11 Urban Interstate 60.1 58.6 71.6 70.6
12 Urban Other freeway 62.6 61.0 N/A 65.4
14 Urban Principle arterial 25.4 21.1 36.2 30.5

16 Urban Minor arterial 23.1 20.3 26.3 27.9
17 Urban Collector 31.0 29.4 32.2 33.1
19 Urban Local N/A N/A N/A N/A
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by each vehicle (on various types of facilities) to
obtain the average speed estimate. Although a large
number of data items are required as input, these
data are available from the annual HPMS submis-
sion that is mandatory for all states. However, for
those roadways that do not belong to the HPMS
sample set (primarily local roads and rural minor
collectors), additional data-collection efforts may be
necessary. 

The model performance was evaluated by two
independent speed datasets collected in the field.
Various statistical analyses attested to the power of
the model for producing accurate speed estimates.
Tests also showed that the model was quite sensitive
to factors such as the density of traffic control
devices. A periodic review and update of such infor-
mation in the inventory data file may be required to
ensure the accuracy of input data to the speed
model. 

Although default speed distribution by hour is
available in MOBILE6, the area-specific hourly
speed estimates are needed to increase the prediction
accuracy of emissions factors. The next-generation
of air quality model, MOVES (Motor Vehicle Emis-
sion Simulator), also calls for speed data at a much
finer level than the daily average (USEPA 2004).
Furthermore, the analysis of hot spots would
require delay and queue length by time of day. Cur-
rently, an effort is being made to adapt the concept
of the HERS speed model to the estimation of
hourly speeds. This hourly speed model would pro-
vide further detail on the variation of speed, delay,
and queue length over time, in addition to account-
ing for queue spillover during the peak period. 
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Measurement Errors in Poisson Regressions: A Simulation 

Study Based on Travel Frequency Data

ABSTRACT

This paper considers how measurement errors in
explanatory variables affect the analysis of a Pois-
son regression model for frequencies of recreational
and shopping trips. Measurement errors can intro-
duce bias into the parameter estimates, and the
effects on this particular dataset and model are
investigated. The structure of the data, with two
observations for each individual, makes it desirable
to test for correlation within each individual. It is
possible that tests of random effects are sensitive to
measurement error. The properties of tests of ran-
dom individual effects when there are measurement
errors are therefore studied in the paper. The results
of a simulation study show that classical measure-
ment errors cause severe bias, and Berkson measure-
ment errors produce little bias. The tests for random
individual effects work well both with measurement
error and negatively correlated responses according
to the simulation study.

INTRODUCTION

An often encountered situation in statistical model-
ing in various research fields is when the response
variable of interest consists of frequencies. A widely
used model for frequency data is the Poisson regres-
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sion model. This modeling approach makes it possi-
ble to relate the response counts to explanatory
variables. Although other models for frequency data
can also be used, the Poisson model is in many cases
the preferred model. 

The quality of the data is of central importance
for the results of the statistical analysis. One com-
mon problem is measurement errors in regressors.
It is well known that measurement errors in
explanatory variables introduce bias and inconsis-
tency in estimators in linear regression models
(e.g., Fuller 1987; Carrol et al. 1995). In a simula-
tion study, Zidek et al. (1996) consider the Poisson
regression model and present results indicating
additional inconsistency problems under the com-
bination of measurement errors and multicol-
linearity. Their research suggests potential
problems with the validity of the results obtained
in studies based on applications of the Poisson
regression model.

In this paper, a travel frequency model (e.g.,
Hausman et al. 1995) assuming a Poisson distribu-
tion with potential measurement errors is studied.
The data used contain information about the num-
ber of recreational and shopping (purchase) trips
made by respondents. Recreational trips are made
for leisure activities, while purchase trips are made
for acquiring goods or services. One topic addressed
here is the degree of bias introduced in the estimates
of the Poisson regression model when explanatory
variables are measured with error. The results pre-
sented in this paper add to those of Zidek et al.
(1996) in that the effects of measurement errors are
studied within a different dataset.

The structure of the data makes it likely that the
observations of the same individual are correlated
and possibly negatively correlated. Tests of random
effects can be applied to confirm correlation between
individual’s observations. However, le Cessie and
van Houwelingen (1995) suggest the use of tests of
random effects for model specification testing. A sec-
ond topic addressed in this paper is how the perfor-
mance of tests of random effects is effected in models
of repeated measurement data under measurement
errors in explanatory variables. This problem is
interesting because it is likely that tests of random
effects are sensitive to different types of misspecifica-

tion (e.g., le Cessie and van Houvelingen 1995). It is,
therefore, possible that the tests are sensitive to mea-
surement error as well. The tests considered are two
score tests by Jacqmin-Gadda and Commenges
(1995) and a test proposed by Häggström Lunde-
valler and Laitila (2002).

In travel habit surveys, reported travel frequen-
cies can be negatively correlated. One explana-
tion is that a trip of one type makes less time
available for a trip of another type. However, the
correlation structure from an ordinary random
effects specification is positive. Here, the perfor-
mance of tests of random effects under negative
correlation is studied.

MODEL AND MEASUREMENT ERRORS

Suppose T measurements are obtained from each of
n respondents. Let  denote the tth measurement
from the ith respondent (i = 1, ..., n; t = 1, ..., T).
Assuming no random effects and that yit is Poisson
distributed with mean  then the probability den-
sity function is

In the generalized linear models context (GLM),
the mean  can be related to a vector of explana-
tory variables  as , or equiva-
lently  (see McCullagh and Nelder
1989). Estimation of  can be performed by using
the maximum likelihood (ML) estimator (see Mad-
dala 1983; McCullagh and Nelder 1989).

A frequent problem in regression analysis, linear
or nonlinear, is measurement errors in explanatory
variables. Fuller (1987) gives an introduction to this
subject for linear models and Carrol et al. (1995)
treat the problem in the case of nonlinear models.
The effect of measurement error in combination
with multicollinearity in Poisson regression has been
considered by Zidek et al. (1996). They demon-
strate that the combination of measurement error
and multicollinearity can cause misleading estima-
tion results. The effect of important explanatory
variables may be overlooked in an analysis, while
the importance of other explanatory variables may
be overstated.

yit

μit
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In the classical measurement-error model, the
explanatory variables with measurement error are
assumed to be measured as the true value plus an
additive error. This model can be expressed as

where 
 denotes the observed value, 

 denotes the true value, and 
 is a random error term. 

The other variables are assumed to be measured
without error and are denoted by . In the Poisson
regression case, the mean function can be written as

In the applied model,  is replaced by  due to
measurement errors and the mean of the applied
model equals

The measurement error  can be expressed as

where  is not correlated with 
and  is a constant. This yields

Thus,

and

An indication of the combined effect of measure-
ment error and multicollinearity can be obtained
from this last expression. For instance, if  and 
are independent and both  and  are normally
distributed, then  and  are independent and

Due to independence ,  is not a func-
tion of  or . Thus, estimation yields consis-

tent estimates of slope coefficients in  and the
coefficient .

Another situation is when  and  are indepen-
dent, but the distributions of  and  are such
that  and  are dependent. Then 
is a function of , in general, and  is
inconsistently estimated while the estimator of the
slopes in  is consistent. A third case is when  and

 are correlated. This will cause both  and
 to be inconsistently estimated, in general,

because the conditional expectation  is
a function of both  and .

Another model is when the measurement errors
can be written as

which is a simple form of what is often called the
Berkson model (Carrol et al. 1995). This model is
applicable, for example, in a controlled experiment
where the administered doses are fixed but the
actual uptake can vary randomly. Another example
is if a distance variable is measured as the distance
between two points on a map, while the relevant
distance is the road distance.

If  is independent of , then the mean of y
conditional on  and  is

The Berkson measurement error model often
makes it reasonable to assume that  and  are
independent, which allows unbiased estimates of 
and . However, if  and  are not indepen-
dent, for example if  is constant for all observa-
tions of an individual,  and  are
dependent on an individual, then  will not be pos-
sible to estimate without bias.

TESTS OF RANDOM EFFECTS

In the case of repeated measurements, the assump-
tion of independence may not be feasible, and obser-
vations within individuals tend to be correlated. One
approach for modeling a correlation structure in
repeated measurements data is to include a random
individual specific component (random effect) in the
linear predictor function. That is, let  denote the
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random effect component, then the mean function is
written as

(see Lindsey 1995). Note that this model is equiva-
lent to a model with a multiplicative random effect
(see Cameron and Trivedi 1998) because

Inclusion of a random effects component into the
model makes efficient estimation more complicated.
The contribution to the likelihood from an individ-
ual is

where  denotes the distribution of the random
effects. In general, this integral is not analytically
solvable. One exception is obtained if  is the
gamma distribution, which is conjugate to the Pois-
son distribution. The integral can then be solved
and standard methods of estimation are available.
For other choices of  several analytical as well
as simulation-based approximations have been sug-
gested (see Cameron and Trivedi 1998). However, if
the distribution of the random effects is treated as a
nuisance component in the model, standard ML
methods yield consistent but inefficient estimates of
the coefficients in , except for the intercept term
(Liang and Zeger 1986).

Several tests of random effects have been pro-
posed. Breusch and Pagan (1980) derive a score test
(the BP test) for the linear regression model with
normally distributed disturbances and random indi-
vidual effects. Honda (1985) proposes the signed
square root of the BP test statistic as a new statistic
for the test of random effects. Honda’s test is robust
against nonnormality and is more powerful than the
original BP test. Jacqmin-Gadda and Commenges
(1995) propose a score test of random effects in
GLMs.

For the Poisson regression model, the test statistic
proposed by Jacqmin-Gadda and Commenges
(1995) is

where

To obtain a statistic that is robust to overdispersion
when  is unknown, Jacqmin-Gadda and Com-
menges (1995) suggest the statistic

where

is a measure of overdispersion.
For the linear regression model, Häggström Lun-

devaller and Laitila (2002) propose the test statistic

where

The test statistic is designed to be robust against
potential heteroskedasticity. The simulation results
reveal that the test works well for testing of random
effects in the Poisson regression models considered
here. All three statistics, , , and Wn are com-
pared with the standard normal distribution, and
the null hypothesis is rejected for large positive
values. 

These tests are derived to detect correlation that
appears in random effects models. However, they
are sensitive to correlation within individual obser-
vations regardless of the causes. Model misspecifica-
tion that leads to correlation structures are likely to
affect the tests. Here, the tests are applied to detect
negative correlation.

SIMULATION STUDY

To evaluate the effect of measurement errors on bias
of parameter estimates and tests of random effects,
a simulation study was done. The idea of the simu-
lations is to take a random sample from a large
travel survey database and record the explanatory
variables for the sampled observations. These sam-
pled explanatory variables are then used to simulate
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new response variables employing estimates from
the whole dataset as “true” parameters. Random
individual effects and measurement errors can be
introduced in the simulated model. The model is
then re-estimated using simulated data and the
effect of measurement error can be evaluated
because we know the “true” values of parameters,
random effects, and the measurement error. 

Simulation Design

The data used in this simulation study are taken
from the national travel survey (Statistics Sweden
1999); this survey is based on telephone interviews
of samples of the Swedish population. The data
were collected between April 1994 and December
1998 on a daily basis; 37,754 observations were
recorded. The data collected consist of variables
related to travel. The simulation study uses only
observations with no partial nonresponse and with
annual incomes of less than 900,000 SEK. The final
dataset contains 30,775 observations.

Observations in the simulation study were
obtained from the frequencies of purchase and rec-
reational trips reported by the respondents. The
individuals are indexed with i and trip purpose is
indexed with t, where t = 1 denotes a recreational
trip and t = 2 a purchase trip. Age (Age), gender
(Gen), income (Inc), and a price index for petrol
(PP) are used as explanatory variables. Both income

and the index of petrol price are deflated by the con-
sumer price index.

To assess the magnitude of multicollinearity, the
multiple R2 for each of these variables, using the
other variables as explanatory variables is calcu-
lated. The results are 0.1838 (age), 0.0723 (gender),
0.2299 (income), and 0.0002 (petrol), which indi-
cates a rather small multicollinearity problem. The
model without measurement errors is as follows:

where DR is a dummy variable for recreational
trips, DP is a dummy variable for purchase trips,
and  is the random effects component. The vari-
ables DPAge, DRAge, and so on denote the original
variables multiplied by the dummy variable. The
estimates of the model, assuming no random effects,
obtained from the complete dataset are reported in
table 1.

In the simulations, the parameters given in table
1 are used as the true parameters. A sample of 1,000
individuals was taken with replacement from the
whole dataset, and the explanatory variables for
these individuals are recorded. In the case of no
measurement error, an observation of the response
variable, yit, is created by calculating

TABLE 1  Maximum Likelihood Estimates of the Model Assuming 
No Random Effects (Using the Complete Dataset)

Estimate

Parameters Estimate Standard error Standard error

Purchase parameters 
β0 (Intercept) –1.5350 0.3795 –4.05

β1 (Age) 0.0064 0.0007 9.41

β2 (Gender) 0.1562 0.0265 5.89

β3 (Income in millions SKR) 0.2488 0.1625 1.53

β4 (Petrol price) –0.0006 0.0005 –1.19

Recreational parameters 
β5 (Intercept) –0.7762 0.2481 –3.13

β6 (Age) –0.0048 0.0005 –10.76

β7 (Gender) –0.0629 0.0171 –3.67

β8 (Income in millions SKR) –0.3640 0.1070 –3.41

β9 (Petrol price) 0.0005 0.0003 1.50

x'it β αi+( )exp =

β( 0DPexp β1DPAge β2DPGen β3DPInc β4DPPP+ + + + +
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where 
 is the vector containing the estimates in table 1,
 is the vector with the explanatory variables

drawn from the dataset, and 
 denotes random individual effects that are

generated from the normal distribution with mean
zero and standard deviation . 
The levels of the standard deviation considered are

 = (0, 0.2, 0.4, 0.6). The value  is then used as
the mean in a Poisson distribution from which an
observation yit is generated by simulation.

In the case of classical measurement errors, the
procedure for generating data in the simulations is
similar to the one described. However, the value of
the explanatory variable is contaminated with an
additive random error after the response variable 
has been generated.

Two of the explanatory variables are considered
with measurement errors: the income and the petrol
price index variables. The measurement errors for
the petrol price index are generated as 
where 

where  = 760.3 is the mean of the petrol price
index over the observations. The measurements for
income are generated as  
where  and 

 =148534.6.
In the case of Berkson measurement errors, the

value of the explanatory variable generated by sam-
pling an observation from the dataset is stored and
used in estimation. However, the simulated responses
yit are generated by adding a random error term to
the explanatory variable. 

Applying the tests of random effects described
earlier to the original dataset and the estimates given
in table 1 yield the test statistic values  = –8.84
and Wn = –8.72. Both these statistics are to be com-
pared with the standard normal distribution.
Because the tests are one-sided where evidence
against the null hypothesis is found in large positive
values, the null hypothesis of no random effects is
not rejected. However, the test statistics are negative
and indicate a negative correlation between the two
response variables. A negative correlation can be

motivated by, for example, time budget constraints
(see Feather 1995).

For the study of the properties of tests of random
effects under negatively correlated responses, one
set of simulations are carried out where the random
effect  is added to the linear predictor for shop-
ping trips, , and the same value is sub-
tracted from the linear predictor for recreation trips,

. Alternative models for generating nega-
tively correlated responses could be used, but the
chosen one is simple and is sufficient for the pur-
poses of this study.

Results

The results of the simulations are summarized in
tables 2 and 3, which show the bias of the parameter
estimates when measurement error exists. The sign
of the true parameters is shown in a separate col-
umn. The results are for the case with no individual
effects. The results observed with individual random
effects, which are not shown here, are similar to
those with no individual random effects. The mea-
sure of bias used is the mean of 100 
over the 2,000 replications. Parameters  are
related to purchase trips and  to recre-
ational trips and are taken from the estimation
results using the whole table 1 dataset.

As expected, the simulation results shown in
table 2 indicate only small bias under the Berkson
measurement errors. In a few cases, especially for
the estimates of the income and petrol price parame-
ters, the values are not close to zero but there is no
systematic pattern. This can also be seen in table 3
under the Berkson measurement errors where the
bias estimates are generally close to zero with the
exception of a few cases.  

The results under classical measurement errors
with measurement errors in petrol price in table 2
show a clear effect on the parameter estimates. The
bias measures indicate that the estimates of the
petrol price parameter are close to zero when mea-
surement error exists. The intercept terms are also
affected. These biased parameter estimates severely
reduce the validity of the estimated model. The
effect of classical measurement errors in income is
less obvious (table 3). Here, a small tendency for the
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parameter estimates of the income variable to be
closer to zero can be seen. The intercept terms are
not much effected.

Table 4 shows the percentages of rejections
observed at the 5% nominal significance level for
the random effects test statistics in the case of
explanatory variables with classical measurement
errors. The distributions of measurement errors
with the largest variances are compared with the

case of no measurement errors. The results for the
other levels of measurement error variances are sim-
ilar and are not shown.

The results indicate that measurement error does
not seriously affect the properties of the test statis-
tics considered. The tests have estimated sizes close
to the nominal sizes, and the estimated powers are
high and increase with the variance of the random
effects component.

TABLE 2  The Bias Measure* When Measurement Errors Exist in the Petrol Price Index

Classical Berkson

Parameters

 

sign 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Purchase 
β0 Intercept (–) 0 –27 –31 –29 1 –2 7 –1

β1 Age (+) 1 0 1 0 1 1 –1 1

β2 Gender (+) –5 –1 2 –2 –3 2 5 1

β3 Income (+) –7 0 –6 –18 –15 –3 14 –25

β4 Petrol price (–) –1 89 102 99 –4 2 –29 5

Recreation 
β5 Intercept (–) 5 43 45 47 –2 0 0 0

β6 Age (–) 0 1 –3 –1 1 1 0 2

β7 Gender (–) 2 –5 3 –1 –3 –5 9 –5

β8 Income (–) –1 –6 –4 –7 –7 –5 –2 –1

β9 Petrol price (+) –13 –91 –95 –100 3 –1 0 0

* This is the mean of 100  over the replications.

TABLE 3  The Bias Measure* When Measurement Error Exists in the Income Variable

Classical Berkson

Parameters

 

sign 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Purchase
β0 Intercept (–) 2 5 –2 2 –1 1 –2 2

β1 Age (+) –1 1 1 2 –1 1 0 –1

β2 Gender (+) 3 –2 –1 –2 1 –2 2 2

β3 Income (+) 2 –13 –32 –37 3 –26 –15 –2

β4 Petrol price (–) –8 –19 6 –6 0 –3 5 –8

Recreation 
β5 Intercept (–)

β6 Age (–) –4 1 4 5 –7 7 –3 8

β7 Gender (–) 1 0 –2 0 1 –1 –1 0

β8 Income (–) 6 –3 1 7 8 –2 1 –1

β9 Petrol price (+) –2 2 13 21 0 –1 8 0

* This is the mean of 100  over the replications.
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For a study of the performance of the test statis-
tics under negatively correlated responses, the tests
were changed to employ double-sided alternative
hypotheses. Results for the double-sided tests are
shown in table 5, where rejection frequencies under
negatively correlated response variables are consid-
ered. The table shows that the test statistics per-
formed well according with rejection frequencies
close to the nominal level when  and an
increasing power when . The results show
slightly higher rejection frequencies for the statistic
Wn when  is 0.2 or 0.4.

CONCLUSIONS

In this paper, the effect of measurement errors in
explanatory variables in a travel frequency model is
studied. Of major interest is the degree of bias intro-
duced in the estimates of the Poisson regression. The
derivations show that the effects of classical mea-
surement errors are potentially more severe than
those obtained from the Berkson type measurement
errors. This result is also confirmed by the simula-
tion results where only small relative biases are
observed when Berkson errors are introduced.

The results are different for classical measure-
ment errors. In this case, the intercept terms and the
parameter estimates for the variable effected by
measurement error are influenced by the measure-
ment errors. This means that the parameter esti-
mates for these variables are in serious doubt if
classical measurement errors are suspected. The

results for both Berkson and classical measurement
errors confirm the findings in Zidek et al. (1996).

Problems due to the combination of multicol-
linearity and measurement errors are not observed
in the results. The R2 value for the regression of
petrol price on the other explanatory variables is
low, we do not expect any difficulty. The R2 value
for the income variable regressed on the other vari-
ables are a bit higher (0.2299), but still no effect can
be observed.

Another problem that is addressed is the perfor-
mance of tests of random effects in models of
repeated measurement data under measurement
errors in explanatory variables. The results suggest
that the properties of the tests of random effects
considered are not severely effected by measurement
errors. The measurement errors are here assumed
independent of the true explanatory variables.

The tests are also indicated to be potential candi-
dates for tests of correlation of a more general form
than the one obtained by the random effect specifi-
cation. The properties of such tests under negative
correlation among responses was studied. All statis-
tics performed well in the simulations of negatively
correlated response variables indicating that the
tests can be used to test for negative correlation even
though they have been suggested for positive corre-
lation. Of special interest is the good performance
of the test, Wn, proposed by Häggström Lunde-
valler and Laitila (2002). This test was initially
derived for the linear regression case, but these

TABLE 4  Percentage of Rejected Replications with Different Levels of Effects and Measurement Error 
(n = 2,000)

0 0.3 0

0 0 0.3

error H Wn H Wn H Wn

C 0 5.8 5.6 4.3 4.4 4.6 3.6 5.6 5.6 4.4
C 0.2 12.4 12.2 9.4 11.5 11.6 8.9 11.1 10.6 8.8
C 0.4 57 52.7 47.5 58.1 54 48.6 56.2 52.2 48

C 0.6 99.4 98.7 98.2 99.2 98.5 97.8 99 98.4 97.9

B 0 5.6 5.8 4.6 3.2 3.2 2.6 5.5 5.4 4.5
B 0.2 12 11.6 9 9.8 9.4 7.4 11.8 11.2 9.3

B 0.4 58.4 54.8 49.1 50.2 47 42.3 58.6 53.7 48.4
B 0.6 99.2 98.6 98.1 98.8 97.9 97 99.2 98.6 98.1

Key: C = classical measurement errors; B = Berkson measurement errors.

Note: The null hypothesis was rejected for large values of the test statistic at 5% level (one-tailed test).

σP μP

σI μI

σα Hφ Hφ Hφ

σα 0=
σα 0=
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results indicate that it can be used for Poisson
regression also. However, further studies on the
properties of the test in nonlinear models is needed.
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Measuring Variability in Urban Traffic Flow by Use of 

Principal Component Analysis

ABSTRACT

This paper presents a new approach for the spatio-
temporal analysis of variation in traffic flow. Traf-
fic detectors located in several arterial links of an
extended urban network yield the time series of
aggregate data used in the approach, which is based
on the Principal Component Analysis (PCA) of
these time series spanning several weeks. The analy-
sis demonstrates the small variability in traffic flow
over the whole network. The statistical analysis of
common sources of temporal variation in traffic
flow provides considerable insight into the proper-
ties of long-term flow dynamics. The approach was
found to be capable of identifying the location and
the impact of extreme events in the network.

INTRODUCTION

The increasing availability of traffic flow informa-
tion from archived and readily available sources,
such as inductive loop detectors, prompts the ongo-
ing development of data fusion and processing tech-
niques for the fast and efficient analysis of network
congestion problems. A major issue in tackling such
problems is the measurement of the spatial and tem-
poral variations in traffic flow. These variations are
exceedingly useful as input to a wide variety of
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applications. Such applications include advanced
systems that provide traffic information to travelers,
the identification of erroneous traffic forecasts and
extreme events (outliers) such as incident detection,
the validation of traffic simulation models, and net-
work capacity planning. Other applications refer to
the design and evaluation of traffic management
strategies, including traffic control and pricing poli-
cies, and the assessment of their environmental
effects.

Nonetheless, existing applications of methods
used for measuring traffic variability are mostly
focused on freeways (Rakha and Van Aerde 1995),
and they typically refer to a short temporal scale of
analysis, ranging from a few seconds to several
hours (Treiber and Helbing 2002). Moreover, the
usage of correction factors to measure daily or
monthly traffic variations based on annual average
daily traffic (AADT) estimates (Sharma et al. 1996;
Davis 1997), as obtained from traffic counts of
medium-time period (usually of 24-hour period),
cannot provide an indepth explanation of the
sources contributing to the variability in urban
traffic. 

The investigation of traffic variability in urban
arterial networks over long periods of analysis, span-
ning several weeks or months, can provide promis-
ing insight to the potential of the aforementioned
applications to alleviate increasing congestion prob-
lems. Stathopoulos and Karlaftis (2001) first exam-
ined the spatio-temporal variations of traffic flow in
a real urban network, the road network of the
Greater Athens Area (GAA), Greece, by presenting
an exploratory analysis of the distribution character-
istics of a set of traffic measurements collected over a
period of several months. Also, Weijermars and van
Berkum (2004) presented an analysis of variance
(ANOVA) of traffic flow along an urban route
across a series of weekdays, based on the assumption
that flows follow a normal distribution.

This paper describes a novel, interpretive
approach for the simultaneous modeling of network-
wide traffic flow time series collected over a one-
month period from traffic detectors located at major
arterial links. The approach, which is based on the
general theory of linear algebra, explicitly recognizes
the fact that some of these time series are both tempo-

rally and spatially correlated in the network, without
relying on any a priori assumption concerning the
distribution of traffic flows. More specifically, the
method of Principal Component Analysis (PCA), also
known as Singular Value Decomposition (SVD)
(Meyer 2000), is applied in order to disentangle the
intricate sources of long-term traffic dynamics mani-
fested in large-scale urban networks, such as the
GAA network.

This is achieved by identifying common under-
lying sources of temporal variability in traffic flow,
which are obtained by estimating the eigenflows,
originally defined in (Lakhina et al. 2004) to
describe variations in origin-destination (OD)
flows of Internet networks. An eigenflow is a time
series that captures a common pattern (or source)
of temporal variability in traffic flow at the net-
work level. Each traffic flow time series is
expressed as a weighted sum of eigenflows and the
corresponding weights reflect the extent to which
each source of temporal variability is present in the
given traffic flow. The method of PCA in the con-
text of traffic flows is analytically described in the
second section.

The third section presents the traffic detector
data used for the purposes of analysis. The fourth
section describes how PCA can be employed to
measure the variability of individual traffic flows
and of aggregate network traffic, and implications
of this measurement for traffic data reconstruction
and traffic flow prediction. The fifth section pro-
vides a method for decomposing eigenflows to iden-
tify different sources of variability in traffic flow.
Applications of this method for traffic modeling and
incident detection in extended urban networks are
also reported. The final section concludes the find-
ings of the study.

METHOD OF PRINCIPAL COMPONENT 
ANALYSIS 

The method of PCA provides the transformation (or
mapping) of a dataset onto a new set of principal
axes or components. These axes are ordered by the
amount of variation (or energy) that they capture in
the data. Namely, the first principal axis captures
the maximum amount of variation that is possible
to represent on a single axis. Each of the remaining
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principal axes captures sequentially the maximum
residual variation not captured by the preceding
axes. In this way, the PCA offers a powerful tool for
analyzing the total traffic variability in an urban-
scale network composed of a large number of
dimensions by approximating it within a lower
dimensional structure that preserves its important
properties.

Let m be the number of traffic detectors located
on a subset of the total set of arterial links of an
urban network, t be the number of successive days
(e.g., the respective periods) in which the detector
data are collected, and  be the number of time
intervals wherein each day is partitioned. The
present study refers to realistic large-scale networks
composed of thousands of links servicing hundreds
of thousands of travelers. Such networks typically
involve hundreds of detectorized links with traffic
detector data aggregated over small time intervals,
such as 15 minutes. Then, a matrix X can be
defined, referred to here as measurement matrix,
with p rows and m columns, where .
Therefore, each column i of matrix X denotes the i-
th traffic flow time series, represented by the col-
umn vector , and each row j denotes the particu-
lar point in the time series in which traffic flows
have been collected at interval j.

The calculation of the i-th principal component,
, is carried out through the spectral decomposi-

tion of the matrix , which provides a measure
of the covariance between traffic flows, as follows:

(1)

where  is the non-negative real scalar, known as
the eigenvalue, corresponding to principal compo-
nent . By convention, the eigenvalues are arranged
in order of magnitude, from large to small, so that

. By solving equation (1), the maxi-
mum variation of the measurement matrix X is cap-
tured by the first principal axis . Proceeding
recursively, once the first i-1 principal components
have been determined, the i-th principal component
corresponds to the maximum variation of the resid-
ual, that is the difference between the original data
and the data mapped onto the first i-1 principal axes.
The arrangement of the set of principal components

 in such an order, as columns, results in the

principal matrix V, which has size m × m. By defini-
tion, the columns of V matrix have unit norm, which
means that the length of each column vector, as
defined by the square root of the sum of squares of
all entry values, is equal to unity.

Because the principal axes are arranged in order
of contribution to the overall variation, the time-
varying trend common to all flows along principal
axis i can be represented through a column vector 
with size p, referred to as the eigenflow of the i-th
principal axis, as follows:

(2)

where  is the singular value corresponding
to the i-th principal axis. The magnitude of singular
values demonstrates the overall variation attribut-
able to each particular principal component and,
hence, the potential to reconstruct total traffic data
using a smaller number of dimensions. The arrange-
ment of the set of eigenflows  as columns in
order of decreasing strength of the common tempo-
ral trends results in the eigenflow matrix U, which
has size p × m. Based on equation (2), it can be
shown that each traffic flow time series , when
normalized by the singular value , is a linear com-
bination of the eigenflows, weighted by the associ-
ated principal component. More specifically, the
relationship between matrices X, U, and V can be
represented as follows:

(3)

where  is the i-th row of matrix V. By assum-
ing that only a small number of q < m singular val-
ues is non-negligible (see 2.2), or, in other words,
only a small set of q eigenflows contributes to the
bulk of temporal variability in traffic flow, then, the
original data, that is, measurement matrix X, can be
approximated as follows: 

(4)

The spatio-temporal reconstruction of matrix X by
use of a lower number of dimensions can enhance
the interpretability of the long-term dynamics of
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each traffic flow, particularly for the case of large-
scale urban networks, as shown in the fourth section.

TRAFFIC DETECTOR DATA

The traffic data used here for analysis purposes are
automatically collected using loop detectors at 140
key locations around the urban road network of the
Greater Athens Area (GAA), as illustrated in figure
1. These real-time data are stored at the end of every
90-sec signalization cycle and aggregated at time
intervals of 15 minute duration. The traffic counting
system provides an appropriate data quality control
by performing screening and data repair functions
so as to identify and exclude or smooth data from
malfunctioning detectors. The dataset includes mea-
surements corresponding to the first 28 of the 29
days in February 2000. Each day covers 16 time
intervals of the period spanning between 6:00 am
and 10:00 am. This yields a total number of 62,720
measurements, that is, a time series of 448 measure-
ments for each of the 140 detector locations.

USE OF PCA FOR MEASURING TRAFFIC 
FLOW VARIABILITY

Spatio-Temporal Representation of 
Traffic Variations

Figure 2 presents a typical example of an eigenflow
 (i=3) and its corresponding principal axis , as

calculated with the PCA of the four-week traffic
detector data of the Greater Athens Area. Figure
2(a) demonstrates the representation of a pattern of
temporal variation common to all traffic flow time
series through eigenflow 3. A later section provides
a systematic way for distinguishing different types
of this temporal variation. Figure 2(b) illustrates
the extent to which this particular temporal pattern
is present in each traffic flow, through the entries of
the corresponding principal component. Eigenflow
3 is most strongly present at traffic flow measure-
ment point number 38, as shown in figure 2(b),
namely, in the time series measured at detector
number 38, whose location in the network is
marked on figure 1. The immediately next strongest

ui νi

FIGURE 1  Illustration of the Greater Athens Area (GAA) Network and Configuration of the 
Location of Loop Detectors
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temporal trends are those corresponding to traffic
flow at number 20 and traffic flow at number 23
(see figure 1).

Based on the definition of eigenflows and princi-
pal components (axis) in the second section, the
negative sign of many entries in some eigenflows,
such as in eigenflow 3, denotes that the correspond-
ing common temporal variation pattern is nega-
tively correlated with some of the measured traffic
flow time series. Respectively, the negative sign of
many entries in the corresponding principal compo-
nents indicates the negative value of the covariance

of the traffic flow measured at a specific traffic flow
measurement point, such as the measurement point
number 23 (see figure 2(b)), with the other traffic
flows. Namely, an increase of the traffic flow rate at
measurement point number 23 would result in the
reduction of the traffic flow rate in the other mea-
surement points. This kind of analysis helps identify
different locations in the network as well as periods
of the day, days, or weeks wherein a particular traf-
fic flow has a large impact on the aggregate network
traffic conditions.

FIGURE 2  Graphical Representation of (a) an Eigenflow and 
(b) its Corresponding Principal Axis
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Measuring the Variability of 
Individual Flows

Based on the definition given in the first section,
each eigenflow can be considered as a building
block of the overall dynamics pertaining to each
traffic flow. Thus, the variability of individual flows
can be determined with regard to the number of sig-
nificant eigenflows that constitute them. The num-
ber of significant eigenflows refers to the number of
entries in the corresponding rows of the principal
matrix V that are significantly different from zero.
There exists a threshold that is equal to 
when a row of V has all entries equal, which implies
a perfectly equal mixture of all eigenflows, taking
into account that the columns of V have unit norm
(Lakhina et al. 2004). Then, the number of signifi-
cant eigenflows is obtained by counting how many
entries in each row of matrix V exceed this thresh-
old in absolute value. This approach allows deter-
mining the least required number of significant
eigenflows, dependent on the sample size, which can
provide a plausible reconstruction of each traffic
flow (see below), based on equation (4).

Figure 3(a) illustrates the number of significant
eigenflows that constitute traffic flows, as this is
expressed by the Cumulative Density Function (CDF)
of the number of entries per row of V that exceed the
above threshold. The curve indicates that no traffic
flow is composed of more than 45 significant eigen-
flows. In particular, it can be observed that 50% of
traffic flows are composed of less than 30 significant
eigenflows, and more than 30% of traffic flows are
composed of less than 20 significant eigenflows. In
addition, figure 3(b) presents the histogram of signifi-
cant eigenflows that constitute traffic flows. This his-
togram shows that the class interval containing up to
5 significant eigenflows appears most frequently
among traffic flows, with the class intervals contain-
ing 6 to 10 and 11 to 15 significant eigenflows to fol-
low in order. These results clearly demonstrate that
the temporal evolution of most traffic flows can be
explained by only a small number of common under-
lying sources of variability.

Figure 4 shows the number of significant eigen-
flows with respect to the monthly average daily (for
the respective period) traffic flow rate measured
over the different detector locations. By and large,

the results demonstrate that there is a relationship
between the size of a traffic flow and the eigenflows
that comprise it. More specifically, the larger traffic
flows tend to be composed primarily of a large
number (>20) of significant eigenflows (see cluster
at the right-hand side of figure 4 separated by a
dashed line), in comparison to the smaller traffic
flows, which are basically composed of a small
number (<20) of significant eigenflows (see cluster
at the left-hand side of figure 4). Consequently, the
temporal variation of the larger flows has the most
significant contribution to the long-term dynamics
of the aggregate network traffic in relation to the
variation of the other flows.

Measuring the Variability of Aggregate 
Network Traffic

As explained in an earlier section, the singular val-
ues denote the overall variation attributable to each
particular principal component. Hence, the order of
magnitude of singular values can provide a plausible
measure of the extent of variability in aggregate net-
work traffic. Figure 5(a) shows the plot of singular
values, in order of decreasing magnitude, corre-
sponding to each traffic flow. This plot clearly dem-
onstrates that the variability in traffic flow can be
attributed to only a very small number of eigen-
flows, that is, common patterns of temporal varia-
tion. More specifically, the vast majority of traffic
variability is contributed by the first few eigenflows,
as signified by the sharp knee of the curve between
the third and the eighth singular value. This result
provides evidence of the small variability (spread) of
the aggregate network traffic in the long run. 

Given the effect of the size of traffic flow on the
variability of individual traffic flows, as described in
the previous subsection, the effect of the mean traffic
flow rate on the small variability of the aggregate
network traffic is also investigated here. For this pur-
pose, a zero-mean normalization is applied, which
denotes that all measurements of each time series 
are subtracted from the corresponding sample mean
so that their average is zero, as follows:

(5)

where  is the sample mean of time
series . Figure 5(b) shows the plot of singular
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values corresponding to each traffic flow, based
on the normalization of traffic flows, as indicated
above. In contrast to the case of using the original
traffic flows, in the case of using the normalized
traffic flows the bulk of variability is signified by
a less sharp knee of the curve between the 7th and
the 20th singular value. Namely, the relative sig-
nificance of the first few eigenflows has dimin-
ished. This effect can be explained by the fact that
a large diversity in the magnitude of the mean
traffic flow rate can render the variation of those
traffic flows with increased size dominant in com-

parison to the variation of the other flows. In
turn, this leads to a larger diversity between the
first few singular values and the remaining singu-
lar values. 

On the other hand, the fact that the profound
majority of variability in traffic flow can still be
attributed to only a very small number of eigenflows
indicates the dominant role of the remaining effect,
which is the effect of the correlation between tem-
poral variation patterns in comparison to the effect
of differences in flow size. Therefore, the process of
normalization can ensure that the representation of

FIGURE 3  (a) Number of Signficant Eigenflows, in Terms of the Cumulative 
Density Function (CDF) of the Number of Entries in Each Row of the 
Principal Matrix That Exceed the Threshold and (b) Histogram of 
Significant Eigenflows
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these correlations by eigenflows is not skewed due
to differences in the mean traffic flow rate.

Implication of Variability Measurement for 
Traffic Data Reconstruction

The fact that only a few singular values can depict
the largest portion of the overall variation in aggre-
gate network traffic demonstrates the potential to
reconstruct traffic flows or approximate each col-
umn of the measurement matrix X, using a consid-
erably smaller number of dimensions. The traffic
flows reconstructed by using the whole set of signif-
icant eigenflows, on the basis of equation (4), are
found to approximate the original (normalized)
traffic flows without statistically significant differ-
ences at least at the 95% confidence level of the Stu-
dent t-test statistic. This outcome indicates the
correctness of the previously described method for
selecting threshold values to determine the number
of significant eigenflows composing each traffic
flow. Moreover, traffic flow at measurement point
number 3 (see figure 1) is randomly selected here to
be approximated by using a number of q=5 dimen-
sions (see figure 6(a)). This traffic flow is composed
of 30 significant eigenflows. The graphical analysis

shows that the temporal pattern of the recon-
structed traffic flow remarkably resembles the tem-
poral pattern of the original traffic flow.

Figure 6(b) shows the statistical analysis of the
regression of the reconstructed traffic flow to the
original traffic flow. The reconstructed flow gener-
ally underestimates the original flow, as it denotes
the value of the slope of the linear trend line, which
is lower than unity (<1.0). This underestimation
refers mainly to traffic flows of lower size (<400
veh/15-min), as this is implied by the outliers corre-
sponding to such flow sizes. This outcome indicates
that the first 5 (most significant) eigenflows, which
are employed in the reconstruction process, can bet-
ter capture the temporal variation of larger traffic
flows in comparison to the remaining eigenflows. 

On the other hand, the R2 value, which repre-
sents the squared multiple correlation between the
two datasets, indicates that the reconstructed flow
data can capture approximately 80% of the system-
atic variation contained in the original flow data.
The above results emphasize the ability of the pro-
posed method to concentrate on a very small set of
common sources of temporal variability in order to
describe the complexity of traffic flow. In turn, this

FIGURE 4  The Number of Significant Eigenflows with 
Respect to the Monthly Average Daily Traffic
Flow Rate
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facilitates the deeper understanding and a more
plausible interpretation of the factors contributing
to the long-term evolution of the main characteris-
tics of urban network traffic.

Implication of Variability Measurement for 
Traffic Flow Prediction

The outcome of the previous subsection (that only a
very small set of eigenflows is sufficient for the plau-
sible reconstruction of a traffic flow) emphasizes the
need for investigating the potential of the PCA
method to approximate future traffic flows. This
task is addressed by analyzing data that were not
part of the input to the PCA procedure. More spe-

cifically, the PCA method is applied to the traffic
data, denoted as , measured over a time period
spanning the week Monday, Feb. 7, 2000, through
Sunday, Feb. 13, 2000, to obtain the principal com-
ponents . Subsequently, these principal com-
ponents are also used to approximate (predict)
traffic flow data, denoted as , over the next
week spanning Monday, Feb. 14, 2000, through
Sunday, Feb. 20, 2000. 

The error of approximating a typical traffic flow,
that is, traffic flow at number 3, as used in the previ-
ous subsection, is investigated for both the first and
second week, based on the principal components
obtained from the PCA of the first-week data. In

FIGURE 5  Plot of Singular Values for (a) Traffic Flows and (b) Normalized Traffic Flows
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order to investigate the degree to which the flows of
the second week preserve the hierarchical structure
of temporal variability pattern pertaining to the
flows of the first week, the approximation is carried
out by using different dimensions (amounts of prin-
cipal components), that is, q=5, q=10, q=20 and
q=40. The traffic flow at number 3 corresponding
to the first week, denoted as , is composed of 33
significant eigenflows, while the traffic flow at num-
ber 3 corresponding to the second week, denoted as

, is composed of 32 significant eigenflows. The

approximation error is measured through (a) the
Mean Relative Error (MRE) of the approximation
corresponding to each week, which is given as

 and  respec-
tively, where  and  are the reconstructed
flows for the first and the second week, and (b) the
value of the R2 coefficient. 

Table 1 shows the approximation error, as
expressed by the measures of MRE (%) and R2, for
the reconstructed flows of the first and the second
week, based on the principal components obtained

FIGURE 6  (a) Reconstruction of a Typical Traffic Flow Using 5 Principal 
Components and (b) Statistical Analysis of the Reconstructed 
Traffic Flow
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from the PCA of the first-week data. The results
demonstrate that, when using the same number of
dimensions (q=5), the application of the PCA on a
shorter term dataset, such as that of one week,
results in a more accurate approximation of the
original flows (R2=0.935) in comparison to the
application on a longer term dataset, such as that of
four weeks (R2=0.791). This outcome can be attrib-
uted to the fact that longer term data typically
involve more sources (larger spread) of temporal
variability in the network.

The approximation of  based on the first-
week principal components, as well as the approxi-
mation of , resulted in low MRE values
(<10.0%) and high R2 values (>0.90). The differ-
ences between the MRE values that resulted from
the two approximations were not found to be statis-
tically significant at the 95% confidence level of the
t-test statistic for all sets of principal components
used, except for the case using 40 principal compo-
nents (see footnote of table 1). Hence, the first-week
principal components can be well used to approxi-
mate traffic flows of the second week, such as .
Moreover, the loss of the predicting power of the
first-week principal components can be attributed to
the last few eigenflows, which are mostly related to
smaller size and higher variability traffic flows. The
results generally provide evidence of the increased
temporal stability of the hierarchical pattern of traf-
fic variations from one week to the next. Thus, they
indicate the potential of using the first few eigen-
flows of the previous week to consistently repro-
duce, with a reasonable accuracy, most systematic
features of the traffic flow of the next week.

DECOMPOSITION OF EIGENFLOWS 
AND APPLICATIONS 

Method for Decomposing Eigenflows

Each eigenflow can be decomposed into nonstation-
ary and stationary components, according to the
nature of variability in traffic flow. For this purpose,
each eigenflow is modeled here as an unobserved-
components time series in state space form (Koop-
man et al. 1999), so that they enable the smoothing
estimation of both nonstationary and stationary
components. The nonstationary component refers
to nonstationary variation (or changes) of the eigen-
flow mean, and it reflects periodicities, namely peri-
odic trends, in traffic flow. These time-varying
trends are due to diurnal cycles in travel demand,
differences in traffic conditions among weekdays, as
well as between weekdays and weekends. This com-
ponent is calculated here with the state smoothing
of each eigenflow, which captures changes in the
level or trend of traffic variability in the long run.

The stationary components refer to structural
breaks and outliers. These are typically expressed
with isolated values, which are located outside a
band of, for example, ±2 standard errors (SE) from
the trend line, that is, the smoothed eigenflow mean.
The structural breaks reflect occasional bursts and
dips in the level of traffic variability. These breaks
correspond to stochastic and transient changes, such
as traffic phase transitions, pertaining to the physical
dynamics of (recurrent) congestion conditions. The
outliers reflect noise, that is the remaining random
variation in traffic data. They can be attributed to
extreme or unusual traffic-related events, principally
related to nonrecurrent congestion dynamics, such

TABLE 1  Values of MRE Resulting from the Reconstruction of a Typical Traffic Flow (in percent)
(Values are across 2 successive weeks using principal components of the first week)

Number of dimensions q 5 10 20 40

First-week data 16.40 25.64 35.04 3.25

(0.935) (0.952) (0.965) (0.988)

Second-week data 17.39 26.50 36.38 6.26
(0.904) (0.926) (0.934) (0.941)

1, 2, 3 Pairs with no statistically significant differences at the 95% confidence level of the t-test statistic

Note: Values in parentheses indicate R2.

X̃3
w2

X̃3
w1

X̃3
w2
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as demonstrations, road works, sportive events,
emergency situations, accidents, or other incidents.

The existence, in terms of their statistical signifi-
cance, of each of these two types of stationary varia-
tion is identified here by applying the t-test statistic
to the results obtained from the disturbance
smoothing of each eigenflow. The solution of both
the state smoothing model and the disturbance
smoothing model is carried out by using an appro-
priate maximization routine written in the Ox
matrix programming language (Doornik 2002).
Further information on the analysis of time series
using state and disturbance smoothing models can
be found in Durbin and Koopman (2001).

Practical Demonstration of the Method

For demonstration purposes, the proposed method
for the decomposition of eigenflows is implemented
here for the same typical eigenflow used in the previ-
ous section, that is, eigenflow 3, at a finer level of
temporal resolution, that is, a period of one week
spanning from Monday, Feb. 14, 2000, to Sunday,
Feb. 20, 2000. Based on the results of the previous
section, the normalized traffic flows are used for the
estimation of the temporal trend of the eigenflow.
The usage of these data prevents the effect of possi-
ble bias caused by differences in flow size between
various time intervals of the day as well as periods of
successive days-of-the-week. Figure 7a presents the
estimation of the temporal trend of the given eigen-
flow together with the corresponding band of ±2SE
from the estimated trend line. In addition, figure 7b
illustrates the distinction of structural breaks and
outliers, which correspond to the given eigenflow,
and their statistical significance, as determined by the
range defined between the upper and the lower con-
fidence level, through the t-test statistical analysis of
these two types of stationary variation.

The process which was adapted here, referred to
as temporal trend thresholding, through the suitable
selection of a band with magnitude ±2SE, appears
to provide a reasonable distinction between station-
ary variations and nonstationary changes from the
eigenflow mean. This is clearly demonstrated by the
fact that the selection of such a threshold or band-
width can capture the existence of breaks and outli-
ers because the values that are kept out of this band

(see figure 7a) correspond to statistically significant
stationary variations (figure 7b), based on the t-test
statistic. In the present case, these short-lived, statis-
tically significant outliers are mainly due to bus
breakdowns and local accident situations. The
above process can also provide information on the
extent to which statistically significant breaks and
outliers affect changes in the long-term trend of a
common variation pattern.

This type of analysis is particularly helpful for
understanding the characteristics of urban traffic,
provided that most traffic flows can be sufficiently
represented through only a small number of eigen-
flows, as shown in the previous section. On the one
hand, the temporal trend thresholding is suitable for
the long-term analysis of the expected or predictable
variations of traffic, that is, those variations
restricted within the band of ±2SE. The determina-
tion of the periodic trends of each eigenflow makes
it possible to identify the extent to which the vari-
ability in traffic flow is predictable within time peri-
ods, such as those from week to week.

Furthermore, these results have implications for
the verification or validation of traffic assignment
and simulation models used to provide traffic pre-
dictions. The temporal trend thresholding enables
the definition of bounds in which a long-term pre-
diction can be considered as statistically reliable, or,
otherwise, an extreme or erroneous forecast, which
should be ignored or set equal to the upper or lower
statistical bound of the corresponding point in time.
In addition, this procedure can help identify
whether traffic predictions in some links are more
error-prone than others. 

On the other hand, the process described here
proposes a new scheme for identifying the location
and the time of occurrence of statistically significant
stationary variations in traffic flow, related to
unusual or extreme events, as described in the previ-
ous subsection. The operation of the proposed
scheme can be updated periodically (e.g., from week
to week) in an automated manner by simultaneously
reprocessing traffic flows measured over different
locations in the network while it enables the statisti-
cal analysis of different types of stationary variation,
such as structural breaks and outliers. For these rea-
sons, this scheme can be considered as a more rigor-
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ous and practically useful approach than the method
of detecting outliers through simply comparing indi-
vidual flows to some average traffic pattern obtained
from past measurements over a given location and
period of time (e.g., a week). Moreover, this process
introduces a methodology for deriving a set of differ-
ent models for local traffic prediction across multiple
timescales by taking into account the fact that the
traffic in different parts or links of the network may
experience different rates and types of variation as
time progresses.

CONCLUSIONS

This paper describes the analysis and interpretation
of the variability in urban traffic flow by processing

one-month traffic detector data corresponding to a
realistic large-scale arterial network. The method of
principal component analysis was found to provide
a plausible and powerful tool for the purposes of the
present study. Specifically, the PCA enables the iden-
tification of eigenflows, which denote common pat-
terns of temporal variability, according to their
contribution to the aggregate network traffic.
Despite the underlying complexity in the phenome-
nology of urban traffic structure, the findings suggest
that the spatio-temporal variation in traffic flow in
such a network can be represented by only a small
set of eigenflows. This small variability can be attrib-
uted to the increased correlation between temporal
variation patterns and the presence of periodic

FIGURE 7  Decomposition of a Typical Eigenflow by Use of (a) Temporal Trend 
Thresholding and (b) t-test Statistical Analysis of Structural 
Breaks and Outliers
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trends in these patterns, and it was found to carry
useful implications for the updated prediction of
traffic flow patterns, for example, from one week to
the next.

Moreover, the statistical analysis of the calculated
eigenflows allows for the presence of stationary
variations, namely, breaks and outliers. The identifi-
cation of such variations is particularly valuable for
supporting real-time network operations, including
detection of traffic anomalies and incidents. In addi-
tion, the proposed methodology offers a valuable
tool to manage stored aggregate traffic flow data in
large-scale urban networks for planning purposes.
Such purposes can encompass the assessment of
traffic responsive control strategies, the verification
of traffic assignment and simulation models used to
represent the variation in traffic patterns, the evalu-
ation of the traffic network performance, and its
impact on the environment.
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Frequency and Severity of Belgian Road Traffic Accidents 

Studied by State-Space Methods

ABSTRACT

In this paper we investigate the monthly frequency
and severity of road traffic accidents in Belgium
from 1974 to 1999. We describe the trend in the
time series, quantify the impact of explanatory vari-
ables, and make predictions. We found that laws
concerning seat belts, speed, and alcohol have
proven successful. Furthermore, road safety
increases with freezing temperatures while sun has
the opposite effect, and precipitation and thunder-
storms particularly influence accidents with light
injuries. Economic conditions have a limited impact.
State-space methodology is used throughout the
analysis. We compared the results of this study with
those of earlier research that applied a regression
model with autoregressive moving average errors on
the same data. Many similarities were found
between these two approaches. 

INTRODUCTION

Every year, Belgium has about 70,000 road deaths
and injuries (BIVV 2001). During the past decade,
the steady increase in traffic volume has resulted in
a steady growth in traffic problems. The negative
impact of these problems on our society highlights
the need for an effective road safety policy. 
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In order to take appropriate actions that will
increase the level of road safety, we need to under-
stand the underlying processes that result in traffic
problems and their causes. This requires gathering
extensive and reliable data over a long time period,
together with modeling techniques suitable for
describing, interpreting, and forecasting safety
developments (EC 2004, 7). We studied the fre-
quency and severity of traffic accidents in Belgium
from 1974 through 1999. 

Data in economics, engineering, and medicine are
often collected in the form of time series—a
sequence of observations taken at regular intervals
of time (Peña et al. 2001, 1). This data collection
method was also used here. From the broad cate-
gory of time series model construction methods, we
applied state-space methods in this study. This
methodology will be explained in detail later in this
paper. However, it is important to note here that
one of the key characteristics of state-space time
series models is that observations are regarded as
comprising distinct components, such as trend, sea-
sonal, and regression elements, each of which is
modeled separately (Durbin and Koopman 2001,
vii) and has a direct interpretation. Furthermore, the
components are allowed to change in time, and the
stationarity of the series is not required.

TIME SERIES APPLICATIONS IN 
ROAD SAFETY

The increasing interest in road safety is evident in
the literature. An important class of road safety
models is based on time series analysis. The succes-
sion of data points in time is a fundamental aspect
in this analysis. Models are used to describe the
behavior of the data, to explain the behavior of the
time series in terms of exogenous variables, and for
forecasting (Aoki 1987, v). The most relevant ideas
highlighting developments in road safety inside this
movement are described in the COST329 report of
the European Commission (2004).

In addition to giving a description of the trend in
traffic data, many models test the influence of
explanatory factors. A simple, well-known example
of such a time series model is the classical linear
regression, which assumes a linear relationship
between a criterion or dependent variable (yt) and

one or more predictor or independent variables (xt).
Explanatory models describe how the target vari-
able depends on the explanatory variables and inter-
ventions. One special and prominent class of
explanatory models in road safety analysis is known
as the DRAG (Demand Routière, les Accidents et
leur Gravité) family, extensively described in
Gaudry and Lassarre (2000). DRAG models are
structural explanatory models that include a rela-
tively large number of explanatory variables whose
partial effects on the exposure, the frequency, and
the severity of accidents are estimated by means of
econometric methods (EC 2004, 174). 

The COST329 report (EC 2004, 47) mentions
two main classes of univariate dynamic models:
ARIMA models studied by Box and Jenkins; and
unobserved components models, which are called
structural models by Harvey. In a structural model,
each component or equation is intended to repre-
sent a specific feature or relationship in the system
under study (Harvey and Durbin 1986, 188). The
models used here, state-space methods, belong to
the latter group. To date, Box-Jenkins methods for
time series analysis are applied more widely and are
more popular than state-space methods, but this
study will show the strengths of the state-space
methodology. 

Both classes are concerned with the decomposi-
tion of an observed time series into a certain number
of components. ARMA models decompose the
series into an autoregressive (AR) process, a moving
average (MA) process, and a random process.
Unobserved components models decompose a series
in a trend, a seasonal, and an irregular part. An
important characteristic is that the components can
be stochastic. Moreover, explanatory variables can
be added and intervention analysis carried out. The
principal structural time series models are, there-
fore, nothing more than regression models in which
the explanatory variables are functions of time and
the parameters are time-varying (Harvey 1989, 10).
The key to handling structural time series models is
the state-space form, with the state of the system
representing the various unobserved components.
Once in state-space form, the Kalman filter (Kalman
1960) may be applied and this in turn leads to esti-
mation, analysis, and forecasting. 
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Harvey (1989, 22–23) wrote comprehensively on
structural time series models (primarily applied to
economic time series), presenting an historical over-
view of the technique. A rapid growth of interest has
ensued in recent years. Nowadays, the technique of
unobserved components models is used in several
studies: Flaig (2002) applied it to quarterly German
Gross Domestic Product (GDP), Cuevas (2002) to
real GDP and imports in Venezuela, and Orlandi
and Pichelmann (2000) to unemployment series.
Other than those economic applications, this tech-
nique (more specifically an intervention analysis)
was also used in traffic-related research (Balkin and
Ord 2001; Harvey and Durbin 1986). The state-
space methodology forms a well-used approach in
modeling road accidents in a number of countries,
for example, the Netherlands (Bijleveld and Com-
mandeur 2004), Sweden (Johansson 1996), and
Denmark (Christens 2003). This paper presents the
results of the first state-space analysis on Belgian
data. 

DATA

The data used in this study are monthly observa-
tions from January 1974 through December 1999;
12 observations each year over a period of 26 years
equals 312 observations. All data have been gath-
ered from governmental ministries and official doc-
uments published by the Belgian National Institute
for Statistics. In addition to four dependent traffic-
related variables, we studied the effect of 16 inde-
pendent variables. These 16 explanatory factors can
be divided into 3 groups: juristic, climatologic, and
economic variables. Table 1 gives an overview of all
the variables used in this study. 

The four dependent variables in our data are the
number of accidents with persons killed or seriously
injured (NACCKSI), the number of accidents with
minor injuries (NACCLI), the number of persons
killed or seriously injured (NPERKSI), and the num-
ber of persons with minor injuries (NPERLI). The
evolution in time of these variables is displayed in fig-
ures 1a and 1b. In order to make a comparison
between the results of the state-space method and the
regression model with ARMA errors, the same vari-
ables, data, and time periods were used. In accor-

dance with the study of the regression model with
ARMA errors, the logarithm of the dependent vari-
ables were modeled and written respectively as
LNACCKSI, LNACCLI, LNPERKSI, and LNPERLI.

As figure 1a reveals, the variables concerning
killed or seriously injured persons (NACCKSI and
NPERKSI) show a decreasing trend over the period.
This is less obvious in the case of lightly injured
casualties (figure 1b). Another aspect is the recur-
ring pattern in the data. Thirdly, some months have
an extremely low value. 

The first group of explanatory variables contains
laws and regulations. Five dummy variables were
included in the model to study the effect of policy
measures introduced in Belgium at a certain date
within the scope of our analysis. These variables are
equal to zero before the introduction and have a
value of one from the moment of introduction. Table
1 describes the laws. Weather conditions form the
second group of explanatory factors. All meteorolog-
ical variables were gathered by the Belgian Royal
Meteorological Institute and published by the
National Institute for Statistics. The quantity of pre-
cipitation (in mm) was measured as an average for
the whole country. The other variables were mea-
sured in the climatologic center in Ukkel (in the center
of Belgium). Thirdly, the influence of four indicators
of the economic climate will be investigated. 

According to several studies (e.g., Fridstrøm et al.
1995, 12; OECD 1997, 16), exposure is a key vari-
able in traffic research. In this study, the frequency
and severity of accidents will be explained by many
variables, but the impact of exposure is not mea-
sured. We cannot describe this effect because ade-
quate monthly data of the total number of
kilometers covered on the whole Belgian road sys-
tem are not available. Population-related exposure
statistics could be a solution, but these data are only
available on a yearly basis, and no distribution code
is at hand. Although we are aware that this is a seri-
ous limitation, even without an exposure variable
valid models can be constructed and a good fit
obtained. (For more details, refer to Van den
Bossche et al. 2005). Other factors possibly omitted
are assumed to be taken into account to some extent
by the unobserved components framework. 
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METHODOLOGY 

In this study, state-space models are constructed
using STAMP software (Koopman et al. 2000). With
state-space models, we were able to obtain an
explicit description of the series in terms of trend and
seasonal. It was also possible to quantify the impact
of explanatory factors. For example, the effect of
road safety measures over time can be checked by
adding so-called intervention variables to the model.
Apart from these purposes, state-space models can

easily be used for forecasting. (For a technical discus-
sion of state-space models, see to the methodological
appendix at the end of this paper.)

The objective here is to find the model that best
describes the data. For each of the four dependent
variables, we constructed several state-space models,
each with their specific components. To be able to
choose the best model, we used the Akaike Informa-
tion Criterion (AIC), a measurement of fit that takes
the number of parameters into account (Akaike
1973, 267–281; Koopman et al. 2000, 180).  

TABLE 1  Dependent and Independent Variables

Category Variable Name

Independent variables

Number of 
accidents

The (log-transformed) number of accidents with persons killed or 
seriously injured

LNACCKSI

The (log-transformed) number of accidents with lightly injured 
persons

LNACCLI

Number of 
casualties

The (log-transformed) number of persons killed or seriously 
injured

LNPERKSI

The (log-transformed) number of persons lightly injured LNPERLI

Dependent variables

Laws and 
regulations

Law of June 1975

→ mandatory seat belt use in the front seats

Law0675

Law of November 1988

→ introduction of zones with a speed limit of 30 km/h

Law1188

Law of January 1992

→ a.o. speed limit of 50 km/h in urban areas and 90 km/h at 
road sections with at least 2 by 2 lanes without separation

Law0192

Law of December 1994

→ 0.5‰ blood alcohol concentration imposed and higher fines 
in case of 0.8‰ or higher

Law1294

Law of April 1996

→ a vehicle driver should give right of way to pedestrians who 
are (or have the intention to) crossing the street

Law0496

Weather 
conditions

The quantity of precipitation (in mm) Quaprec

The monthly percentage of days with precipitation Pdayprec

The number of sunlight hours Hrssun

The monthly percentage of days with sunlight Pdaysun

The monthly percentage of days with frost/freezing temperatures Pdayfrost

The monthly percentage of days with snow Pdaysnow

The monthly percentage of days with thunderstorm Pdaythun

Economic 
variables

The percentage inflation Inflat

The (log-transformed) number of unemployed persons Lnunemp

The (log-transformed) number of car registrations Lncar

The percentage of second-hand car registrations Poldncar
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We conclude this section with the discussion of
some of the advantages of state-space models com-
pared with classical regression. An interesting char-
acteristic of state-space methods is the possibility of
modeling stochastically the variation in the estima-
tion of the various components. Contrary to classi-
cal regression models, where components are fixed
or unchangeable in time, a component can also vary
in time. This is an advantage because variation in

time makes it easier to follow the fluctuations in the
data. Secondly, when the time dependency between
observations is taken into account (which is not the
case in classical regression analysis), the observation
errors will mostly be situated more closely to inde-
pendently random values. This makes significance
tests of explanatory variables more reliable. Fur-
thermore, state-space methods can easily handle
missing observations, multivariate data, and (sto-

FIGURE 1  Actual Monthly Accident and Casualty Observations: 1974–1999

A: Accidents Involving Persons Killed or Seriously Injured

Key: NACCKSI = number of accidents, NPERKSI = number of persons

B: Accidents Where Persons Sustained Minor Injuries

Key: NACCL = number of accidents, NPERLI = number of persons
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chastic) explanatory variables. A last advantage is
that the components can be modeled separately and
interpreted directly. 

RESULTS

Not all numerical outcomes of the different models
will be presented here. However, this section reports
and discusses the most essential results of the analy-
sis. It is divided into four parts. First, the outcomes
of the descriptive analysis are presented, followed
by an interpretation of the explanatory analysis.
Next, the forecasting capacity is evaluated. Finally,
we compare our results with those obtained by the
regression model with ARMA errors and deduce the
most important similarities and differences between
these two methodologies. 

Description

Based on AIC, we chose the model that best
describes the accident data. For each of the four
variables the same model resulted in the best fit.
This contains a stochastic trend (that adapts every
time period) and a deterministic or fixed recurring
seasonal pattern.

The interpretation of the seasonal coefficients
shows that October and June are the most unsafe
road traffic months of the year. During these
months, respectively, approximately 13% and 11%
more accidents happen than on average. The Octo-
ber percentage can be partly explained by the fact
that it is a long month (31 days) without holidays; it
is autumn and there is the transition from Central
European Summer Time to Central European Time;
and it is the start of the academic year. Possible
explanations are not apparent for the large number
of accidents during June.

Explanation

To look at the explanatory objective, we tested the
effect of 16 independent variables. In order to
obtain more reliable results (which implies normally
distributed residuals), we added correction variables
to the model. 

The inclusion of correction variables has algebra-
ically been presented in the model formulation (see
the methodological appendix). In general, two main

intervention effects can be distinguished (Sridharan
et al. 2003), namely a pulse intervention and a step
intervention. The first effect is used to capture single
special events because they may cause outlying
observations that the pulse regression variable
accounts for. The variable takes value 1 if t is the
month that needs correction for a special event and
has value 0 otherwise. The second intervention—
called a step intervention or level shift—is added to
the model to capture events such as the introduction
of new policy measures. Laws and regulations can
be incorporated in a model as this second type of
intervention. Before its introduction, the variable
has value 0, but from the moment of introduction it
has value 1. Our focus is on the first type, the tem-
poral pulse intervention. 

As could be seen on the graphs of the actual data
(figures 1a and 1b) as well as on the graph of the
residuals (figure 2), the number of accidents and
casualties was unexpectedly low during some
months. Either these months indeed had extremely
low values or some registration error was left in the
accident statistics. The following are extreme values
for which correction is necessary. January 1979,
January 1984 (only for LNPERLI, so a registration
error probably occurred here), January 1985, and
February 1997 are outliers. There are some indica-
tions for a very severe winter in 1979 and 1985
(BIVV 2001, 5). We explicitly correct for those four
months by adding pulse intervention variables to
the model, which are coded one during the month
they represent and zero elsewhere. We are con-
vinced that the most striking shocks must be
excluded in order to fulfill the error terms condi-
tions: no autocorrelation, homoscedasticity, and
normality. In the end, we want to obtain a correct
parameter interpretation. The inclusion of these cor-
rection variables lowers the difference between the
predicted and the real series and thus improves the
quality of the estimations. All tested correction vari-
ables are highly statistically significant. The exact t-
values are given in table 2 under “correction vari-
ables.” Taking these outliers into account, the fit of
the models improves.  

The last step in the construction of the final
model consists of the significance tests of the
explanatory variables. An explanatory variable
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must have a significant influence at least at the 90%
confidence level to be included in the final model.
Each model was re-estimated after dropping the
nonsignificant variables such that the ultimate
model for every dependent variable consists of a sto-

chastic level, a deterministic seasonal, and signifi-
cant correction and explanatory variables. The
addition of significant explanatory variables further
improves the fit. Table 2 gives an overview of all sig-
nificant combinations of variables. The parameter

FIGURE 2  Residuals of the Model With Stochastic Trend, Deterministic Seasonal, and Explanatory 
Variables for the Four Dependent Variables
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estimates and the t-statistics (between brackets) of
the significant explanatory and correction variables
according to the state-space method on the one
hand and the regression model with ARMA errors
on the other hand are presented.

At first sight, there are a lot of similarities
between the results of the two methods. Note that
the majority of explanatory variables is statistically
significant at least at the 95% confidence interval.
In the remainder of this section, we will interpret the
significant explanatory variables according to the
state-space method per category.

The results of laws and regulations are instructive
and interesting. Three of the five variables originally
included in the model proved to be significant for at
least two dependent variables. Their introduction
has been of major importance for road safety. This
is reflected by the magnitude of the coefficients. The
negative signs are as expected because laws are
established to enhance road safety. The introduction
of the law of June 1975 (LAW0675)— the manda-
tory seat belt use in the front seats—resulted in a
considerable and highly significant increase in road
safety. This law reduced all kinds of accidents and
casualties. Several empirical studies (Hakim et al.
1991, 392; Harvey and Durbin 1986) have shown
that seat belt legislation significantly reduces the
number of fatalities and the severity of injuries. The
introduction of a speed limit of 50 km/h in urban
areas and 90 km/h at road sections with at least 2 x
2 lanes without separation (LAW0192) seemed sig-
nificant for two dependent variables. The literature
verifies the positive effect on road safety in case of a
reduction in speed limit. Severity of injuries appears
to be positively related to the allowed speed (Van
den Bossche and Wets 2003, 15; Hakim et al 1991,
390). Yet another promising effect can be noted for
the regulations and fines on the maximum blood
alcohol concentration (LAW1294). They played an
important role in the decrease in the number of seri-
ous accidents and the number of persons killed or
seriously injured. The results confirm the hypothesis
that drunk drivers often cause serious or fatal acci-
dents. Amongst others, Gaudry (2000, 1-36) stud-
ied the effect of the consumption of alcohol on road
safety and found that the relative accident probabil-

ity, as a function of blood alcohol concentration, is
J-shaped. 

In our models, it is assumed that the introduction
of a law results in a sudden and permanent decrease
in the dependent variable. This assumption of a
step-based intervention is not always a natural one
(Van den Bossche et al. 2004, 8). The significant
impact of laws and regulations may be better
described as “something changed at that time,”
instead of attributing the whole effect to the law
itself. Nevertheless, it makes sense to test whether
these changes are indeed substantial. 

As one would expect intuitively, the weather plays
an important role in explaining the number of acci-
dents and casualties (especially for the variables con-
cerning lightly injured persons). In terms of
direction, we can make a distinction between precip-
itation, sun, and thunderstorms on the one hand and
freezing temperatures on the other hand. In addition
to precipitation (QUAPREC and PDAYPREC) and
thunderstorms (PDAYTHUN), the sun (HRSSUN) is
a factor tied to an increase in accidents. It is plausible
to assume reduced visibility in stormy weather and
on sunny days, a greater likelihood of blinding by
the sun. The only weather variable that has a posi-
tive effect on road safety is the monthly percentage
of days with freezing temperatures (PDAYFROST).
A possible explanation is that drivers adjust their
driving habits—steer more slowly and prudently and
concentrate more—because they perceive driving in
freezing conditions as dangerous (which is not the
case with rain and thunderstorms). Thus, it seems
like road users compensate for the higher risk
imposed by freezing temperatures. This result is in
line with other studies (Fridstrøm et al. 1995, 9)
wherein it is mentioned that exposure to traffic is
lower in winter and the average driving capacity
increases because less proficient drivers prefer to
avoid driving on slippery roads.

The impact of freezing road conditions (PDAY-
FROST) and sun (HRSSUN) is noticeable for all
dependent variables. The quantity of precipitation
(QUAPREC) and the monthly percentage of days
with thunderstorms (PDAYTHUN) are only rele-
vant for the variables concerning lightly injured
casualties. Eisenberg (2004, 641) noticed that in
adverse weather conditions, persons possibly drive
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more slowly and therefore, on average, accidents
are less severe. 

Concerning the quantity of precipitation (QUA-
PREC) (on the killed or seriously injured outcomes)
it is possible that two effects canceled out each
other. As also found in Gaudry and Lassarre (2000,
67–96), the onset of rain has a larger and more gen-
eral impact than the amount of rain (habituation
can lead to more risky driving behavior). A conclu-
sive remark on the explanatory capacity of weather
conditions is that the effect of weather data is
strongly related to the geographical properties of the
area of concern and the level of aggregation. 

Concerning the economically related variables,
two economic indicators happened to be significant,
namely the number of unemployed (LNUNEMP)
and the number of car registrations (LNCAR) for
the variable LNPERKSI. They have an opposite sign
and both imply that a better economy—with less
unemployment and more car registrations—
decreases the number of killed or seriously injured
casualties. In the literature the findings about the
direction of this effect are very diverse (Hakim et al.
1991, 384). In this study, the number of car registra-
tions is used as one of the indicators for the eco-
nomic climate. The assumption we make is that
when the economy goes well more cars will be
bought, and the average quality of the vehicles on
the road increases. In the future, more variables
(e.g., disposable income) should be included in the
analysis to better assess the explanatory capacity of
economic variables and their impact.

Prediction

The third objective of this study is predicting acci-
dent data with state-space methods for the years
2000 and 2001. Future values of the explanatory
variables are available. Only the values of QUA-
PREC and PDAYTHUN for 2001 have to be esti-
mated. This is done with a simple univariate state-
space model based on the data from 1974 through
2000.1) We use the final model—which contains a

stochastic level, a deterministic seasonal, and signifi-
cant explanatory and correction variables—to fore-
cast the values of the out-of-sample dataset for 2000
and 2001 and compare them to the actual observa-
tions. To depict possible uncertainty, 95% predic-
tion intervals are provided. The graphs (see figure 3)
show us that the predictions are close to the actual
observations. So we are able to capture a great part
of the fluctuations in the series. Only a few points lie
outside the prediction intervals.

Apart from a visual presentation, we also quanti-
fied the forecasting precision. We interpreted the
results of the Failure Chi-squared test and computed
the mean squared error (MSE). Those tests con-
firmed our conclusion of accurate predictions.

Comparison with ARMA regression model

In addition to the interesting characteristics of state-
space models already mentioned in the methodol-
ogy section, we discuss an important disadvantage
of ARIMA models here. It is not possible to explic-
itly describe a time series in terms of the different
components because ARIMA models require the
time series to be stationary (Harvey and Durbin
1986, 188). In those models the trend and/or sea-
sonal are treated as a problem and therefore
removed from the series by a procedure called dif-
ferencing (in order to transform the series into a sta-
tionary one) before any analysis can be performed.
But few economic and social time series are station-
ary, and there is no overwhelming reason to suppose
that they can necessarily be made stationary by dif-
ferencing (Harvey and Shephard 1993, 266). 

In 2003, a study on intervention time series anal-
ysis of crime rates (Sridharan et al.) showed that the
results of a legislation on different kinds of crimes
were very similar between the ARIMA model and
the structural time series model. Both coefficients
and t-values were very analogous. A comparison
with the regression model with ARMA errors, how-
ever, showed different results. Earlier, Harvey and
Todd (1983) compared the results of the prediction
of a number of economic time series done by the
basic structural model with those obtained using the
Box-Jenkins models. They concluded that the fore-
casts given by both methods are comparable.  

1 One could question the correctness of using estimated
values in the prediction, but we can assume that the esti-
mates of these two weather variables will be in line with
the actual unknown values due to little variation from
year to year and the strong seasonal pattern.
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In this study, we investigate the differences and
similarities in explanatory and predictive analysis
between the state-space method and the regression
model with ARMA errors. Table 2 shows that the
outcomes of these two approaches are comparable.
The same correction variables seemed significant
and the juristic and climatologic variables also
matched quite well. Different from the results of the
regression model with ARMA errors is the fact that
two of the four economic variables are significant. A
possible reason is that the evolution in economic
factors is a very slow one. In case of a regression
model with ARMA errors differences are taken,
resulting in almost a constant. Differencing possibly
cancels out the already little variation in time. Next,
the estimated parameters of the two methods have
the same (expected) sign and are of the same order
of magnitude.

Both methods forecasted the data for the year
2000, so we are able to assess and compare the
quality of the predictions. The measure used is
MSE, and the values of the two methodologies for
the four variables are reported in the last row of
table 2. The lower MSE, the better the prediction.
The values are of the same order of magnitude. The
predictions for the two variables concerning killed
or seriously injured persons from the regression
model with ARMA errors are more accurate. The
state-space method better predicts the values of the
variables concerning lightly injured persons. In case
of killed or seriously injured persons, the decreasing
level is more important than the recurring seasonal
pattern. In contrast, for light injuries with values
fluctuating around the average, the seasonal effect is
more important. Because the seasonal effect is
explicitly modeled in the state-space model, this

FIGURE 3  Monthly Two-Year Ahead Predictions for the Four Dependent Variables
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model possibly predicts more accurately in case of
lightly injured persons than the regression model
with ARMA errors.

CONCLUSIONS

In this study state-space models were elaborated to
describe the developments in the frequency and
severity of accidents and casualties in Belgium from
1974 through 1999. Furthermore, the impact of
laws, weather, and economic conditions was mea-
sured. In the third place, an out-of-sample forecast
of the dependent variables for 24 months was made.
The results were compared with those obtained
from a regression model with ARMA errors, based
on the same data. 

For each of the four dependent variables we built
several models. The model that described all data
best consisted of a level that is allowed to vary over
time and a seasonal. Explanatory and correction
variables were added to this descriptive model. The
fact that accidents happen can to a certain extent be
attributed to juristic, meteorological, and economic
factors. Due to data and multicollinearity issues and
for reasons of comparison, we tested the influence
of 16 independent variables. Additionally, correc-
tion variables for January 1979, January 1984 (only
for LNPERLI), January 1985, and February 1997
were significant. 

From this study we can conclude that there is a
lot of similarity between the results of the state-
space method and the regression model with
ARMA errors. Both methods labeled (more or less)
the same explanatory variables as significant, and
their influence was at all times in the same direction
and of comparable magnitude. Several laws had a
clear positive effect. Apart from those, the weather
elements precipitation, sun, freezing temperatures,
and thunderstorms were important. Nevertheless,
note the difference between the two methods on the
subject of the economic variables. The forecasting
capacity of the methods was tested quantitatively
and was shown to be approximately the same. 

The models developed in this text show large
potential for describing long-term trends in road
safety. On the one hand, they can isolate the effect
of phenomena that cannot be influenced, but cer-
tainly act on road safety (for example the weather).

Similarly, macroeconomic and sociodemographic
evolutions could be added to the model. On the
other hand, the efficiency of policy decisions (for
example laws) or time-specific interventions can be
tested. These are the direct tools for increasing the
level of road safety. Moreover, forecasts can be
made, uncertainty estimated, and ruptures in the
time series detected. Furthermore, some advantages
of state-space methods over regression and ARIMA
models were reported.

We conclude with some topics for model improve-
ment and further research. In this study the variable
exposure was not included. In the future, monthly
observations of the total mileage covered on the Bel-
gian road system could be taken into account in
order to measure this effect. Secondly, because the
number of variables in our models is limited, the
effect of more explanatory factors could be tested, for
example income or public transportation. The elabo-
ration of data quality and availability together with
the development of extensive but statistically sound
models should lead to high quality results. 
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METHODOLOGICAL APPENDIX 

In this appendix state-space models are discussed in
more detail. The overall objective of the state-space
analysis is to study the development of the state over
time using observed values (Durbin and Koopman
2001, 11). More specifically, we want to obtain an
adequate description of this development and to
find explanations hereof. Furthermore, these models
have the ability to predict developments of a series
into the future.

The state is the unobserved value of the true
development at time t. The gathering (or space) of
possible values of the state is called the state-space
of the process. The state consists of several compo-
nents: on the one hand a level, slope, and seasonal
that give a description of the time series and on the
other hand explanatory and intervention variables
that give an explanation about the actual develop-
ment in the series. 

A state-space model consists of an observation or
measurement equation and one or more state equa-
tions (depending on the number of components).
The first one contains the unobserved state at time t
and an observation residual ( ), which is white
noise. In the state equation, time dependencies in
the observed time series are dealt with by letting the
state at time t+1 be a direct function of the state at
time t, and the state error is also white noise. Alge-
braically, the final state-space model used in this
analysis can be written as:

(Eq. 1) 

(Eq. 2)  

εt

yt μt γt βjtxjt

j 1=

k

∑ λitwit

i 1=

l

∑ εt+ + + +=

εt NID 0 σε
2( , )∼

μt 1+ μt ηt+= ηt NID 0 ση
2( , )∼
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(Eq. 3)   

(Eq. 4)  

(Eq. 5)  

for t = 1,...,n; j=1,...,k and i=1,...,l.

The observation equation (Eq. 1) relates the val-
ues of the dependent variable yt to the level , the
seasonal component , explanatory variables xjt (j
= 1,…,k), intervention variables wit (i = 1,…,l), and
an observation error . Each component has its
state equation (Eq. 2 till 5 respectively). All (obser-
vation and state) errors are assumed to be mutually
independent and normally distributed with mean
zero and variances , , ,  and  respec-
tively.  is the unknown regression coefficient of
the jth explanatory variable. One type of interven-
tion is the temporal pulse intervention. Only during
one time point a correction of an unusual high or
low value occurs. In this paper, four correction vari-
ables of this type were used. Concerning these vari-
ables, wit = 1 if t is the month of correction, and 0
otherwise.  is the coefficient of the ith correction
variable. 

The error variances are used in order to obtain
the most parsimonious model that describes the
data best. Each component can be chosen determin-
istically or stochastically. Deterministic implies one
parameter estimate during the whole time period
while stochastic implies that the estimate will be
adapted every time point. However, this last option
requires more parameters. Whether a state compo-
nent should be treated deterministically or stochasti-
cally can be determined by evaluating the error
variance of the component when analyzed stochasti-
cally. If the error variance of the stochastic compo-
nent is very small (i.e., almost zero), this indicates
that the corresponding state component should be
handled deterministically. Because we consider only
deterministic explanatory variables, the correspond-
ing errors  are equal to zero.

In state-space methods the value of the unob-
served state at the beginning of the time series (t = 1)
is unknown. Using diffuse initialisation (Durbin and
Koopman 2001, 28) estimates for the unknown
parameters are obtained. Also none of the observa-
tion and state error variances are known. The esti-
mation of all these parameters can be obtained with
an iterative process using the maximum likelihood
principle. 

γt 1+ γt ωt+= ωt NID 0 σω
2( , )∼

βj,t 1+ βjt τjt+= τjt NID 0 στ
2( , )∼

λi ,t 1+ λit ξit+= ξit NID 0 σξ
2( , )∼

μt

γt

εt

σε
2 ση

2 σω
2 στ
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