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1

Precision of Geocoded Locations and Network 

Distance Estimates

ABSTRACT

This paper addresses the accuracy of the geocoding
of travel diaries, the relationships between different
network-based distance estimates, and how exact
estimates are when distances are self-reported.
Three large-scale surveys in Norway and Switzer-
land demonstrate that very high precision is possible
when survey protocol emphasizes the capture of
addresses. The study uses the relevant and available
databases and networks. Crow-fly, shortest distance
path, shortest time path, and mean user equilibrium
path distances are systematically related to each
other, the pattern of their relationships is matched to
theoretical expectations, and the impact of network
resolution is reported. In the examples studied,
medians of self-reported distances by distance band
provide reasonable estimates of crow-fly and short-
est distance path distances. 

HOW MUCH PRECISION IS POSSIBLE?

Measuring distances traveled is a central task of
transport statistics, as these data are not only key
descriptors of travel behavior, but also essential for
the calculation of derived statistics, such as expo-
sure to risks (accidents, pollution), volume of exter-
nalities (emissions, congestion), speeds, incidence of

KEYWORDS: Geocoding, travel diary, precision, network
distances, detour factors.
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taxation, and so forth. It is also central, directly or
indirectly, to all choice models estimated from travel
behavior data. Thus, it is not surprising that recent
technological innovations, such as geographic infor-
mation systems and the vast expansion of spatially
referenced databases and networks have been
adopted quickly by transport statisticians and mod-
elers. This adoption process is ongoing, and profes-
sional standards for appropriate use must be
formulated. This paper contributes to the current
discussion: first, by highlighting various questions
about the availability of these new resources and
second, by reporting results from our work with
these systems in Norway and Switzerland. 

The gold standard of distance measurement is an
uninterrupted trace of Global Positioning System
(GPS) points matched to a complete and geometri-
cally correct network model. The currently available
GPS datasets are neither uninterrupted nor matched
to complete and geometrically correct network
models (see, for a recent example, Hackney et al.
2004; Marchal et al. 2004), but they are much
closer to this standard than the alternatives dis-
cussed below. Some studies come quite close (see,
e.g., Wolf et al. 2003). Lacking data of this quality,
the researcher has various second-best alternatives
to locate (geocode) origins and destinations of
stages or trips observed1 (Axhausen 2003) and to
estimate distances between them. Data sources
assumed available for further discussion are the fol-
lowing: travel diary surveys (Richardson et al. 1995;
Axhausen et al. 2003; Resource Systems Group
1999), address databases, and network models suit-
able for shortest path calculations.

The quality of geocoding will depend on the
details reported by travelers, as well as the details of
the address databases to which these reports are
matched. Travelers’ difficulties with reporting
addresses are well known: full street addresses may
not be known for shops and other locations; correct
postal codes are forgotten, even when the street
address is known; or no unique names exist for
common meeting points in parks or other public

spaces. Address databases have similar problems:
no entries for points in public spaces; arbitrary allo-
cation of reference points for large complexes, such
as train stations, airports, or shopping centers; and
some missing street addresses. 

Using zones for modeling convenience or privacy
protection increases both complexity and the possi-
bility for error. The definition of a reference point
for a zone is an additional problem in its own right.
Should one use the geographical mean of the zone,
the built-up area, the center of gravity of the popu-
lation, the city hall, or the post office for zones
defined by a postal code? 

Currently available detailed network models for
vehicle navigation will be almost perfect from a
topological perspective, as they include (nearly) all
street addresses and all nodes. However, minor
delays in the updating of such databases can cause
minor errors. The larger issue is the coding of link
types and associated mean speeds for link types. The
same problems (with larger impacts on accuracy)
occur with planning networks, that is, networks
used in planning applications for assignment or
other transport flow algorithms (Ortuzar and Wil-
lumsen 2001; Sheffi 1985). These contain far fewer
links and nodes, causing inconsistencies between
shortest paths calculated using them in comparison
with using navigation networks. An added compli-
cation is their use of zones to represent space with all
the related definition problems discussed above. Fur-
ther, network models employ special types of links to
connect zones with networks. One such connector is
required to produce a complete description of the
area, but many users employ two or more, which
again will impact shortest path calculations. 

Road geometry in network models only approxi-
mates the true geometry of real road alignments. As
long as the true length of links is known, locating a
street address along a link will add only minor errors.

Network models can be used to calculate path
distances between origins and destinations for dif-
ferent criteria that might or might not have the same
values—for example: 

� shortest distance path,

� shortest time path,

� paths included in the set of paths traveled at user
equilibrium,

1 A stage is the movement with one mode; a trip is the
sequence of stages between two activities; a journey is a
sequence of trips starting and ending at the current resi-
dence of the traveler, generally the home (Axhausen 2003).
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� paths included in the set of paths traveled at sto-
chastic user equilibrium, and

� paths included in the set of paths traveled at sys-
tem optimum.

For the last three criteria, one would need to define
summaries of returned path distances, for example,
mean, median, or minimum. The complexities
involved in estimating origin-destination matrices
required for these calculations are not included here
(see Ortuzar and Willumsen 2001 for details).

Calculation of the shortest distance path dis-
tance is unambiguous, which is not the case for
shortest time path distance, which requires the
modeler to make assumptions about traveling
speeds on the various links. One obvious assump-
tion is the free-flow speed, normally the posted
speed limit, available in all assignment networks.
Most networks set up for navigation purposes
assume a mean speed for each link type. These are
substantially lower than free-flow speeds. Other a
priori choices are possible. We can also calculate
the straight line (crow-fly) distance between two
points, either as Euclidian distance or as Great Cir-
cle distance (Hubert 2003), that takes the Earth’s
spherical shape into account.

When we consider the number of possible combi-
nations and choices in network distance calculation,
traveler-reported distances are at least unambigu-
ous. Travelers choose a path based on specific pref-
erences and situations. We can expect their self-
reported distances will deviate from any modeled
distance because of their tendency to estimate dis-
tances imprecisely (Bovy and Stern 1990; Rietveld et
al. 1999; Raghubir and Krishna 1996). In many
cases, though, this is the only information available.
Thus, patterns of deviations between reported and
modeled distances are of interest. 

Although not yet undertaken, a study of the
interactions between all these elements would be
helpful. This paper focuses on many of the relevant
issues that provide some missing background and
allow other results to be assessed: 

� What degree of accuracy is possible in the geo-
coding of addresses obtained from travel diaries?
The results of three studies, the Swiss national
travel diary survey (Mikrozensus 2000), the 2003
Thurgau six-week diary (Thurgau 2003), and the

2001 Norwegian national passenger travel sur-
vey (NPTS 2001) are compared. 

� How large are the differences between various
distance estimates? Using a current national
assignment model for Switzerland (Vritc et al.
2003; Vritc and Axhausen 2004), shortest dis-
tance path distances, shortest time path distances,
and mean user equilibrium path distances will be
calculated and compared. 

� What are the differences between reported dis-
tances and calculated distances? The three
datasets will be used to answer this question.

DATASETS

2001 Norwegian National Passenger 
Travel Survey

The 2001 NPTS is the latest in a series of Norwe-
gian travel surveys, which are undertaken on a four-
year cycle (Denstadli et al. 2003). The respondents,
all of whom are at least 13 years old, reported both
their trips for one day and all trips over 100 kilome-
ters made during the last month in a computer-
aided telephone interview (CATI). They were asked
to fill in a “memory jogger” before the interviews.
Respondents were drawn from the national person
register, which allows pre-geocoding of home and
work place addresses. 

The published dataset gives addresses at the level
of the approximately 14,000 statistical wards,
which is how the census office divides Norway.
These vary in population from 0 to 3,500, with a
mean of 320. The geocoding of the 64,240 daily
trips and 27,507 long-distance journeys involved
two automatic matches and two manual correction
phases against a set of address databases, including
one with the names of firms and organizations
(Denstadli and Hjorthol 2003). 

Swiss National Travel Survey

The Swiss Federal Office of Statistics (BFS) and the
Federal Office of Spatial Planning (ARE) conducted
the Mikrozensus 2000, the sixth in a series dating
back to 1974 (BFS 2001 and 2002). A number of
cantons provided further support by financing addi-
tional respondents at marginal costs. The CATI-
interview covered the stages of one entire day and
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long-distance and air travel for longer periods. The
feasibility of geocoding the stage data was still
uncertain during the survey’s design phase, so exact
street addresses or their equivalents were obtained
only for trips to, within, and from the 10 largest cit-
ies in Switzerland (40,000 to 340,000 inhabitants).
The names of stations and public transport stops
were carefully recorded as part of the stage-based
interview, as well as home addresses. However, the
quality of the address information was not a prime
concern for the survey. 

The geocoding (Jermann 2003) of the 144,000
stages (about 100,000 trips2) was performed some
time after the field phase of the survey, as part of a
different project. Using geocoded address databases
of the BFS, canton Zürich, and the Swiss Federal
Railways stations and stops, we implemented a semi-
automatic matching process after normalizing and
correcting street addresses in the Mikrozensus 2000
records (spelling, punctuation, removal of diacritical
marks, etc.). The remaining addresses were matched
by hand, as far as possible, using maps, telephone
books, and information on the internet, especially for
place names and leisure facilities. (The address-
matching tools in ArcInfo and MapInfo were unsuit-
able, because they embed too many assumptions
valid only in the context of the United States).

2003 Thurgau Six-Week Diary

This survey replicates and improves on the six-week
Mobidrive survey (Axhausen et al. 2002). A total of
99 households with 230 members were recruited in
the rural and small town canton of Thurgau; they
reported their travel for a continuous six-week
period, using six one-week trip diaries (about
36,000 trips). The data were then coded and the
field worker called respondents to clarify any omis-
sions, particularly omitted or unclear addresses.
(Address information quality was a priority for
everyone involved in the survey.) 

The geocoding was undertaken (Machguth and
Löchl 2004) after the completion of the field work
using the same type of databases employed for the
geocoding of the Mikrozensus 2000 and adopting

the same process. In contrast to the Mikrozensus,
destinations abroad were coded to street block level
in Germany and to municipality level elsewhere.

QUALITY OF GEOCODED LOCATIONS 

In the preceding section, we asked what level of
quality could be achieved for such large-scale exer-
cises when they rely primarily on automatic match-
ing steps. The quality of geocodes can be evaluated
by how precisely addresses can be pinpointed. In the
Norwegian study, quality was rated by quantifying
the number of wards to which an address could
belong. Table 1 gives details of the criteria for qual-
ity rankings. In nearly 90% of the cases, it was pos-
sible to locate the address within one ward.
However, address locations for both ends of the trip
were possible in only about 80% of the cases, rais-
ing problems later with distance calculations (table
2). Trip purpose, mode, and area were investigated
for impacts on accuracy. The first two were not sig-
nificant, but the type of area, predictably, had an
impact. Better databases for larger urban areas sub-
stantially improved quality, particularly when the
wards considered are smaller in these areas.

The matching quality of data on location in Mik-
rozensus 2000 needed to be examined individually
for each stage, as these were the basic units of the
data collection. Varying quality of underlying data-
bases produces differences. Because some addresses
were available only with street names, and in most
cases only as municipalities, the collection of
addresses differed for various areas during the sur-
vey. Table 3 details the quality ratings and table 4
shows the qualities available at the origins and desti-
nations of the stages.  

Matching was very precise for stages with sta-
tions on either end, relatively good for both bus and
tram stops. When street addresses were available,
coding was simple. However, in one-third of the
cases, respondents could only recall the street, or
only a street could be identified for the location. The
municipalities were matched precisely. Note that
cases rated C2, which refers to locations for avail-
able street addresses, were so incomplete that
matching could only be achieved at the municipal
level. Slightly more than 70% of the stages could be
matched at both ends to level 1 (including 14%

2 Microzensus deliberately omitted many stages, in par-
ticular those under 100 meters; these omissions were
exacerbated by interviewer error.
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municipality to municipality stages) and 85% to
level 1 or 2, which is roughly comparable to the
Norwegian results. Considering that the average
Swiss municipality has only about 2,500 inhabit-
ants, and given that the Mikrozensus was mostly
conducted without considering geocoding of loca-
tions, this result is quite good.

The geocoding quality for the 2003 Thurgau fol-
lowed the Mikrozensus example, but was supple-
mented by a new type of coding that translated the
previous codes into a more comprehensible metric
(table 5). The code “<100m” understates the accu-
racy, because it covers mainly exactly coded street

addresses. The quality of the geocoding is very high,
reflecting the attention given to it during the survey
process. With 60% of trips captured within 100 m of
their true origins and destinations, this brings us very
close to ideal conditions for the distance estimation. 

DIFFERENCES BETWEEN DISTANCE 
ESTIMATES

Swiss and Norwegian data allow comparison of
network estimates against reported distances, as
well as against each other. This section focuses on
the comparison between the various network esti-
mates discussed above.   

TABLE 1  2001 NPTS: Geo-Information and Accuracy Level

Type of information Accuracy level

1. Pre-geocoding of home address (verified by respondent)
2. Pre-geocoding of work place address (verified by respondent)
3. Street address, postal number, and municipality; location using 

GIS and address databases
4. As in 3, but with some inaccuracies—manually controlled and 

verified
5. As in 3, but using a manual method for location
6. Insufficient information (e.g., name of store, postal code, etc.), 

but GIS or manual checks made possible exact location
7. Location to city center in small urban settlements (few cases)

Exact location of 
statistical ward

8. As in 6, but 2 possible wards Approximate location 
(2 possible wards)

9. As in 6, but 3 possible wards Approximate location 
(3 possible wards)

10. As in 6, but 4 or more possible wards Inexact location (4 or 
more possible wards)

11. Insufficient information—only possible to locate municipality No location

12. Geocoding impossible or destination abroad No location

TABLE 2  2001 NPTS: Accuracy of the Geocoded Trip Origins and Destinations by Area and Location

Accuracy of geocoding

Exact 
location of 
ward (%)

Approximate 
location—2 or 

3 possible 
wards (%)

Inexact 
location—4 or 
more possible 

wards (%)
Municipality 

only (%)
Sample 

size

Metropolitan areas with cities 
with over 100,000 inhabitants

81 4 10 5 18,204

Cities/towns of 40,000–100,000 
inhabitants

82 5 8 5 12,690

Smaller towns/villages 78 5 11 6 13,868

Sparsely populated areas 74 4 16 6 19,478

Trip origin 89 2 6 3 64,240

Trip destination 89 2 6 3 64,240

Origin and destination 78 4 11 6 64,240
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In a first step for Mikrozensus 2000, the stage-
based information was used to geocode the trips.
The best available geocode was attached to the start
of the first stage and the destination of the last stage
(table 6). The main mode of the trip was deter-

mined, as is usual in this situation, by an a priori
ranking of the modes involved, in which the various
public transport modes have priority before private
motorized vehicles and slow modes. Further analy-
sis in this section is restricted to car driver and pas-

TABLE 3  Mikrozensus 2000: Rating of the Matching Quality by Type of Location

Rating Description Quality

Building address available
A1 Precise match Precise
A2 Varying address spelling, certain match Certain
A3 Strongly varying spelling, uncertain match Uncertain

Street name available
B2 No house number available; employed lowest 

known number in the street
Certain

B3 As above, but uncertain match Uncertain

Municipality known
C1 No street address Precise

C2 Street address given, but not identifiable 
locally

Certain

C3 Dubious information in the Mikrozensus Uncertain

Bus or tram stop
D1 Precise match Precise
D2 Varying address spellings, certain match Certain
D3 Strongly varying spellings, uncertain match Uncertain

Station
E1 Precise match Precise

E3 Strongly varying spellings, uncertain match Uncertain
F Not identifiable; abroad No match

TABLE 4  Mikrozensus 2000: Matching Quality by Stage End
Percentage of 144,329 stages

From

To A1 A2 A3 B2 B3 C1 C2 C3 D1 D2 D3 E1 E3 F Sum

A1 4.0 0.4 0.0 2.6 0.1 3.4 0.1 0.0 1.5 0.3 0.1 6.0 0.0 0.7 19.3
A2 0.4 0.2 0.0 0.2 0.0 0.8 0.0 0.0 0.1 0.0 0.0 1.0 0.0 0.1 3.0

A3 0.0 0.0 0.0 0.0 0.0 0.0 — 0.0 0.0 0.0 — 0.0 — 0.0 0.1
B2 2.4 0.2 0.0 1.9 0.0 1.0 0.0 0.0 0.5 0.1 0.0 1.3 0.0 0.2 7.9
B3 0.0 0.0 0.0 0.0 0.0 0.1 0.0 — 0.0 0.0 0.0 0.0 — 0.0 0.2

C1 3.2 0.7 0.0 0.9 0.0 12.2 0.3 0.0 0.2 0.1 0.0 4.0 0.0 0.4 22.1
C2 0.1 0.0 0.0 0.1 0.0 0.3 0.1 0.0 0.0 0.0 0.0 0.4 0.0 0.0 1.0
C3 0.0 0.0 — 0.0 — 0.0 0.0 0.0 0.0 0.0 0.0 0.0 — 0.0 0.1

D1 1.5 0.1 0.0 0.5 0.0 0.2 0.0 0.0 1.7 0.2 0.1 0.8 0.0 0.1 5.3
D2 0.3 0.0 0.0 0.1 0.0 0.1 0.0 0.0 0.2 0.1 0.0 0.2 0.0 0.0 1.1
D3 0.1 0.0 — 0.1 0.0 0.0 0.0 — 0.1 0.0 0.0 0.1 0.0 0.0 0.5

E1 5.7 1.0 0.0 1.2 0.0 4.1 0.4 0.0 0.9 0.2 0.1 21.4 0.1 0.4 35.5
E3 0.0 0.0 0.0 0.0 — 0.0 0.0 — 0.0 0.0 0.0 0.1 0.1 0.0 0.3
F 0.7 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.1 0.0 0.0 0.6 0.0 1.5 3.7

Sum 18.5 2.8 0.1 7.9 0.2 22.6 0.9 0.1 5.3 1.1 0.5 36.0 0.3 3.6 100.0

Key: — = combinations with no observation.
Note: Columns and rows may not equal their marginal sum because of rounding.
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senger trips, as no detailed walking and cycling
network information was available. 

Network distance calculations were performed
using a national assignment model available at the
Institute for Transport Planning and Systems (Vritc
et al. 2003; Vritc and Axhausen 2004), which
divides Switzerland into 3,066 zones, 14,798 nodes,
and 19,664 links. The associated origin-destination
matrix of average annual weekday flows was cali-
brated for the year 2001. The geocode for a postal
code is the geocode of the associated post office’s
address. As a municipality is normally the same as a
postal code area and a zone in the national network
model, this address was also used to describe the
center of gravity of the zones. The distance between
the network and the center of gravity, that is, the
length of the centroid connector, was set to the
Euclidian distance between the relevant node and
the centroid.

Crow-fly distances were calculated as Euclidian
distances between the origin and destination of the
trip, at the precision available. For network-based
calculations, each trip end was associated with the
relevant zone and, therefore, its zonal centroid. Dis-
tances were calculated using VISUM 8.0 (PTV AG

2002) for about 3,000 zones with an average of
2,500 residents. Shortest distance path distances
included lengths of centroid connectors at either end
of trips. Shortest time path distances were calculated
assuming free-flow speeds for links. User-equilib-
rium (UE) assignment distances were calculated as
weighted average distances of paths used at equilib-
rium between any two locations. The matrix of
average weekday traffic flows was assigned with the
assumption that daily link capacities are 12 times
hourly link capacities. We excluded all trips inside a
zone from further analysis, as they have, by defini-
tion, a distance of zero in network models, better
interpreted as a missing value.  

A comparison of distance distributions (table 7
and figure 1) highlights the differences between the
three sources of information. The largest share of
crow-fly distance trips lies in the one to five kilome-
ter band. The mean crow-fly distance in this band is
substantially smaller than the mean distances in all
other bands. Network distance distributions are
similar, but, as one would expect, shortest time path
and mean UE assignment path distances are slightly
longer. This effect is pronounced for longer dis-
tances, where routings via roads with higher speeds

TABLE 5  2003 Thurgau: Matching Quality
Percentage of 36,824 trips

Quality at destination

Quality at origin < 100 m 100–500 m 500–1,000 m Municipality Unknown Sum

< 100 m 60.3 13.4 0.1 2.7 0.6 77.1
100–500 m 13.4 3.2 0.0 0.9 0.1 17.6

500–1,000 m 0.1 0.0 0.0 0.0 — 0.3
Municipality 2.6 1.0 0.0 0.6 0.0 4.2
Unknown 0.6 0.1 — 0.0 0.0 0.7

Sum 77.0 17.7 0.2 4.2 0.7 100.0

Note: Columns and rows may not equal sum because of rounding.

TABLE 6  Mikrozensus 2000: Quality of the Geocoding of Trip Origins and Destinations
Percentage of 104,215 trips; all modes

Trip destination

Trip origin

Postal code, 
street name, and 
house number 

Postal code and 
street name

Only postal 
code Total

Postal code, street name, and 
house number

16.8 0.0 6.2 23.0

Postal code and street name 0.0 0.0 6.3 6.3

Only postal code 0.0 0.0 70.7 70.7
Total 16.8 0.0 83.2 100.0
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start to pay off. Alpine topography, including the
many large lakes in the foothills of the Alps,
explains the large differences in the shares of trips
over 100 kilometers distance vs. crow-fly distances.
Mean reported distance lies between the shortest
distance path and shortest time path estimate. Given
that neither of the two network-based estimates
reflects actual behavior fully, this mean value is a
credible estimate for all trips.   

In many cases, it is useful to convert one distance
estimate to another. Such conversions, using the

mean ratios of the relevant estimates, often called
detour factors, have been reported previously but
only for certain pairs of distance estimates (e.g., by
Qureshi et al. 2002). Table 8 provides six compari-
sons for Mikrozensus 2000 based on the estimates
described above. A clear difference can be observed
in detour factor change patterns. Calculations are
based on all observations in the sample, even if
crow-fly distances were longer than model-based
estimates. This can happen, especially for shorter
trips, when the distance between zonal centroids is

TABLE 7  Mikrozensus 2000: Distribution of the Reported and Calculated Distances
34,195 car passenger and driver interzonal trips

Crow-fly
Shortest 

distance path
Shortest time 

path Mean UE path Reported

Distance

band (km)
Share 

(%)

Class 
mean 
(km)

Share 
(%)

Class 
mean 
(km)

Share 
(%)

Class 
mean 
(km)

Share 
(%)

Class 
mean 
(km)

Share 
(%)

Class 
mean 
(km)

0–5 37.34 3.1 23.32 3.5 22.93 3.5 22.59 3.5 26.10 3.6
5–10 27.45 7.1 28.60 7.3 27.35 7.3 27.76 7.3 26.65 7.9

10–15 12.32 12.3 15.77 12.3 15.18 12.3 15.19 12.4 14.67 13.1
15–20 6.55 17.3 8.38 17.3 8.34 17.2 8.36 17.2 8.77 18.3
20–25 4.26 22.4 5.51 22.3 5.54 22.2 5.51 22.2 5.72 23.3

25–50 7.63 34.2 11.69 34.1 12.75 34.2 12.66 34.2 11.40 35.5
50–75 2.20 60.4 3.17 61.0 3.66 61.1 3.64 61.0 3.05 62.0
75–100 1.07 85.7 1.37 86.2 1.60 86.9 1.63 86.6 1.71 88.6

>100 1.18 135.2 2.20 148.2 2.67 161.0 2.65 161.5 1.94 158.7
Total 100.00 13.1 100.00 17.9 100.00 19.6 100.00 19.6 100.00 18.4

Key: UE = user equilibrium.
Note: Percentages may not add to 100 because of rounding.

FIGURE 1  Mikrozensus 2000: Comparison of the Distance Distributions
34,195 car passenger and driver interzonal trips

Key: SDPD = shortest distance path distances
STPD = shortest time path distances
UE = user equilibrum
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smaller than the actual distance traveled (see above).
Detour factors fall as crow-fly distances become
longer. While they are well above the square root of
two (a factor of the Manhattan metric for short dis-
tances), they are also much smaller for longer dis-
tances. Factors for the three network distances are,
for practical purposes, identical for the shortest dis-
tance band, but diverge after this, reflecting different
objective functions behind their calculation. 

The pattern is reversed for shortest distance paths
detour factors, where the factors grow as shortest
path distances increase. This is predictable, as the

chance to use a faster, but longer route via the less-
crowded high-capacity network increases with trip
length.  

In the 2003 Thurgau survey, the distances (short-
est distance path and shortest time path) were calcu-
lated using high resolution Vektor 25, a network of
the Swiss ordinance survey, employing the gecodes
described above. This allowed the inclusion of all
trips, except for cases where respondents returned
to the same address after a walk or drive. The pat-
terns revealed in table 9 are similar to those dis-
cussed for the Mikrozensus 2000, but their levels

TABLE 8  Mikrozensus 2000: Detour Factors Between Different Distance Estimates
34,195 car passenger and driver interzonal trips

Average detour factor with respect to

Crow-fly distance
Shortest distance 

path
Shortest time 

path

Distance 
band (km) SDPD STPD

Mean UE 
distance STPD

Mean UE 
distance

Mean UE 
distance

0–5 1.83 1.87 1.88 1.01 1.02 1.01

5–10 1.39 1.46 1.46 1.04 1.05 1.00

10–25 1.35 1.47 1.47 1.09 1.09 1.00

25–50 1.31 1.46 1.46 1.11 1.11 1.00

50–75 1.31 1.47 1.47 1.12 1.12 1.00

75–100 1.32 1.49 1.49 1.13 1.13 1.00

>100 1.26 1.48 1.48 1.16 1.16 1.00

Total 1.54 1.62 1.62 1.05 1.05 1.00

Key: SDPD = shortest distance path distance; STPD = shortest time path distance; UE = user equilibrium.

TABLE 9  2003 Thurgau: Detour Factors Between Different Distance Estimates

Average detour factor with

Public transport Car driver and passenger Slow modes

Distance band (km)

Crow-fly 
distances SDPD

Crow-fly 
distances SDPD

Crow-fly 
distances SDPD

SDPD STPD STPD STPD SDPD STPD SDPD STPD STPD

0–5 1.33 1.38 1.05 1.46 1.50 1.04 1.44 1.49 1.04

5–10 1.46 1.51 1.02 1.35 1.40 1.02 1.67 1.73 1.01

10–25 1.26 1.32 1.05 1.25 1.32 1.05 1.81 1.85 1.03

25–50 1.20 1.32 1.10 1.21 1.32 1.09

1.26 1.36 1.08
50–75 1.25 1.40 1.09 1.26 1.39 1.08

75–100 1.30 1.43 1.12 1.30 1.46 1.12

>100 1.28 1.34 1.07 1.19 1.29 1.11

Total 1.28 1.36 1.06 1.38 1.43 1.04 1.45 1.50 1.04

Key: SPDP = shortest distance path distance; STPD = shortest time path distance.
Note: All values shown are based on 30 or more observations.
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are markedly lower for crow-flow distance ratios,
reflecting the finer network employed and the
absence of centroid connectors. 

Distance estimate comparisons for the Norwegian
data are possible only for shortest time path distance
at this time. However, results confirm the pattern
revealed by the Mikrozensus data; the detour factor
is significantly larger in the shortest distance band
(table 10). The national-level planning network data
were provided by the Norwegian highway authority
and the path calculation included travel times, dis-
tances, and various bridge and ferry tolls. 

Figure 2 illustrates the results for the shortest
time path distances. The ratio level seems to depend
on resolution of the networks used. The national-
level planning networks used for the Mikrozensus
2000 and 2001 NPTS produced larger ratios than
the finer network used for the 2003 Thurgau survey.
This is especially obvious for the shorter distance
bands, while differences start to disappear over long
distances.

REPORTED AND ESTIMATED DISTANCES

Unknown errors in the differences between the true
length of a trip and the reported length have led
modelers to avoid the use of travelers’ reported dis-
tance estimates whenever possible. Expressly, when
estimating choice models, the consistent errors of
network models are preferable to travelers’
unknown, idiosyncratic errors. But, in many cases,
neither full traces nor geocodes nor network models

are available. Thus, the quality of reported distances
is important, especially if the differences were to
cancel out for averages or other sample summaries.

One partial way to assess reported distance qual-
ity is to compare it with the shortest distance path
distance derived from a network model. Such a com-
parison must be partial, as one cannot know if the
traveler deviated from the predicted path. If the dis-
tance estimates for the model are zone-based, their
measurement uncertainties due to the differences
between interzonal distances can be assessed and
compared with the distances between addresses. 

In the 2001 NPTS, geocodes refer to statistical
wards of differing size. To determine measurement
uncertainty, mean distances between all ward
addresses and their respective centroid were calcu-
lated for each ward (for details, see Denstadli and
Engebretsen 2004). To avoid large measuring uncer-
tainties, in the later calculations we eliminated trips
to and from wards with a mean distance of more
than 1.0 kilometers between addresses and the cen-
troid. In addition, trips with obvious geocoding
errors and trips where the measurement uncertainty
for either statistical ward was larger than one-quarter
of the network distance estimate were removed.
Finally, we omitted trips that started and ended in the
same ward. 

Table 11 shows the resulting relative deviations by
distance band for all car driver and passenger trips
below 100 kilometers, which applied to the vast
majority of all such trips. The measurement uncer-
tainty is nearly independent of trip distance and fairly
small, with a mean of about 0.6 kilometers. The
overall deviation decreased with distance. The shares
of trips in the various deviation bands were redistrib-
uted. The large share of distance estimates within the
measuring uncertainty was greatest for the lowest dis-
tance band. This share went down as distance rose
with a nearly matching increase in the below 5%
deviation band. About 45% of trips were estimated
within 10% of the shortest time path distance. Addi-
tional analysis revealed minor differences between
various trip purposes, young and middle-aged peo-
ple, sexes, and urban and rural areas.   

Deviations in reported distances are due not only
to respondent errors, but may also be caused by
interviewer misinterpretation, recording errors, or

TABLE 10  2001 NPTS: Mean and Median Detour 
Factors Between STPD and Crow-Fly 
Distance by Distance Band
20,700 car passenger and 
driver trips below 100 km

Detour factor 

Distance band (km) Mean Median

0–9 1.56 1.48

10–19 1.42 1.34

20–29 1.40 1.33

30–39 1.37 1.32

40–49 1.40 1.36

≥50 1.43 1.35

Total 1.51 1.42

Key: STPD = shortest time path distance.
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routes with freely chosen detours. We expect devia-
tions of this kind to be more random. Note that a
consistent share of deviations are in excess of 50%.
Plots of reported distances against distances from
the network model show that, except for some out-
liers, distance estimates correlate highly. Omitting
the outliers, we can conclude that deviations seem
randomly and asymptotically normally distributed
(for details, see Denstadli and Engebretsen 2004),
with the result that the mean detour factor is close
to 1.0 across all distance bands (table 12).

Repeating this analysis for the 2000 Mikrozensus
and 2003 Thurgau data (tables 13 and 14) also
reveals a similar pattern for public transport trips.

Mean detour factors are dominated by outliers over
short distances. Over longer distances, the median
converges quickly to 1.0 for car trips and to 1.1 for
longer public transport trips. The factor drops
below 1.0 for longer car trips and to about 1.2 for
public transport trips. To obtain a credible estimate
of distance traveled, this pattern requires adjust-
ment of reported distances by distance band. The
poorer estimates for public transport reflect the
longer routing of public transport services, a lack of
active navigation by the traveler, and slow access
and egress to the station or stop.  

The pattern is also visible in Thurgau 2003, but
not as clearly. It is obvious that the very large detour

FIGURE 2  Ratios of Shortest Time Paths with Crow-Fly Distances
By distance band

TABLE 11  2001 NPTS: Distribution of the Relative Deviations of Reported to STPD 
Estimates by Distance
20,700 car passenger and driver trips below 100 km

Share of trips with relative deviations of reported to SDPD estimates (%)

STPD (km)

Within the 
measuring 
uncertainty <5 5–10 10–25 25–50 ≥50 Total

0–9 28.2 8.7 8.2 19.5 19.1 16.3 100.0

10–19 17.1 15.9 13.2 23.8 15.9 14.1 100.0

20–29 12.6 18.0 18.1 26.4 14.1 10.7 100.0

30–39 13.4 24.3 14.8 22.6 12.1 12.8 100.0

40–49 9.5 23.9 27.6 22.1 5.5 11.3 100.0

≥50 7.1 25.5 18.4 24.1 9.4 15.5 100.0

Total 23.6 12.0 10.7 21.1 17.4 15.3 100.0

Key: SDPD = shortest distance path distance; STPD = shortest time path distance.
Note: Rows may not add to 100.0 because of rounding.
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factors for short distances in Mikrozensus 2000 data
are a product of omitted intrazonal trips. The very
low reported distances in the longer distance band
are due to the omission of hiking and cycling paths
in the network model used; these can be crucial in
hilly terrain. It should be noted that the speed
assumptions chosen for shortest time paths were
overly optimistic resulting in reported travel time
underestimates of about one-third. This is far too
much, even allowing for biases inherent in reported
travel times. One would assume that this would lead
to longer-than-realistic distances for longer trips.

The pattern of change suggests a relationship
with trip speed and mode. Based on the distance

bands used above, this pattern is visible in figure 3.
The same pattern, but without the outlier for the
short interzonal distances, can be seen in the 2003
Thurgau data.

For the Mikrozensus 2000 data, which represent
a more typical situation, the dependence of the
detour factor on the reported speed was modeled
using aggregate values for distance bands of 2 kilo-
meters up to 50 kilometers and of 5 kilometers
beyond that. Table 15 presents the best fitting
model. (For an alternative approach, see Zmud and
Wolf 2003.)

CONCLUSIONS AND FURTHER RESEARCH

The three questions raised at the beginning of this
paper were: 

� What level of accuracy of geocoding of addresses
can be obtained from travel diaries? 

� How big are the differences between various dis-
tance estimates? 

� What are the differences between reported dis-
tances and calculated distances? 

The experiences reported here show that, in
urban areas, it is possible to geocode almost all loca-
tions to within 100 meters of their true geocode, if
the survey process emphasizes this aspect of the
work. With even lower accuracy requirements,
higher rates are possible. This carries forward to the
joint accuracy of the trip length estimate, as the
probability increases that both trip ends are well
coded. It should be noted, though, that these rates
require very good address databases, especially for
firms, commercial outlets, common locations with-
out street addresses, and public transport stations
and stops. The last two categories require particular
attention, as these addresses are often not available
from either the relevant Census office or commer-
cial providers. (In the case of Norway and Switzer-
land, it was possible to obtain relevant databases
from public transport operators or the national gov-
ernment.) National public transport timetables
include some geocoding information, but their sta-
tion and stop names sometimes differ from local
nomenclature.    

A lower location rate for trips undertaken out-
side urban areas (noticeable in the 2001 NPTS, as

TABLE 12  2001 NPTS: Detour Factors Between 
Reported and Shortest Time Path 
Distance
20,700 car passenger and driver trips 
below 100 km

Detour factors
Shortest time path 
distance (km) Mean Median

0–9 1.11 0.96

10–19 0.99 0.99

20–29 1.00 1.03

30–39 0.96 1.02

40–49 0.99 1.02

≥50 0.91 1.01

Total 1.07 0.99

TABLE 13  2000 Mikrozensus: Detour Factors 
Between Reported and Shortest 
Distance Path Distance
Car passenger and driver and public 
transport interzonal trips

Average detour factor with

Public transport
Car driver and 

passenger
Distance 
band (km) Mean Median Mean Median

0–5 4.12 3.34 1.58 1.20

5–10 1.59 1.55 1.16 1.02

10–25 1.44 1.28 1.07 1.00

25–50 1.18 1.04 1.05 1.00

50–75 1.17 1.07 0.99 1.01

75–100 1.11 1.15 0.94 1.00

>100 1.16 1.18 0.83 0.99

Total 1.48 1.23 1.21 1.03
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well as other surveys) raises some concern. The low
location rate is due to a lack of street names and
identifiable landmarks like shops, churches, etc. It is
important that the interviewer keep this in mind. If

the respondent cannot provide an address or a land-
mark close by, the interviewer must make him or
her describe the place in alternative ways, that is, by
asking for distance and direction to the nearest lake
or urban settlement, or any other marker that can
help locate the trip.

We found large and systematic differences in net-
work distance estimates, as expected. It is crucial
that the modeler report the assumptions behind the
estimates used. The 2003 Thurgau data show that
speed assumptions behind the shortest time path
distances can be crucial; detour factors provided
here give a first impression of their size and pattern.
However, they cannot be corroborated until the lit-

TABLE 14  2003 Thurgau: Detour Factors Between Reported and Shortest Distance Path Distance

Average detour factor with

Public transport
Car driver and 

passenger Slow modes

Distance band (km) Mean Median Mean Median Mean Median

0–2.5 1.32 1.16 1.16 1.07 1.17 1.04

2.5–5 0.97 1.01 1.03 1.02 0.81 0.92

5–10 1.20 1.20 1.12 1.07 0.90 1.11

10–25 1.15 1.15 1.10 1.13 0.65 0.10

25–50 1.01 1.11 1.02 1.09

0.33 0.06
50–75 1.10 1.17 1.14 1.13

75–100 1.12 1.16 1.04 1.08

>100 1.13 1.14 1.10 1.06

Total 1.32 1.16 1.16 1.07 1.17 1.04

FIGURE 3  Statistics for the Distributions of Reported Distance 
Deviations with Respect to Calculated Distances

Mean (public transport): shortest distance path

Median (public transport): shortest distance path
Median (car): shortest distance path

Mean (car): shortest distance path
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TABLE 15  Mikrozensus 2000: Linear Regression of 
Detour Factors Between Reported and 
Shortest Distance Path Distance on 
Reported Speed

Variable Parameter t-value

Constant –1.94 –3.129
Reported speed 0.771 6.234
Inverse reported speed * 100 0.028 3.707

N 118

Adjusted R 2 0.491
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erature provides further estimates of their value.
Still, the impact of network resolution is already vis-
ible in the results reported here. 

Differences between reported and estimated dis-
tances can be very large for an individual trip. These
errors do not cancel out for large samples. A system-
atic difference remains, but its pattern is predictable
and depends on the trip distance. For longer trips,
the medians of reported distances match the shortest
distance path distances. Correcting for reported
speed, there are no differences in detour factors
between modes. The strong dependence on reported
speed suggests a reasonable way to correct estimates.

Although we do not recommend using self-
reported information as the only data for travel dis-
tances, self-reported distances are useful when
assessing the quality of geocoding. Large deviations
between two distance measures may indicate that
the error lies in an incorrectly located start or end
point and not the respondent’s stated travel dis-
tance. There may also be errors in digital road data
or logical defects in models determining the route
(and consequently the distance). In addition, as long
as objective measurements relate only to distances
between zones (e.g., statistical wards), self-reported
distances represent valuable additional information
on short trips and intra-zone trips.

Three surveys do not allow wide generalizations.
Replication of this work is required to establish the
robustness of the results presented here. Discrepan-
cies due to different formulations of network mod-
els are especially important, as substantial variance
in professional practice exists, which should be
reduced to improve accuracy and consistency of the
model results. This zeros in on the most important
element missing for further research: a high-quality
GPS dataset matched to an equally high-quality net-
work model as the basis for detailed studies.
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Respondent Behavior in Discrete Choice Modeling with a 

Focus on the Valuation of Travel Time Savings 

ABSTRACT

For models of discrete choice and their parameter
estimates we examine the impact of assuming that
all attributes are deemed relevant to some degree in
stated choice experiments, compared with a situa-
tion where some attributes are excluded (i.e., not
attended to) by some individuals. Using information
collected exogenous of the choice experiment on
whether respondents either ignored or considered
each attribute of the choice task, we conditioned the
estimation of each parameter associated with each
attribute and compare, in the context of tolled vs.
free routes for noncommuting car trips, the valua-
tion of travel time savings under the assumption
that all attributes are considered and the alternative
assumption of relevancy. We show empirically that
accounting for the relevance of attributes will have a
notable influence on the valuation of travel time
savings.

INTRODUCTION

What lies ahead for discrete choice analysis? . . .
The potentially important roles of information
processing, perception formation and cognitive
illusions are just beginning to be explored, and
behavioral and experimental economics are still in
their adolescence. (McFadden 2001)

KEYWORDS: Stated choice experiment, willingness to
pay, attribute relevance.
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Stated choice (SC) experiments have become a
popular method to model choice behavior in trans-
portation contexts (see Louviere et al. 2000 for an
overview). The outputs of SC models (e.g., willing-
ness-to-pay estimates), have been used extensively
to understand and model choice behavior (e.g., Jov-
icic and Hansen 2003; Jou 2001; Lam and Xie
2002), including the determination of the viability
of new infrastructure projects such as proposed toll
roads (e.g., Ortúzar et al. 2000; Hensher 2001).
Given the risks often associated with these projects
and the potential for large financial losses if they
fail, it has become increasingly important that the
outputs of SC models, such as the value of travel
time savings (VTTS), be both reliable and unbiased
estimates of the true population behavioral param-
eters that they purport to represent. 

Realism in SC experiments can be captured by
asking respondents to make “choices” between a
finite but universal set of available alternatives,
similar to those actions they would take in real
markets. However, for any individual respondent,
realism may be lost if the alternatives, attributes,
and/or attribute levels used to describe the alterna-
tives do not realistically portray that respondent’s
experiences or, in terms of “new” or “innovative”
alternatives, are deemed not to be credible (e.g.,
Green and Srinivasan 1978, 1990; Cattin and
Wittink 1982; Wittink and Cattin 1989; Lazari and
Anderson 1994). An example in which individuals
sometimes make decisions that deviate strikingly
and systematically from the predictions of the stan-
dard SC model is the phenomena called availability
effects, where responses rely heavily on readily
retrieved information and too little on background
information (e.g., rules adopted to process informa-
tion) and the relevancy of such information. Infor-
mation processing is distorted by what are called
regression and superstition effects, in which we are
too quick to attribute elaborate causal patterns to
coincidences and attach too much permanence to
fluctuations, failing to anticipate regression to the
mean (McFadden 2001). 

Regarding the attributes and attribute levels used
within an SC experiment, significant prior prepa-
ration on behalf of the analyst may reduce the
possible inclusion of irrelevant or improbable prod-

uct descriptors within the choice sets shown to
respondents (Hensher et al. 2005). Additionally, for
quantitative variables, pivoting the attribute levels of
the SC task from a respondent’s current or recent
experience is likely to produce levels within the exper-
iment that are consistent with those experiences and,
hence, produce a more credible or realistic survey
task for the respondent (e.g., Hensher In press (a)). 

Researchers have expended significant effort on
the design of statistically efficient choice experi-
ments (e.g., Bunch et al. 1996; Huber and Zwerina
1996; Kanninen 2002; Kuhfeld et al. 1994; Sandor
and Wedel 2001) that minimize the amount of
thought required of respondents (e.g., Louviere and
Timmermans 1990; Oppewal et al. 1994; Wang et
al. 2001; Richardson 2002; Swait and Adamowicz
2001a and b; Arentze et al. 2003). These efforts,
however, appear to have been developed without
adequate recognition that respondents may process
SC tasks differently. That is, there may exist hetero-
geneity in the information processing strategies
employed by respondents. SC surveys should, there-
fore, be tailored to be as realistic as possible at the
level of the individual respondent.

Advances in econometric modeling of discrete
choices, in the form of latent class and mixed logit
models, may help in uncovering preference hetero-
geneity for attributes. However, experience suggests
that, depending on the random parameter distri-
bution, these models will likely assign non-zero
parameter estimates to individual decisionmakers,
even though their marginal utility for an attribute
may be zero.1 This may apply to only a small num-
ber of decisionmakers, but a bias in the population
parameter estimates is still likely to exist. Therefore,
the econometric models used to estimate SC outputs
need to be conditioned to assign to those individu-
als, who either ignore an attribute or do not have
that attribute present, a zero parameter estimate.

This paper examines how we can use exogenous
information on the attribute processing strategies
(APS) employed by individual respondents under-

1 This will be the case if the constrained triangular or log-
normal distributions are used. While these distributions
force the parameter estimates to be of the same sign, they
also ensure that few, if any, individual-specific parameter
estimates will be zero. 
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taking SC tasks, and how such information can aid
in conditioning the parameter estimates derived
from the econometric models fitted. Additional
nondesign information that may be captured in SC
surveys and assist in revealing the APS include the
inclusion/exclusion plan for each attribute as well as
an aggregation plan (e.g., adding up attributes such
as components of travel time). In this paper, we con-
centrate only on the attribute inclusion/exclusion
strategy employed by individual respondents.

Experimental evidence and self-reported decision
protocols support the view that heuristic rules are
the proximate drivers of most human behavior
(McFadden 2001). The question remains as to
whether rules themselves develop in patterns that
are broadly consistent with random utility maximi-
zation postulates. If there are preferences behind
rules, then it is possible to define them and cor-
rectly evaluate policies in terms of these underlying
preferences. It not, economics will have to seek a
new foundation for this task. While many psychol-
ogists argue that behavior is far too sensitive to
context and effect to be useful in relating to stable
preferences, this is a somewhat pessimistic view. A
number of authors have challenged this position
(e.g., Hensher In press (a); McFadden 2001; Swait
and Adamowicz 2001a). Many behavioral devia-
tions from the economist’s standard model can be
attributed to perceptual illusions, particularly in the
way in which we process information, rather than a
more fundamental breakdown in the pursuit of
self-interest. Many of the rules we do use are essen-
tially defensive, protecting us from mistakes that
perceptual illusions may induce. 

There is a link between the topic here and the
debate about self-explicated methods in conjoint
analysis. This is especially true in light of the use of
this method in Sawtooth’s ACA software, which has
an option to ask respondents prior to the conjoint
tasks to indicate which attribute levels they would
find unacceptable. ACA then deletes these declared
unacceptable levels from the experimental design
for the particular individual. The debate about this
method has focused on whether respondents can
reliably indicate which levels are unacceptable. Evi-
dence shows that respondents often do consider or
accept levels that they initially rejected. The method

used for this paper is less affected by this issue,
because the attribute screening task is presented
after respondents have seen all the profiles or choice
sets. So, when indicating which attributes they use
or consider, the respondents know the complete
attribute space.2 

Adaptive choice-based conjoint (e.g., see Toubia
et al. 2004) such as ACA also customizes the
attribute levels of an SC experiment shown to a
respondent using the previous choices made. This,
however, is not the same as customizing the actual
alternatives or attributes in order to make the
choice task more realistic or believable to the indi-
vidual respondent. Rose and Hensher (2004)
addressed the mapping of alternatives in terms of
their presence or absence in reality to choice experi-
ments at the individual respondent level; however,
presence or absence of attributes at the individual
level is lacking in the literature. This is somewhat
surprising given that, in real markets, there will
likely exist heterogeneity in the information respon-
dents have about the attributes and attribute levels
of alternatives, as well heterogeneity in terms of the
salience of and preference for specific attributes.
For example, one respondent may have perfect
information on the safety of using a tolled route
compared with a free route and possess a positive
marginal utility for the attribute, while a second
respondent may have no understanding of the
attributes’ applicability to specific routes or the
attributes in general and hence possess no marginal
utility for the attribute at all. SC experiments
assume that all respondents have perfect informa-
tion (at least on the attributes included within the
experiment) and that all respondents process these
attributes in the same way. 

MODEL DEVELOPMENT

Consider a situation in which q = 1,2,…,Q individu-
als evaluate a finite number of alternatives. Let sub-
scripts j and t refer to alternative j = 1,2, …,J and
choice situation t = 1,2, ...,T. Random utility theory
posits that the utility for alternative j present in
choice situation t may be expressed as

(1)

2 We thank a referee for highlighting the point of distinction.

Ujtq θq
′xjtq εjtq+=
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where 
Ujtq is the utility associated with alternative j in

choice situation t held by individual q, 
xjtq is a vector of values representing attributes

belonging to alternative j, characteristics asso-
ciated with sampled decisionmakers q, and/or
variables associated with context of choice sit-
uation t, 
represents unobserved influences on utility, and
is a vector of parameters such that

 where K is the number of
parameters corresponding to the vector xjtq. 

In the most popular choice model, multinomial
logit, the probability that alternative i will be chosen
is given as

(2)

where

. (3)

Assuming a sample of choice situations, t = 1,2,...,T,
has been observed with corresponding values xjtq,
and letting i designate the alternative choice situation
t, the likelihood function for the sample is given as

(4)

and the log-likelihood function of the sample as

. (5)

Equation (5) may be rewritten to identify the chosen
alternative i

. (6)

Given that  is unknown, it must be estimated from
the sample data. To do this, we used the maximum
likelihood estimator of , which is the value of  at
which  is maximized. In maximizing equation
(6), it is usual to use the entire set of data for Vjtq.
That is, it is assumed that across all t, all Vjtq and
hence xjtq are considered, and, as such, the levels
assumed by each x in the xjtq matrix are used in
determining the value at which  maximizes the
likelihood estimator of .

Assuming that over a sample of choice situations
t, not all k variables within the xjtq vector are con-
sidered in the decision process, the value of ,
which is conditioned on the assumption that all xjtq

are considered, will likely be biased. For those
choice situations in which attribute k is excluded
from consideration in the choice process,  should
be equal to zero. Note that this is not the same as
saying that the attribute itself should be treated as
being equal to zero.3 

In cases where attribute k is indicated as being
excluded from the decision process, rather than set
the value for the kth element in the xjtq vector to zero
and maximizing equation (6), the algorithm that
searches for the maximum of equation (5) excludes
that x from the estimation procedure and automati-
cally assigns it a parameter value of zero. The
parameter estimate  is then estimated solely on the
sample population for which the variable was not
excluded. In this sense, the process is analogous to
selectivity models (which censor the distribution, as
distinct from truncation). To demonstrate, consider a
simple example in which there are only two vari-
ables, x1 and x2, associated with each of j alterna-
tives. Denote N as the number of attribute
processing strategies such that n = 1 represents those
decisionmakers who consider only x1 in choosing
between the j alternatives, n = 2 represents those
decisionmakers who consider only x2, and n = 3 rep-
resents those decisionmakers who consider both x1

and x2. The likelihood is defined by the partitioning
of observations based on the subset membership
defined above. The likelihood function is therefore
given as

εjtq

θq′
θ θ1 θ2 ..., θK, ,=

P i j( ) e
Vitq

e
Vjtq

j 1=

∑
-------------------- j∀ 1,...,i,...,J s∀ 1,...,T,=,=,=

Vjtq θq
′xjtq=

Lθ P i J( )
t 1=

T

∏=

L* θ( ) L θ( )[ ] P i j( )( )ln
t 1=

T

∑=ln=

L* θ( ) Vitq
e
Vjtq

j
∑

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

ln–
t 1=

T

∑=

θ

θ θ̂
L θ( )

θ̂
θ

3 To demonstrate, consider the situation where attribute
xjtq is the price for alternative j in choice situation t. For all
but Giffen goods, setting the price to equal zero will likely
make that alternative much more attractive relative to
other alternatives in which the price is not equal to zero.
Further, the procedure for maximizing  will be igno-
rant of the fact that setting xjtq = 0 represents the exclusion
of that attribute in the choice process and will estimate a
value of  assuming that the value observed by the deci-
sionmaker in choice situation t was zero for that attribute
when indeed it was not. As such, setting xkjt = 0 will not
guarantee that the parameter for that attribute will be
equal to zero for that choice situation. It is, therefore, 
that should be set to zero in the estimation process, not
xkjt.

θ̂

θ̂k

L* θ( )

θ̂k

θ̂k

θ̂k
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. (7)

The derivatives of the log likelihood for groups n1

and n2 have zeros in the position of zero coefficients
and the Hessians have corresponding rows and col-
umns of zeros. This partitioning of the log-likelihood
function may be extended to any of the logit class of
models, including the nested logit and mixed logit
family of models. We used a mixed logit specifica-
tion in the empirical study, in which we accounted
for preference heterogeneity in the specification of
random parameters where their mean and standard
deviation are a function of contextual influences.

. (8)

The distribution of  over individuals depends in
general on underlying structural parameters

, the observed data zq, a vector hq of M
variables such as demographic characteristics that
enter the variances (and possibly the means as well),
and the unobserved vector of K random compo-
nents in the set of utility functions

. 
The random vector  endows the random param-
eter with its stochastic properties. In isolating the
model components, we defined vq to be a vector of
uncorrelated random variables with known vari-
ances. In the empirical study, we adopted a Rayleigh
distribution (defined below) as the analytical repre-
sentation of vq. The heteroskedastic mixed logit
model is detailed in Greene et al. (2006). In the next
section, we discuss the empirical application in
which we estimate models of the form described
above.

EMPIRICAL APPLICATION 

The data used to contrast models that do and do not
account for the attention paid to each attribute are
drawn from a study undertaken in Sydney in 2004,
in the context of car-driving noncommuters making
choices from a range of level-of-service packages
defined in terms of travel times and costs, including a
toll where applicable. The sample of 223 effective
interviews, each responding to 16 choice sets,
resulted in 3,568 observations for model estimation.

To ensure that we captured a large number of
travel circumstances, which will enable us to see

how individuals trade off different levels of travel
times with various levels of tolls, we sampled indi-
viduals who had recently taken trips of various
travel times (called trip length segmentation) in
locations with tollroads.4 To ensure some variety in
trip length, three segments were investigated: no
more than 30 minutes, 31 to 60 minutes, and more
than 61 minutes (capped at two hours).

A telephone call was used to establish eligible
participants from households stratified geograph-
ically, and a time and location agreed on for a face-
to-face computer-aided personal interview. An SC
experiment offers the opportunity to establish the
preferences of travelers for existing and new route
offerings under varying packages of trip attributes.
The statistical state of the art of designing SC exper-
iments has moved away from orthogonal designs to
D-optimal designs (see below and Rose and Bliemer
2004; Huber and Zwerina 1996; Kanninen 2002;
Kuhfeld et al. 1994; Sandor and Wedel 2001). The
behavioral state of the art has moved to promoting
designs that are centered around the knowledge
base of travelers, in recognition of a number of
supporting theories in behavioral and cognitive psy-
chology and economics, such as prospect theory,
case-based decision theory and minimum-regret
theory.5 Starmer (2000, p. 353) makes a very strong
plea in support of the use of reference points (i.e., a
current trip):

While some economists might be tempted to think
that questions about how reference points are
determined sound more like psychological than
economic issues, recent research is showing that
understanding the role of reference points may be
an important step in explaining real economic
behaviour in the field. 

The two SC alternatives are unlabeled routes.
The trip attributes associated with each route are
summarized in table 1. These were identified from
reviews of the literature and through the effective-
ness of previous VTTS studies undertaken by Hen-
sher (2001). 

L* θ( ) P i j( )( )ln
n 1=

N

∑
t 1=

T

∑=

θqk θk δk′zq σkexp θ( k′hq )vq+ +=θ θ δ z σ θ h v

θqkθ

θk δk σk, ,( )

ηq ΓΣ1 2⁄ vq= vΓΣη

ηqη

4 Sydney has a number of operating tollroads; hence, driv-
ers have a lot of exposure to paying tolls. Indeed, Sydney
has the greatest amount on urban kilometers under tolls
than any other metropolitan area.
5 See Starmer 2000; Hensher 2004; Kahnemann and Tver-
sky 1979; Gilboa et al. 2002.

z
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All attributes of the SC alternatives are based on
the values of the current trip. Variability in travel
time for the current alternative was calculated as the
difference between the longest and shortest trip time
provided in non-SC questions. The SC alternative
values for this attribute are variations around the
total trip time. For all other attributes, the values for
the SC alternatives are variations around the values
for the current trip. The variations used for each
attribute are given in table 2.

The experimental design has 1 version of 16
choice sets (games), with no dominance given the
assumption that less of all attributes is better. The
distinction between free flow and slowed down time
is designed to promote the differences in the quality
of travel time between various routes—especially a
tolled route vs. a nontolled route—and is separate
from the influence of total time. Free flow time is
interpreted with reference to a trip at 3 a.m., when
there are no traffic delays.6 Figure 1 illustrates an
example of an SC screen, and figure 2 shows a
screen with elicitation questions associated with
attribute inclusion and exclusion. 

In choosing the most statistically efficient design,
the literature has tended toward designs that maxi-

mize the determinant of the variance-covariance
matrix, otherwise known as the Fisher information
matrix, of the model to be estimated. These so-called
D-optimal designs require explicit incorporation of
prior information about the respondents’ prefer-
ences.7 In determining the D-optimal design, it is
usual to use the inversely related measure to calcu-
late the level of D-efficiency, that is, minimize the
determinant of the inverse of the variance-covari-
ance matrix. The determinant of the inverse of the
variance-covariance matrix is known as D-error and
will yield the same results maximizing the determi-
nant of the variance-covariance matrix.

The log-likelihood function of the multinomial
logit model is shown as 

(9)

where ynjs is a column matrix with 1 indicating that
an alternative j was chosen by respondent n in
choice situation s and 0 otherwise, Pnjs represents
the choice probability from the choice model, and c
is a constant. Maximizing equation (9) yields the
maximum likelihood estimator, , of the specified
choice model given a particular set of choice data.
McFadden (1974) showed that the distribution of 
is asymptotically normal with a mean, , and cova-
riance matrix   

TABLE 1  Trip Attributes in Stated 
Choice Design

Routes A and B
Free flow travel time

Slowed down travel time

Trip travel time variability

Running cost

Toll cost

6 This distinction does not imply that there is a specific
minute of a trip that is free flow per se, but it does tell
respondents that there is a certain amount of the total
time that is slowed down due to traffic, for instance, and
hence a balance is not slowed down (i.e., the trip is free
flow like that observed typically at 3 a.m.). 

7 Orthogonal designs also require prior information in
order to choose the attribute levels in such a way that
dominating and inferior attributes are avoided. Optimal
designs will be statistically efficient but will likely have
correlations; orthogonal fractional factorial designs will
have no correlations but may not be the most statistically
efficient design available. Hence, the type of design gener-
ated reflects the belief of analysts as to what is the most
important property of the constructed design. Carlsson
and Martinsson (2003) used Monte Carlo simulation to
show that D-optimal designs, like orthogonal designs,
produce unbiased parameter estimates but that the former
have lower mean.

L ynjs Pnjs( ) c+ln
j 1=

J

∑
s 1=

S

∑
n 1=

N

∑=

θ̂

θ̂

θ

TABLE 2  Profile of the Attribute Range in the SC Design

Free 
flow time

Slowed 
down time Variability

Running 
costs

Toll 
costs

Level 1 –50% –50% 5% –50% –100%

Level 2 –20% –20% 10% –20% 20%

Level 3 10% 10% 15% 10% 40%

Level 4 40% 40% 20% 40% 60%
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(10)

and inverse,

(11)

where P is a JS × JS diagonal matrix with elements
equal to the choice probabilities of the alternatives,
j, over choice sets, s. For , several established
summary measures of error have been shown to be

useful when contrasting designs. The most popular
summary measure is known as D-error, inversely
related to D-efficiency.

(12)

where K is the total number of generic parameters
to be estimated from the design. Minimization of
equation (12) will produce the design with the
smallest possible errors around the estimated
parameters. 

FIGURE 1  Example of a Stated Choice Screen

FIGURE 2  Computer-Aided Personal Interview Questions 
on Attribute Relevance

+

Practice Game
Make your choice given the route features presented in this table, thank you.

Time in free-flow traffic (mins)

Time slowed down by other traffic (mins)

Travel time variability (mins)

Running costs

Toll costs

Details of Your
Recent Trip Road A Road B

50

10

+/–10

$ 3.00

$ 0.00

25

12

+/–12

$ 4.20

$ 4.80

40

12

+/–9

$ 1.50

$ 5.60

If you make the same trip again,
which road would you choose?
If you could only choose between the 2
new roads, which road would you choose?

Current Road Road A

Road A

Road B

Road B

For the chosen A or B road, HOW MUCH EARLIER OR LATER WOULD YOU BEGIN YOUR TRIP to arrive at your
destination at the same time as for the recent trip: (note 0 means leave at same time) 

How would you PRIMARILY spend the time that you have saved travelling?

Stay at home Shopping Social-recreational Visiting friends/relatives

Got to work earlier Education Personal business Other

min(s) earlier later

Back Next

Sydney Road System

Ignored attributes

1. Please indicate which of the following attributes you ignored when considering the choices you made in the 10 games

2. Did you add up the components of: Travel time

Costs

3. Please rank importance of the attributes in making the choices you made in the games (1 most important, 5 least
    important). Time in free-flow traffic

Time slowed down by other traffic

Travel time variability

Running costs

Toll costs

Yes

Yes

No

No

4. Are there any other factors that we have not included that would have influenced the choices you made?

Next

Time in free-flow traffic

Time slowed down by other traffic

Travel time variability

Running costs

Toll costs

Sydney Road System

Next

+

Ω X′PX( ) x′njs Pnjs xnjs
j 1=

J

∑
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M
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MODEL RESULTS

Table 3 presents the model results for the experi-
ment. Model 1 uses all data irrespective of whether
a sampled individual indicated they had ignored an
attribute throughout the experiment or not. Model
2 took into account the exogenous information on
attribute relevance.

A profile of attribute inclusion and exclusion is
shown in table 4. This is the attribute processing
choice set for the sample. Just over half (52%) of
the sample attended to every attribute and not one
respondent attended to none of the attributes. Run-
ning cost was the attribute most likely to be ignored
(17.9% of the sample); in contrast, the toll cost was
attended to by 96% of the sample. Free flow time
was not attended to by 13% of the sample, with 8.5
percentage points of this being when both compo-
nents of travel time were ignored and the focus was
totally on cost. The key message is that 78% of the
sample attended to the components of travel time
and 69% attended to the components of cost.

For both models, all parameters associated with
the design attributes were specified as generic random
parameter estimates. These parameters, with the
exception of travel time variability, are statistically
significant and of the expected sign. In specifying the
mixed logit models, we drew the parameters associ-
ated with the design attributes from an uncon-
strained Rayleigh distribution. Hensher (In press (b))
showed that the Rayleigh distribution in its uncon-
strained and constrained forms has attractive prop-
erties. In particular, it does not have the long tail that
the log normal exhibits and appears to deliver a rela-
tively small proportion of negative VTTS when the
function is not globally signed to be positive. The
Rayleigh distribution probability function is given in
equation (13).

(13)

for . The moments about 0 are given by 

,

where I(x) is a Gaussian integral. The Rayleigh vari-
able8 is a special case of the Weibull density,9 with
parameters 2 and s/2 where s is the desired scale
parameter in the Rayleigh distribution. The mean is
centered as s*  and the standard deviation is

. This distribution has a long tail, but
empirically appears much less extreme than the log
normal. We obtained the random parameter esti-
mates of the mixed logit models using 500 Halton
draws.

A comparison of models 1 and 2 reveals signifi-
cant differences in their parameter estimates. Cau-
tion in interpretation, however, is required, because
we have estimated complex nonlinear attribute
functions as per equation (8), and so individual
parameter estimates for the random parameters are
not meaningful in isolation. The VTTS comparison,
our behavioral output of interest for toll road
patronage forecasting studies, provides a valid con-
trast and accounts for any scale differences.

The results in table 3 show the importance of
accounting for heterogeneity in the mean of random
parameters and heteroskedasticity in these parame-
ters via decomposition of the standard deviation
parameter estimate. The attribute inclusion rule
influences the contributing effect. For example, all
three random parameters are conditioned on the
trip length in kilometers through decomposition of
the standard deviation with strong statistical signifi-
cance, yet the sign changes with respect to slowed
down time. All other effects being held constant,
when combined with the standard deviation of the
random parameter (all being positive as required),
we found that as trip length increased the standard
deviation decreased, resulting in reduced heteroge-
neity in preferences over longer trips. The exception
was when all data were considered relevant for
slowed down time, with preference heterogeneity
increasing as trip length increased.   

Seven variables had a statistically significant
influence on the mean of the three random parame-
ters when all attributes were included; but when we
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allowed for attribution exclusion for the same set of
influences, three became statistically insignificant.
These influences on heterogeneity around the mean
are opinion variables, derived from a weighting of a
response on a seven-point Likert scale of the impor-
tance of such factors associated with toll roads in
general and a seven-point “likely to deliver” Likert
scale for specific tolled routes that respondents use.
A positive parameter indicates, all other influences
remaining fixed, that the opinion reflects something
of greater importance and/or greater likelihood of it
being delivered. For example, given that the mean
estimate of the random parameter for slowed down
time was negative and “avoid traffic lights” had a
positive parameter estimate, the presence of a strong
positive effect reduces the marginal (dis)utility of
slowed down time. Again, we remind readers that,
strictly, the signs cannot be interpreted indepen-
dently of the full effect of all contributing sources
aligned with the mean, the standard deviation and
the sources of decomposition around the mean, and
standard deviation parameter estimates. For exam-
ple, the full marginal (dis)utility effect of free flow
time for model 1 is:

(14)

In interpreting the parameter estimates for model
2, it is important to note that the estimates are spe-
cific only to sample population segments that con-
sider an attribute while undertaking the choice

experiment. For those in the population who do not
consider an attribute, the parameter estimate
expression in equation (14) for that individual is
zero. That is, the parameter estimates are specific to
each attribute inclusion/exclusion strategy. In terms
of segmentation and benefit studies, this is an
important development. In traditional models, these
benefit segments may be lost if the segment is small
relative to the total population size. 

Willingness to pay (WTP) distributions for travel
time savings can be derived from the conditional
“individual specific” parameter estimates obtained
using methods outlined in Train (2003) and Hen-
sher et al. (2005). Estimates can be constructed of
individual-specific preferences by deriving the con-
ditional distribution based (in-sample) on known
choices (i.e., prior knowledge), as originally shown
by Revelt and Train (2000). These conditional
parameter estimates are strictly same-choice-specific
parameters or the mean of the parameters of the
subpopulation of individuals who, when faced with
the same choice situation, would have made the
same choices. Table 5 summarizes the VTTS based
on individual parameters. Not all WTP distributions
are in the positive range (figure 3); indeed, the per-
centage that is negative is small (up to 2.9%) but
substantially higher when we assume that all
attributes are relevant for all respondents. 

Given the differences in variances of the VTTS
distributions over the models for the same attribute,
we conducted a Kruskall-Wallis test, which is the
nonparametric equivalent to the ANOVA test (Siegel

TABLE 4  Incidence of Mixtures of Attributes Processed

Attribute processing profile
Sample no. of 

observations = 3,568

All attributes attended to (v1) 1,856

Attributes not attended to:

Running cost (v2) 640

Running and toll cost (v3) 192

Toll cost (v4) 96

Slowed down time (v5) 192

Free flow and slowed down time (v6) 304

Free flow time (v7) 112

Slowed down time and running cost (v8) 64

Free flow and slowed down time and toll cost (v9) 48

θq 0.0893{ 0.0016 lead×  to improved+=

pedestrian  safety 0.1565+

exp 0.0056–[× trip×  kms ]r }q
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and Castellan 1988). For the VTTS distributions
obtained from the models, chi-square statistics were
obtained for the free flow and slowed down time
VTTS distributions, which we compared with a
critical value of 5.99 (i.e.,  at the 95% confidence
level). We concluded that both the means and vari-
ances of the VTTS distributions for both attributes
were statistically different between the two models.

Figure 3 shows the VTTS distributions for the
free flow and slowed down travel time attributes
estimated from the two models. When all data were

used in the estimation process, the VTTS distribu-
tion had a much greater range than when the
attribute inclusion/exclusion strategy was accounted
for. 

This evidence suggests a deflating effect on VTTS
when one ignores the attribute processing strategy
and assumes that all attributes are attended to.
When the attribute exclusion rule was not included,
the mean VTTS was 94.9% and 70.6%, respec-
tively, of the VTTS under the attribution exclusion
rule. Furthermore, when all attributes were deemed

TABLE 5  Values of Travel Time Savings (VTTS)
$ per person-hour noncommuter car driver

Model 1: All attributes 
assumed to be attended to

Model 2: Deterministic 
attribute exclusion

Attribute
Sample 
mean

Sample standard 
deviation

Sample 
mean

Sample standard 
deviation

Free flow time 17.80 9.12 18.89 8.08

Slowed down time 17.61 7.73 24.96 11.89

Range: free flow time –8.30 to 67.31 –4.30 to 52.49

Range: slowed down time –66.91 to 35.69 –6.53 to 63.26

Proportion of negative VTTS 2.90 2.32 0.78 0.78

Ratio slowed to free flow time 0.989 0.848 1.321 1.472

Sample size 3,568 3,568 3,072 2,944

FIGURE 3  Distribution of VTTS Under Alternative Attribute Processing Rules
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relevant, the mean VTTS for free flow and slowed
down time was almost identical, in contrast to a
slowed down time VTTS that was 32.2% higher
than the free flow time value when the exclusion rule
was invoked. The latter relationship is intuitively
more appealing. When converted to time savings
benefits in road projects, these differences would
make a substantial difference to the user benefits,
given the dominance of travel time savings. 

DISCUSSION AND CONCLUSION

In this paper, we show that accounting for individual
specific information on attribute inclusion/exclusion
results in significant differences in the parameter esti-
mates of and hence the willingness to pay for specific
attributes in choice models. These differences arise
from a form of respondent segmentation, the basis
of which is respondent attribute processing. By parti-
tioning the log-likelihood function of discrete choice
models based on the way individual respondents
process each attribute, the outputs of the models
we estimated represent the attribute processing
segments only, rather than those of the entire sample
population. In this way, we can detect the prefer-
ences for different segments in the sample popula-
tion based on the attribute processing strategies
existing in that population. In traditional choice
models, such segments will likely go undetected.

Whether an attribute should be excluded from
model estimation for a specific respondent is critical
to the method and the results. We recognize that
there may be other ways of defining the behavioral
rule for including or excluding an attribute.10 We
also recognize that it is important to understand
whether the attribute was excluded simply because
of cognitive burden in the survey task in contrast to
a genuine behavioral exclusion with respect to the
relevance of the attribute in making such choices in
real markets. It could be the case that the cognitive
burden associated with the survey instrument may

indeed be real, as it can be real in markets with
information acquisition and processing; and so
care is required in separating out and accounting
for all these reasoning processes. Clearly, these con-
ditions are all legitimate members of an individual’s
attribute processing strategy. 

Ultimately, our preferred strategy would be to
tailor the stated choice experiment to the individual
based on the attribute processing strategy of the
respondent. How best to do this is a matter of
research. One question is whether the attribute
processing strategy should be determined a priori
and the SC experiment fixed for each respondent
over the course of the experiment or whether the
strategy is determined for each distinct choice set.
The former approach is appealing for reasons of
simplicity, the latter for completeness given that the
attribute processing strategy may be linked not only
to the attributes but to the attribute levels of the
experiment. 

The approach we outline here, whereby we
employ an SC experiment derived from a single
design plan, represents the more traditional
approach to conducting SC experiments; however,
we were able to account for the attribute processing
strategy exogenously without having to tailor the SC
experiment to each individual. Still, research is
required as to whether it is best to ask each respon-
dent which attributes were ignored at the end of the
experiment, as we did here, or upon completion of
each choice task. As with the tailoring of the SC task,
the former approach is appealing for reasons of sim-
plicity as well as the probable limiting of cognitive
burden experienced by respondents, while the latter
may represent a more complete approach, given that
the attributes that are ignored or considered may be
a function of the attribute levels of the alternatives as
well as a function of experience or fatigue as the
number of choice tasks completed increases.

We conclude by noting that the proposed
approach discussed here applies equally to models
estimated using revealed preference (RP) data.
Researchers collecting RP data must prespecify the
data collected and assume, as with SC data, that the
attributes of RP data are processed homogenously
over the sampled population. As with SC data, this
need not be the case.

10 Preliminary unpublished research by the authors in
which we treat the exclusion rule as stochastic suggests
that the mean VTTS is slightly higher than the evidence
based on the deterministic application of the exclusion
rule. This supports a position that suggests that failure to
account for attribute processing rules tends to underesti-
mate the mean VTTS.
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A Classification Tree Application to Predict Total Ship Loss

ABSTRACT

Ship accidents frequently result in total ship loss, an
outcome with severe economic and human life con-
sequences. Predicting the total loss of a ship when
an accident occurs can provide vital information for
ship owners, ship managers, classification societies,
underwriters, brokers, and national authorities in
terms of risk assessment. This paper investigates the
use of classification trees to predict this type of loss.
It uses a set of predictor variables that correspond to
a number of factors identified as the most relevant
to the total loss of a ship and sample data generated
from a large database of recorded ship accidents
worldwide. Through extensive tests of induction
algorithms, Exhaustive CHAID was found to be
more efficient in classifying the total loss accident
cases. The predictive ability of the resulting classifi-
cation tree structure can be utilized for risk assess-
ment reporting.

INTRODUCTION

The analysis of ship accident cases is of great impor-
tance because of the economic costs (Goulielmos and
Giziakis 1995; Bureau of Transport and Communi-
cations Economics 1994), the environmental impacts
(Commission des Communautés Européennes 1992),
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and the loss of human lives. Causes of accidents
include ships running aground; touching the sea bot-
tom; striking wharves, drilling rigs, platforms, or
other external substances; colliding with other ships;
catching on fire; or suffering an explosion or other
serious hull or machinery damage. The worst possi-
ble outcome of an accident may be the total loss of
the ship. We define total loss of a ship here as a ship
that is irretrievably damaged or sunk in a way that it
cannot be salvaged (actual total loss) or as a ship that
is so damaged that its recovery and repair would
exceed the ship’s insured value (constructive total
loss) (Hudson 1996). Different factors determine the
total loss of a ship. These factors are related to the
quality of the construction, restoration or the resis-
tance of the vessel, the violence and the severity of the
accident, and the existing weather and sea conditions
at the time of the accident.

Previous studies that look at the problem of pre-
dicting ship accidents and possible total ship loss
use various datasets and data analysis techniques:
discriminant analysis, logistic regression, stochastic
models, and neural networks (Psaraftis et al.
1998). Giziakis et al. (1996) used logistic regres-
sion on accident data from the Greek Ministry of
Mercantile Marine to predict ship failures based
on several factors such as the age and the type of
the ship, its gross tonnage, registration, etc. Le
Blanc and Rucks (1996) proposed discriminant
analysis to model ship accident classification in the
Missisipi River region. Otay and Özkan (2003)
proposed a stochastic prediction model to study
the possibility of vessel accidents (collision, ram-
ming, and grounding) in the Strait of Istanbul.
Hashemi et al. (1995) developed a neural network
structure to predict ship accidents under different
conditions on the lower Mississippi River. Le Blanc
et al. (2001) compared statistical analysis and neu-
ral network computing techniques (Kohonen net-
works) in a dataset of 900 ship accident cases on
the same regions of Mississippi River. This com-
parison concluded that neural networks are signifi-
cantly superior for classifying and predicting ship
accidents over earlier statistical methods.

The above-mentioned research work and appli-
cations examine a relatively small number of acci-
dent cases restricted to a particular geographic area

or a controlled region (rivers, ports, straits, canals,
etc.). Traditional statistical methods and neural net-
works are the basic data analysis tools used to date
for the development of applications. In this paper,
we present a classification tree application for pre-
dicting total ship loss based on a dataset extracted
from an existing large dataset of ship accident cases
worldwide. We tested different algorithms for
expanding classification trees and a number of val-
ues for initial parameters to conclude that Exhaus-
tive CHAID1 is the most effective algorithm that
provides the best classification rates for accidents in
which a ship is a total loss. This particular approach
of using classification trees has not been investigated
in depth in previous research efforts and applica-
tions for modeling ship accidents. 

In the next section, we present a short overview
of classification tree theory and the comparison tests
of four classification tree expansion algorithms. The
following section presents the predictive variables of
the model, describes the data preparation proce-
dures, and provides basic descriptive statistics. We
then cover the application of classification tree the-
ory to our test dataset. The last section presents con-
clusions and discussion of issues concerning
potential applications based on the proposed classi-
fication tree.

CLASSIFICATION TREES FOR PREDICTING 
TOTAL SHIP LOSS

The classification tree is a data mining technique for
predicting the membership of cases in classes
defined by a dependent variable usually of the cate-
gorical type. Each case is measured along a number
of predictor variables. The implementation of a clas-
sification tree is achieved through a training process
(induction) in which a specific algorithm is applied
to a sample dataset (a training set) composed of the
predictor variables. 

A typical induction algorithm works in two
phases: the splitting phase and the pruning phase.
The splitting phase is an iterative top-down process
that expands the tree by defining nodes connected
by branches. The nodes at the end of branches are

1 CHAID stands for Chi-Squared Automatic Interaction
Detection.
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called leaves. The first node at the top of the tree is
the root node. At every node, the splitting algorithm
creates new nodes by selecting a predictor variable
so that the resulting nodes are as far as possible
from each other. The distance measurement used for
the splitting depends primarily on the specific split-
ting algorithm and is determined by such statistics
as gini, entropy, chi-squared, gain ratio, etc. One
important feature of the splitting algorithm is the
so-called greedy. This refers to the ability of the
algorithm to look forward in the tree in order to
examine if another combination of splitting could
produce better overall classification results. 

An alternative representation of the classification
tree can be given by using a set of nested IF-THEN
rules. Each IF-THEN rule identifies a unique path
from the root to a leaf and describes a certain class
of cases. This alternative representation of the tree is
better for analysis, particularly when the tree is
greatly expanded. The nodes at the lowest part of a
branch that cannot be split further into other nodes
because they contain cases with only one outcome
are called pure leaves. The splitting phase terminates
when a stopping rule, initially selected by the user, is
satisfied. Stopping rules may include the maximum
number of nodes, the number of variables in a node
considered for splitting, a minimum number of
cases per node, and so forth. Once the structure of
the tree is developed, pruning may be required to
make the tree more applicable to other similar
datasets or to exclude nodes that seem inappropri-
ate for the specific dataset or application. 

The prediction accuracy of the classification tree
is highly related to the misclassification cost (Faw-
cett 2001). The term cost is used to describe the situ-
ation when some predictions either occur more
frequently than others or have more important con-
sequences. Misclassification cost represents the per-
centage of cases that are incorrectly classified and it
is frequently used as a typical measurement of the
accuracy of the prediction. For a given class, mis-
classification cost is set to a specific value to denote
the severity of a wrong prediction for that class.
Another issue related to the cost is the priors or a
priori probabilities that denote how likely a case
will fall into one of the classes. Unequal priors are
used in problems with specific knowledge about the

size of the classes. Arrangements for defining mis-
classification costs and priors are confounded in
complex problems (Ripley 1994). 

To ensure that the tree will perform as well as in
the training sample, a validation procedure can be
applied. The most preferred type of validation is
testing with a sample taken from the original
dataset, especially when this dataset is large enough.
The sample size can be approximately one-third to
one-half of the learning dataset (Brieman et al.
1984). When no sample dataset is available, the val-
idation can be done on subsets of the original train-
ing set. In all cases, the misclassification costs in the
validation procedure must be close enough to those
obtained by the learning procedure. This procedure
verifies that the tree will perform equally well with
other datasets. In the case when the misclassification
costs are not close enough to the costs of the learn-
ing sample, the size and the splitting of the tree must
be reconsidered. 

A number of induction algorithms and software
tools to implement classification trees appear in the
literature. The various algorithms differ mainly in
the statistical criteria used for splitting the nodes, in
the types of dependent variables they support (scale,
ordinal, nominal), in the number of nodes they
allow for splitting, and in the elimination of redun-
dancy during the generation of the rules. Among
others, Classification and Regression Tree (known
as CART or C&RT) (Brieman et al. 1984; Lee et al.
1997), CHAID (Kass 1980) and its extension the
Exhaustive CHAID (Biggs et al. 1991), and QUEST
(quick unbiased efficient statistical tree) (Loh and
Shih 1997) are the most recently developed and
more popular induction algorithms. A short
description of these algorithms follows: 

� CART generates only binary trees. It constructs
the tree by examining all possible splits at each
node for each predictor variable and uses the
goodness-of-fit measurement criterion to find the
best split. It assumes scale and ordinal or nominal
types in the predictor and dependent variables. 

� CHAID determines the best split at each node by
merging pairs of categories of the predictor vari-
able with respect to their distance from the
dependent variable. The chi-square test measures
this distance. It produces nonbinary trees and
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assumes scale and ordinal or nominal types in the
predictor variables. 

� Exhaustive CHAID is an improvement over
CHAID as it finds the optimal split by continu-
ously testing all possible category subsets in order
to merge related pairs until only one single pair
remains. 

� QUEST constructs the tree by examining the
association of each predictor variable to the
dependent variable and selecting the predictor
with the highest association for splitting. Then
Quadratic Discriminant Analysis (QDA) is used
to find the best split point for the predictor vari-
able selected. The association of a predictor to
the dependent variable is measured by ANOVA
F-test, Levene’s test, or Pearson’s chi-square test if
the predictor is of the ordinal, continuous, and
nominal type, respectively. QUEST like CART,
yields binary trees. 

QUEST is generally faster than the other techniques,
but cannot be applied to regression type problems,
that is, when the dependent variable is continuous.
CHAID produces, at each split, a greater number of
nodes than the other two algorithms, thus forming
wider trees. To date, the literature does not give a
recommendation for which algorithm to use to
maximize the predictive accuracy of the tree. The
practice usually followed is to test the different algo-
rithms in order to find which one minimizes the
misclassification costs and at the same time satisfies
the restrictions of the dataset, such as the existence
of missing values and the handling of ordinal or
nominal variables (Witten and Frank 2000). The
approach we take in this study is to identify the
algorithm that will minimize the total loss accident
classification rates.

We also directly compare classification trees to
other traditional statistical methods such as logistic
regression (Dillon and Goldstein 1984), because
they can classify cases depending on classes defined
by a dependent variable. Logistic regression is simi-
lar to other statistical explanatory and classification
techniques such as linear regression, ordinal least
squares and discriminant analysis, but it has less
stringent requirements because it assumes no linear-
ity of relationships between the dependent and the

independent variables and does not assume nor-
mally distributed variables. As in the classification
trees, the effectiveness of the statistical method is
measured by the misclassification rate, that is, the
percentage of cases that are not correctly classified
to the total number of cases. 

PREDICTIVE VARIABLES AND DATASET

In order to build an explanatory model to predict
total ship loss, a preparatory phase of this study
identified a number of factors that were conceptu-
ally grouped with those directly related to the vessel
and with those that describe the particular condi-
tions at the time of the accident. We initially identi-
fied these factors using accident reports (Lloyd’s
Casualty Week 1992–1999) and subsequently veri-
fied them from other references (Psaraftis et al.
1998; Giziakis 1996). The factors chosen include
the type, size, age, and condition of the vessel at the
time of the accident; its previous record of accidents;
the weather and sea conditions; and the place and
location of the ship when the accident occurred. 

This study is based on an existing database of acci-
dent cases that was created for other projects
(Giziakis and Kokotos 1996; Kokotos 2003). This
database contains 27,664 records of shipping acci-
dents worldwide between 1992 and 1999. The data
were compiled mainly from textual ship accident ref-
erences taken from Lloyd’s Casualty Week (1992–
1999) and validated against annual editions of
Lloyd’s Register of Ships (1992–1999), annual edi-
tions of Lloyd’s World Casualty Statistics (1992–
1999), and Lloyd’s Maritime Atlas (1993). This refer-
ence database was further organized into predictive
variables properly chosen to relate closely to the fac-
tors previously identified as the most relevant for
explaining total ship loss, and it was prepared to con-
form to Lloyd’s Casualty Information System (1980).

Through a data cleaning effort, a dataset of
4,619 shipping accident cases was generated by
eliminating cases with identical accident informa-
tion, missing values, and unreliable data. The final
dataset used in this study contained only 352 acci-
dent cases (7.6%) where total ship loss was
reported, while the rest of the cases (4,267 or
92.4% of the total) were related to accidents with
no total ship loss. In this dataset, a small number of
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ships were involved in more than one accident with
one resulting in total loss. 

The remainder of this section presents the predic-
tive variables and the most important descriptive
statistics for a better understanding of the problem. 

Factors Related to the Ship

The year when the ship was constructed was used as
an indicator of the general condition of the vessel.
Most of the ships in the sample were built between
1967 and 1990; only about 20% were built before
1967 or after 1991. For the class of accidents with
total ship loss, the average value for this variable
was 1974.2; while for the class of no total ship loss,
the corresponding value was 1977.8. 

The age of the ship was calculated as the differ-
ence between the year of the accident and the year
when the ship was built. Ships with ages between 15
and 20 years were more frequently involved in
accidents. 

The gross tonnage of the ship was used as a typi-
cal measure for the size of the ship, which strongly
depends on the type of the ship (see below). The dis-
tribution of the values for the gross tonnage of the
ships in the dataset was 13.6% below 1,000 tons;
67.4% between 1,000 and 24,500 tons; and 20%
over 24,500 tons. A simple comparison of the aver-
age values of gross tonnage in the classes of acci-
dents with or without total ship loss (12,084 and
18,234 tons, respectively) indicated that smaller
ships were more frequently lost than bigger ships. 

The types of the ships recorded in the dataset
were tanker, general cargo, ferry, container, and
bulk carrier. Containers appear to have the lowest
accident rate where the ship is a total loss (about
3%), while for all the other types this rate was not
significantly different from the average (between
about 7% and 9% of the total number of ships). 

The number of previous ship owners reflects the
general condition of the vessel, because the practice
followed by many ship owners is to sell the ship if
its condition is declining and the involvement in
serious accidents is expected to be more frequent.
For simplicity, this variable was categorized into
four groups corresponding to one, two, three, or
four to five or more owners. The percentages of

total accident cases included in these groups are
35.9%, 23.8%, 29.4%, and 10.9%, respectively. 

The number of previous ship accidents, regard-
less of their type and their severity, served as an
extra indication of the general condition of the ship.
The maximum value in the dataset was seven. Total
ship loss was not significantly correlated with this
variable. Particularly for the class of accidents with
total loss, 83% of these cases had only one previous
accident and the rest (17%) had more than one. 

The registration society of the ship at the time of
the accident2 was another variable. Registration
societies certificate the condition of ships by adopt-
ing different survey standards. Sixteen distinct regis-
tration societies were recorded in the database and
coded from R1 to R16 in random order. The aver-
age percentage of the accidents with total ship loss
per society was 7.6% and the minimum and maxi-
mum were 0.5% and 24%, respectively. 

Factors Related to the Accident

The type of accident variable describes what
occurred, independently from the outcome of the
accident (total ship loss or no total ship loss). The
accident type was coded according to Lloyd’s Casu-
alty Information System and accident classification
standards. Table 1 shows the percentage of acci-
dents with total ship loss by accident type. It shows
that fire/explosion and contacts with external sub-
stances are the accident types with the highest and
lowest frequency of total ship loss. 

The accident type is also very closely related to
the type of the ship (figure 1). This dimensionless
graph very closely plots the particular categories of
the two variables that have strong relationships. The
figure shows that tankers have frequent collisions
because of their size and their lack of flexibility in
maneuvering, while containers due to their cargo
suffer from fires. Grounding accidents are more fre-
quent for general cargo ship, and contacts are inde-
pendent of the type of the ship.  

The variable for the year and the month of the
accident covered 1992 to 1999. No significant differ-

2 See Lloyd's Register of Shipping (www.mariners-l.co.
uk/ResLloydsRegister.htm) for additional information on
classification societies and their published registers. (Also
see Haviland 1970.)
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ences were found between the number of accidents in
different years and months. The average number of
accidents with total loss per month was 7.6%. 

The particular geographic area of the accident
coded into 12 major areas according to the standard
classification of Lloyds Maritime Atlas areas. Figure
2 shows the 12 areas defined and table 2 presents
the distribution of the number of accidents with
total ship loss in the 12 areas. The greatest number
of accidents with total ship loss occurred in the
Indian Ocean and the fewest in the Gulf of Mexico-
West Indies-Newfoundland.

For the specific location of the ship at the time of
the accident, values are “port” for accidents that
occurred within the region of a port, “overseas” for
accidents that occurred at sea far from the coast,
and “controlled seaways” for straits and canals.
The number of accident cases and the associated

percentages are 2,188 (47.4%) for ports, 1,548
(33.5%) for overseas, and 883 (19.1%) for con-
trolled seaways. The number of accidents with total
ship loss was equally distributed for all types of
locations: ports, 6%; overseas, 9.8%; and con-
trolled seaways, 7.8%. The most frequent accidents
in ports were grounding and collisions and, in the
overseas category, hull/machinery damage.

The variable for the reported weather conditions
when the accident happened included: calm weather,
poor visibility, storm, freezing conditions, and
typhoon. Most of the accidents with total ship loss
occurred during typhoons (8.8%), storms (8.3%), or
in poor visibility (7.3%). In calm weather or freezing
conditions, as expected, the percentage of the acci-
dents with total ship loss was significantly lower
(5.0% and 4.3%, respectively). In relation to the
accident type, 43.8%, 49.2%, and 56.9% of the
hull/machinery accidents occurred in calm weather,
during storms, or in freezing conditions, respectively.
During typhoons, the most frequent accident was
grounding (50.1%), and in poor visibility, collisions
(47.2%) were the most frequent accidents.  

TABLE 1  Percentage of Accident Cases with Total Ship Loss for Different Types of Accidents

Accident type Description
Percentage of accident 

cases with total ship loss

Grounding Touching of the sea bottom or underwater wrecks 
for a significant period of time

9.50%

Contact Striking an external surface substance (not 
another ship) such as drilling rigs or platforms, etc.

2.60%

Collision Striking another ship, regardless of whether 
underway, anchored, or moored

7.40%

Fire/explosion Fire or explosion, regardless of the cause 14.20%

Hull/machinery damage Any case of hull/machinery damage or failure 6.40%

FIGURE 1  Relationship Between the 
Type of Accident and the 
Type of Ship
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Total loss of a ship is the dependent variable for
the analysis and is defined as a dichotomous vari-
able accepting values of yes or no. Statistical tests
performed (one-way ANOVA) to compare the aver-
age values of the above-mentioned variables for the
classes of accidents distinguished by total loss
showed no significant differentiation among them. 

THE APPLICATION

In this section, we test different classification tree
induction algorithms and logistic regression in order
to identify the best-performing tree structure to pre-
dict total ship loss. We used the 12 variables
described earlier as predictors with total loss as the
dependent variable. Total loss is a dichotomous
variable (it accepts values of yes or no), while the
predictors are of various types: scale (e.g., gross ton-
nage, year ship was built), ordinal (e.g., number of
previous ship owners), and nominal (e.g., location
of the accident, weather conditions). 

In a preliminary stage of the analysis, CART,
CHAID, Exhaustive CHAID, QUEST, and logistic
regression were applied to the dataset by defining
equal misclassification costs and priors, assuming
no previous knowledge of the problem. This effort,
although it produced total misclassification rates of
93% due to the unbalanced training set (only 7.6%
of the cases consisted of the class with total ship
loss) resulted in very poor classification rates for the
class of Total Loss = “yes.” For that particular class,

Exhaustive CHAID showed the best performance (a
classification rate of 55.3%), the logistic regression
showed the worst (only 9.99%), and the other two
algorithms showed approximately 22%. 

To resolve the problem of poor classification in
the small class of accident cases with total ship loss,
we experientially adjusted the misclassification costs
in a second stage of the analysis. Logistic regression
was excluded from this stage of the analysis because
it cannot accept any further improvement. The mis-
classification cost for Total Loss = “yes” was set to a
ratio of 12 to 1 so as to indirectly reflect the impor-
tance and severity of the total loss outcome com-
pared with the damages and the consequences of a
simple accident, a practice proposed in similar cost-
sensitive classifications problems (Hollmen and
Skubacz 2000). 

Table 3 presents the rates of the correctly classi-
fied cases obtained from the four induction algo-
rithms. From the table, it can be seen that
Exhaustive CHAID retains its superiority over the
rest of the algorithms and achieves the best rates in
both cases.  

In all the tests carried out in this analysis, the
classification tree algorithms were applied in a sam-
ple training set of 3,079 cases (two-thirds of the
total number of cases). The remaining 1,026 cases
were considered as the test dataset used for valida-
tion. To ensure a uniform distribution of cases in
every split, the child nodes were defined to include a

TABLE 2  Percentage of Accident Cases with Total Ship Loss in 
Different Geographic Locations

Code Geographic area
Accident cases with 
total ship loss (%)

1 North Sea, Baltic 2.8

2 Mediterranean-Black Sea 4.7

3 Red Sea-West and East Coast of Africa 6.0

4 Persian Gulf-Bay of Bengal 2.6

5 Indian Ocean 10.7

6 China Sea-Japan 8.6

7 Australia 7.2

8 Atlantic Ocean 2.8

9 Gulf of Mexico-West Indies-Newfoundland 1.3

10 North and South America, Pacific Coast 4.0

11 Pacific Ocean 4.2

12 Alaska-Bering-USSR Arctic-Iceland 7.0
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number of cases not greater than the half of the par-
ent node. We used SPSS/Answer Tree software to
implement the classification algorithms. 

To confirm that the results of the Exhaustive
CHAID were not dependent on the particular
dataset and that this algorithm will perform well
using other similar datasets, a validation procedure
including three different tests was applied. First,
Exhaustive CHAID was tested using the dataset of
1,026 cases (one-third of the initial dataset not
included in the training set) and produced classifica-
tion rates of 87.8% and 84.3% for the total number
of test cases and the cases of Total Loss = “yes,”
respectively. A second used 10 subsets randomly
selected from the initial dataset. This test gave the
best classification rates—84.1% and 80.5%, respec-
tively. A third test was a manual test of the classifi-
cation tree structure for a small number of new
accident cases not included in the initial dataset.
Again, the classification rates were approximately
similar to the outcome of the other two testing
methods. This validation procedure verified that the
tree structure produced by Exhaustive CHAID pro-
vides the best predictions of total ship loss.

Figure 3 presents the final classification tree
structure produced using Exhaustive CHAID after
the adjustments in misclassification costs during the
training phase. For economy of presentation, only
the first three levels of the tree are shown. Each
node is identified by the node number and the num-
ber of cases included in the node for the classes of
Total Loss = “no” and “yes,” followed by the per-
centages and the totals. Table 4 gives, for every node
presented in the tree, the condition applied for the
expansion of the tree.

The hierarchy of the classification tree shows that
the first split defined four nodes using the “year ship
was built” predictor. Depending on the node of the
first level, in the next splits the predictors “geo-

graphic area,” “location,” and “gross tonnage”
were used to define nodes 5 up to 13. In the next
levels, other predictors were included except for
“weather condition” and “number of previous acci-
dents,” which had not been used anywhere in the
tree structure. 

The graphical representation of a classification
tree, as in figure 3, may not be very convenient for
analysts or decisionmakers, particularly when the
tree is wide and contains a large number of nodes.
An alternative, more suitable presentation of the
tree can be given by describing each node by IF-
THEN rules of the form: 

“IF condition THEN prediction”
in which the condition part is a composite condition
including the AND logical operator, and the predic-
tion part is given in terms of a probability value for
the condition to be true.

By using the alternative IF-THEN presentation of
the classification tree produced in this study, differ-
ent types of nodes can be located: those that contain
cases in which total loss has a significant probability
of occurring, those in which total loss of a ship is
unlikely to occur, and those that present no clear
conclusion. The most important nodes for this study
are those that have significant probabilities of total
loss. These types of nodes, although limited, reveal
certain conditions of accidents in which total loss of
the ship is a strong possible outcome. The following
examples of selected nodes demonstrate the three
types of nodes of the tree. The symbol “!=” which
appears in the IF conditions is the “not equal”
operator.  

Example 1 describes a typical node for which the
group of accident cases has very limited probability
of total loss. Example 2 uncovers a group of acci-
dent cases with significant risk situations (39.3%).
This is considered a valuable output of the analysis.
Example 3 refers to a node where no clear distinc-

TABLE 3  Classification Rates After Adjustment of Misclassification Cost for
Total Loss = “yes”

Induction algorithms
Total rate of correctly 
classified cases (%)

Rate of correctly classified 
cases of Total Loss = “yes”(%)

CART 78.3 59.9

CHAID 80.1 86.4

Exhaustive CHAID 90.7 87.5

QUEST 90.7 31.0
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FIGURE 3  Classification Tree Produced Using Exhaustive CHAID after the Adjustments in 
Misclassification Costs
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Category % N
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tion between the cases with total loss and no total
loss can be seen, because the probabilities do not
significantly differ from those obtained from the
whole dataset. The condition associated with this
node is very simple and not very specific. 
Example 1 
Rule : IF (Year ship was built > 1981) AND (Geo-
graphic Area ! = “Mediterranean-Black Sea” AND
Geographic Area ! = “Australia” AND Geographic
Area ! = “Alaska-Bering-USSR Arctic-Iceland”)
AND (Accident ! = “Grounding” AND Accident ! =
“Fire/Explosion”) AND (Number of previous ship
owners > 2) THEN Prediction = NO, Probability =
0.9783.
Number of cases. Total number of cases = 94. Cases
of total loss YES = 2 (2.17%), NO = 92 (97.83%).
Probability for NO total loss = 0.9783.
Description. Any ship built after 1981 with two or
more previous owners, involved in accident types
“contact,” “collision,” and “hull/machinery dam-

age” different from “grounding” and “fire/explo-
sion,” in areas other than “Mediterranean-Black
Sea,” “Australia,” and “Alaska-Bering-USSR
Arctic-Iceland.”
Example 2 
Rule. IF (Year ship was built < = 1973) AND (Geo-
graphic Area ! = “Pacific Ocean” AND Geographic
Area ! = “Australia” AND Geographic Area ! =
“Atlantic Ocean” AND Geographic Area ! = “Red
Sea – W & E African Coast ”) AND (Accident ! =
“Contact” AND Accident ! = “Hull/Machinery
Damage”) AND (Registration society ! = “R11”
AND Registration society ! = “R2” AND Registra-
tion society ! = “R16” AND Registration society ! =
“R12”) THEN Prediction = YES, Probability =
0.393.
Number of cases. Total number of cases = 79. Cases
of total loss YES = 31 (39.3%), NO = 48 (60.7%).
Probability for total loss YES = 0.393.
Description. Any ship built before 1973 registered
in societies R1, R3 to R10, and R12 to R15
involved in accident types “collision,” “fire/explo-
sion,” and “grounding” in areas other than “Aus-
tralia,” “Atlantic Ocean,” and “Red Sea-West and
East African Coast.”
Example 3 
Rule: IF (Year ship was built > 1977 AND Year ship
was built < = 1981) AND (Gross ship tonnage < =
12603) THEN Prediction = YES, Probability =
0.0994.
Number of cases. Total number of cases = 352.
Cases of total loss YES = 35 (9.95%), NO = 317
(90.05%). Probability for total loss YES = 0.0995.
Description. Any type of ship built between 1977
and 1981 having gross tonnage less than 12,603
tons.

The above-mentioned examples demonstrate the
use of classification to identify groups of accident
cases with significant or no significant possibilities
of total ship loss. 

CONCLUSION

In this paper, we presented a classification tree
application to predict total loss of a ship as a conse-
quence of an accident. The application was based
on a large dataset of accident cases occurring in
locations worldwide. Extensive tests indicated that

TABLE 4  Conditions per Node for Expanding the 
Classification Tree

Node Condition

1 Year ship was built  ≤ 1973

2 Year ship was built in (1973–1977]

3 Year ship was built in (1977–1981]

4 Year ship was built > 1981 

5 Geographic area = {Mediterranean-Black 
Sea;  China Sea-Japan; Persian Gulf-Bay of 
Bengal; North Sea, Baltic; N. & S. America, 
Pacific Coast; Alaska-Bering-USSR Arctic-
Iceland; Atlantic Ocean; Gulf of Mexico-
W. Indies-Newfoundland}

6 Geographic area ={Pacific Ocean; Atlantic 
Ocean;  Red Sea-W. and E. African Coast}

7 Location = {overseas}

8 Location = {controlled seaways, ports}

9 Gross tonnage ≤ 12603

10 Gross tonnage (12,603–16,705]

11 Gross tonnage > 16,705

12 Geographic area = {Mediterranean-Black 
Sea; Australia; Alaska-Bering-USSR Arctic-
Iceland}

13 Geographic area = {China Sea-Japan; 
Persian Gulf-Bay of Bengal; North Sea, Baltic; 
N. & S. America, Pacific Coast; Atlantic 
Ocean; Gulf of Mexico-W. Indies-
Newfoundland; Pacific Ocean; Atlantic Ocean;  
Red Sea-W. and E. African Coast}
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the Exhaustive CHAID induction algorithm mini-
mized misclassification costs, a criterion that we
defined as the most important for the particular
application. Due to the unbalanced training set, the
initial choice of setting equal costs resulted in poor
classification rates for the class of Total Loss =
“yes.” To resolve this problem, initial information
concerning misclassification rates was defined to
reflect the importance of the total ship loss outcome
in this particular application. The experiential com-
parison between different induction algorithms and
logistic regression verified the superiority in classifi-
cation of data mining techniques and especially of
the classification trees over traditional statistical
methods. Classification trees compared with statisti-
cal methods are also easily understood by both
experts and non-experts and can provide a good
illustration of the classification.

The prediction of total loss is of great importance
for ship owners, ship managers, classification societ-
ies, underwriters, brokers, and national authorities,
because it can provide valuable information for issu-
ing risk assessment reports. In the case of a ship acci-
dent, by considering parameters such as the
characteristics of the vessel, the geographic area and
the particular location, the type of the accident, etc.,
through traversing of the tree or testing the IF-
THEN rules, estimates can be made for the accident
of the probability of total ship loss. In many accident
cases, the prediction should be accurate and clear
and can be used to activate different rescue plans so
as to reduce the costs of damages to the vessel and,
particularly, to save lives. The classification tree for
predicting total ship loss may be utilized in the con-
text of a potential decision support system and a risk
management information system that will record,
evaluate, and process data for ship accidents. 
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U.S. Transportation Models Forecasting Greenhouse Gas 

Emissions: An Evaluation from a User’s Perspective

ABSTRACT

This paper briefly describes and evaluates some of
the more important and frequently used models to
estimate greenhouse gas emissions by a number of
U.S. government agencies. Among the models cov-
ered are: National Energy Modeling System
(NEMS); MARKAL-MACRO; MiniCAM; Green-
house Gases, Regulated Emissions, and Energy Use
in Transportation (GREET) Model; and Transi-
tional Alternative Fuels and Vehicles (TAFV)
Model. These models have been used by the U.S.
Congress and federal agencies to assess U.S. strate-
gies to meet the Kyoto Accord, which would require
the United States to maintain U.S. carbon emissions
at 7% below 1990 levels between 2008 and 2012.
In this paper, each model is described and its capa-
bilities and limitations highlighted. Model perspec-
tives are provided from a user’s viewpoint, so that
potential users will have a full understanding of the
capabilities of these models and the resources
needed to build, update, and maintain them.

INTRODUCTION

In December 1997, approximately 160 nations met
in Kyoto, Japan, and developed the Kyoto Protocol,
which would limit greenhouse gas (GHG) emissions
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worldwide. In the protocol, the United States agreed
to reduce GHG emissions levels to 7% below 1990
levels from 2008 to 2012 (although the U.S. govern-
ment has not formally ratified the agreement). In
considering the impacts of the Kyoto Protocol and
other GHG emissions reduction policies or pro-
grams, the U.S. Department of Transportation
(DOT), the U.S. Department of Energy (DOE), and
the U.S. Environmental Protection Agency (EPA)
have employed a number of useful models. These
models range from pure energy and environmental
analytical tools to integrated energy-environmental-
economic models that capture the interactions of
GHG reduction technologies and policies within the
economy. Because such modeling efforts have signif-
icant impacts on policy and program decisionmak-
ing, a critical review of those models is important. 

This paper describes a number of models used by
the U.S. government to better understand the
impact of future technologies and policies on U.S.
GHG emissions in the transportation sector.1 In par-
ticular, the paper focuses on five models:

1. National Energy Modeling System (NEMS),
maintained by the Energy Information Admin-
istration (EIA) within DOE;

2. Energy MARKAL-MACRO, maintained by
Brookhaven National Laboratory and DOE;

3. MiniCAM, maintained by Pacific Northwest
National Laboratory;

4. Greenhouse Gases, Regulated Emissions, and
Energy Use in Transportation (GREET), main-
tained by Argonne National Laboratory; and

5. Transitional Alternative Fuels and Vehicles
(TAFV), maintained by Oak Ridge National
Laboratory (ORNL) and the University of
Maine.

This paper does not thoroughly evaluate detailed
inputs to the models (i.e., data and assumptions).
Therefore, the author highly recommends that inter-
ested readers refer to model documentation and
visit the model websites for more detailed informa-
tion on inputs and assumptions. Sources for further

reading for each model are provided at the end of
the paper.

Although this article provides potential users with
brief descriptions of the GHG models employed by
the U.S. federal government, it also evaluates the
models based on key operational factors often over-
looked by potential users. Topics discussed here
include: the size of the data inputs and sourcecode of
the models, the hardware and software platform and
requirements, the run time or amount of time associ-
ated with execution of the models, the resources
needed to develop and maintain the models, and
examples of studies that have used the models exten-
sively. Detailed model coverage with respect to the
transportation sector is also evaluated. It should be
noted that the evaluations contained in this article are
a snapshot in time and were up to date at the time of
writing. However, the reader should keep in mind
that the models receive significant improvements over
time. 

BACKGROUND

Most of the models reviewed in this study originated
before GHG modeling became prevalent. In fact,
almost none of the models were originally designed
to measure greenhouse gases, but rather operational
aspects, criteria pollutant (nitrogen oxides—NOx,
sulfur oxides—SOx, nonmethane hydrocarbons—
HC, and particulates) emissions, and energy aspects
of modeling and forecasting. Energy forecasting and
emissions models are a natural fit for carbon emis-
sions estimation and forecasting. Transportation
energy and emissions models usually require two
components, travel and fuel efficiency or emissions
factors, that are related to the technology and its age.
Given these components, fuel consumption can eas-
ily be converted into carbon emissions, because the
burning of carbon emission compounds is in direct
proportion to its consumption. 

These models have become very popular and
widely used because of their importance in formulat-
ing policies designed to reduce carbon emissions.
With the ratification of the Kyoto Accord (minus the
United States and Australia), many countries had to
devise strategies to reduce carbon emissions rapidly.
The economic and operational consequences for car-
bon emissions reduction policies have now emerged

1 Although this article was written by the author, infor-
mation presented here relies heavily on a more detailed
document prepared by Kevin Greene of the Volpe
National Transportation Systems Center (USDOT 2003).
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as important factors to investigate when countries
attempt to reduce carbon emissions to achieve the
long-term Kyoto emissions levels. 

DOT uses some of these models and integrates
data from many sources. Many of the data sources
used to develop these models reside at the federal
agencies that created and currently maintain the
models. Among those used most frequently for esti-
mates of historical GHG emissions are the EPA2 and
EIA3 models. Transportation and energy-related
data can be found on the Transportation Energy
Databook website run by ORNL and DOE,4 DOT’s
Bureau of Transportation Statistics (BTS) website,5

and the BTS TRANSTATS website.6 The TRAN-
STATS website contains National Transportation
Statistics data compiled from BTS surveys—Office
of Airline Information databases, the National
Household Transportation Survey (NHTS), the
Commodity Flow Survey (CFS), and many more. 

NEMS MODEL

Overview

NEMS is a computer-based energy-economy mod-
eling system of the U.S. energy markets for the mid-
term period through 2025. NEMS annually
projects the production, imports, conversion, con-
sumption, and prices of energy, subject to assump-
tions on macroeconomic and financial factors,
world energy markets, resource availability and
costs, behavioral and technological choice criteria,
cost and performance characteristics of energy
technologies, and demographics. The purpose of
NEMS is to project energy, economic, environmen-
tal, and security impacts on the United States of
alternative energy policies and of different assump-
tions about energy markets. (USDOE EIA 2003a) 

Congress and other federal agencies have used
NEMS7 extensively to evaluate energy and trans-
portation policies. The model has the advantage of

extensive peer review by the U.S. transportation
community including DOE, DOT, EPA, the Office
of Management and Budget, the Government
Accountability Office, and the National Academy
of Sciences. 

Structure

The structure of NEMS consists of an integrated
modeling system representing all demand sectors of
the economy (residential, commercial, industrial,
and transportation), including a macroeconomic
component and all energy supply sources (i.e., crude
oil supply; oil refinery; oil distribution; natural gas
including exploration, drilling, and distribution;
electricity including nuclear, coal, natural gas, resid-
ual fuel, and small generators like wind and solar;
coal; and renewable fuels).

The transportation sector is important, because it
consumes over 27% of all energy, and approxi-
mately 98% of transportation consumption comes
from petroleum use (USDOE 2002a). The NEMS
Transportation Demand Module (TRAN) provides
wide coverage of the aggregate transportation sys-
tem including the following submodules: Light-
Duty Vehicles (LDV), Aviation, Freight Transport
(truck, rail, waterborne), Miscellaneous (transit,
recreational boats, aviation gasoline), and Emissions
(USDOE EIA 2003a). 

The LDV Submodule covers 6 areas: Fuel Econ-
omy—6 car and 6 light-truck EPA size classes across
63 advanced subsystems and fuel savings technolo-
gies; Regional Sales—9 Census Divisions; Alterna-
tive Fuel Vehicles—12 types of vehicles; LDV
Stock—vehicle retirement curves and capital stocks
by 20 vintages and vehicle types; Vehicle-Miles Trav-
eled (VMT)—by car and light truck as a function of
income per capita and the cost of driving per mile;
and LDV Fleet for business, government, and utility
fleets (as part of the Energy Policy Act). 

The Aviation Submodule includes two compo-
nents. The Air Travel Demand Submodule forecasts
revenue passenger-miles for international and
domestic travel, revenue ton-miles for freight, and
seat-miles demanded. The Aircraft Fleet Efficiency
Submodule covers six fuel-saving technologies for
regional, narrow, and wide-body aircraft: ultra-high
bypass, propfan, improved thermodynamics, hybrid

2 Available at http://yosemite.epa.gov/oar/globalwarming.nsf/
UniqueKeyLookup/RAMR5CZKVE/$File/ghgbrochure.pdf.
3 Available at http://www.eia.doe.gov/env/ghg.html.
4 Available at http://www-cta.ornl.gov/cta/data/Index.html.
5 Available at http://www.bts.gov/.
6 Available at http://www.transtats.bts.gov/.
7 NEMS Transportation Model contact: John Maples,
USDOE, EIA, john.maples@eia.doe.gov (202-586-1757);
also see http://www.eia.doe.gov/oiaf or http://www.eia.doe.
gov/bookshelf/docs.html.
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laminar flow, improved aerodynamics, and weight
reduction. The submodule also contains 48 vintages
of aircraft with aircraft survival curves and stock
model representation. 

The Freight Transport Submodule includes truck,
rail, and waterborne. The Freight Truck Submodule
uses macroeconomic gross outputs by North Ameri-
can Industrial Classification System (NAICS) code
in determining VMT. The CFS and the Vehicle
Inventory and Use Survey are used extensively to
establish the connection between commodities and
mode of travel. The truck stock model determines
capital stocks by three truck size classes (Class 3,
Classes 4 through 6, and Classes 7 and 8) and by
vehicle age (20 vintages). Technology choice is
based on future emissions standards, commercial
availability, fuel prices, capital cost, efficiency
improvement, and other cost-effectiveness criteria
such as discount rates and payback period. There
are 32 advanced subsystem and emissions control
technologies (Argonne 1999). Gasoline, diesel, nat-
ural gas, and liquid petroleum gas are the fuels rep-
resented in the Truck Submodule. 

Rail and Waterborne Submodules use ton-miles
traveled estimated equations based on industrial
output by NAICS code. Energy efficiency for old
and new vehicles is estimated. A major drawback of
the model is the lack of capital stocks and vintaging
by age. Therefore, the growth rates of efficiency
improvements must be made exogenously based on
trends rather than an explicit endogenous calcula-
tion of the model. Specific technology representa-
tion and turnover cannot be endogenously
determined, which limits the effect of advanced
technologies over time, unless of course the modeler
pre-determines this in the exogenous input file.
Overall, the Rail and Waterborne Submodules have
no sensitivity to fuel prices or the cost of travel in
either the travel or efficiency forecasts. 

The Miscellaneous Submodule includes mass
transit, which covers six transit modes: three types
of passenger rail—transit, commuter, and intercity;
and three types of passenger buses—transit, inter-
city, and school. Travel is estimated for all six transit
modes as a function of the relative historical growth
rate of passenger-miles of travel relative to light-
duty vehicle passenger-miles. Growth rates of effi-

ciency improvements are calculated based on the
growth rates of similar technology modes. This
assumes that technology advancements will parallel
those in modes using the same vehicles. For exam-
ple, mass transit rail efficiencies would then be
assumed to grow at the same rate as Class I freight
rail. Therefore, the same caveats from the rail and
waterborne models apply to the Mass Transit Mod-
ule, because both lack explicit model responsiveness
to fuel prices and travel costs.

TRAN also has a module that forecasts emissions
of the criteria pollutants SOx, NOx, HC, carbon
(CO), and carbon dioxide (CO2). Most recently,
TRAN incorporated the EPA Mobile 6.0 model,
which is used by EPA and several state governments
to calculate regional emissions. CO2 and total CO
emissions can be calculated by fuel type and by
transportation mode, which allows the user to asso-
ciate various policies or investments with an
increase or decrease in carbon emissions.

Finally, the Macroeconomic Activity Module
(MAM) currently consists of the Global Insight (for-
merly DRI/WEFA) Model of the U.S. economy, the
Industry Model, the Employment Model, and the
Regional Model. MAM uses the input-output (I-O)
National Accounts data (from the Bureau of Eco-
nomic Analysis of the U.S. Department of Com-
merce). One issue in using the I-O accounts data is
that they undercount the effects of the transporta-
tion system on the economy, due to the exclusion of
almost all private commercial businesses, which
have their own private transportation and are cur-
rently counted under commercial operations. A
potential improvement to the model would be to
adjust the I-O data using the BTS Transportation
Satellite Accounts (TSA). The TSA measures the pri-
vate transportation associated with commercial
operations to provide more detailed data for the I-O
accounts. 

Despite these issues, the MAM is a key element
for measuring the impacts of potential GHG strate-
gies on the economy. This makes it one of the most
important components of NEMS, because it is
essential to the convergence process and it fully inte-
grates the economy with the modeling process,
which many of the other GHG models reviewed in
this article do not. Reaching equilibrium in a model



CHIEN 47

of this size is of paramount importance, especially
because feedback effects of prices on transportation
services have a tendency to be dampened signifi-
cantly when macroeconomic feedback with the rest
of the model is turned on. What does this tell us?
The conclusion is that models that do not have this
capability can overstate the effects of any given pol-
icy that may be implemented, because they do not
account for economic changes and responses to
those changes. Reaching equilibrium is critical to
the accuracy in measuring costs and benefits of any
policy or program.

Limitations

The NEMS model operates at a Census region and
Census division level. Therefore, extrapolation and
interpolation are needed to subdivide the estimates
down to the state level. Local- or county-level fore-
casts are not applicable to the model. TRAN does
not explicitly account for modal switching (shifting
from one mode to another). Policies designed to
shift ridership from one mode to another are cur-
rently not measurable nor easy to implement. The
travel equations for most modes do use many of the
same economic variables, which will result in simul-
taneous modal switching, but each equation con-
tains a different set of variables that affect travel.
Some modes (e.g., rail, waterborne, and all modes
of transit) are not technology-based nor do they
contain stock models, which make technology pol-
icy options limited for those modes of travel. 

Resources

One of the drawbacks to using the model is also one
of NEMS’ greatest strengths. The size of the entire
NEMS model is very large and detailed, requiring
over 10 to 15 megabytes (MB) of storage just for the
“restart file,” which contains the starting values for
the model each year. In order to do a “standalone”
run, which consists of running only one module and
keeping the others at reference case levels, would
require 100 MB of storage space. Although NEMS
can be installed on an individual personal computer
(PC), the storage requirements are substantial.
Hardware should consist of 512 MB of random
access memory (RAM) and a 486 or Pentium pro-
cessor. The model operates in Compaq Visual FOR-

TRAN and requires the EViews software. If the user
wanted to run the supply models also, then OML, a
linear programming software, is also necessary. 

When running in standalone mode with only one
module endogenously active, the transportation
module will return a solution within a minute.
However, submitting a fully integrated run with all
of the modules turned on or active would take
about two to four hours depending on how many
changes were made to the model. The current
NEMS model at EIA employs approximately 40
full-time employees and 4 full-time contractors.
Therefore, enhancing, updating, and maintaining
the model requires significant resources. However,
several agencies and national laboratories work
with versions of the NEMS models and usually
employ two to four people to operate and maintain
the model for their uses. These NEMS model clones
require EIA updates on an annual basis, which are
posted on EIA’s website at http://www.eia.doe.gov.

The MARKAL-MACRO MODEL 

Overview

The MARKAL-MACRO Model8 at DOE is an inte-
gration of two models, MARKAL and MACRO.
MARKAL is the “bottom-up” technological model
of energy and the environment, which includes
depletable and renewable natural resources, pro-
cessing of energy resources, and end-use technolo-
gies to meet the projected energy service demands in
all sectors. MACRO is the “top-down” macroeco-
nomic growth model that links MARKAL to the
economy and maximizes utility (discounted sum of
consumption). Top-down refers to models that are
usually more aggregate in nature and estimate by
forecasting a particular variable as a function of
other aggregate causal factors. Bottom-up modeling
approaches are more detailed at the individual
equipment level and then sum up to the total in
order to forecast variables.

MARKAL-MACRO finds the least-cost dynamic
equilibrium under specific market and policy assump-
tions. DOE calibrates the MARKAL-MACRO Model

8 DOE Energy MARKAL-MACRO Model contact: Philip
Tseng, DOE, EIA, SMG Office, phillip.tseng@eia.doe.gov
(202-287-1600); also see http://www.etsap.org.
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to the NEMS outputs annually. The MARKAL-
MACRO Model, used by over 45 countries, was
developed by Brookhaven National Laboratory and
then further improved by 18 Organization for Eco-
nomic Cooperation and Development (OECD)
countries. 

Structure

MARKAL-MACRO optimizes the mix of fuels and
technologies based on the consumer discount rate,
technology characteristics, and fuel prices. Marginal
costs for technologies and applications are used to
determine the most efficient level of energy inputs
along with technology costs and energy efficiencies.
The model forecasts emissions sources and levels for
CO2, SOx, NOx, and any user-specified pollutants
and wastes. The value of carbon rights (marginal
cost of emissions) is one of the important outputs of
the model. Outputs are solved in five-year intervals
through 2050. Transportation coverage includes
passenger cars, light trucks, heavy trucks, buses, air-
planes, shipping, passenger rail, and freight rail. 

The model can output a business-as-usual energy
and carbon emissions profile. Identification of
dynamic technology paths to meet emissions growth
targets is one of the more common uses of the
model outputs. The MARKAL-MACRO Model
has facilitated the study by many countries of the
costs of alternative approaches to reducing CO2
emissions. Policy options would include fuel switch-
ing, substitution of capital and/or labor for energy
services, demand reduction, emissions taxes, etc.
MARKAL-MACRO can also identify opportunities
for reducing CO2 emissions through supply and
demand technologies. Based on the technologies
chosen, the model can calculate the cost of CO2
emissions reductions.

The MARKAL-MACRO Model has proved use-
ful in a number of areas. DOE has used it to analyze
the Energy Policy Act of 1992. EIA has also built an
international version of the MARKAL Model called
SAGE to generate the annual International Energy
Outlook. EPA is developing a national MARKAL
database and scoping out a regional MARKAL rep-

resentation of the U.S. economy. The MARKAL
family of models is used by over 45 countries to
support energy and environmental planning. The
International Energy Agency (IEA) has a version of
the Global MARKAL Model that they use to look
into future energy technology perspectives. Most
recently the model has focused on externalities mea-
surement, hydrogen economy development, cost-
competitive life cycle analysis, oil market response,
technology learning, and country analysis.

Limitations

There are some limitations of MARKAL-MACRO.
While it can provide an alternative and complimen-
tary approach in longer term analysis (e.g., projec-
tion of renewable fuel penetration and reduction of
CO2 emissions), the model does not cover as much
detail in all sectors as the NEMS model. The
MARKAL-MACRO Model uses a simple approach
to forecast energy service demands based on eco-
nomic indicators such as housing stocks, commercial
floor space, industrial production index, and VMT.
Modeling at the individual equipment level would be
difficult and require off-line analysis combined with
aggregate implementation in MARKAL-MACRO.
Individual sector modeling is relatively aggregate
and may also require similar off-line analysis.

Resources

The data inputs to the model use about 7 to 20 MB
of storage space, and the sourcecode is approxi-
mately 7 to 10 MB. The model can be run on a Pen-
tium 4 processor with a 2 gigahertz (GHz)
processor speed and 256 MB of RAM. Model exe-
cution is fairly quick at around five minutes. The
model is quite complicated and requires special
skills to run, similar to the NEMS model but with
fewer people. Generally, two national laboratory
analysts use and maintain the model for DOE. The
MARKAL-MACRO Model is written in GAMS
(General Algebraic Modeling System) programming
language.9 

9See http://www.gams.de/.
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MiniCAM MODEL

Overview

The MiniCAM Model,10 maintained by the Pacific
Northwest National Laboratory (PNNL) forecasts
CO2 and other GHG emissions, and it estimates the
impacts on GHG atmospheric concentrations, cli-
mate, and the environment. Although the model is a
top-down agriculture-energy-economy model, it
contains bottom-up assumptions about end-use
energy efficiency. MiniCAM Model projections are
made through 2100 and, therefore, the model has
more futuristic technologies than NEMS. The
model outputs forecasts in 15-year increments. Pro-
jections cover the entire planet in 14 global regions:
the United States, Canada, Western Europe, Austra-
lia and New Zealand, Japan, the former Soviet
Union, Eastern Europe, China, Southeast Asia, the
Middle East, Africa, Latin America, South Korea,
and India. Projections for Mexico, Argentina, and
Brazil are under development.

Structure

MiniCAM is comprised of three larger models: the
Edmonds-Reilly-Barns Model (ERB), the Agricul-
ture Land Use Model (AGLU), and the Model for
the Assessment of GHG Induced Climate Change
(MAGICC). ERB represents the energy/economy/
emissions system, including supply and demand of
energy, the energy balance, GHG emissions, and
long-term trends in economic output. AGLU simu-
lates global land-use change from the production of
composite crops, animal products, and forest prod-
ucts, and tracks GHG emissions associated with
land use. MAGICC models the atmospheric/cli-
mate/sea-level system, which includes a gas cycle,
climate, and sea-level model. MAGICC outputs
atmospheric composition, radiative forcing, global
mean temperature change, and sea-level rise. 

Energy supply and demand are calculated in the
model. Energy supply of renewable and nonrenew-
able sources is dependent on resource constraints,

behavioral assumptions, and energy prices by
region. Energy demand is a function of population,
labor productivity, economic activity, technological
change, energy prices, and energy taxes and tariffs.
Transportation is one of three sectors (residential/
commercial and industrial are the other two sectors)
covered in the model, and passenger and freight
technologies and modes are included. Model inputs
consist of total service, service cost, vehicle technol-
ogies and their characteristics, price and income
elasticities, technical change, percentage of popula-
tion licensed to drive, and average speeds. The
transportation system coverage includes automo-
biles, light trucks, buses, rail, air, and motorcycles
for passenger modes; and trucks, rail, air, ship, pipe-
line, and motorcycles for freight modes. Seven
major energy sources are modeled: oil, gas, coal,
biomass, resource-constrained renewables, nuclear,
and solar. 

Limitations

Similar to the MARKAL-MACRO, individual
equipment policies and certain detailed technology
modeling would require off-line analysis and then
aggregate implementation within MiniCAM. The
model capabilities lie only at the national level and
do not extend to the regional or state level. Due to
the combination of three models within MiniCAM,
the complexity of running the model may require
specialized knowledge of the operations. In addi-
tion, because the model also contains scientific cli-
mate and atmospheric conditions, interpretation of
the MAGICC results may require specialized
knowledge in climatology. However, the three mod-
els within the MiniCAM can be run independently
to narrow the analytical focus, and the results from
each model can be interpreted separately.

Resources

The current MiniCAM Model11 has an executable
file size of about 1 MB and the data input files are
about the same size. The sourcecode is approxi-

10 MiniCAM Model contact: Son H. Kim, Pacific North-
west National Laboratory, skim@pnl.gov (301-314-6763)
or Mariana Vertenstein, mvertens@ucar.edu (303-497-
1349); also see http://www.pnl.gov/aisu/pubs/chinmod2.
pdf and http://sedac.ciesin.org/mva/minicam/MCHP.html.

11 As of 2005, the version of the MiniCAM Model
described here has been superseded by ObjECTS-Mini-
CAM, a C++ version of the model that incorporates
object-oriented programming designs for increased flexi-
bility, maintenance, and modeling detail.
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mately 903 kilobytes. Run time is approximately 30
seconds on a Pentium 4 (1.7 GHz), depending on
the number of scenarios run at one time. MiniCAM
can operate on a Pentium III or higher speed proces-
sor. FORTRAN is the modeling language using a
MicroSoft Visual Studio compiler. However, there is
a graphics user interface (GUI) front-end to the
model if desired, which requires MicroSoft Acesss
and Excel software. With the GUI, the user can run
multiple scenarios at once and query, view, and
chart results. Currently five or more people use
MiniCAM at PNNL, and its maintenance requires
two individuals. 

GREET MODEL

Overview

The GREET model is intended to serve as an ana-
lytical tool for use by researchers and practitioners
in estimating fuel-cycle energy use and emissions
associated with alternative transportation fuels and
advanced vehicle technologies.12

GREET, maintained by Argonne National Labora-
tory (ANL), provides full fuel-cycle emissions analy-
sis from wells to wheels, which represents emissions
from all phases of production, distribution, and use
of transportation fuels. Besides the fuel-cycle
GREET model (GREET Series 1), there is a vehicle
cycle model (GREET Series 2) that simulates emis-
sions and energy use of direct input sources such as
vehicle production, disposal, and recycling. ANL is
currently finalizing a new version of GREET Series
2 for release. The strength of GREET is that it ana-
lytically compares energy use and emissions from
vehicle technologies matched with many fuels, espe-
cially very advanced alternative fuels, over the entire
fuel cycle. Emissions in the model include the fol-
lowing: GHGs (CO2, methane, and nitrous oxide),
NOx, HC, CO, sulfur dioxide, and particulate mat-
ter. Other versions of the model have also included
toxic pollutants, such as formaldehyde, acetalde-
hyde, 1,3-butadidine, and benzene (Winebrake et al.
2000).

Structure

The beauty of GREET is that it has a substantial
combination of vehicle technologies and fuel types.
GREET contains the following powertrains: con-
ventional, direct injection, spark ignition, compres-
sion ignition, hybrid electric vehicles (which can be
grid connected or not), electric vehicles, and fuel cell
vehicles. Fuel types are also numerous: gasoline
(reformulated or nonreformulated), diesel and low
sulfur diesel, compressed natural gas, liquefied
petroleum gas, liquefied natural gas, dimethyl ether,
Fischer-Tropsch (FT) diesel, gaseous and liquid
hydrogen, methanol, ethanol, biodiesel, and electric-
ity. The GREET model contains more than 85 fuel
production pathways and more than 75 vehicle/fuel
combinations. These powertrains and fuel types can
be produced from several feedstocks: petroleum,
natural gas, flared gas, landfill gas, corn, cellulosic
biomass, soybeans, and electricity. GREET is an
excellent model to determine individual vehicle
emissions and would be valuable in assisting evalua-
tion of new transportation fuels and advanced vehi-
cle technologies. EPA has incorporated GREET into
their air emissions MOVES Model. 

Limitations

GREET applies only to light-duty vehicles; however,
this does not preclude it from being used for other
vehicle types in the future. GREET does not include
a vehicle choice model to forecast what people
might purchase based on consumer preferences, but
GREET output (total fuel-cycle emissions factors)
can be used with future vehicle technology projec-
tions to get a more complete picture of the environ-
mental impacts of these vehicle populations.
Additionally, the model may be used in combination
with policy options to reduce emissions and set
emissions standards to achieve a goal. 

Resources

The hardware requirements to run and operate the
model are GREETGUI (GREET with a GUI inter-
face or front end), which operates on PCs with
Microsoft Windows 2000 or later. Minimum hard-
ware requirements are a Pentium III processor at
166 megahertz (MHz) or higher, at least 64 MB
RAM; and at least 30 MB of free space on the hard

12 GREET Model contact: Michael Wang, Argonne
National Laboratory, mqwang@anl.gov (630-252-2819);
also see http://www.transportation.anl.gov/pdfs/TA/153.pdf.
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drive. The recommended hardware profile is a Pen-
tium processor at 400 MHz or higher, 128 MB or
more of RAM, 100 MB of free hard disk space or
more (Argonne 2001). GREET uses an Excel
spreadsheet and Visual Basic. Use of GREET
requires installation of MS Excel on a PC. Future
plans are to convert it to C language in 2006.

GREET can also be run as a spreadsheet model
that takes about 5 MB on an Excel spreadsheet.
GREET recently added a Monte Carlo simulation
module that stochastically generates a distribution
rather than a point estimate. Running the model
would normally be almost instantaneous, but for
Monte Carlo simulations with Crystal Ball commer-
cial software, run times may be approximately 3½
hours. Four people developed and are currently
maintaining and running GREET at ANL. 

TAFV MODEL

Overview

The Transitional Alternative Fuels and Vehicle
Model13 represents economic decisions among auto
manufacturers, vehicle purchasers, and fuel suppli-
ers, including distribution to end users. The model
simulates decisions during a transition from current
fuels to alternative fuels and traditional vehicles to
advanced technology vehicles. Limited availability
of alternative fuels, including refueling infrastruc-
ture, and availability of alternative fuel vehicle tech-
nologies are interdependent. TAFV assumes retail
alternative fuel providers will maximize profits and
spread capital costs across outlets to increase
availability. 

Structure

TAFV contains a model for predicting the choice of
alternative fuel and alternative vehicle technologies
for light-duty motor vehicles. The nested multino-
mial logit mathematical framework is used to esti-
mate vehicle choice among technologies and fuel
type combinations based on consumer preferences
and vehicle attributes. Vehicle choice is dependent

on prices, fuel availability, and the diversity of vehi-
cle offerings (all endogenous) as well as luggage
space, refueling time, vehicle performance, and
cargo space (all exogenous parameters). Alternative
fuel vehicles have three costs to vehicle manufactur-
ers: capital costs, variable costs, and costs associated
with diverse vehicle offerings. Calibration of the
model through some key parameters, such as the
value of time, the value of fuel availability, and dis-
count rates, is based on existing literature. A spread-
sheet model has been developed for calibration and
preliminary testing. TAFV includes a range of vehi-
cle- and fuel-related policies, including taxes or sub-
sidies, federal mandates for vehicle acquisition (i.e.,
policies such as the Low Emission Vehicle Program
and the Energy Policy Act). In addition, TAFV
tracks GHG emissions from fuel production and
vehicles using GREET-based emissions factors.

Limitations

Limitations of TAFV are that it includes only light-
duty vehicles; growth rates in transportation
demand and oil and gas prices are exogenous; it is
national (U.S.) in scope, omitting regional detail and
international trends in vehicle use or GHG emis-
sions; and it assumes competitive behavior under
complete foresight. 

Resources

The model is quite small at 208 kilobytes, but
inputs could be a few megabytes of spreadsheet
data. The main program is written in the GAMS
language. TAFV uses the MINOS5 and CONOPT2
nonlinear optimization solvers. The sourcecode is
about 111 kilobytes in GAMS language, but the
model requires more than 100 MB to execute. A
model run takes approximately 30 to 60 minutes on
a Pentium III 1,000 MHz PC to solve for the
dynamic market equilibria (endogenous prices and
quantities). Work files generated during a run can
approach 1 gigabyte. Users should have 128 MB or
more memory. TAFV can be run on Windows,
Linux, and Unix, depending on which platform the
licensed GAMS software resides. Maintenance cur-
rently involves a team of two; however, plans in the
future are for a team of five over the next two years.
TAFV has formed the foundation for an extended

13 TAFV Model contacts: Paul Leiby, leibypn@ornl.gov
(865-574-7720) and David Greene, Oak Ridge National
Laboratory, and Jonathan Rubin, University of Maine;
also see http://pzl1.ed.ornl.gov/altfuels.htm.
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hydrogen vehicle transition model under develop-
ment, HyTrans. 

SUMMARY OF THE MODELS

Table 1 contains a short summary of the models
reviewed in this study. The appendix provides docu-
mentation and more detailed information about each
model, especially publications and studies that use
the models. The appendix is meant to provide poten-
tial model users with a better understanding of how
to apply the models to a specific problem and use. 

CONCLUSION

Several very good models are available from which
to choose when conducting GHG emissions studies,
scenarios, or emissions estimates and forecasts for
the transportation sector. Depending on the level of
regionality and detail required, the model of choice
will vary. Some of the models are more applicable at
the aggregate level, such as MiniCAM and
MARKAL-MACRO. Others such as NEMS,
GREET, and TAFV are very detailed at the technol-
ogy level. Maintenance, usability, resources, and
analytical capabilities should be matched to the
model choice. 
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APPENDIX A: MODEL USES

NEMS Model 

General Topics of Energy-Related 
NEMS Studies 

� Impacts of existing and proposed energy tax poli-
cies on the U.S. economy and energy system.

� Impacts on energy prices, energy consumption,
and electricity generation in response to carbon
mitigation policies such as carbon fees, limits on
carbon emissions, or permit trading systems.

� Responses of the energy and economic systems to
variations in world oil market conditions as a
result of changing levels of foreign production
and demand in developing countries.

� Impacts of new technologies on consumption
and production patterns and emissions.

� Effects of specific policies on energy consump-
tion, such as mandatory appliance efficiency and
building shell standards or renewable tax credits.

� Impacts of fuel-use restrictions on emissions and
energy supply and prices; for example, required
use of oxygenated and reformulated gasoline or
mandated use of alternative fuel vehicles.

14 The appendix, which follows this section, includes
additional bibliographic references.
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� Impacts on the production and price of crude oil
and natural gas resulting from improvements in
exploration and production technologies.

� Impacts on the price of coal resulting from
improvements in productivity.

� Numerous energy-related studies for Congress or
federal agencies: carbon and vehicle emissions
modeling for Congress, EPA, and DOE. 

� Transportation-specific model runs for the White
House and other governmental agencies:

* Transportation gasoline tax model runs for
the White House, 1996. These model runs led
to the 3¢ tax on gasoline implemented by the
administration in 1996.

* U.S. Department of Energy, Energy Informa-
tion Administration, Analysis of Corporate
Average Fuel Economy Standards for Light
Trucks and Increased Alternative Fuel Use,
SR/OIAF/2002-05 (Washington, DC: March
2002). This service report assesses the impacts
of more stringent corporate average fuel econ-
omy (CAFÉ) standards on energy supply,
demand, prices, macroeconomic variables
where feasible, import dependence, and emis-
sions. This study addresses the provisions of
H.R. 4, S. 804, and S. 517 that pertain to
light-vehicle fuel economy in the transporta-
tion sector. A qualitative discussion is pro-
vided for the alternative fuels provisions
included in S. 1766 and H.R. 4 at the request
of the Senate Committee on Energy and Natu-
ral Resources.

* ______. The Transition to Ultra-Low-Sulfur
Diesel Fuel: Effects on Prices and Supply, SR/
OIAF/2001-01 (Washington, DC: May 2001).
This study evaluates EPA’s ultra-low-sulfur die-
sel fuel regulations for heavy-duty trucks at the
request of the House Committee on Science.

* ______. The Impacts of Increased Diesel Pene-
tration in the Transportation Sector, prepared
by the Office of Integrated Analysis and Fore-
casting (Washington, DC: August 1998).
These model runs and scenarios were devel-
oped for the Office of Transportation Technol-
ogies within DOE.

* Request from EPA on travel and emissions
associated with various heavy-duty truck emis-
sions standards levels for criteria pollutants.

* Request from the U.S. Government Account-
ability Office (GAO) to estimate future alter-
native fuels penetration levels.

* Request from GAO to estimate alternative fuel
vehicle sales and stocks effect of the Energy
Policy Act.

* NEMS vehicle travel equations were used to
develop a DOT, Federal Highway Administra-
tion (FHWA) VMT model. The proposed
VMT model development was an interagency
effort between EIA, EPA, and FHWA.

MARKAL-MACRO Model

MARKAL-MACRO was used for a project on
“Policies and Measures for Common Action” con-
ducted by the Annex I Expert Group on the United
Nations (UN) Framework Convention on Climate
Change.15

As part of a study by the OECD Secretariat on
the environmental implications of energy and trans-
port subsidies, the Italian participant used an “elas-
tic” version of MARKAL to evaluate the impact of
removing financial subsidies from the electric sector
in Italy. The many ways in which financial interven-
tions affect the electric supply industry were
searched out, and MARKAL was used to assess
their effect on electric and energy system costs and
CO2 emissions. 

The Energy Technology Systems Analysis Pro-
gramme (ETSAP) of IEA continues to provide a
multinational capability to determine the most cost-
effective national choices to limit future emissions of
greenhouse gases by using consistent methodology
that offers a basis for international agreement on
abatement measures. The basic MARKAL Model
continues to serve national interests, as illustrated
by its use for a major national research and develop-
ment (R&D) appraisal in the United Kingdom, its
use to help develop the national least-cost energy
strategy in the United States, and its acceptance by a
wider international community. Outside ETSAP,
MARKAL was used in Taiwan and (in the form of

15 See http://www.etsap.org/annex5/main.html#3.1.
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MENSA) in Australia to inform the debate on
response strategies under the UN Framework Con-
vention on Climate Change. 

With the cooperation of the participants from
Italy, Japan, the United Kingdom, and the United
States, ETSAP contributed to the IEA study, “Elec-
tricity and the Environment.” Detailed descriptions
were provided of technologies available for electricity
supply and demand in the short and medium term,
including technical performance and engineering
costs. Specific data were drawn from the MARKAL
databases of the four cooperating countries. 

Although a common set of runs among the
ETSAP participants was delayed, four countries
participated in CHALLENGE, a cooperative inter-
national project on energy and environment systems
analysis. CHALLENGE consists of a network of
scientists from Eastern and Western European coun-
tries. The project is intended to facilitate interna-
tional negotiations and cooperation by providing a
scientific basis for decisions on response strategies to
reduce environmental stresses and climate risks due
to energy use. 

During Annex V, some participating countries
provided inputs to major international studies by
IEA, OECD, and the Annex I Expert Group on the
UN Framework Convention on Climate Change.

ETSAP originated as an IEA program to help
establish energy technology R&D priorities on the
basis of the needs of all the IEA countries. A com-
mon methodology and comparable databases have
been the touchstone of the program since its very
beginnings. The standard MARKAL Model has
continued to be the focus of the group’s analyses,
and recurring efforts have been made to assure rea-
sonable consistency in the national databases. 

GREET Model

The major applications of the GREET Model
(reports available at www.transportational.gov)
consist of the following: 

1. Energy and GHG emissions effects of fuel eth-
anol (for the state of Illinois, DOE, the U.S.
Department of Agriculture, and EPA).

2. Energy and emissions effects of natural gas-
based transportation fuels for DOE.

3. Well-to-wheels analysis of energy and GHG
emissions of advanced vehicle technologies
and transportation fuels for General Motors
(three volume report). 

4. Fuel-cycle energy and emissions effects of the
fuels petitioned to DOE under the Energy Pol-
icy Act. 

5. Work with EPA to integrate GREET into
EPA’s next generation of motor vehicle emis-
sions model (called MOVES).

APPENDIX B: MODEL BIBLIOGRAPHY 
AND PUBLICATIONS

NEMS Model

� Numerous energy-related studies for Congress or

federal agencies:

U.S. Department of Energy, Energy Information
Administration, Analysis of Corporate Aver-
age Fuel Economy (CAFÉ) Standards for
Light Trucks and Increased Alternative Fuel
Use, SR/OIAF/2002-05 (Washington, DC:
March 2002).

______. Analysis of Efficiency Standards for Air
Conditioners, Heat Pumps, and Other Prod-
ucts, SR/OIAF/2002-01 (Washington, DC:
February 2002).

______. Analysis of Strategies for Reducing Mul-
tiple Emissions from Power Plants: Sulfur
Dioxide, Nitrogen Oxides, and Carbon Diox-
ide, SR/OIAF2000-05 (Washington, DC:
December 2002).

______. Impact of Renewable Fuel Standard/
MTBE Provisions of S. 1766, SR/OIAF/2002-
06 (Washington, DC: March 2002).

______. Impact of Renewable Fuel Standard/
MTBE Provisions of S. 517: Addendum, SR/
OIAF/2002-06 (Washington, DC: April 2002).

______. Impacts of a 10-Percent Renewable
Portfolio Standard, SR/OIAF/2002-03 (Wash-
ington, DC: February 2002).

______. Impacts of the Kyoto Protocol on U.S.
Energy Markets & Economic Activity, SR/
OIAF/98-03 (Washington, DC: October
2002).
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______. Measuring Changes in Energy Efficiency
for the Annual Energy Outlook 2002 (Wash-
ington, DC: 2002).

______. Reducing Emissions of Sulfur Dioxide,
Nitrogen Oxides, and Mercury from Electric
Power Plants, SR/OIAF/2001-04 (Washing-
ton, DC: September 2001).

______. Strategies for Reducing Multiple Emis-
sions from Electric Power Plants with
Advanced Technology Scenarios, SR/OIAF/
2001-05 (Washington, DC; October 2001).

� Carbon and vehicle emissions modeling for Con-
gress, EPA, and DOE:

Interlaboratory Working Group on Energy-Effi-
cient and Low-Carbon Technologies, Scenar-
ios for a Clean Energy Future (Oak Ridge
National Laboratory, Lawrence Berkeley
National Laboratory, Pacific Northwest
National Laboratory, National Renewable
Energy Laboratory, and Argonne National
Laboratory), ORNL/CON-476 and LBNL-
44029 (Oak Ridge, TN: November 2000).

______. Scenarios of U.S. Carbon Reductions:
Potential Impacts of Energy-Efficient and
Low-Carbon Technologies by 2010 and
Beyond (Oak Ridge National Laboratory,
Lawrence Berkeley National Laboratory,
Pacific Northwest National Laboratory,
National Renewable Energy Laboratory, and
Argonne National Laboratory) (Oak Ridge,
TN: September 1997).

U.S. Department of Energy, Energy Information
Administration, Analysis of the Climate
Change Technology Initiative: Fiscal Year
2001, prepared for the U.S. House of Repre-
sentatives Committee on Science, SR/OIAF/
2000-01 (Washington, DC: April 2000).

______. Analysis of the Climate Change Technol-
ogy Initiative, prepared for the U.S. House of
Representatives Committee on Science, SR/
OIAF/99-01 (Washington, DC: April 1999).

______. Analysis of the Impacts of an Early Start
for Compliance with the Kyoto Protocol, pre-
pared for the U.S. House of Representatives
Committee on Science, SR/OIAF/99-02
(Washington, DC: July 1999).

______. Impacts of the Kyoto Protocol on U.S.
Energy Markets and Economic Activity, pre-
pared for the U.S. House of Representatives
Committee on Science, SR/OIAF/98-03
(Washington, DC: October 1998).

______. Service Report: Analysis of Carbon Sta-
bilization Cases, prepared for the U.S. Depart-
ment of Energy, Office of Policy and
International Affairs, SR-OIAF/97-01 (Wash-
ington, DC: October 1997).

� Transportation-specific model runs for the White
House and other governmental agencies:

U.S. Department of Energy, Energy Information
Administration, Analysis of Corporate Aver-
age Fuel Economy (CAFÉ) Standards for
Light Trucks and Increased Alternative Fuel
Use, SR/OIAF/2002-05 (Washington, DC:
March 2002). 

______. The Transition to Ultra-Low-Sulfur Die-
sel Fuel: Effects on Prices and Supply, SR/
OIAF/2001-01 (Washington, DC: May 2001).
This study evaluates EPA’s ultra-low-sulfur die-
sel fuel regulations for heavy-duty trucks at the
request of the House Committee on Science.

______. The Impacts of Increased Diesel Penetra-
tion in the Transportation Sector, prepared by
the Office of Integrated Analysis and Forecast-
ing (Washington, DC: August 1998). 

MiniCAM Model

Edmonds, J. and J. Reilly, Global Energy: Assessing
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Brenkert, “Uncertainty in Future Global Energy
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Commerce (Springfield, VA: National Technical
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Edmonds, J.A., M.A. Wise, and C.N. Mac-
Cracken, Advanced Energy Technologies and
Climate Change: An Analysis Using the Glo-
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Laboratory, 1994).
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Estimating Confidence Intervals for Transport Mode Share

ABSTRACT

One of the common statistics used to monitor
transport activity is the total travel by a particular
method or mode and, for each mode, this share is
routinely expressed as a percentage of total per-
sonal travel. This article describes a simple model
to estimate a confidence interval around this per-
centage using Monte Carlo simulation. The model
takes into account the impact of both measurement
errors in counting traffic and daily variations in
traffic levels. These confidence intervals can then be
used to test reliably for significant changes in mode
share. The model can also be used in sensitivity
analysis to investigate how sensitive the width of
this interval is to changes in the size of the measure-
ment errors and daily fluctuations. A bootstrap
technique is then used to validate the Monte Carlo
estimated confidence interval.

INTRODUCTION

The last 5 to 10 years in United Kingdom transport
has seen the establishment of an increasing number
of targets against which the performance of the
transport system is to be measured. Many of these
targets are expressed in precise numerical terms,
and sophisticated monitoring regimes are in place

KEYWORDS: Mode share, confidence intervals, Monte
Carlo, bootstrap.
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to determine the current value of the measure of
interest. In some cases, this monitoring can provide
complete information about the measure (the pop-
ulation), but more commonly only information on
a sample of the measure is possible. Information
from the sample is then used to infer the behavior
of the population. Statistics tell us that all samples
are subject to variation and in judging the value of
an indicator (and in particular whether a target has
been achieved) some account of this variability is
necessary. Therefore, it is important to ensure that
the precision of the monitoring regime that esti-
mates the required indicator is compatible with the
specified target level for the indicator.

The following section presents the background to
the statistic to be modeled in this paper: the percent-
age of people who travel by a particular mode. The
next section describes the Monte Carlo technique
used to estimate the confidence interval around this
statistic. The following section presents the survey
methodology used by the city of Leeds in the United
Kingdom to collect the base data. By using the
information on how the base data were collected,
ranges can be set for likely measurement errors
and daily variation, which are detailed in the next
two sections. A number of the implicit assumptions
that result from this exercise are then highlighted.
We next report on the application of the Monte
Carlo technique and the issues surrounding the sen-
sitivity analysis and sample size determination. The
penultimate section uses the technique of bootstrap
estimation to “validate” the Monte Carlo estimates
of mode share deviation. The final section provides
some suggestions on how the technique can be
adapted for other purposes. 

MODE SHARE STATISTICS

Local government authorities regularly undertake
surveys to measure the volume of traffic and travel
in their areas to aid in planning services and target-
ing investment. The measure of travel usually
adopted is that by people rather than by vehicle.
This allows for a more meaningful measure of travel
to be estimated, because, for example, a fully loaded
bus carries far more people than a single car. These
surveys can range over a designated area (e.g., a

town or city), be concerned purely with journeys
across a designated cordon, or may result from an
individual or household travel diary. 

Because the volume of total travel in different
areas varies, it is common to present, for each mode,
these volumes as a share of the total travel volume
in the area and to express this share as a percentage.
This then enables a comparison to be made of mode
shares between areas. Also, if such surveys are con-
ducted at regular time intervals, then trends in each
mode of travel can be identified. 

Concerns arise when these surveys are based on
a small sample size, maybe as few as one full day
of observation (Royal Statistical Society 2005;
USDOT 2003). These small sample sizes should
not, however, be much of a surprise since, typically,
a six-hour survey in a large metropolitan area may
cost upwards of £10,000 (about $18,000). Obtain-
ing a more reliable estimate of the mode share and
the precision of this estimate would require more
survey days; just to halve the standard error of the
mean estimate requires three extra days, bringing
the cost of the survey to £40,000 (about $72,000).
But without an indication of this sampling vari-
ability, it is difficult to conclude that any observed
changes are real and statistically significant.

Some survey techniques, such as stated prefer-
ence surveys, attempt to estimate mode share, and,
since they use well-understood statistical models,
they are able to provide confidence bounds around
any mode share estimates (Ortuzar and Willumsen
1994). Such surveys are, however, typically con-
cerned with making a choice that involves at least
one hypothetical alternative. Furthermore, they have
other errors that may lead to greater imprecision
than already present and are costly to administer
and analyze. 

The study described in this paper focuses on an
alternative form of data, namely revealed preference
data, where the modes actually used by individuals
are recorded. Also, this information is provided in
an aggregate form of travel data (i.e., the number of
people traveling by the different modes) rather than
the disaggregate form of household or individual
travel diaries.
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MONTE CARLO SIMULATION

Simulation is an attempt to replicate a real world
phenomenon using a model and a set of simplifying
assumptions. One form of simulation that involves
the assessment of the behavior of random variables
(e.g., observed traffic flow or vehicle occupancy) is
the Monte Carlo approach. The method assumes
that the traffic flow (or other variable) follows a
statistical probability distribution. As part of the
simulation process, repeated instances of random
observations are taken from this assumed distribu-
tion, and the impact of these random draws on
some output measure is recorded. Using this simple
sampling approach, many replications can be made,
and a reliable estimate of the output measure and its
spread can be obtained.

This paper uses the Monte Carlo approach to
simulate the observed differences that can occur as a
result of measurement error and daily variation asso-
ciated with the conduct of a cordon traffic survey. By
obtaining a large simulated set of these errors and
variations and using them to “correct” the observed
count, it will be possible to calculate a set of confi-
dence intervals around the output measure, in this
case mode share.

While results from the statistical literature
allow the distribution for a mode share to be
established (see appendix), this closed-form distribu-
tion approach contains a number of disadvantages:

� reliable estimates of the parameters for the dis-
tributions are difficult to obtain, because few
sample observations are available;

� incorporating sophisticated multivariate relation-
ships into the model is necessary, because, for
example, the estimate of the share of travel by
rail will impact on the share by all other modes;
and

� the model and the methodology need to be easily
explainable to nonstatisticians; mathematical
models involving Greek symbols are not useful to
such an audience.

Monte Carlo approaches have been used previ-
ously in the transportation field. These include
structural reliability (Pothisiri and Hjelmstad 2003;
Zhao and Ang 2003), traffic modeling (Cassidy et
al. 1994; Tarko 2000), network reliability (Chen et

al. 1999, 2002; Lam and Xu 1999), and activity
modeling (Kreihich 1979; Veldhuisen et al. 2000;
Castiglione et al. 2003). 

Perhaps the most similar study to the work
described here is that reported in Williamson et al.
(2002), where the Monte Carlo approach was used
to investigate whether short period traffic counts (of
5-, 10-, and 20-minute duration) can accurately rep-
resent hourly traffic counts. The first stage was to
assume a Weibull distribution for the count data and
to estimate the scale and shape parameters of the dis-
tribution. In the next stage, 1,000 instances of 60
observations (1 observation for each minute) from
the appropriate Weibull distribution were generated
and used to construct a cumulative distribution plot.
From this plot, 90% confidence intervals were esti-
mated, and if the actual observed hourly count fell
within this interval then the estimation was deemed
a success. An application of this methodology
showed that contiguous 20-minute counts were
required in order to accurately estimate an hourly
traffic count. 

SURVEY METHODOLOGY

This section describes the survey methodology used
to collect the data for the example application of the
Monte Carlo simulation. A thorough understanding
of the survey methodology is important, because
this will later help in defining the ranges for mea-
surement errors and daily variations. All the data
here (except rail data) were obtained from on-street
observation by a team of enumerators, where all
movements in one direction, across a datum line,
were recorded. A discussion of the methodology for
each mode of travel follows.

Cars. Each enumerator was asked to count the
number of cars, categorized by the number of occu-
pants (1, 2, 3, and 4 or more). Depending on the
volume of traffic on the road, they may also have
been required to count goods vehicles and cyclists.

Goods vehicles and cyclists. If the person who
was counting cars could not handle this category of
traffic, another enumerator was used to count these
vehicles. Cyclists using dedicated paths or the pedes-
trian pavement were included in the count.

Buses. An enumerator recorded the type of bus
observed and made a roadside assessment, without
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boarding the bus, of how full it was. Four types of
buses were counted: mini, single deck, double deck,
and articulated. The occupancy was recorded as
empty, one-quarter full, half full, three-quarters full,
full, and full with standing passengers. 

Rail. The local Passenger Transport Executive
(PTE) provided an estimate of the average volume
of passengers arriving at the central train station.
This estimate was based on onboard head count
surveys conducted by train operator staff on three
days during a year and was supplemented by addi-
tional PTE commissioned counts. They were then
reconciled with other databases to provide an
adjusted estimate.

Walk. The number of people walking across the
datum line was recorded.

The surveys of the 34 radial roads into Leeds
City Centre (figure 1) were conducted over 17 sepa-
rate weekdays in May 2002 from 7:30 a.m. to 9:30
a.m. and 2:00 p.m. to 6:00 p.m. The number of

radial roads surveyed on each day varied from one
to up to five, but each road was counted only once.

The next two sections present ranges for the pos-
sible accuracy of the counts and the degree of daily
variability during the morning peak. To a large
degree, a Delphic approach (Dajani and Gilbert
1975), involving transport planners, survey manag-
ers, and statisticians, was used to arrive at a consen-
sus opinion on the size of these error ranges. Other
ranges may be used without invalidating the general
Monte Carlo approach presented here.

MEASUREMENT ERROR

The measurement error assesses the accuracy of the
enumerator counts. This is equivalent to comparing
two (or more) counts of the same thing at the same
time by different people to see how close they are in
agreement. Clearly, this will depend on the skill and
expertise of the staff involved. 

FIGURE 1  Map Showing the Leeds Central Cordon and Arterial Corridors
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Cars. The Traffic Appraisal Manual (DfT
2003) suggests that a skilled enumerator can
achieve a 95% confidence interval accuracy of
±10%. Our own validation checks conducted by
a second enumerator suggest that an interval of
between ±5% and ±15% is usual. An error range
of ±10% was selected for estimating the volume
of single-occupant cars and a slightly larger range
of ±12% for cars with more than one occupant,
because this is a slightly more complex task.

Buses. It is likely that buses will be counted with
more accuracy than cars, since they are a more vis-
ible presence on the road. Conversely, the measure
of occupancy is likely to be inaccurate, because esti-
mations of the occupancy must be made from the
roadside. Table 1 gives the volume measurement
and occupancy estimation errors for each type of
bus. Minibuses have an error range similar to cars.
All other bus types have a reduced error range,
because they should be more noticeable. The error
in estimating the occupancy of minibuses is low,
because it is relatively easy for a quick and near
precise estimate to be made. It is slightly more diffi-
cult to estimate the occupancy of single-deck buses.
The most difficult task is estimating the vehicle
occupancy of double-deck and articulated buses:
with double-deck buses, it is very difficult to judge
how full the top deck is; and with articulated buses,
there is a large volume of information to assess
visually. For these reasons, the occupancy error was
set high at ±15%.

Rail. The PTE who provided the estimates for rail
patronage judged the numbers to be accurate within
a range of ±5%.

Walk and pedalcycle. Both these volumes are
thought to be recorded at similar levels of accuracy
to each other, near the ±10% mark.

Powered two-wheelers (PTWs). A PTW vehicle
can be an inconspicuous part of the traffic. They do
not necessarily keep to designated lanes and can
easily speed along the carriageway or weave between
lanes. This rational led to a high measurement error
range of ±15%.

So far in this section, only the errors specific for
each mode of travel have been quantified. In addi-
tion, it is not unreasonable to assume that there is a
global error that affects all the modes counted on
the same day. This may be due to generally unfa-
vorable (foggy or wet) or favorable (dry and warm)
roadside conditions. This global error is in addition
to the mode-specific errors for all road-based vol-
umes (i.e., not rail) and in this way modifies the
mode-specific errors. 

For the global volume errors, the range was set at
±5%. This means that, for example, a sample value
for the error in estimating the volume of single-
occupant car traffic was in the range of ±15% (a
mode-specific element of ±10% and a global ele-
ment of ±5%). Buses also have a global occupancy
error to reflect the fact that in certain conditions
(e.g., misty windows) occupancy in all buses will be
difficult to estimate and also that rounding (to the
nearest quarter) is involved. For buses, the global
volume error was the same as for the other road-
based modes, and the global occupancy error was
set high at ±15%. 

DAILY VARIATION

In addition to measurement error, taking into
account the natural daily fluctuations that occur in
traffic volumes is necessary. These variations can
result from many causes; for example, a person may
change his or her mode of travel or time of departure
on successive days. Even if we were to count traffic
with perfect accuracy, these daily variations will still
be present in our data, and, in this section, estimates
of the extent of these fluctuations are provided.

TABLE 1  The Range of Measurement Errors 
for Buses

Bus type
Volume  
errors

Occupancy 
errors

Minibus ±10% ±5%

Single deck ±5% ±10%

Double deck ±5% ±15%

Articulated ±5% ±15%



64 JOURNAL OF TRANSPORTATION AND STATISTICS V8, N2 2005

Cars. The daily variation in the volume of people
traveling by car is specified for each category of car
occupancy. These are set at ±5% for single- and
double-occupant cars, ±8% for three-occupant cars,
and ±12% for four or more occupants in a car.
Some published evidence supports these ranges of
variation. Phillips (1979) used a range of coefficients
of variation of between 2.5% and 15% in deter-
mining the sample size for daily traffic flow esti-
mation. Fox et al. (1998) suggested that a range
for the coefficient of variation of 8% to 15% is
appropriate, and, in the peak period, this value
can be at the low end of this range (near 10%). 

Buses. Buses run on a regular schedule each day,
and, therefore, we would expect only small day-to-
day variations in the number of buses counted. To
quantify this, information reported in the 2003
West Yorkshire Local Transport Plan (WYPTA
2003) (which includes Leeds) shows that only 1.4%
of all buses were canceled and of those that ran,
90% were less than 6 minutes late. In addition to
this variation in the volume of scheduled buses,
there was also variation in the average occupancy of
buses. Both the volume and the occupancy variation
are limited to ±5%.

Rail. Like buses, the volume of rail travel should
be consistent from day to day. Statistics from the
Strategic Rail Authority (2002) for the commuter
rail operator in West Yorkshire show that the level
of service reliability is comparable to that for buses.
The percentage of train cancellations is 1.5%; how-
ever, the punctuality is slightly worse for trains, with
just 83.8% of trains arriving within 5 minutes of
their scheduled time (but 91.7% within 10 minutes).
The range of variation was, therefore, set at ±5%,
similar to the level for buses. 

Walk. The volume of walk traffic is anticipated
to vary slightly more than motorized methods of
travel, because the traveler may easily substitute
another mode (e.g., as a car passenger some days of
the week or via bus on rainy days). The range was,
therefore, set at ±10%.

PTWs. This mode is thought to be a highly vari-
able form of travel. Statistics from the Department
for Transport (1994) show that nearly 40% of
motorcycle trips take place in the summer months
and only 16% in the winter months. Many of these

summer journeys will be for leisure purposes, and,
because the primary concern here is with morning
peak commuting trips, this suggests a range less
than that indicated by the statistics. The range was
set at ±12%.

Pedalcycle. Like walking and PTWs, this mode is
thought to be highly variable on a day-to-day basis
for many of the same reasons (DfT 1994, 1996).
Cycling can, however, be even more unpleasant
during adverse weather conditions than other
modes (primarily for safety and comfort reasons)
and so the variation range was set high at ±15%.

In addition to the mode-specific ranges of vari-
ation described here, an additional global element
of variation was applied (in a similar manner to the
global measurement error). This range of variation
was set at ±5%. As a result, and referring to the
values suggested for cars in this section, a com-
pounded variation range of ±10% for single- and
double-occupancy cars (a mode-specific element of
±5% and global element of ±5%) is possible.

MONTE CARLO SUMMARY

Before progressing to an illustrative example to
show how this information is able to produce confi-
dence intervals for mode share statistics, a few
points are worth making.

� Two distinct sources of uncertainty. The mea-
surement error represents the accuracy of the
count, while the daily variability represents the
fluctuation in these counts. Even if it were possi-
ble to count with 100% accuracy, there would
still be daily variability, and, even if every traveler
made the same journey by the same mode at the
same time each day, there would still be differ-
ences in what enumerators counted.

� Error structures. Depending on the survey meth-
odology adopted, the structure of the errors will
change. If, instead of classifying cars by the occu-
pants, one person counts both cars and people
separately, it is likely that the measurement errors
will be negatively correlated (i.e., they are able to
count vehicles accurately but people inaccurately
or vice versa).

� Expertise required. To set the ranges for the
errors and variability requires some expertise and
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assumptions. One approach is to start with a
fairly well understood measure (e.g., the accuracy
in enumerating cars) and set other rates relative
to this. 

� Count duration. The range of daily variation
will depend on the schedule of when counts are
conducted. The ranges for a survey of 25 loca-
tions, all conducted on 1 day, should be larger
than an alternative survey where 5 locations are
counted on 5 days and their values summed.

� Correlation between days. In the model specified
here, no correlation exists in the errors or the
variation between consecutive days. If it appears
that, for example, high errors in counting at
locations on one day would lead to a tendency to
high errors on other days, then this could be
accommodated within the model framework
presented here.

� Limitations on model use. The model is purely
concerned with travel behavior in an aggregate
form and no information on the traveler’s indi-
vidual characteristics (e.g., gender, age, income) is
required or used. The model cannot, therefore,
anticipate the detailed results of policy interven-
tions or produce forecasts of future behavior.

EXAMPLE APPLICATION

To apply the Monte Carlo technique to the problem
of estimating confidence intervals, we used the Excel
spreadsheet package. Excel provides all the facilities
required to conduct the simulation (primarily the
generation of random numbers, although some care
is required; see Knusel 1998). It has the tools to
interpret the output (i.e., produce graphs and tables)
and is commonly available. 

One aspect that still needs to be defined is the
underlying distribution from which the sample
errors and levels of variation are drawn. The sim-
plest distribution available is the uniform distribu-
tion where each sample value within a range is
equally likely. This does not appeal intuitively,
because smaller error or variability values would be
more likely than larger values. This requirement
suggests that the normal distribution should be
used. The normal distribution does not, however,
have a limiting range; sampled values can extend

between plus and minus infinity. Clearly, these more
extreme values would not be expected to arise in
practice, so we adopted the convention that 95% of
the sampled error or variability rates should be
within the set ranges for errors or variability as
described above. The normal distribution is also
symmetric. If it is thought that the measurement
errors are one sided (i.e., either mostly under- or
overestimates), then it is possible to sample primarily
positive or negative values.

The sampling regime as described in this paper is
built within a workbook.1 A series of 17 worksheets
hold the morning peak data collected on each of the
17 survey days. Each of these worksheets contains
the following traffic information for all sites that
were counted on that survey day:

1. the existing base case as surveyed during May
2002,

2. the sampled values for the measurement error;
these errors are applied to the observed counts
so that the measurement errors they contain
are “corrected,”

3. the sampled daily variations; these are applied
to the “error corrected” values calculated in
step 2 to represent values that could reasonably
be counted on a different survey day,

4. the measurement error calculations for buses;
these calculations are more complex, because
they are disaggregated by the four vehicle
types and six occupancy levels,

5. the final results are the updated counts after
the application of both the measurement
errors and daily variations.

A summary spreadsheet accumulates the updated
counts for all 17 sites around the cordon to produce
an overall estimate of the mode share. 

The process of generating repeated measurement
errors and daily variations was achieved with the aid
of a simple Visual Basic macro and the resultant
mode shares recorded and graphed. Figure 2 shows
the distribution of the mode share for cars after
5,000 such samples were conducted, which took less
than 5 minutes to calculate on a 2GHz desktop PC.

The distribution has a mean of 60.3% and a
standard deviation of 0.71%. The distribution
appears normal with an estimated skewness of 0.01

1 Available from http://www.stephenclark.clara.net.
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and an (adjusted) kurtosis of 0.06, both of which
are close to the values expected for a normal distri-
bution. It is, therefore, possible to estimate a 95%
confidence interval for the car mode share between
58.9% and 61.7%. Similar confidence intervals can
be calculated for the other modes. It should be
noted that the resultant normal shape of this mode
share distribution does not depend on the normality
of the underlying sampling distribution; if a uni-
form sampling distribution is used, the same shape
results, albeit, with a different spread.

SENSITIVITY ANALYSIS

The measurement errors used here could be
improved on if further resources were devoted to
data collection. As an illustration of this possibility,
the question is posed as to what degree of improve-
ment would result from a halving in the mode-
specific error with which single-occupant cars are
counted and classified, from 10% down to 5%.
When the Monte Carlo simulation model is re-run
with this new error range, the interval reduces only
slightly to between 59.0% and 61.6%. 

A wider view of how sensitive the measure of
spread in the mode share of car is can be obtained
by graphing the standard deviation for a series of
values for one or more of the assumed ranges. Figure
3 shows how the standard deviation of the single-
occupant car mode share changes as the single-occu-
pant car-specific measurement error changes from
0% to 25% and the daily variation in single car
occupants changes from 0% to 25%. All other
ranges stay at their default values.

As expected, the standard deviation increases as
the ranges of variation increase. Even at a 0% value
for both ranges, variation remains in the mode share
for cars. This is due to the fact that the other modes
are still varying at their old levels, and, since we are

FIGURE 2  Distribution of Car Mode Share
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dealing with a share, their variability will also
impact on the variability of single-occupant travel
by car.

SURVEY IMPLICATIONS

Information on the degree of variability of the car
mode share statistic allows us to compute the mini-
mum sample sizes required to reliably detect a speci-
fied level of change. Using the following equation
for sample size estimation (Ortuzar and Willumsen
1994):

where
 is the required sample size,

 is the critical value of a % standard nor-
mal distribution,

s is the estimated standard deviation of the mea-
sured quantity, and 

 is the minimum required change to detect,
and an example of an absolute one percentage point
change as the target, the estimated sample size is:

which suggests that a sample size of two survey days
is required to be 95% sure that an observed change
of at least 1% in the average mode share for cars is
significant. Table 2 shows the required sample sizes
for a range of these changes for each of the three
main modes of travel, using each of the Monte
Carlo-derived estimates of the mode’s standard
deviation.

BOOTSTRAP ESTIMATION

The technique of bootstrap estimation falls within
the resampling family of techniques (Efron 1982;
Efron and Tibshirani 1993). It is particularly useful
when no simple expression is available to compute
the summary statistics for a measure or only a
limited sample size is available. The process essen-
tially involves taking repeated subsamples from a
larger sample (with or without replacement) and
calculating the statistic of importance based on this
subsample. The distribution of these subsample sta-
tistics is then used to infer information about the
population as a whole.

The bootstrap technique has had some applica-
tion within the transport field. Rilett et al. (1999)
used the technique to estimate the variance of free-
way travel time forecasts derived from an artificial
neural network. This allowed predictions to be
made of future confidence intervals for journey
times along a freeway and then used as input to
Advanced Traveler Information Systems. A study by
Brundell-Freij (2000) focuses on assessing the accu-
racy in the estimates produced by complex trans-
port models. This study used both Monte Carlo
simulation and bootstrap techniques to show how
different kinds of variation in the input data affect
the quality of the final model estimates. The study
suggests that these variations can be a large but
unknown feature of transport models. Hjorth
(2002) used the bootstrap technique to estimate the
covariance structure of traffic counts conducted at
pairs of sites. This information was then used to
construct route flow proportions and probabilities.

Here we are interested in using the bootstrap
technique to obtain estimates of the mode share
confidence intervals from a limited number of sur-
veys (DiCiccio and Efron 1996; Wood 2004). If we
have a count of the traffic entering the city center
on a limited number of days at each site, it would be
possible to choose, at random, one day from each
site and add them together to arrive at an estimate
of the total volume of traffic entering the city center
and hence calculate mode shares. So, for example,
one bootstrap draw could combine the counts from

TABLE 2  Minimum Sample Size Requirements to 
Detect a Range of Target Reductions

Mode of travel

Target reduction Car Bus Rail

0.5% 8 9 1

1.0% 2 3 1

1.5% 1 1 1

2.0% 1 1 1

2.5% 1 1 1

3.0% 1 1 1
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day five at site A, day two at site B, day one at site
C, and so on, while the next draw would combine
counts from day four at site A, day three at site B,
day one (again) at site C, and so on. A large number
of these draws could be taken and the distribution
and summary statistics established for either the
total volume or the mode shares.

Based on the Monte Carlo simulation work
described earlier, additional surveys were conducted
in May 2004, so that each radial road into Leeds
City Center was surveyed on four days rather than
the more usual one day. This sample size allows
changes as small as 0.7% in the mode share for cars
to be detected reliably. To increase the representative
nature of the data, the survey was designed so that
each of the 34 roads would be surveyed once on 4
different weekdays (excluding Fridays).

Aggregating the survey data together to produce a
mode share for traffic crossing the entire cordon
involved selecting 1 survey day from the 4 possible
days at each of 34 survey locations. This produced a
large number of possible combination of days and
sites, 434, to be precise. To make this exercise more
manageable, adjacent sites were grouped together to
form seven corridors (see figure 1). This decreased
the number of possible combinations to 47 = 16,384.
For the bootstrap exercise, just a fraction of these
combinations were used: 4,000 selected at random
from over 16,000 possibilities. The bootstrap mean
of the 4,000 car mode shares selected was 57.3%,
much lower than the Monte Carlo mean value calcu-
lated in 2002.

Table 3 gives the estimated standard deviations
for the mode shares of car, bus, rail, and walk from
the Monte Carlo and bootstrap techniques. The
bootstrap-estimated standard deviation for car-
based trips is 0.64%, compared with the Monte
Carlo estimate of 0.71%. The bootstrap deviation
could be expected to be different for a number of
reasons: 

� The range of daily variation selected for the
Monte Carlo simulation was designed to account
for the variety seen throughout the year, while the
bootstrap estimate was based on just the vari-
ability observed within one calendar month. If
the surveys used in the bootstrap estimation were

conducted throughout 2004 rather than just in
May, it is likely that a wider spread of observed
variation would be present and the estimated
standard deviation would increase above the
0.64% value found here.

� The survey enumerators knew there would be
repeated surveys at each site. This ability to cross
check counts may have encouraged them to be
more accurate in their counting. A more accurate
and consistent set of counts would produce a
smaller deviation.

� The mean share was reduced significantly: the
0.71% Monte Carlo estimate is for a car share of
about 60.3%, while the bootstrap estimate is a
lower share of about 57.3%.

FURTHER IDEAS

In this paper, a Monte Carlo simulation regime was
established to estimate the variability in mode share
for a traffic cordon survey. While the illustrative
example used a specific experimental methodology
to collect the data and determine the structure of the
model, the simulation approach proposed is flexible
enough to allow the use of data that are collected
through different survey designs. Of particular note
here is that no “conservation of flow” principle has
been applied to the changes (i.e., changes in one
mode of travel are not mirrored with compensatory
changes in another) but if thought necessary, this
principle could easily be incorporated in the model. 

There is nearly always a value in conducting
more surveys to measure the important ranges that
define both measurement errors and daily variation
(“Whenever you can, count.” Sir Francis Galton).
These surveys do, however, come at a cost. The
model proposed in this study can help to identify

TABLE 3  Estimated Standard Deviations 
for Mode Shares

Mode
Monte Carlo 

(2002)
Bootstrap 

(2004)

Car 0.71% 0.64%

Bus 0.75% 0.76%

Rail 0.33% 0.27%

Walk 0.07% 0.12%
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which survey methodology has the greatest impact
on the accuracy of mode share and, therefore, pro-
vide the best value for the money. 
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APPENDIX 

Distributional Alternative

A question arises as to whether any results from the
statistical literature will allow inferences to be made
concerning the distribution of a share:

where
S1 is the share of mode one,
X1 is the volume of mode one,
X2 is the volume of all other modes, and
the distribution of both X1 and X2 are known. 
The  distribution is one form of distribution that

is quite flexible in the range of distributional shapes
that it can represent. Another feature of the  distri-
bution is that if X1 and X2 are  distributed random
variables with X1 ~  and X2 ~ ,
then S1 has a  distribution, S1 ~ . Critical
to the use of this result is that both the  distribu-
tions have similar values for the scale parameter, . 

In the context of the data used in this study, each
mode of travel will have a different scale; the vol-
ume of travel by car is greater than that by bus and
rail. This suggests that the  distribution approach
to modeling the distribution of mode share may not
be realistic.

S1

X1

X1 X2+
--------------------=

γ

γ

γ

γ α1 β1,( ) γ α2 β1,( )
β β α1 α2,( )

γ
β1
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Analysis of Work Zone Gaps and Rear-End Collision Probability

ABSTRACT

This paper studies platooning and headway/gap
characteristics of traffic flow in highway short-
term and long-term work zones under various
car-following patterns. The relationship between
traffic volume and the percentage of vehicles in
platoons is developed, along with some statistical
models for platoon size and headway/gap size dis-
tribution. An in-depth analysis of data reveals
that vehicles in work zones with higher speed lim-
its maintain shorter car-following time gaps than
those in work zones with lower speed limits, even
though more time is needed to stop a faster vehi-
cle. This unusual combination of higher speeds
and shorter car-following time gaps in work
zones may contribute to the high proportion of
rear-end collisions among all work zone-related
accidents. This paper also presents a new method
for evaluating rear-end collision potential, includ-
ing the probability and the number of vehicles
involved in rear-end collisions, by analyzing pla-
toon and gap characteristics for locations without
crash records during a construction period. 

KEYWORDS: Car-following patterns, rear-end collisions,
platoons, work zones.
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INTRODUCTION

The number of fatalities in motor vehicle crashes in
work zones has risen from 693 in 1997 to 1,181 in
2002 in the United States. Rear-end crashes are one
of the most common kinds of work zone crashes
and account for more than 30% of all crashes in
work zones. By investigating gap characteristics of
platooning vehicles in work zones, researchers may
be better able to evaluate the risk of rear-end colli-
sions for vehicles in platoons and understand driver
behavior in this situation. 

In the past, numerous investigations have looked
at the headway characteristics of highway traffic,
but limited studies exist on gap characteristics, par-
ticularly in work zones. Wasielewski (1979)
reported on headway characteristics of highway
traffic and concluded that the headway distribution
was independent of the traffic volume. Luttinen
(1992) studied the independence of consecutive
headways using geometric bunch size distribution
for two-lane highways in Finland. May (1990),
Griffiths and Hunt (1991), Mei and Bullen (1993),
and Akcelik and Chung (1994) applied different
models to study the distribution of time headways
in highway and urban traffic flow conditions. 

Most existing headway studies investigated nor-
mal traffic flow conditions rather than work zone
conditions. Work zone traffic flow has different
characteristics due to lower speed limits, work activ-
ities, lane closures and channelization plans, and
other geometric and traffic factors. The presence of
queues and platoons of vehicles is more prevalent in
work zones than on regular sections of highway.
Therefore, it is necessary to explore drivers’ car-fol-
lowing behaviors while they are traveling through
construction areas. 

Benekohal and Sadeghhosseini (1991) and
Sadeghhosseini and Benekohal (1995) investigated
the platooning and time headway characteristics of
highway work zones. They examined the effects of
traffic volume on distribution of time headways and
on the percentage of platooning vehicles. Although
headway characteristics have been used widely in
these analyses, gap characteristics provide a better
measure of car-following behaviors and safety-
related issues. This paper focuses on quantifying the
variations of time headways or gaps for different

car-following patterns and work zone types and the
relationship between car-following characteristics
and the accident risks/safety performances for work
zones.

To address these issues, we analyzed field data
from 11 work zone sites. In the case study, we pro-
posed and implemented a new gap-analysis-based
safety performance evaluation methodology for
work zones. Work zone safety performance is diffi-
cult to evaluate due to the lack of reliable work zone
crash data. This new method provides an alternative
approach to evaluating accident risk by analyzing
crash predisposition under nonaccident situations. 

DATA COLLECTION AND REDUCTION

Field data were collected at 11 work zones sites on
Interstate highways in Illinois. Three of the sites
investigated were short-term work zones and eight
were long-term. In this study, a short-term work
zone is defined as a construction or maintenance site
that lasted less than a few days and the closed lane
was delineated using cones, barrels, or barricades
(but not barriers). A long-term work zone is defined
as a construction or maintenance site that lasted
more than a few days and the closed lane was delin-
eated using concrete barriers. The short-term work
zones studied had a posted speed limit of 45 mph,
while all the long-term work zones had a posted
speed limit of 55 mph. 

All 11 sites had two lanes in each direction; one
lane was closed due to construction and the other
was open. A video camera was used to capture the
times at which a vehicle passed over two specific
markers placed at a fixed distance. The distance
between the markers was about 250 feet, but varied
for different sites. Data were collected over a time
period of two to four hours for each site, depending
on the traffic conditions. Initially, the videotapes
were time coded. The time coding of the videotapes
allowed us to read the travel time more accurately.
Time headway, time gap, space, speed, and volume
data were obtained from the tapes. The headway
for each vehicle was computed based on the time
measured at marker 2 (the marker closest to the
camera) when the front bumper of a vehicle passed
over the line of sight between the camera and the
marker. The time headway for the following vehicle
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was the time difference between the passing of the
front bumper of the leading and following vehicles
over the line of sight. The gap is the time difference
between the passing of the rear bumper of the lead-
ing vehicle and the front bumper of the following
vehicle over the line of sight. The time measure-
ments are accurate to within 1/30 seconds.

Vehicles were classified into platooning or non-
platooning based on their speed and spacing. A pla-
toon is a group of vehicles traveling close to one
other with short headways. The literature gives four
definitions of platoons based on either time or space
headway, a combination of time headway and
speed, or a combination of space headway and
speed. Different thresholds in time headway, rang-
ing from 2.5 to 6 seconds, have been used in the
past to identify platooning vehicles. Keller (1976)
and Benekohal and Sadeghhosseini (1991), for
example, used five seconds as the threshold of time
headway to separate platooning vehicles from the
traffic flow. Sumner and Baguley (1978) used a gap
of two seconds and speed differences of less than
10% as the platooning threshold. Horban (1983)
suggested four seconds for the time headway thresh-
old in a level-of-service study. Our analysis focuses
only on vehicles in platoons and employs data on
over 15,000 vehicles to investigate platoon and gap
characteristics in work zones.

PLATOONING AND GAP CHARACTERISTICS 
IN WORK ZONES

Analyses of platooning characteristics, including the
percentage of vehicles in platoons and platoon size
distributions, are discussed below. Then we analyze
gap characteristics for platooning vehicles to deter-
mine the effect of different car-following patterns
and work zone types on gap size, determine the
effect of platoon size on gap size, and establish a gap
size distribution. 

Platoon Analysis

Percentage of Platooning vs. Volume 
Figure 1 shows how the percentage of vehicles in a
platoon varies as the traffic volume changes. Two
different platooning criteria were applied to exam-
ine the effect of the threshold, using four-second and
three-second headways.

We constructed 96 sets of data from the initial
observation with each corresponding to a 15-
minute period of observation. The average traffic
volume and percentage of vehicles in the platoon
were computed for each set (plotted in figure 1).
Figure 1A shows that the percentage of vehicles in
the platoon varied from 55% to 75% under low
volume conditions (less than 600 vehicles per hour
(vph)). The percentage increased to 95% when traf-
fic volume reached about 1,200 vph.

Figure 1B uses a three-second headway as the
platooning criteria, which presents a lower percent-

FIGURE 1  Percentage of Traffic in Platoons vs. 
Flow Rate
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age of platooning than the four-second headway
seen in figure 1A, yet there is still about 43% to
70% platooning at low volume conditions. Only
80% of vehicles were identified as platooning, with
a volume of 1,400 vph using the three-second head-
way criterion. As the volume rises, the percentage
increase in platooning slows, indicating that the
three-second criterion does not accurately reflect the
reality of platooning. Therefore, using a four-second
headway as the platooning criterion is more appro-
priate and provides a greater margin of safety than
the three-second headway. The methodology dis-
cussed in this paper is independent of the headway
threshold; only the numerical values change. As a
result, we define a platoon as a group of vehicles
separated by a time headway of no longer than four
seconds. The remaining discussion of platooning
vehicles is based on this definition. 

We examined the relationship between traffic
volume and percentage of vehicles platooning and
found that a logarithmic function fit the data better
than other forms. As volume increases, the percent-
age of platooning vehicles increases and ultimately
all vehicles will be considered as part of a platoon.
The logarithmic function is expressed as

(1)

where
x is the hourly flow rate (vph), 400 ≤ x ≤ 1400, and
y is the percentage platooning (number of vehicles

in a platoon/volume).

Platoon Size Distribution

The type of vehicle leading a platoon and the num-
ber of vehicles in each platoon were determined.
Then platoons were classified into two groups:
truck-leading platoons and nontruck-leading pla-
toons. Truck-leading platoons have a large truck at
the front of the platoon. Platoons with the same
number of vehicles were further grouped into pla-
toon size groups. The relative frequencies of the pla-
toon size groups are shown in figures 2A and 2B for
short-term and long-term work zones, respectively.
These figures show that 70% to 80% of platoons
had only two or three vehicles.

Difference models were evaluated to see which of
the observed frequencies fit better. The goodness of

fit was determined in terms of the root mean square
(RMS) error. As a result, a shifted negative exponen-
tial function best fit the model in terms of having the
least RMS error. For short-term work zones, equa-
tions (2) and (3) describe the relationship between
platoon size (x) and the percentage of vehicles
belonging to that platoon size p(x). Equation (2)
represents truck-leading platoons, and equation (3)
represents nontruck-leading platoons.

(2)

(3)

Similar relationships were found for the long-
term work zones as expressed by equation (4) for
truck-leading platoons and equation (5) for non-
truck leading platoons. 

(4)

(5)

Table 1 shows the platoon size frequency, average
headway, and average gap for short-term and long-
term work zones. The table shows that more small
platoons are led by cars. For example, the relative
frequency of nontruck-leading two-vehicle platoons
is 0.55 for short-term work zones and 0.52 for long-
term work zones, while the relative frequency of
truck-leading two-vehicle platoons is only 0.45 for
both short-term and long-term work zones. 

To determine if the platoon size distributions of
the four cases shown in equations (2) through (5)
differ significantly, the two most commonly-used
two-independent-samples tests—the Mann-Whitney
U test and the Kolmogorov-Smirnov z test in SPSS—
were applied for the following combinations: 

1. nontruck-leading platoon vs. truck-leading
platoon in short-term work zones, 

2. nontruck-leading platoon vs. truck-leading
platoon in long-term work zones, 

3. truck-leading platoon in short-term work
zones vs. in long-term work zones, and 

4. nontruck-leading platoon-in short-term work
zones vs. in long-term work zones.   

The results of these tests show that the signifi-
cance is less than 0.05 for combinations 1 and 2;

y 1.377– 0.327 x( )ln+=

p x( ) 1
1.6899
---------------- x 1.5406–( )/1.6899–( )exp=

p x( ) 1
1.1993
---------------- x 1.5075–( )/1.1993–( )exp=

p x( ) 1
1.6244
---------------- x 1.4853–( )/1.6244–( )exp=

p x( ) 1
1.3
------- x 1.4916–( )/1.3–( )exp=
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therefore, the hypothesis H0: the two distributions
are identical is rejected. For combinations 3 and 4,
we cannot reject the null hypothesis because the p-
value is considerably above 0.05. This indicates that
the type of lead vehicle has a significant impact on
the platoon size distribution, while the type of work
zone does not.

Gap Analysis

To examine car-following safety in work zones, we
analyzed the time gap instead of the time headway,
because the time gap represents the actual time avail-
able for the following car to avoid a rear-end colli-

sion. We also studied the effects of the combination
of the leader and follower on gap size as well as the
effects of the leader of a platoon on platoon size. We
determined the gap size distributions and used them
to predict the probability of rear-end collisions.

Effect of Car-Following Patterns  
Will the gap size be affected by the combination of
leader and follower? For instance, a car following a
truck may tend to keep a larger time gap than a car
following a car. Also, the probability of a rear-end
collision may depend on the brake features of the
following vehicle and the time gap available to it. To
answer our question, we studied the relationship

FIGURE 2  Platoon Size Distribution
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TABLE 1  Work Zone Platoon Characteristics

Platoon 
size

A. Short-Term Work Zone

Truck-leading platoon Nontruck-leading platoon

Relative 
frequency

Headway 
(seconds)

Gap 
(seconds)

Relative 
frequency

Headway 
(seconds)

Gap 
(seconds)

2 0.451 2.819 1.991 0.553 2.045 1.680
3 0.241 2.593 1.857 0.241 2.098 1.699

4 0.165 2.398 1.751 0.093 2.167 1.735
5 0.057 2.201 1.627 0.059 2.129 1.693
6 0.035 2.109 1.577 0.017 2.333 1.852

7 0.032 2.263 1.733 0.012 2.109 1.685
8 0.003 2.344 1.510 0.010 2.212 1.740
9 0.006 2.394 1.575 0.010 2.243 1.741

10 0.003 3.348 2.732 0.003 2.598 2.082
11 0.003 2.321 1.714 — — —
12 — — — — — —

13 — — — — — —
14 — — — — — —
15 0.003 2.267 1.649 — — —

≥16 — — — — — —

Average 3.20 (size) 2.611 1.872 2.89 (size) 2.085 1.696

B. Long-Term Work Zone

Platoon 
size

Truck-leading platoon Nontruck-leading platoon

Relative 
frequency

Headway 
(seconds)

Gap 
(seconds)

Relative 
frequency

Headway 
(seconds)

Gap 
(seconds)

2 0.450 2.356 1.739 0.524 1.719 1.416
3 0.243 2.194 1.575 0.228 1.756 1.439
4 0.117 2.017 1.447 0.118 1.853 1.514

5 0.077 1.974 1.482 0.055 1.828 1.467
6 0.049 1.856 1.371 0.031 1.844 1.438
7 0.019 1.915 1.427 0.016 1.705 1.303

8 0.019 2.077 1.529 0.010 1.533 1.216
9 0.007 2.074 1.448 0.006 2.242 1.667

10 0.007 2.194 1.755 0.003 1.690 1.304

11 0.001 1.560 1.293 0.002 2.135 1.726
12 0.007 1.991 1.532 0.003 1.956 1.546
13 — — — 0.001 2.305 1.864

14 — — — 0.001 1.933 1.660
15 — — — — — —
16 — — — — — —

17 0.001 1.588 1.246 0.001 2.185 1.608
18 0.001 1.566 1.249 0.001 2.155 1.758
19 — — — — — —

≥20 0.001 2.084 1.744 — — —

Average 3.38 (size) 2.200 1.612 3.06 (size) 1.757 1.436
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between car-following patterns and time gaps. We
investigated the average gaps under different car-
following patterns. The four possible car-following
patterns analyzed are: car-car, car-truck, truck-car,
truck-truck (leader-follower).

Table 2A and 2B detail the mean gap, the mean
headway, and the frequency of four car-following
patterns in short-term and long-term work zones.
These tables show that the average gap is the short-
est when a car follows another car. The next short-
est gap is when a car follows a truck. The gap is
longer when a truck follows a car or a truck. When
a truck follows a car or a truck, the gap sizes are not
as different as when a car follows a car or a truck.
This would appear to indicate that car drivers are
more sensitive to what type of vehicles they are fol-
lowing than truck drivers. The table also shows that
the gaps in short-term work zones are longer than
the gaps in long-term work zones for the same com-
bination of leader and follower. Thus, it is impor-
tant to know which one of these differences is
statistically significant.

This study presents only the aggregate analysis of
the mean headway/gap size for different car-follow-
ing patterns. The data appear to show that each
vehicle’s car-following behavior is determined pri-
marily by the vehicle directly in front of it, particu-
larly in highway work zones with only one lane
open. Of course, other vehicles may also impact
driving behavior. The interdependence of different
car-following patterns is a complicated problem that
would benefit from a more extensive dataset and
disaggregate analysis on numerous combinations.
Our current dataset does not support this analysis,
which we plan to address in a future study. 

A “two-sample means z-test” was conducted to
evaluate the difference between the mean time gap
under different car-following patterns. We com-
pared the gaps in short-term and long-term work
zones for the same car-following pattern using a
95% confidence level to test the hypotheses. The
results of the tests of 16 different hypotheses are
presented in table 3. The z-test shows no significant
difference in the time gap between truck-truck and
car-truck following patterns in either short-term or
long-term work zones. This further supports our
findings in table 2. All the other null hypotheses

were rejected indicating that, with a 95% confi-
dence level, there is a significant difference in the
time gap.

Safety Paradox

The analysis in the previous section shows signifi-
cantly smaller time gaps for all car-following pat-
terns in long-term work zones with a speed limit of
55 mph compared with gaps in short-term work
zones with a speed limit of 45 mph. Although the
measured average speeds in the two types of work
zones that post the same speed limit vary slightly,
the average speeds of nonplatoon and platooning
vehicles in long-term work zones tend to be signifi-
cantly higher than those in short-term work zone.
For example, the measured average speed for a non-
platoon vehicle was 42.39 mph, with platooning
vehicles averaging 39.80 mph in short-term work
zones. In long-term work zones, the measured aver-
age speed was 53.29 mph for nonplatoon vehicles,
and 50.78 mph for platooning vehicles. Table 2
shows that for a car-car pattern, the average time
gap for vehicles with an average speed of 39.0 mph
was 1.610 seconds, while the gap for vehicles with
an average speed of 50.78 mph was 1.384 seconds.

TABLE 2  Gap Size of Platooning Vehicles in 
Work Zones

A. Short-Term Work Zone

Pattern
Frequency 

(vph)
Mean gap 
(seconds)

Mean 
headway 
(seconds)

Car-car 1,087 1.610 1.986

Car-truck 209 2.030 2.429
Truck-car 374 1.805 2.672
Truck-truck 157 2.021 2.960

B. Long-Term Work Zones

Pattern
Frequency 

(vph)
Mean gap 
(seconds)

Mean 
headway 
(seconds)

Car-car 1,392 1.384 1.736

Car-truck 311 1.824 2.164
Truck-car 603 1.645 2.285
Truck-truck 384 1.865 2.578

Key: vph = vehicles per hour.
Note: The measured average speeds of platooning vehicles were 
39.80 mph in short-term work zones and 50.78 mph in long-term 
work zones.
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That is, the time gap decreased by 14% at an aver-
age speed increase of 22%.

The above numbers indicate a safety paradox:
even though people know they need a greater safety
buffer when they are driving at a higher speed, our
data show that the actual time gap they maintained
in a higher speed work zone was significantly

shorter than that maintained in a lower speed work
zone. The problem may be that people do not rec-
ognize this reduction in the safety buffer in terms of
the time gap. Rather, people may judge their safety
buffer in terms of the space gap. For example, for
the car-car following pattern, the average space gap
in a long-term work zone (103 feet) was still greater

TABLE 3  Results of z-test for Time Gap

Hypothesis
p value 
(one tail)

Reject the null 
hypothesis?

Short
term

2.53107E–08 Yes

8.50431E–14 Yes

0.454587 No

0.000105 Yes

8.50431E–14 Yes

0.000236 Yes

Long
term

0 Yes

0 Yes

0.212811 No

7.38E–09 Yes

0 Yes

0.000126 Yes

Short
term
vs.
long
term

0 Yes

0.00107 Yes

1.28E–05 Yes

0.003949 Yes

Key:

 is the average gap for a car-followed-by-a-car pattern in a short-term work zone

 is the average gap for a car-followed-by-a-truck pattern in a short-term work zone

 is the average gap for a truck-followed-by-a-car pattern in a short-term work zone

 is the average gap for a truck-followed-by-a-truck pattern in a short-term work zone

 is the average gap for a car-followed-by-a-car pattern in a long-term work zone

 is the average gap for a car-followed-by-a-truck pattern in a long-term work zone

 is the average gap for a truck-followed-by-a-car pattern in a long-term work zone

 is the average gap for a truck-followed-by-a-truck pattern in a long-term work zone

Note: Level of significance ( ) = 5%.
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than that for a short-term work zone (94 feet), but
the real available time gap for the vehicle traveling
in the long-term work zone was reduced by 22%. 

The Effect of Platoon Size 

The number of vehicles involved in a rear-end colli-
sion depends on the size of the platoon. The discus-
sion here is limited to platoons of seven vehicles or
less, because we had only a few observations for
larger platoons. The variation in the time gap with
respect to platoon size is illustrated in figure 3. 

Figure 3 shows that in short-term work zones,
gap size generally declines for truck-leading pla-
toons as the platoon size increases, except for the
slight upturn as the platoon size increases from six
to seven. The declining trend also exists for truck-
leading platoons in long-term work zones, although
the trend is not as clear as in short-term work zones.
For car-leading platoons, the average gap size does
not seem to depend on platoon size. For platoons
consisting of two or three vehicles, we found the
average gap size of truck-leading platoons was
greater than that of car-leading platoons in short-
term and long-term work zones. For platoons with
four or more vehicles, the gap sizes of car-leading
platoons were, in general, greater than those of
truck-leading platoons in short-term work zones,
whereas no significant difference was observed for
long-term work zones. 

The above findings make it clear that as the pla-
toon size of truck-leading platoons increases, drivers
tend to follow more closely and thus become more
vulnerable to a rear-end crash. 

Gap Size Distribution

Gap size can better measure the probability of a
rear-end crash than headway. The observed mean
gap size was 1.73 in short-term work zones and
1.49 in long-term work zones. The median gap size
was 1.68 and 1.42 for short-term and long-term
work zones, respectively. In order to find the gap
size distribution, we grouped the observed gaps into
intervals of 0.25 seconds, starting from 0 seconds
and ending at 4 seconds. Figure 4 is a relative fre-
quency histogram of gap sizes for short-term and
long-term work zones.

To find equations for the gap size distributions,
the 10 widely applied mathematical models were

assessed using BestFit with respect to RMS errors.
Weibull offers the best fitted function followed by
the BetaGeneral function. Gamma, InvGauss, and
log-normal ranked as the third, fourth, and fifth
best-fitted model, respectively. The appendix pre-
sents a brief introduction to these five models to
show the density function as well as the model
parameters. 

The probability distribution function (PDF) of
Weibull is

(6)

where
 is the shape parameter;  = 2.396 for short-term
work zone and  = 2.051 for long-term work zone;

 is the location parameter;  = 0.215 for short-
term work zone and  = 0.286 for long-term
work zone; and

 is the scale parameter;  = 1.716 for short-term
work zone and  = 1.373 for long-term work zone.
The cumulative distribution function (CDF) of

the three-parameter Weibull is

(7)

For short-term work zones, the PDF and CDF of the
resulting Weibull models are

(8)
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(9)

For long-term work zones, the PDF and CDF of fit-
ted Weibull models are

(10)

(11)

ESTIMATION OF SAFETY PERFORMANCE 
USING GAP AND PLATOONING ANALYSIS

Nearly one in three work zone crashes are rear-end
crashes. Rear-end crashes in a work zone can occur

when a vehicle suddenly decelerates due to an unex-
pected situation. The next section looks at the prob-
ability of one or more collisions as a vehicle
suddenly decelerates. 

Probability of at Least One Rear-End 
Collision 

The risk of a rear-end collision is relative to the time
gap, platoon size, and position of the problem vehi-
cle in a platoon. In this section, we develop a model
to compute the probability of rear-end collisions
when a platooning vehicle suddenly decelerates.

FIGURE 4  Gap Distribution
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The probability, (p) that a platooning vehicle has
a less than critical gap can be obtained via the gap
relative frequency histogram (figure 4) or the fitted
Weibull CDF (equations (9) and (11)) introduced
above. For example, if the critical gap takes a value
of 1.0 seconds, we obtain a probability of 0.23
according to equation (11). 

Here, we define a rear-end collision as the colli-
sion of a following vehicle with the leading vehicle
due to an unsafe gap, when the leading vehicle sud-
denly decelerates. There are at most (i –1) rear-end
collisions as the first vehicle in a platoon of size i
makes a sudden deceleration. 

Figure 5 shows our calculation of the probability
of at least one rear-end collision as the jth vehicle of
a platoon of i vehicles suddenly decelerates or stops.
For a platoon of j + 1 vehicles, the probability of
having a rear-end collision is p; and the probability
of no rear-end collision is 1 – p. For a platoon of j +
2 vehicles, the probability of one rear-end collision
is ; the probability of two rear-end col-
lisions is ; and the probability of no rear-end col-
lisions is . For a platoon of j + 3
vehicles, the probability of one rear-end collision is

; the probability of two
rear-end collisions is

; the probability of three
rear-end collisions is ; and the probabil-
ity of no rear-end collisions is

.

As such, for a platoon of i (where i ≥ j) vehicles,
the probability of a rear-end collision is 

Thus, we are able to generalize the equation for
calculating the rear-end collision probability when
the problem vehicle is the jth vehicle in a platoon of
size i as

(12)

The probability of no rear-end collision is

(13)
where

 is the probability that at least one rear-end
collision occurs as the jth vehicle of a platoon of
size i makes a sudden deceleration. 

 is the probability that no rear-end collision
occurs as the jth vehicle of a platoon of size i
makes a sudden deceleration. 

p is the probability that a vehicle has a gap less than
the critical gap value (probability of having a
rear-end collision);

j is the position of the problem vehicle in the platoon;
i is the platoon size;
m is the number of rear-end collisions that take

place; and
N is the vector of all possible platoon sizes

[2,3,4…].

FIGURE 5  Probability of a Rear-End Collision
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When a nonplatooning vehicle keeps a headway
of at least four seconds, the probability of rear-end
collisions due to the sudden deceleration of a non-
platooning vehicle is considered to be zero

.

Probability that the jth Vehicle in a 
Platoon is a Problem Vehicle

The number of vehicles involved in a rear-end colli-
sion is relative to the platoon size and the position
of the problem vehicle in the platoon. For example,
if the leading car in a longer platoon is involved in
an accident, the probability of a multivehicle rear-
end collision is higher than that when any other
vehicle in the platoon is involved.

Equation (14) gives the probability that a prob-
lem vehicle is in a platoon of size i:

(14)

where
 is the probability that the problem vehicle

belongs to a platoon of size i;
 is the number of platoons of size i, which is

obtained from figures 1 and 2 for a given vol-
ume; and

V is the traffic volume.
The problem vehicle has an equal chance of being

at any position within a given platoon. Thus, equa-
tion (15) was constructed to represent the probabil-
ity that the problem vehicle is the jth vehicle in a
platoon of size i:

(15)

Finally, equation (16) was developed to calculate
the probability of having rear-end collision(s) when
any vehicle in a traffic flow makes a sudden deceler-
ation:

(16)

 As the probability of a rear-end collision caused
by the sudden deceleration of a nonplatooning vehi-
cle is considered to be zero , equation
(16) can be modified:

(17)

where
p(rear-end collisions) is the probability of one or

more rear-end collisions as a problem vehicle
suddenly decelerates;

 is the probability that the jth vehicle in a plat-
ton of size i is a problem vehicle, which is given
by equation (15);

 is the probability of rear-end collisions when
the jth vehicle in a platton of size i suddenly
decelerates, which is given by equation (12).

Number of Vehicles in Rear-End Collisions

In order to predict the number of vehicles involved
in rear-end collisions caused by the sudden decelera-
tion of a problem vehicle in a work zone, it is neces-
sary to know the mean number of vehicles 
involved in rear-end collisions for each platoon size
i. We also need to know the probability (pi) that the
problem vehicle belongs to a platoon of size i. The
mean number of vehicles in rear-end collisions can
be computed by .

Finding  

For a particular platoon , the number of
vehicles involved in rear-end collisions depends on
the position of the problem vehicle and platoon size.
All vehicles in the platoon have an equal chance of
being the problem vehicle, but each has a different
number of following vehicles.

The number of vehicles involved in rear-end colli-
sions also depends on the type of collision. If m rear-
end collisions are continuous, there will be m + 1
vehicles involved. On the other hand, if these rear-
end collisions are discrete, there will be at most 2m
vehicles involved. To make a comprehensive predic-
tion, we used the average value (m + 1 + 2m)/2 as
the number of vehicles involved in m rear-end
collisions.

We defined  as the mean size of the rear-end
collision if the problem vehicle is the jth vehicle in a
platoon with i vehicles. Assuming that the problem
vehicle is the first vehicle in a platoon, the following
examples demonstrate how to find .

A platoon of two vehicles involves only one pos-
sible rear-end collision, thus .
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For a platoon of three vehicles, the probability of
a rear-end collision is ; a probability of
having two rear-end collisions is ; thus 

Likewise, for a platoon of four vehicles, the prob-
ability of having a rear-end collision is

; 
the probability of having two rear-end collisions is

; 
the probability of having three rear-end collisions is

; 
thus 

.

We estimate the equation for  as follows:

(18)

Similarly, the general formula for the mean num-
ber of vehicles in the rear-end collision when the jth
vehicle is the problem vehicle in a platoon of size i is

(19)

Now, we can compute  from the following
equation:

(20)

Therefore, the mean number of vehicles involved in
a crash caused by sudden deceleration can be
obtained from

(21)

The  can be calculated easily using the percentage
of platooning and the platoon size distribution. 

CASE STUDY 

Our case study attempts to predict the probability
of rear-end collisions and the mean number of vehi-
cles involved at a long-term work zone. We devel-

oped equations to make the prediction using two
input variables. The input variables are: 1) work
zone type (long-term or short-term), and 2) hourly
volume.

Assume that there is a sudden deceleration in a
work zone traffic flow, the proposed methodology
presented here can be used to answer the following
questions:

1. What is the probability of a rear-end crash?
2. How many vehicles might be involved in this

crash?
The prediction uses equations (1), (5), (11), (17),
and (21) to answer the above questions. Predictions
are for a long-term work zone with volumes of 400
to 1,600 vehicles per hour at increments of 200. 

Solution to Question 1 

Assume the maximum platoon size is 15 vehicles.

In a long-term work zone, with the assumption
of a critical gap of 1.0 seconds, equation (11) gives
us a p of 0.23. This is the conditional probability of
having a rear-end collision given a sudden stop or
deceleration of a platoon vehicle due to an incident,
error maneuver, or some other unexpected reason.
This probability may seem high; however, this rear-
end collision probability is defined differently from
the frequency of rear-end collisions in accident sta-
tistics. To get a real overall probability or frequency
of real rear-end collisions on a given highway, this
probability must be multiplied by the sum probabil-
ity of all other types of accidents involving only a
single vehicle at this location. 

Using equations (1) and (7), and the average pla-
toon size  as 3.2, we can compute  from 

Now we can compute the conditional probability
of rear-end collisions if one vehicle suddenly stops
or decelerates. Figure 6A shows that the mean prob-
ability of a rear-end collision in a long-term work
zone is 18.74% if a vehicle suddenly decelerates or
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stops. The results also show that the risk of rear-end
collisions increases as the volume increases. 

Solution to Question 2
We also calculated the mean number of vehicles
involved in rear-end collision(s) for different platoon
sizes:

Figure 6B shows that the mean number of vehi-
cles, , will increase from 2.0 to 3.6 when the pla-
toon size grows from 2 up to 15. The figure also

shows that the mean number of vehicles involved
for overall traffic will increase from 2.0 to 2.1 as the
maximum platoon size of a traffic flow grows from
2 to 15. Obviously, the change in  is not significant
while the maximum platoon size changes signifi-
cantly, even though the possible mean number of
involved vehicles, , for a platoon size of 15 is
about 1.8 times that for a platoon size of 2. This
implies that using only the mean value may be mis-
leading when we want to understand safety perfor-
mance in work zones, because the change in the
maximum platoon size will make a significant dif-
ference in the consequence of the worst case. 

CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE RESEARCH

This paper presents an investigation of the platoon-
ing and gap characteristics in Interstate highway
work zones, as well as of the gap sizes under differ-
ent car-following patterns and work zone types. The
study is based on data covering more than 15,000
observations. Models of the platoon size and gap
size distribution for long-term and short-term work
zones were developed. An in-depth analysis of the
data reveals a safety paradox, which may indicate
that drivers do not understand the safety implica-
tions of time and space gaps relative to speed limit
increases at work zones. All the findings with
respect to car-following characteristics provide prac-
titioners a better understanding of drivers’ behav-
iors in work zone areas. 

We propose a new methodology to predict the
probability of rear-end collisions in a work zone and
the mean number of vehicles involved. Only two
simple inputs are required to predict rear-end colli-
sions using gap and platooning models. Because it is
sometimes impossible to evaluate work zone safety
performance using real crash data, this new method-
ology provides an alternative approach to assessing
the safety performance in Interstate highway work
zones. We present a case study to demonstrate the
implementation of the new prediction methodology. 

Some areas for future research include integrat-
ing the effect of heavy vehicle and work activity
intensity on safety as an interesting extension to our
methodology. It will also be important to conduct
some disaggregate analysis to address the inter-

FIGURE 6  Probability and Mean Size of Rear-End 
Collisions
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dependence of different car-following patterns. A
study of this nature may need to consider the impact
of various groups of drivers, such as age group, gen-
der, driving habits, etc., which may require more
extensive data collection. 
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APPENDIX

Model Density function and parameters

Weibull Density function

where
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  is the location parameter
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(Beta Generalized)

Density function

where

 is the continuous shape parameter  > 0

 is the continuous shape parameter  > 0

min is the continuous boundary parameter min < max
max is the continuous boundary parameter

Gamma Density function

with gamma function 

where

 is the continuous shape parameter  > 0

 is the continuous shape parameter  > 0

Inverse Gaussian Density function

where both  and  are positive continuous parameters

Log normal Density function

with  and 
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Sampling and Estimation Techniques for Estimating Bus 

System Passenger-Miles

ABSTRACT 

Most U.S. bus systems conduct on-off counts on a
sample of vehicle-trips to estimate annual passenger-
miles, which must be submitted to the National
Transit Database. The required sample size depends
on the techniques used. This paper reviews alterna-
tive methods, including simple random sampling,
ratio estimation with a variety of possible auxiliary
variables, stratified sampling, cluster sampling, and
combinations of these approaches. Most of these
alternatives take advantage of electronic registering
fareboxes to obtain complete counts of boarding
passengers. 

Seven alternative estimation techniques are com-
pared in a case study of Santa Cruz Metro. The
most efficient approach combined two techniques,
stratified sampling and ratio estimation using the
combined ratio technique. The latter technique used
on-off data from a sample of trips to estimate the
ratio of passenger-miles to potential passenger-
miles, a newly proposed auxiliary variable. This
approach reduced the sampling burden by over
80% compared with both simple random sampling
and a sampling method published by the Federal
Transit Administration.

KEYWORDS: National Transit Database, passenger-
miles, sampling.
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INTRODUCTION

The Federal Transit Administration (FTA) requires
that transit agencies benefiting from federal assis-
tance report annual passenger-miles by mode to the
National Transit Database (NTD).1 Because transit
agencies, unlike airlines, do not routinely capture pas-
sengers’ origin-destination information, measuring
passenger-miles is usually done at the level of a trip
(i.e., a vehicle-trip), based on on-off counts made at
each stop by an onboard surveyor called a checker.
Because of the high labor cost involved, on-off
counts are generally done on a sample of trips from
which an estimate of annual passenger-miles is made.
FTA specifies that passenger-miles estimates achieve
±10% precision at the 95% confidence level. 

For the bus mode, FTA’s precision requirement
may be satisfied by following the sampling plan laid
out in Circular 2710.1A (USDOT FTA 1990). This
sampling plan, based on direct estimation of mean
passenger-miles per trip from a random sample of at
least 549 trips, is relatively burdensome, requiring
roughly one full-time equivalent employee to con-
duct on-off counts. Alternatively, an agency may use
a custom-made sampling and estimation plan, as
long as it is applied with a sample size that achieves
the specified precision level. By taking advantage of
an agency’s particular features—its size, route struc-
ture, and availability of data on other measures of
passenger use that correlate strongly with passenger-
miles—custom sampling plans can substantially
reduce the sampling burden. 

One particular development in the transit indus-
try creates the possibility for more efficient sampling
plans. It is the widespread adoption of electronic
fareboxes, with which transit agencies can count
boardings on every trip. Because boardings are
correlated with passenger-miles, an alternative to
directly estimating mean passenger-miles per trip
from a sample of trips is to estimate the ratio
between passenger-miles and boardings, and then
expand this ratio by the annual boardings count. 

Besides the ratio estimation techniques, a number
of other sampling and estimation techniques can
improve the precision of an annual passenger-miles
estimate. This paper describes several approaches for

estimating annual passenger-miles for bus systems,
based on experiences developing sampling plans for
more than 20 U.S. transit agencies. Numerical
results for seven alternatives are compared in a case
study of Santa Cruz Metro (California), a system
with 47 routes that vary considerably in length and
ridership. Alternative estimation techniques are
shown to reduce the sampling burden by over 80%
compared with Circular 2710.1A. The most efficient
sampling approach is found to be one that combines
stratified sampling with ratio estimation, estimating
the ratio of passenger-miles to a newly proposed
auxiliary variable called potential passenger-miles,
defined for a trip as the product of (passenger board-
ings) * (route length). 

This paper has four main sections. The first
describes in more detail how passenger-miles are
measured and why transit agencies are looking for
more efficient sampling techniques. The second
introduces the case study agency. The third
describes alternative approaches to estimating pas-
senger-miles, along with results from the case study.
The final section compares the alternatives and
offers conclusions.

SAMPLING ELEMENT AND THE COST OF 
MEASUREMENT

As mentioned previously, the measurement unit for
passenger-miles is a trip, normally defined as the
one-way movement of a vehicle from one terminal
to another. To measure passenger-miles for a
selected trip, one counts ons and offs, also called
boardings and alightings, by stop. From the on-off
count, passenger load on every interstop segment
may be determined. Multiplying the load on each
segment by segment length (a known quantity)
yields the number of passenger-miles occurring on
each segment, and summing over all segments yields
passenger-miles for the trip. Note that with this
measurement technique it is neither possible nor
necessary to know the trip length of individual pas-
sengers. Also note that on-off counts also yield a
measurement of trip-level boardings, so that paired
measurement of boardings and passenger-miles is
no more burdensome than measuring passenger-
miles alone.1 See the NTD website at www.ntdprogram.com.
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The industry norm is for on-off counts to be made
by transit agency employees known as checkers. In
all but the smallest transit agencies, it is too disrup-
tive of operations for bus operators to make on-off
counts. On-off counts can also be obtained using
automatic passenger counters (APCs), but only a
small number of U.S. transit agencies have APCs
due to their high cost. 

Anecdotal evidence indicates that the majority of
U.S. transit agencies follow the sampling plan of
Circular 2710.1A, checking 549 trips per year.
Transit agencies find this sampling requirement a
rather onerous burden. While sampled trips may
last only 30 minutes on average, the checker time
involved can run upwards of 2 hours per trip
because of travel time to the start of the trip, slack
time to ensure catching the right bus, and return
time. Coordination and supervision are also diffi-
cult. When multiple trips per day are sampled, one
may be early in the morning and another late at
night; they may be separated by a large geographic
distance; and two selected trips may be close enough
in time that it is impossible for the same person to
check both. 

For the vast majority of U.S. transit agencies,
then, sampling trips to estimate passenger-miles
involves considerable labor cost, a cost that agencies
are interested in reducing by employing more effi-
cient estimation and sampling techniques. A recent
National Academy of Sciences review of NTD legis-
lation, while acknowledging that the federal
requirement for reporting passenger-miles estimates
is reasonable (because passenger-miles is part of the
legislated formula for allocating federal funding),
also acknowledges the burden of this type of sam-
pling (Furth and McCollom 1987). It recommends
the development of more efficient sampling plans,
particularly plans that take advantage of boarding
counts made using electronic fareboxes.

SANTA CRUZ METRO CASE STUDY

Santa Cruz Metro (SCM) affords an interesting case
study of sampling methods to estimate annual bus
passenger-miles. Its 47 bus routes include short and
long local routes, long commuter routes, and one
very long and heavily used express route along
Highway 17 that crosses the mountains to San Jose.

It is common for a route to follow several different
routing patterns in the daily schedule, and many of
its routes are loops. 

Using electronic fareboxes, SCM counts all pas-
senger boardings. Furthermore, its boardings counts
are always associated with the route being served,
making it possible to use estimation techniques
based on route-level boardings. 

Because sampling requirements are driven by
weekday service, which typically accounts for 85%
to 90% of passenger-miles, the case study analysis
was confined to weekday service. Historic data
available for analyzing estimation techniques was a
single day’s observation of every trip in the weekday
schedule in fiscal year 2001. Each trip record indi-
cates the trip’s boardings and passenger-miles, as
well as identifiers (route, date, and so forth).

In order to make the case study more representa-
tive of other U.S. transit systems, the Highway 17
route was omitted. Unlike SCM’s other routes, that
route operates mostly along a freeway using over-
the-road coaches. Because nearly all its passengers
travel express between Santa Cruz and San Jose,
average passenger trip length is very high (about 30
miles) and has little variability, making it easy to
estimate passenger-miles for this route. Because it
accounts for 15% of SCM’s passenger-miles,
including the Highway 17 route would substan-
tially distort the case study results from the perspec-
tive of representing a “typical” transit agency.

Table 1 provides a comparison of necessary sam-
ple sizes and other relevant statistics for SCM using
alternative estimation approaches. Entries in the
table are explained in the following sections of the
paper as each estimation alternative is presented.
The sample sizes used in these comparisons are
not “finished.” Their application would require
accounting for weekends and the Highway 17
route, and would probably involve some rounding.
In addition, all calculated sample sizes for SCM are
inflated by 50% relative to the sample size formula
given. This degree of oversampling is a reasonable
precaution, because sample size calculations are
based on historic data, and transit agencies typically
use a recommended sample size for several years
before recalibrating the sample size requirement
using a more recent dataset. Including oversampling
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also makes comparisons with Circular 2710.1A
more “fair,” because the sample sizes called for in
that circular, being intended for application nation-
wide, include a certain degree of oversampling.

SAMPLING AND ESTIMATION 
APPROACHES

Simple Random Sampling (Alternative A)

The population is all of the trips operated by a
transit agency in a year; let N be the population
size (number of trips operated in a year). Let Y =
passenger-miles at the trip level, so that yi =
passenger-miles on trip i. Let  and Sy be the
population mean and standard deviation of Y;
then cvy =  is the coefficient of variation (cv)

of Y. Let n be the sample size, that is, the number
of trips observed by means of on-off counts.
Finally, let  be the estimate of annual system-
wide passenger-miles, the ultimate quantity being
estimated.

If the sample of observed trips is drawn at ran-
dom from the population of trips operated over the
year,  can be estimated by the sample mean

(1)

The relative standard error (r.s.e.) of  is

(2)

For unbiased estimators, r.s.e. is the cv of the esti-
mator, and (r.s.e.)2 is the relative variance of the
estimator. Because the population size N is generally

TABLE 1  Comparison of Sampling Strategies

Unstratified ratio estimation statistics Overall performance

Sampling and 
estimation alternative

cv of 
pass-miles

cv of 
auxiliary 
variable

Correlation coeff 
between pass-miles 

and auxiliary variable Unit cv

Necessary 
sample 

size (SS)
SS reduction 
vs. Circular 

— Circular 2710.1A n.a. 549

A Direct sampling and 
estimation

0.95 522 5%

B Ratio estimation; 
auxiliary variable = 
boardings

0.95 0.77 0.67 0.72 296 46%

C Stratified ratio 
estimation 
(4 strata); auxiliary 
variable = boardings

0.43 117 79%

D Combined ratio 
estimation; auxiliary 
variable = boardings

0.45 117 79%

E Ratio estimation; 
auxiliary variable = 
(boardings * route 
length)

0.95 0.91 0.89 0.44 112 80%

F Ratio estimation; 
auxiliary variable = 
(boardings * adjusted 
route length)

0.95 1.09 0.89 0.51 147 73%

G Combined ratio 
estimation; auxiliary 
variable = (boardings 
* route length)

0.39 86 84%

KEY: cv = coefficient of variation.

Y

Sy Y⁄

Ŷtotal

Y

y
1
n
--- yi∑=

y

r.s.e.
cvy

n
--------=
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large compared with the sample size, the finite pop-
ulation correction is ignored.

The estimate of total annual passenger-miles is
found by direct expansion of the sample mean

(3)

Because N is a known constant, the relative stan-
dard error and precision of  are the same as
those of .

Precision at the 95% confidence level (prec) is
given by

prec = 1.96(r.s.e.) (4)

The necessary sample size to achieve a specified pre-
cision at the 95% confidence level is therefore given
by

(5)

In our experience analyzing data from about 20
transit agencies, we have found the passenger-miles
cv to almost always lie in the range 0.8 to 1.2, cor-
responding to a sampling requirement (without
oversampling) of 250 to 550 trips. Two passenger-
miles cv values already reported in the literature are
0.82 for greater Pittsburgh (Furth 1998) and 1.08
for greater Buffalo (Townes 2001). Only once have
we encountered an agency with passenger-miles cv
exceeding 1.2; the value of its cv, 1.3, would have
required a sample size of 650 trips if the simple ran-
dom sampling approach had been chosen.

SCM results for simple random sampling are
shown in table 1 as alternative A. SCM’s cv of
passenger-miles was found to be 0.95. The corre-
sponding necessary sample size, with 50% oversam-
pling, was 522 trips.

Circular 2710.1A

The sampling plan in FTA Circular 2710.1A also
uses the sample mean as an estimator. It varies
slightly from random sampling because it uses a two
stage sample, selecting n1 days within the year in
stage 1 and n2 trips for each selected day in stage 2,
with a resulting sample size of n = n1n2. The circular
offers a family of combinations of n1 and n2.
Choices at stage 1 are sampling every day (n1 =
365), every other day (n1 = 183), every third day (n1

= 122), and so forth. The combination with the
smallest sample size, which is preferred by most
agencies that follow the circular, is to sample 3 trips
every other day, for a sample size of 549 trips per
year. This sampling requirement is based on analysis
done in the late 1970s of data from two transit
agencies and was first published in 1978 as Circular
2710.1.

The standard error of a sample mean obtained
using two-stage sampling involves variances at the
two stages (Cochran 1977). However, it turns out
that for passenger-miles, between-day variance of
mean passenger-miles per trip is negligible in com-
parison with between-trip variance within a day,
and the latter is essentially the same as between-trip
variance over the entire population of a year’s trips.
Therefore, compared with simple random sampling,
no advantage is gained by deliberately using a two-
stage sample of the type used by Circular 2710.1A.

For the same reasons, the precision obtained
using the two-stage approach of Circular 2710.1A
is essentially the same as what would be obtained
using simple random sampling with the same sam-
ple size. The range of passenger-miles cv’s reported
earlier, therefore, confirms the reasonableness of the
Circular 2710.1A sample size, in the sense that most
transit agencies following its sampling plan will
achieve the specified precision.

Ratio Estimation

Ratio estimation (Furth and McCollom 1987;
Cochran 1977) is a sampling and estimation tech-
nique that takes advantage of available data on an
auxiliary variable that is closely correlated to the
variable of interest. In order to use ratio estimation,
two conditions must be met: the annual total of the
auxiliary variable must be known, and sampled
trips must provide paired measurements of the vari-
able of interest (passenger-miles) and the auxiliary
variable. Auxiliary variables that have been used for
passenger-miles estimation include boardings and
revenue.

Let X be the name of the auxiliary variable at the
trip level; for the sake of definiteness, let X be trip-
level boardings. Its population mean and total, 
and Xtotal, are assumed to be known. Sampling
yields a set of n-paired observations (xi, yi). Let  be

Ŷtotal Ny=

Ŷtotal

y

n
1.96cvy

prec
-------------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

2

=

X

x
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the mean of X from this sample. Also of interest are
the statistics 

 variance of X, usually estimated using the 
sample variance ,

 = estimated coefficient of 
variation of X,

rxy = estimated correlation coefficient of X and 
Y.

Here, we are interested in estimating the ratio
Rpopulation = , which often has an intuitive
meaning. When X represents boardings, this ratio is
the average length of an unlinked passenger-trip,
usually called average passenger trip length. 

Rpopulation is estimated from the paired sample by
statistic R, the ratio of sample means

(6)

The estimate of annual system total passenger-
miles is then the product 

(7)

Because Xtotal is a known constant, R and 
have the same relative standard error and the same
precision. The relative standard error of a ratio esti-
mate is given by

(8)

“Unit cv” as a Measure of 
Statistical Efficiency

Equation (8) can also be expressed in the form

(9)

where the ratio estimator’s ucv, standing for unit cv,
is given by

(10)

The concept of unit cv can also be applied to
simple random sampling. Comparing equations (2)
and (9), it is clear that, for simple random sampling,
the unit cv is 

ucv = cvy (11)

Unit cv is a convenient term, first proposed by
Furth and McCollom (1987), for comparing the

efficiency of estimation techniques. It summarizes
the inherent variability in an estimation technique,
because the relative variance of an estimate depends
only on the unit cv and the sample size. By compar-
ing unit cv’s of various estimation techniques, we
can readily see which one requires a greater sample
size or yields the more precise estimate for a given
sample size. 

Using the concept of unit cv, a sample size for-
mula that applies to all the estimation techniques
presented in this paper is 

(12)

and the precision (at the 95% confidence level)
obtained for a given sample size is

(13)

With ratio estimation, bias can become a problem
at low sample sizes (Cochran 1977). Equations (12)
and (13) are only valid as long as the sample size is
neither so small that bias becomes significant, nor so
large that the finite population correction applies.

The efficiency of a ratio estimator depends
strongly on the correlation coefficient, at the trip
level, between the auxiliary variable and passenger-
miles. Squaring equation (10) and rearranging, the
square of the unit cv can be expressed as the sum of
two terms

(14)

For the kinds of auxiliary variables normally con-
sidered when estimating passenger-miles, the second
term dominates. Therefore, as a general tendency,
the stronger the correlation between the auxiliary
variable and passenger-miles, that is, the closer rxy is
to 1, the smaller the unit cv of the ratio and the
more efficient the estimation technique. 

Boardings as the Auxiliary Variable 
(Alternative B)

Since the sampling plan in Circular 2710.1A was
first published, nearly all buses in the U.S. transit
fleet have been equipped with electronic fareboxes.
Besides counting revenue, electronic fareboxes can
also be used to count passenger boardings, making
it possible to acquire a complete, systemwide count
of boardings. Because boardings are correlated with

Sx
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passenger-miles—trips with more boardings tend
to have more passenger-miles—boardings can serve
as a useful auxiliary variable for ratio estimation.
As mentioned before, the ratio of passenger-miles
to boardings is average passenger trip length. A
study of Buffalo area data (Furth 1998) found the
correlation of boardings to passenger-miles to be
0.59—not optimal, but enough to reduce the sam-
ple size requirement by 33% compared with direct
estimation of the sample mean. 

The approach of using boardings to help estimate
passenger-miles can only be adopted by agencies
that, like SCM, count all passenger boardings. While
nearly every U.S. transit agency uses electronic fare-
boxes, they do not all get reliable boardings counts.
Boarding counts using electronic fareboxes are
partly automated and partly manual. Essentially,
passengers who interact with the farebox by entering
a standard fare or swiping a card through an
attached magnetic card reader are registered auto-
matically. To register passengers who do not have a
standard farebox interaction (e.g., passengers using
a nonmagnetic transfer or pass or those paying a
reduced fare because they are seniors or pupils), bus
operators have to push a button corresponding to
the appropriate fare category. In many large cities,
where bus operator duties are particularly demand-
ing, the farebox is not always operated in a way that
yields reliable counts of passenger boardings.
Where this is the case, boardings cannot be used as
an auxiliary variable to estimate passenger-miles.
(The Chicago Transit Authority is a good example
of a large city transit agency that gets reliable
boardings counts using fareboxes. They use
advanced fare-collection technology to maximize the
fraction of passengers registered automatically and
follow management practices that emphasize the
need for operators to register remaining passenger
boardings.) 

Results for SCM are shown in table 1 as alterna-
tive B. The correlation coefficient between boardings
and passenger-miles is 0.67. The resulting unit cv is
0.72; comparing it with the unit cv for simple ran-
dom sampling (0.95), we can see how using board-
ings as an auxiliary variable reduces the variability
inherent in the estimation technique. The necessary
sample size, 296 vehicle-trips, represents a reduction

of 43% compared with simple random sampling,
and 46% compared with Circular 2710.1A.

Revenue as the Auxiliary Variable 

The earliest applications of the ratio technique for
passenger-miles estimation used farebox revenue as
an auxiliary variable. Farebox revenue is corre-
lated with passenger-miles (more revenue on a trip
usually means more passengers and, therefore, more
passenger-miles). Annual total revenue is certainly
known. And, even before the invention of the elec-
tronic registering farebox, most transit agencies
had mechanical registering fareboxes that allowed
checkers making on-off counts to measure trip rev-
enue by reading the revenue register at the start
and end of the trip. With this approach, the ratio
of passenger-miles per dollar of revenue can be esti-
mated from a sample of trip observations and then
expanded by annual revenue to yield an estimate of
annual passenger-miles.

Furth and McCollom (1987) found a relatively
strong correlation between revenue and passenger-
miles using Pittsburgh area data from the early
1980s. Based on that analysis and a similar analysis
of data from San Antonio, FTA published a revenue-
based sampling and estimation method with a
sample size requirement of only 208 trips (USDOT
UMTA 1985). However, FTA later withdrew default
approval for this sampling plan, because wide-
spread adoption of monthly passes weakened the
correlation of passenger-miles to farebox revenue.
Agencies may still use this technique, but must jus-
tify the sample size they use by analyzing local data. 

This technique was not tested as part of the
SCM case study, because trip revenue data were not
part of the available dataset. However, given the
widespread use of passes at SCM, it is likely using
revenue, because an auxiliary variable would be
less efficient than using boardings.

Stratified Sampling

Stratification is another approach that can improve
sampling and estimation efficiency. For passenger-
miles estimation, stratification has been mostly used
together with the ratio technique for estimating aver-
age passenger trip length. The goal of stratification is
to divide the population of vehicle-trips in a way



94 JOURNAL OF TRANSPORTATION AND STATISTICS V8, N2 2005

that passenger trip length varies as much as possible
between strata, rather than within strata. Stratifi-
cation is usually done by route (Huang and Smith
1993), because routes can differ widely in their
average passenger trip length (typically, average pas-
senger trip length is small on short routes and large
on long routes). Three variations of stratification by
route have been followed, as described below.

Each Route a Stratum 

In the first variation of stratified sampling, each
route is a stratum. A sample of trips is observed
in each stratum, measuring both boardings and
passenger-miles on each observed trip. From each
sample, the average passenger trip length ratio for
the stratum is estimated and then expanded to
annual passenger-miles by multiplying by the stra-
tum’s annual boardings (assumed to be known).
Those annual passenger-miles figures are then aggre-
gated over all the strata to yield the systemwide,
annual estimate of annual passenger-miles. 

In order to apply this approach, an agency needs
not only counts of all passenger boardings during the
year, but the ability to break out those counts by
route. Among those agencies that get a reliable count
of boardings using electronic fareboxes, some are
still unable to stratify by route because bus operators
do not register (by pushing a sequence of buttons)
every time the bus changes route, and so recorded
counts cannot be associated with a particular route. 

Stratum-level parameters and statistics are
defined as follows. Let Nh and nh be population size
and sample size for stratum h, respectively, both
measured in trips. The unsubscripted variables N
and n retain their meaning as overall population size
and sample size; that is,

The relative size of stratum h, in terms of popula-
tion size, is given by

wh = Nh / N (15)

Relative size serves as a weighting factor, since

(16)

Let , assumed to be known, be the mean
boardings per trip within stratum h, and let  and

 be the sample means of Y and X within stratum
h. Finally, let , , and rxyh be the sample vari-
ance of passenger-miles, the sample variance of
boardings, and the sample correlation coefficient
between passenger-miles and boardings, respectively,
within stratum h. 

The ratio estimated within each stratum is

(17)

The estimate of total annual systemwide passen-
ger-miles involves expansion by stratum, followed
by aggregation over strata: 

(18)

The estimate of average passenger-miles per trip is

(19)

Because these final two estimates differ by only
the known factor N, they have the same relative
standard error, and consequently the same unit cv
and the same precision.

The variance of an estimate made using stratified
sampling depends in part on how the sample is allo-
cated among the strata. In this paper, allocation is
assumed to be proportional to stratum size, that is,
for a given n,

nh = whn (20)

Proportional allocation is not, in general, the
optimal (i.e., variance-minimizing) way of allocating
a sample among strata. However, for the range of
parameters typically encountered in passenger-miles
estimation, proportional allocation is not much
inferior to optimal allocation in terms of variance,
and it has other desirable properties including ease
in determining sample size and making certain types
of estimators self-weighting.

With proportional allocation, the relative stan-
dard error of the annual systemwide passenger-miles
estimate is

(21)
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The term in brackets is the unit cv of the estima-
tor. Precision (at the 95% confidence level) for a
given sample size, the sample size necessary to
achieve a given precision, can be determined using
equations (12) and (13).

While route-level stratification is a compelling
concept, it has one serious drawback.  Ratio estima-
tors are biased when sample size is small (Cochran
1977). An analysis of transit trip-level ridership
data found that in order to effectively limit bias, at
least 10 trips should be observed per stratum (Furth
and McCollom 1987). For even a mid-sized transit
agency, this limitation makes stratification by route
of no practical value, limiting the approach to bus
systems with a small number of routes. Therefore,
stratification by route was rejected as a sampling
and estimation approach for SCM. 

Stratification by Route Length 
(Alternative C)

One way to overcome the limitation of a minimum
stratum sample size is to use a coarser stratification
scheme, grouping trips into strata by route length.
Correlation of boardings to passenger-miles can still
be expected to be a good deal stronger within a stra-
tum than systemwide, albeit not as strong as if each
route were a stratum. 

In the SCM case study, routes were grouped into
four strata by length. Table 2 presents relevant sta-
tistics. Stratum 4 contained SCM’s long express
routes (but not the excluded Highway 17 route)
and accounted for about 2% of the daily vehicle-
trips; the other three strata, roughly equal in size,

corresponded to short, medium, and longer routes.
Within each stratum, correlation of boardings to
passenger-miles (at the vehicle-trip level) was rather
strong, with correlation coefficients ranging from
0.79 to 0.89. Of particular interest are the average
passenger trip length ratios for the four strata: 2.8,
3.2, 7.8, and 10.5 miles, respectively. The large dif-
ferences of the last two strata from the first two
show the benefit of separating them into different
strata. 

Overall results are shown in table 1 as alternative
C. The unit cv was 0.43, a large improvement
over the previously described methods. The corre-
sponding necessary sample size was calculated to be
109; constraining stratum 4 sample to at least 10
observations results in a required sample size of 117
vehicle-trips. 

Combined Ratio Estimation (Alternative D)

A third approach to stratified sampling is to use the
so-called combined ratio estimation technique
(Furth 1998; Cochran 1977). It uses stratified sam-
pling to select the trips that are observed, but then
uses that data to estimate a single, systemwide ratio
using the equation

(22)

Using a systemwide ratio is a disadvantage rela-
tive to conventional stratified ratio estimation (i.e., a
ratio estimated for each stratum), weakening the
correlation of boardings to passenger-miles. How-
ever, the method also offers two advantages. First, it

R
whyh∑
whxh∑

-----------------=

TABLE 2  Stratified Ratio Sampling Statistics

Stratum

1 2 3 4 All

Stratum weight 37% 31% 31% 2% 100%

Mean passenger-miles per trip 41 123 237 197 129
cv of passenger-miles 0.68 0.63 0.62 0.45
Mean of boardings per trip 15 39 30 19 27

cv of boardings 0.56 0.71 0.54 0.46
Ratio of passenger-miles to boardings (average 
passenger trip length)

2.81 3.21 7.78 10.54

Boardings to passenger-miles correlation coefficient 0.89 0.88 0.79 0.79
Unit cv of the ratio 0.31 0.34 0.38 0.30

Contribution to the sum in equation (21) (relative 
contribution to variance of the systemwide estimate)

60 549 2, 479 57 3, 144



96 JOURNAL OF TRANSPORTATION AND STATISTICS V8, N2 2005

is unbiased regardless of stratum sample size, and,
therefore, permits every route to be a stratum. Sec-
ond, it requires only knowledge of systemwide,
not route-level, boardings, and, therefore, can be
applied by transit agencies that routinely count all
passenger-boardings, even if they cannot break
out the counts by route. 

In this technique, on-off counts are made for one
or more trips on each route, providing paired obser-
vations of y (passenger-miles) and x (boardings),
from which the combined ratio is calculated using
equation (22). Allocation of the sample between
strata (i.e., between routes) is again proportional to
size. Relative standard error is estimated by 

(23)

where

(24)

is the estimated mean passenger-miles per trip.
Again, the quantity in brackets in equation (23) is
the unit cv of the estimator.

The only previously published report that uses
this technique for passenger-miles estimation found
it to be very efficient. When applied to the eight-
route transit system of Kenosha, Wisconsin, it called
for a sample size of fewer that 50 vehicle-trips
(Furth 1998). However, when SCM used this tech-
nique it was not as efficient. As shown in table 1,
under alternative D, the unit cv (0.45) and the nec-
essary sample size (117) are virtually the same as
obtained for alternative C, conventional stratified
ratio estimation.

Closer examination of the differences between
conventional stratified ratio estimation and com-
bined ratio estimation helps explain why the
combined method did not perform as well at
SCM as in Kenosha. Equation (23) is the same as
equation (21), except that the former uses the com-
bined ratio in place of stratum-specific ratios. In
both formulas, the sum in the numerator represents
the expected squared difference between observed
and predicted passenger-miles. For conventional
stratified ratio estimation, this difference for a paired
observation (yih, xih) is (yih – Rhxih), while with com-
bined ratio estimation the difference is (yih – Rxih).

Naturally, differences tend to be smaller when
using a stratum-specific ratio; the degree to which
this factor hurts the performance of the combined
ratio technique depends on how much average pas-
senger trip length varies between routes. Because
average passenger trip length is closely related to
route length, one would expect the technique to be
more effective when route length varies little within
the network. 

Not surprisingly, Kenosha’s transit system, like
those of many small cities, uses pulse scheduling
based around a transit center. In this kind of net-
work, routes are all designed to have roughly the
same length. At SCM, in contrast, routes vary con-
siderably in length, and so average passenger trip
length varies widely between routes. This explains
why for SCM the combined ratio technique holds
no advantage over conventional stratified ratio esti-
mation for estimating average passenger trip length.
This is a significant finding that most likely extends
to other transit systems whose route lengths vary
considerably from one another. 

Using Potential Passenger-Miles as the 
Auxiliary Variable (Alternative E)

In an effort to improve sampling efficiency further, a
new auxiliary variable is proposed: the product of
boardings and route length, which can be called
potential passenger-miles. This formulation is moti-
vated by the observation that trip-level passenger-
miles tend to be proportional to not only the number
of passengers on the trip but also to the overall
length of the route. The ratio of passenger-miles to
potential passenger-miles has an intuitive interpre-
tation: it is the average fraction of a route’s length
that passengers travel. For example, a ratio of 0.6
would indicate that on average, passengers travel
60% of the length of their chosen route.

This estimation approach requires the usual
sample of on-off counts and knowledge of annual
boardings by route. Because route length is a known
constant, potential passenger-miles can be calcu-
lated for both the sample data and the annual totals
by simply multiplying every boarding count by the
length of the route on which the count was made.
In the SCM case study, on routes with multiple
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routing patterns, “route length” was defined to be
the length of the most often used pattern.

Mathematically, alternative E is simply ratio esti-
mation, like alternative B, except that the auxiliary
variable X is redefined to be potential passenger-
miles.  As indicated in table 1, alternative E, the
correlation of passenger-miles with potential pas-
senger-miles (rxy = 0.89) turns out to be considerably
stronger that the correlation with boardings alone
(rxy = 0.67 in alternative B); as a result, there is an
impressive reduction in necessary sample size (from
296 to 112) when the auxiliary variable is changed
from boardings to potential passenger-miles. 

This result shows the value of the compound aux-
iliary variable (boardings * route length). However,
as an overall approach, unstratified ratio estimation
using this auxiliary variable still offers no substantial
improvement to stratified ratio estimation using
boardings as an auxiliary variable.

Using Adjusted Route Length to Calculate 
Potential Passenger-Miles (Alternative F)

Alternative F is the same as alternative E, except that
in calculating potential passenger-miles, an adjusted
measure of route length is used on loop routes. On
loop routes—those that return to a main terminal by
a substantially different path than the that taken
when leaving that terminal—SCM defines route
length as the length of the full loop rather than as the
one-way distance between terminals.  In alternative
F, potential passenger-miles on loop routes were cal-
culated using half the length of a loop as the route
length.

It turns out that adjusting route length in this
manner did not improve the correlation of potential
passenger-miles with passenger-miles, as shown in
table 1. Compared with alternative E, the correla-
tion coefficient remained essentially unchanged
while the cv of the auxiliary variable increased,
resulting in an increased necessary sample size.

Combined Ratio Estimation Using 
Potential Passenger-Miles as the 
Auxiliary Variable (Alternative G)

The final alternative, alternative G, marries the two
most efficient techniques found previously: ratio
estimation using potential passenger-miles as the

auxiliary variable, and stratification by route using
the combined ratio estimation method. 

Comparisons to this approach can be drawn
against two other approaches: unstratified ratio
estimation using potential passenger-miles as the
auxiliary variable (alternative E), and combined
ratio estimation using boardings as the auxiliary
variable (alternative D). In alternative E, while both
unstratified ratio estimation and combined ratio
estimation involved a single, systemwide ratio, the
stratification involved in the combined ratio method
reduced inherent variability. In alternative D, the
weakness was the large degree of variation in aver-
age passenger trip length between routes. When the
auxiliary variable is potential passenger-miles, the
ratio of interest becomes the fraction of route length
covered by the average passenger trip, a ratio that
does not vary nearly as much between routes. 

Mathematically, alternative G is the same as
alternative D, except that the auxiliary variable X
represents potential passenger-miles. Again, we used
proportional allocation between strata.

As indicated by table 1, alternative G turned out
to be the most efficient, requiring a sample size of
only 86. This represents a reduction of about 25%
compared with alternatives D and E, confirming
both the advantages of stratified sampling and of
using combined ratio estimation with an auxiliary
variable that varies little between routes. 

Other Sampling Techniques

This overview of sampling techniques for estimating
annual passenger-miles would not be complete
without mentioning two other techniques that have
been found to offer advantages. 

Sampling Round Trips

The cost structure of on-off checks is such that it is
almost always more efficient to sample round trips
rather than independently selected trips: once a
checker has surveyed a trip, the return trip can be
sampled at nearly no additional cost because the
checker usually has to be paid anyway to return to
his or her starting point. Sampling round trips is
an instance of cluster sampling, that is, selecting
predefined clusters of, in this case, two trips for
observation. 
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At transit agencies with labor agreements
requiring eight-hour assignments for checkers, clus-
ters lasting three to four hours are preferred, so that
a checker can be assigned to one cluster in the
morning and another in the afternoon. A cluster of
this length is typically a chain of four, six, or eight
trips performed by a single vehicle. The larger the
cluster, the smaller the per-trip overhead related to
getting to the start of the trip, supervision, and
returning from the sampled trip. 

However, when clusters tend to be homogeneous
(which is certainly the case in this application, since
the trips performed in a chain by a single vehicle are
usually on the same route and take place during the
same general time of day), variance per observed trip
will be greater with cluster sampling than if trips are
sampled independently (Cochran 1977). Therefore,
the number of trips that would have to be observed
to achieve a given precision using cluster sampling is
greater than if trips are sampled independently. The
cluster effect is defined as the ratio between these
necessary sample sizes:

(25)

where nSRS = necessary sample size in elementary
units (e.g., one-way trips) using simple random
sampling,

cluster size = number of elementary units per cluster,
and

ncluster = necessary sample size (number of clusters)
with cluster sampling.

In the literature (Cochran 1977), the cluster effect
has been called Kish’s deff, where deff  stands for
design effect. 

The cluster effect can be used to convert a nec-
essary sample size, obtained using a formula for
simple random sampling, into a necessary sample
size in units of clusters:

(26)

A study of Los Angeles data (Furth et al. 1988)
found that when sampling clusters of four trips to
estimate the ratio of boardings to farebox revenue,
the cluster effect was 2.2. Therefore, the number of
four-trip clusters that would have to be observed is
(2.2/ 4 ) = 55% as great as the number of one-way
trips that would have to be observed if one-way

trips were selected independently. Whether cluster
sampling is cost-effective depends on if it is less
expensive to do on-off checks on n trips selected
independently or 0.55 n clusters of four trips. 

A study of Madison, Wisconsin, data found that
while sampling in round trip clusters was effective
because of the small marginal cost of checking a
return trip, sampling in larger clusters was not
(Huang and Smith 1993). Our experience in ana-
lyzing cluster data for passenger-miles estimation
from Dayton, Ohio, and Pittsburgh, Pennsylvania,
confirms this finding. The larger the cluster, the
greater the cluster effect, making clusters larger than
a round trip rather ineffective as sampling units.
Once a checker has measured passenger activity on a
single round trip, little further information can be
gained by sampling the next round trip operated by
the same vehicle, since it will normally be operating
on the same route and at the same period of the day.
Large clusters are, therefore, recommended only
when labor rules make it such that it costs little more
to check multiple round trips than to check a single
round trip.

To determine a sample size requirement using
round trip clusters, it is often necessary to guess the
magnitude of the cluster effect, because cluster data
are rarely available for direct analysis. Experience
suggests that a conservative estimate of the cluster
effect is 1.5 for round trips. Using that value,
equation (26) indicates that the number of round
trips that would have to be sampled is 75% as great
as the number of one-way trips that would have to
be sampled using independent sampling. Therefore,
if the cost of checking a round trip is no more than
the cost of checking a one-way trip, sampling by
round trip can reduce cost by 25% compared with
sampling trips independently.

Two-Stage Sampling

In very small transit systems, the number of trips
sampled over the year can approach the number of
trips in the daily schedule. Sometimes, even in larger
systems, the transit agency has a policy of checking
every trip in the daily schedule once per year. If the
finite population correction is accounted for, a two-
stage design in which all (or most) of the trips in the
daily schedule are observed eliminates all (or most)
of the between-scheduled-trip variation (Cochran

cluster effect
ncluster

∗cluster size
nSRS

----------------------------------------------------=

ncluster nSRS
cluster effect
cluster size

-------------------------------------⎝ ⎠
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1977). Because most of the variation in passenger-
miles tends to be between scheduled trips (e.g., peak
period versus offpeak) rather than between days for
a given scheduled trip, such a two-stage approach
can be quite efficient. This technique was demon-
strated in a study done for the Los Angeles Blue
Line light rail (Furth 1993) and has been applied in
numerous bus systems as well. 

COMPARISON AND CONCLUSION

Table 1 presents summary statistics for SCM com-
paring seven alternative sampling and estimation
approaches using the Circular 2710.1A sampling
plan. The key measure used to compare alternatives
was the necessary sample size to meet the FTA preci-
sion criterion.  

Circular 2710.1A, requiring a sample of 549
vehicle-trips, was the benchmark. This analysis
found that it was a reasonable sample size to require,
in the sense that passenger-miles variability at the
trip level are such that, for most transit agencies,
following it will achieve the FTA precision criterion.
Alternative A used simple random sampling, where
the only significant difference from the circular
was that its sample size was based on a local cv of
passenger-miles; for SCM, this alternative required
almost as large a sample size (522) as Circular
2710.1A.

The remaining estimation techniques tested
involved estimating a ratio between passenger-miles
and an auxiliary variable where the annual total
value is known. When boardings was the auxiliary
variable, the ratio of interest was average passenger
trip length. Compared with simple random sam-
pling, this approach (alternative B) substantially
improved efficiency, as the sampling requirement
fell to 296. 

When boardings were known by route, stratifying
the population of trips by route length improved
sampling efficiency, since average passenger trip
length tended to vary systematically with route
length, being greater on long routes and smaller on
short routes.  In alternative C, estimating the aver-
age passenger trip length ratio separately in four
strata dropped the sampling need to only 117 trips.
Making every route a stratum could further improve
sampling efficiency; however, the constraint that

ratio estimation be based on samples of at least 10
observations per stratum (in order to limit bias)
makes it an impractical approach for an agency with
a large number of routes.

The combined ratio method permits stratification
by route in sample selection without concerns about
bias, but it involves estimating a single, systemwide
ratio. This technique, used to estimate the average
passenger trip length ratio (alternative D), had the
same sampling requirement as alternative C. It had
the advantage that, unlike alternative C, it required
only that an agency know annual system boardings,
without requiring that annual boardings be known
by route. The effectiveness of this technique was
considerably greater for the transit agency in
Kenosha, Wisconsin. Analysis of the technique sug-
gests that its effectiveness will be greatest when the
routes in a transit system vary little in length. 

A new auxiliary variable was introduced, called
potential passenger-miles, which is the product of
boardings and route length. It performed better than
boardings as an auxiliary variable. Without stratifi-
cation (alternative E), it dropped the sampling
requirement from 296 to 112; with stratification
using combined ratio estimation (alternative G), it
dropped the sampling requirement from 117 to 86.
Attempts to use a modified definition of potential
passenger-miles (alternative F) failed to improve effi-
ciency. Alternative G, the most efficient approach,
reduced the sampling burden by 84% compared
with Circular 2710.1A. Conveniently, alternative G
required only knowledge of system-level boardings,
not route-level boardings.

While SCM’s available dataset did not permit
analysis of sampling trips in clusters, evidence from
the literature and from unpublished studies indi-
cates that sampling using round trip clusters
improves cost-effectiveness, because a round trip
cluster generally carries more statistical information
than a single trip, while costing no more to observe
due to the need of the checker to return to his or her
starting point. 

Evidence from only a few transit agencies is not
sufficient to make a broad conclusion about the
most efficient estimation and sampling method or
sample size needed. Analysis of data from other
transit agencies is needed to determine which results
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are transferable. Nevertheless, the results of this
study show a promising direction for any transit
agency considering ways to reduce its passenger-
miles sampling burden. 
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Globalisation, Policy and Shipping: 
Fordism, Post-Fordism and the European 
Union Maritime Sector
Evangelia Selkou and Michael Roe
Edward Elgar Publishing
2004, 256 pages 
ISBN 1-84376-934-4
$100 £59.95

This book contains nine chapters on a number of
interrelated themes covering shipping policies, the
European Union (EU), the impact of globalization,
cohesion in European shipping policy, the case for
tonnage tax, and neo- and post-Fordist develop-
ments in shipping policy. In a discussion of the
impacts of globalization on the international ship-
ping industry, the authors consider the role and rele-
vance of national shipping policies and international
bodies.

The book first examines policy objectives and
structures and also illustrates the conflicts that can
exist in policymaking. It then focuses on EU shipping
policy and the different fiscal regimes applied to
shipping, considering that the widespread adoption
of tonnage taxation across the EU signifies an
appreciation of shipping as a national asset. The
final chapters discuss whether the changes in the
maritime industry follow the series of structures rec-
ognized in other industries. In particular, chapter 8
identifies two partly contradictory tendencies in the
industry, namely the neo-Fordist and post-Fordist
(comparative advantage versus competitive advan-
tage) dimensions, with close relationships to global-
ization in shipping. 

I found the book to be well written and wide
ranging, containing a wealth of references to the lit-
erature. It draws together the various strands of
arguments, theories, and policies and weaves them
into a composite picture that all students of shipping
policy should appreciate. As such, this is a very wel-
come addition to the literature, particulary because
it examines some of the core aspects of the global-
ized shipping arena and the extent to which global
tendencies affect the formation of shipping policies.
The authors recognize that maritime regulation must

be international in nature (an observation that seems
to have escaped some policymakers in the past) and
illustrate their points with appropriate examples. In
the final chapter, the authors point to some key ship-
ping policy lessons.

The authors provide extensive references and one
possible critique is that there are too many references
(especially to Lloyd’s List in chapter 7 which deals
with the tonnage tax), but the points made are cer-
tainly well documented and justified. Copies of this
book should definitely be held by university libraries
and it could even be adopted as a textbook for some
specialized shipping courses. This book is part of the
series in Transport Economics, Management and
Policy and it sits well in such company. At a price of
£59.95, however, it might prove too expensive for
individual students to purchase.

Reviewer address: Peter Marlow, Head, Logistics and
Operations Management, Cardiff Business School, Colum
Drive, Cardiff CF10 3EUm United Kingdom. Email:
marlow@cardiff.ac.uk.

 

Competition and Ownership in Land Passenger
Transport: Selected Refereed Papers from the 8th
International Conference (Thredbo 8), Rio de
Janeiro, September 2003
D.A. Hensher, editor
Elsevier
2005, 792 pages
ISBN 0-08-044580-2
$180   £110 €€ 165

This very substantial volume, drawn from the 8th
Thredbo conference, provides a wide range of
papers dealing both with rail and road modes. The
Thredbo series began in 1989 at the Australian
mountain resort of that name and has subse-
quently been held every two years at a different
location. It attracts a wide international audience,
nowadays somewhat broader than the largely Brit-
ish, Australian, and American group at the first
conference. Given the location of the conference,
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the stronger contribution from South American
authors is noteworthy.

Issues such as deregulation and competitive ten-
dering have been a major factor since the initial
impacts of local bus deregulation in Britain. A wider
range of work, notably econometric studies, is now
included. The volume is edited by Professor David
Hensher of the University of Sydney, a co-founder
of the series along with the late Professor Michael
Beesley of the London Business School, to whose
memory this volume is dedicated.

Individual papers are grouped into themes such
as performance-based contracts, regulatory and
planning tools, and performance data and measure-
ment. Each of these served as the basis of a work-
shop in which intensive discussion took place, the
main findings of which are summarized in a sepa-
rate chapter. Selected papers from each workshop
then follow. However, given the size of the volume,
it is likely to be used as a reference work rather than
read right through: for this purpose, a short abstract
of each chapter would have been helpful.

Presentation is generally clear, although use of
black and white print only means that some dia-
grams originally in color do not reproduce very
well, and on some occasions references in the text to
the color version are inconsistent with the version
actually produced (e.g., figure 3.1 in chapter 10).

The issue of performance data and measurement
has received greater attention than in previous con-
ferences, being the focus of section 7 in this book.
Chapters cover the current ownership structure in
Britain (Charles Roberts), Brazilian railway privati-
zation (Hostilio Neto), the Texas Governor’s Busi-
ness Council Performance Indicators for Urban
Transport (Wendell Cox), efficiency changes in rail
passenger operators since rail privatization in Brit-
ain (Jonathan Cowie), and bidding procedures for
Brazilian urban bus systems (Alexandre Gomide).

Earlier work on deregulation and privatization
used relatively simple performance indicators often
aggregated at the whole operator or network level.
Given the dramatic changes in productivity and
costs—for example, through introducing competi-
tive pricing into monopolistic systems—the out-
comes were clear enough for measures such as cost
per bus-kilometer run. However, with an increased

focus on quality of service, more subtle indicators
may have to be used, such as service reliability,
patronage, and user attitudes. Even patronage may
be measured only in crude terms and is dependent
on operator ticketing systems’ data. One conse-
quence of deregulation and privatization is
increased commercial confidentiality, resulting in
detailed absolute figures not being readily available
at the local level. Percentage changes may be
quoted, such as those for ridership increases on
“quality partnership” bus services cited by Roberts,
but the absolute base from which such changes
occurred is often unclear. 

Chapter 13 by Berge, Brathen, Hauge, and Ohr
offers useful examples of the wider range of perfor-
mance measures now being used, in this case from
Hordland County in Norway. These in turn are
built into the contract mechanism, providing appro-
priate incentives for operators rather than simple
cost minimization. 

Contracts may also include other targets for per-
formance, such as the revenue, volume, and acci-
dent levels set for the privatized Brazilian rail freight
companies (although it can be presumed that the
safety level figures are not targets in the same sense,
but rather upper limits that companies would hope
to fall within).

The sole U.S. contribution (chapter 41 by Wen-
dell Cox) examines data from a wide range of coun-
tries for the respective roles of car and public
transport. He also addresses the issue of how the
greater use of public transport has the potential for
avoiding road building to handle increased car
flows. Very dramatic differences in urban densities,
such as those between Hong Kong and U.S. cities,
clearly correlate with different market shares for
public transport modes. Cox suggests that the possi-
bilities for modal diversion in expanding low-
density U.S. cities are limited (except for some corri-
dors into city centers), given the very high level of
public transport services that would be needed. He
indicates some limits to the higher density urban
development now favored in some quarters, such as
the greater volume of vehicle traffic per mile of road
(despite the lower share taken by car), which may in
turn result in congestion, lower speeds, and hence
more pollution per vehicle-mile. 
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However, one must have reservations about some
of the data and analysis presented by Cox. For
example, figure 3 in his chapter is described as pub-
lic transport vehicle-miles per square mile per
annum. An average of 0.91 for western Europe
seems implausibly low, unless what is meant is
route-miles per square mile of area. This appears to
be a simple error in stating the units used. He does
not show per capita energy use nor pollution, which
is generally far lower in high-density cities (as indi-
cated in UITP’s Millennium Database1) even if rates
per vehicle-kilometer are higher. Having said this,
given the existing low densities in the cities
described (e.g., Houston), the scope for public trans-
port shares on anything like the European level (let
alone Asian) is obviously out of the question. How-
ever, the findings presented in this chapter may not
be transferable to newly developed areas where the
possibilities for higher density exist. 

There is no doubt that the relevance of the topics
covered in this conference series will remain strong,
given continued interest in reducing costs and
improving service quality in a wide range of coun-
tries. As Ian Wallis of Booz Allen and Hamilton
(New Zealand) says in his review of developments
in the main Australasian cities “…there should be
plenty more to report on at Thedbo 9 [to be held
shortly in Lisbon] and most likely at T10, T11,
T12….”

Overall, this volume is undoubtedly of very great
value as a work of reference, although given its size
and cost it is likely to be a library acquisition rather
than a personal one.

Reviewer address: Peter White, Professor, Transport Stud-
ies Group, University of Westminster, 35 Marylebone
Road, London NW1 5LS, United Kingdom. Email:
whitep1@wmin.ac.uk.  

Industrial Location Economics 
Philip McCann, editor
Edward Elgar Publishing Company
2002, 293 pages
ISBN 1-84064-672-1
$125 hardback ($50 paperback)

This must-read book will appeal to all students of
the economics of location and the urban system
including advanced undergraduates and graduate
students, and faculty who work in the more general
areas of planning and transportation, regional sci-
ence, regional economic development, and location
of economic activity. This is true if for no other rea-
son than the first two chapters, by Phil McCann and
John Parr, review the foundations of classical loca-
tion theory (Weber and Moses; McCann, Losch,
and Christaller; and Parr) and present more recent
extensions and syntheses of the literature. 

While those who teach industrial and firm loca-
tion theory and practice are aware of most that is
presented in these two chapters, others in the more
general fields noted above will find these a useful way
to update their background and learn about how the
major research questions of today are being explored
from this perspective. Such questions or topics
include globalization, knowledge spillovers, urban
and localization economies, agent-based perspectives,
and complexity theoretic concepts. Throughout, we
find McCann and Parr at their best when demon-
strating close reasoning, thoughtful analysis, and rea-
soned but provocative insights. I have focused heavily
on the McCann and Parr chapters here, because these
two chapters by themselves make the book worth
having in one’s library. There is, however, much more
of considerable interest and value.

The book is organized in three parts. Part I, Ana-
lytical Approaches to Industrial Location, in addi-
tion to the McCann and Parr chapters also considers
location models from the perspective of the new eco-
nomic geography, in chapter 3, and a review of firm
migration literature with an assessment of prospec-
tive research for the future in chapter 4. Part II,
Cities and Industrial Clusters, examines this topic of
current interest in chapters 5 through 8. And Part III,
consisting of chapters 9 through 11, examines the
location behavior of multinational firms including

1 The International Union of Public Transport (UITP),
based in Brussels, compiles an extensive database of 100
large world cities. See http://www.uitp.com.
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technology relationships between indigenous and
foreign-owned firms (chapter 10).

Part I: Analytical Approaches to 
Industrial Location

While the McCann and Parr chapters have already
been partly assessed, some additional notes will
present a more complete picture. McCann observes
there are important limitations to the applicability
of the Weber-Moses framework. One is that market
price or revenue of the output plays no role in the
determination of the optimum location of the firm.
Another is the strong role played in this analytical
framework by transport costs when in fact these
costs are for most firms a very small portion of total
costs. He shows, however, that both of these limita-
tions can be for the most part reconciled by substi-
tuting a total logistics cost variable for distance
transport cost. This approach should be of particu-
lar interest to transport economists, planners, and
practitioners. McCann goes on to show how it is
possible to incorporate measures of the economies
of distance and scale in the broader logistics
reformulation. 

The chapter by Parr identifies and deals with
missing elements of the Central Place/Loschian
urban systems perspective and places emphasis on
issues related to innovation and knowledge spill-
overs in the context of localization, urbanization,
and activity complex economies. He also empha-
sizes the need to develop or create a fuller under-
standing of how the urban system develops and
evolves.

Dirk Stelder begins chapter 3 with the observa-
tion that “…a major empirical shortcoming of most
NEG (new economic geography) models is their use
of very abstract one-dimensional economic spaces
like a circle or a horizontal line.” By extending the
approach to two dimensions Stelder shows that it is
possible to produce complex hierarchical city distri-
butions that approach reality to a significant extent.
Of applied interest is a simulation of the European
urban system that is accurate enough to be provoca-
tive. This work directly addresses Parr’s concern
about expanding our knowledge of the evolution of
the urban system.

Chapter 4, by Piet Pellengarg, Leo van Wissen,
and Jouke van Dijk, nicely reviews the literature of
firm migration (relocation). At the outset, the authors
recognize that firm relocation differs from firm loca-
tion, because in the former case one location is substi-
tuted for another. In short, history is likely to
influence the relocation decision and thus the out-
come is conditional upon this history. This is impor-
tant because it leads to the adoption of a stage
approach to the study of the relocation decision: first
the decision to move, then based on that comes the
decision to relocate elsewhere. The relocation deci-
sion is also seen as different in that the focus is more
on push factors rather than pull factors. The chapter
provides three theoretical perspectives (neoclassical,
behavioral, and institutional) that cover three major
time periods: the 1970s, 1980s, and 1990s. The
authors conclude that contemporary research focuses
more heavily on the institutional nexus but the classi-
cal and behavioral approaches remain relevant and
important. As a consequence, it is not possible to dis-
cuss or even formulate a general theory about the
firm relocation decision at this time. 

The firm relocation research shows distinct
changes in motivation and orientation across the
three decades leading up to the millennium. Rather
than restate the various patterns of findings by the
decade, it is perhaps more important to note here
that much of the early literature was dominated by
researchers in the United Kingdom. This persisted
into the 1970s, because the United Kingdom’s
regional policy at that time focused on steering
manufacturing industry to assisted areas by using
such policy instruments as location controls and
capital and workforce subsidies. Thus, the firm relo-
cation studies of this era were part of a large bundle
of studies aimed at determining the effect of these
policy instruments on the economies of assisted
areas. In the late 1970s and early 1980s, U.S.
research began to appear in the literature along with
significant publications from the Netherlands, Ger-
many, France, and Italy. 

The number of international firm migration stud-
ies decreased considerably in the 1980s. With this,
the emphasis of the research changed to more of a
focus on the relation of firm migration to urban
decay and decline and policies designed to drive
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renewal, and to hold or attract companies to such
areas. Firm relocation research in the 1990s reflects
the rise of the information and communications
technologies sector and supporting services as
emphasis on the policy side of this literature focused
increasingly on the creation of innovative environ-
ments and new enterprises and industries. The chap-
ter concludes with a discussion of modeling
approaches for studying firm migration and how to
operationalize various explanatory factors such as
those both internal and external (context) to the
firm and more specifically site- and situation-related
forces. Throughout, the authors emphasize the
importance and need for further research to reveal
the role that the product life cycle plays in the relo-
cation decision.

Part II: Cities and Industrial Clusters

Considerable interest exists in bringing more clarity
to the industrial cluster literature and to the con-
cepts that underlie its magnetism for both scholars
and practitioners. And while the chapters in this
part of the book certainly add to the debate and
provide some clarification, they fall short of provid-
ing insight into best practices at both the method-
ological level and at the level of practice. But this is
probably too harsh a view given that all research in
this area remains subject to the need for consider-
able clarification, codification, and extension.

In chapter 5, Gilles Duranton and Diego Puga
examine the concepts of diversity and specialization
in cities. Probably the most important contribution
of this chapter is the presentation of a set of stylized
facts about the subject: for example, “specialized
and diversified cities coexist,” “larger cities tend to
be more diversified,” “the distribution of many
urban system parameters such as relative city sizes
are stable over time,” “cities are increasingly spe-
cialized by function,” and so on. These facts are use-
ful in two ways. In their own right they offer a set of
working hypotheses that already enjoy a fair
amount of support. But they also create a template
for assessing various urban theories from both static
and dynamic perspectives and for advising policy.
From a policy perspective, this leads to conclusions
like: “…the link between innovation and diversity
seems fairly robust…thus highly innovative clusters

cannot be bred in previously highly specialized envi-
ronments.” Such observations if not fully vetted at
least formalize patterns that many of us who have
worked in this arena recognize and thus begin to lay
the foundation for methodological and, perhaps, a
more conceptual synthesis.

In chapter 6, Ian Gordon examines the issues of
global cities, internationalization, and urban systems.
He begins by observing that there has been a progres-
sive internationalization of relationships at all levels
and the revaluation of the advantages of urban
agglomeration, especially core cities. Gordon also
recognizes there is a good bit of “fuzziness” in the use
of the concept of world or global cities, while effec-
tively avoiding getting bogged down in an extended
assessment to confirm this claim. He simply moves
on to the main concern of the chapter—globalcity-
ization and its relation to location, transportation,
and trade functions within urban systems. Further
analysis results in a conclusion that undue emphasis
has been placed on the notion that global or world
cities play an inordinate role as dominant nodes in
the development and operation of the global net-
worked economy. He suggests that an “…overstrong
focus on the significance of the global city role can
obscure the responsibility of other (often more tradi-
tional or older) factors for positive and negative
developments in the city.” He also argues that
emphasis on the global city role “…reflects one par-
ticular set of interests from within a diverse economy,
exaggerating the extent to which these are crucial to
the wider economy.” As such, this chapter presents
an argument that is at odds with the prevailing
notion of the importance of global cities in the opera-
tion of national urban systems and, therefore,
national and global economic systems.

In chapter 7, Michael Steiner presents an institu-
tional dynamics view of innovation and regional
development as a framework for arguing the neces-
sity of industrial clusters in new market economies
and developing countries, especially those that have
adopted institution-liberalizing policies. Yet these
countries are often limited in their ability to guaran-
tee the conditions required to fulfill the process of
transformation and thus to use spontaneous market
responses as strong or dominant drivers of develop-
ment. Steiner extends this conclusion to apply as
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well to the use of spontaneous cluster development
as a driver. In short, a stronger regulatory or inter-
ventionist policy is necessary for steering industrial
cluster development in the ascending and develop-
ing countries. He concludes that membership in the
European Union (EU) and similar multinational
organizations could serve as a guarantor in the
external institutional building process and thus a
way to dampen the need for strong intervention.

The final chapter of Part II, written by Edward
Feser and Stuart Sweeney, assesses theory and meth-
ods used for comparing cross metropolitan business
clustering. They recognize that the urban system is
always in a state of flux, and this will impact dis-
persal or concentration tendencies in different ways
in different industries and thus affect clustering
behavior. In response, they develop a new analytical
methodology for cluster analysis based on point pro-
cess models that utilizes data for establishments by
location. They go on to apply the methodology to 14
U.S. metropolitan areas and find considerable varia-
tion in clustering among the industries of a common
value chain (cluster of related industries)—manufac-
turing. They, for example, find that the strongest
intra-regional clustering occurs in “…paper and
publishing and textiles/apparel…value…chains, and
to a lesser extent electronics and computers, aero-
space, canned goods and grain mill products.” Clus-
tering is weak for wood products and furniture,
vehicle manufacturing, and chemicals. This interest-
ing research is of considerable value in that it offers a
direction for addressing an issue mentioned earlier in
the review, namely the need for creating synthesis
and agreement on methods and concepts that under-
lie the industrial cluster research agenda. 

Part III: Multinational Firms and Location

Chapter 9 contains an essay by Ram Mudambi on
location decisions of multinational enterprises
(MNEs). He notes that such decisions have for the
most part been considered in the context of the
eclectic paradigm after Dunning, which provides a
unifying framework for “…determining the extent
and pattern of foreign-owned activities.” He contin-
ues with the conclusion that three sets of forces or
advantages drive MNE activities. These have to do
with ownership of the enterprise, location of opera-

tions, and the internalization of advantages, or OLI.
The ownership advantages come from the resource
base owned or controlled by the firm, while the
location advantages come from resources, net-
works, institutional structures, and so forth to a
geographic entity that are immovable. Internaliza-
tion brings activities that create transaction costs
inside the structure of the firm. 

The chapter presents literature on OLI in the con-
text of a view that the multinational location deci-
sion can be modeled as a two-person game between
the MNE and the host government. The analysis
begins with the literature on the MNE location deci-
sion from 1945 to about 1980, a period dominated
by market-oriented advantages that occurred under
the “suspicious eye” of host governments. However,
as globalization unfolded in the 1980s and subse-
quent liberalized approaches to development were
more commonly adopted, a more interactive per-
spective between the MNE and the host government
occurred. Then subsidiaries became much more
linked to the MNE’s international network, espe-
cially for mature MNEs. In this later period, life
cycle effects of the firm became more important.
This is viewed as mutually advantageous to both the
MNE and the host government, because knowledge
and technology spillovers within the firm and to
other indigenous firms become more likely where
such mature multinationals operate.

This issue of technology spillovers is central to the
substance of chapter 10 by John Cantwell and
Simona Iammarino. They observe that MNEs derive
technology complementarities between related paths
of innovation or corporate learning in distinct geo-
graphic or country settings. In this fashion, it is pos-
sible to spread the resulting competence base of the
firm across its subsidiaries and, thus, more efficiently
spread its technology assets. From this fact of MNE
operations, the literature has considered the hypoth-
esis that indigenous firms in the host country thus
benefit from so-called technology spillovers of the
MNE locations there. The authors next focus on the
EU context arguing that the high level of cross
national institutional congruence provides the most
likely or strongest context for this hypothesis to
thrive. Some support is found and a discussion of the
barriers to generalizing the findings ensues.
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The final chapter, by Tomokazu Arita and Philip
McCann, examines the relationship between the
spatial and hierarchical organization of multiplant
firms through consideration of the global semicon-
ductor industry. They observe that the phenomena
of Silicon Valley and other renowned regional tech-
nology centers like Cambridge (England), Austin
(Texas), Bangalore (India), and so on are only a
small piece of the semiconductor industry and the
small innovative nature of the economic structure of
those economies can be and are misleading. 

To examine this seemingly provocative hypothe-
sis, Arita and McCann undertake an analysis of the
structure of the semiconductor industries in Japan
and the United States. They find that, like most
industries, this industry with its forward and back-
ward linkages is organized oligopolistically or nearly
so. In Japan, the organizational structure is strongly
vertical in nature and in a keiretsu style fashion, and
nearly all of the R&D and semiconductor produc-
tion, including basic and intermediate inputs, is
located in Japan. In the United States, only a few
major firms are producing semiconductors, but the
supply chain is more diverse with significant out-
sourcing used to feed semiconductor production in
plants based in the United States and elsewhere. Get-
ting back to the point of the analysis, the authors
conclude that the semiconductor industry is orga-
nized much like other intermediate to mature indus-
tries. Furthermore, only a small part tends to be
organized in a network of small- to medium-sized
enterprises (SMEs) like that found in Silicon Valley
and the other regional technology centers cited
above. While one might argue that this may be
viewed as mixing oranges and apples, it focuses
attention on the fact that the information technology
industry is more than just the businesses of technol-
ogy-intense regional economies. In fact, its backbone
is organized much the same as other industries at the
intermediate to mature stage of the life cycle.

Conclusions

This is an excellent book and for an edited volume it
does a nice job of staying on message. The book’s
strong point is the several literature review-type

chapters. These include chapters 2 and 3 on classical
location theory, extensions, synthesis, and directions
for future research, which are gems. Chapter 4 on
firm migration or relocation does a nice job of cov-
ering the essentials of the literature in an historical
context and provides an excellent guide to pressing
research questions. 

While Part II on cities and industrial clusters does
not provide a literature review of either urban
research or industrial clusters, it presents much
insight into the thinking on localization and urban
economies, concepts underlying the renewed inter-
est in industrial cluster analysis and in particular in
an urban context. Finally, chapter 9 provides a good
assessment of the literature on the MNE location
decision and the role of foreign direct investment.
This review also provides historical perspective in
addressing the major research questions and leaves
the reader with a good sense of the engaging con-
temporary research questions.

Beyond the review-type essays, the book offers an
introduction to interesting topics and to the frontiers
of related research. For example, chapter 3 extends
the classical perspectives on industrial location to
agent-based modeling in the context of the new eco-
nomic geography. All four chapters in Part II on
cities and industrial clustering are of considerable
interest ranging from Ian Gordon’s examination of
the idea that global cities play a superior nodal role
in the global economic system to Feser and
Sweeney’s new methodological approach to the cross
metropolitan comparison of industrial clusters.

In sum, the book makes a considerable contribu-
tion to the literature on industrial location econom-
ics. It comes at a time when many classical
perspectives are both under attack and have under-
gone recent modification. Thus the review essays
are very timely and the special topic chapters add
flavor and perspective. 

Reviewer address: Roger R. Stough, NOVA Endowed Chair
and Professor of Public Policy, Associate Dean for Research,
Development, and External Relations, George Mason School
of Public Policy, 4400 University Drive, MS 3C6, Fairfax,
VA 22030-4444, USA. Email: rstough@gmu.edu.
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Data Review

Transportation Services Index 

INTRODUCTION

In 2002, a team of academics, under a research
grant from the Bureau of Transportation Statistics
(BTS), developed the Transportation Services Index
(TSI) to measure the state of the transportation sec-
tor and its contribution to the economy. The TSI,
which consists of three seasonally adjusted monthly
indexes, reflects the changes in the output of services
for the passenger, freight, and total transportation
sector (figure 1 and tables 1 and 2). The Journal of
Transportation and Statistics published the results
of the research project in 2003 (Lahiri et al. 2003). 

CALCULATION OF INDEX

BTS calculates three monthly transportation output
indexes: the total TSI, the freight TSI, and the pas-
senger TSI. Collectively, the three indexes use eight
sources of component data that reflect output in
terms of passenger-miles or ton-miles (or some
proxy thereof). 

The TSI freight index, calculated using tons or
ton-miles depending on the modal data source,
includes for-hire trucking, freight railroad services
(including intermodal shipments), inland waterway
traffic, pipeline movements, and air freight. The
freight index does not include international or
coastal steamship movements, private trucking,
courier services, or the United States Postal Service.

The TSI passenger index, calculated using pas-
senger-miles, includes local mass transit, intercity
passenger rail, and passenger air transportation.
The passenger index does not include intercity bus,
sightseeing services, taxi service, private automobile
usage, or bicycling and other nonmotorized forms
means of transportation.

The process of converting the component data
into the final indexes includes forecasting missing
values, deseasonalizing raw data, indexing values,
weighting, and chaining final modal estimates.

� Forecasting is used to estimate data that are not
reported in a timely manner. 

� All data used in the TSI are deseasonalized to
remove the impact of seasonal patterns. Trans-
portation data are highly seasonal, masking true
changes from month to month and long-term
changes through the years. 

� All modal data are indexed to a base year, cur-
rently set to 2000. 

� Indexed modal data are weighted based on the
value added by each mode to the transportation
service sector of Gross Domestic Product (GDP),
provided by the Bureau of Economic Analysis in
the National Income Product Accounts.

� Using the chained Fisher Ideal Index and the
GDP weights, the modal data are aggregated into
the three composite indexes.  

DATA TRENDS 

Since its inception, the TSI has experienced an over-
all upward trend. During 1990, the TSI’s first year
of historical data, the total TSI ranged from 67.6 to
69.4. In comparison, during 2004, the total TSI
ranged from 104.3 to 110.3.1 The freight TSI and

1All numbers are indexed to a base year of 2000 (2000 = 100).

Review by: Jennifer Brady, Analyst, Bureau of Transporta-
tion Statistics, Research and Innovative Technology
Administration, U.S. Department of Transportation, 400
Seventh St. SW, Room 3430, Washington, DC 20590.
Email address: jennifer.brady@dot.gov.
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passenger TSI, as components of the total TSI, expe-
rienced similar growth.

Minor directional changes in the TSI are fre-
quent, with no period of more than three consecu-
tive months of decline over the history of the index.
Sustained and larger-than-normal change in the
trend of the index occurs around the time of major
events. Most noticeably, the events of September 11,
2001, caused a major change in all three indexes.
Between August and September 2001, the total TSI

declined 9.3%, the freight TSI declined 3.3%, and
the passenger TSI declined 23.2%. However, the
total and freight TSI returned to pre-September
2001 levels within a year; the passenger index took
several years to return to pre-September 2001 levels.

BTS is currently researching the relationship of
the TSI to the general economy to ascertain if the
cycle of transportation output turns at about the
same time as the economy turns (which would make
this a coincident index) or if transportation turns in

FIGURE 1  Transportation Services Index: Total, Freight, and Passenger 
January 1990–May 2005: seasonally adjusted

Source: U.S. Department of Transportation, Research and Innovative Technology Administration, 
Bureau of Transportation Statistics.

TABLE 1  Percentage Change in the Transportation Services Index by 
Month Since January 2005
Seasonally adjusted, monthly average of 2000 = 100

 TSI Freight Passenger

Index
% 

change Index
% 

change Index
% 

change 

January 111.6 1.5 112.8 1.4 108.4 1.5

February 110.0 –1.4 111.5 –1.2 106.2 –2.0

March 111.6 1.5 112.5 1.0 109.3 2.9

AprilR 111.6 0.0 112.5 0.0 109.2 –0.1

MayP 112.6 0.9 113.1 0.6 111.2 1.8

JuneP 112.0 –0.6 112.6 –0.5 110.3 –0.8

JulyP 111.6 –0.3 111.9 –0.6 110.8 0.5

Note: P = preliminary; R = revised.
Source: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of 
Transportation Statistics.
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advance of the turns in the economy (a leading
index). However, due to the limited length of the
TSI data series, it has only been possible to observe
the TSI during one entire recession.2 

RELEASE OF TSI

BTS recognized the benefits of producing the TSI on
a monthly basis and released the first monthly esti-
mates in March 2004, with an historic data series
beginning January 1990. Currently, TSI is the only
combined, multimodal, seasonally adjusted measure
of transportation services made available on a
monthly basis.

On approximately the 6th of each month, new
and updated TSI numbers are released on the BTS
website. The newest three months are preliminary
numbers. Each month BTS releases the latest pre-
liminary TSI, and replaces the oldest preliminary
TSI with a revised TSI. After a number is revised, it
will not change until the annual update is released in
mid-year when most of the prior year data have
been finalized.

To obtain the most current TSI data, as well as
further documentation on the indexes, visit the BTS
website: http://www.bts.gov/xml/tsi/src/index.xml.

REFERENCE

Lahiri, K., W. Yao, H. Stekler, and P. Young. 2003. Monthly
Output Index for the U.S. Transportation Sector. Journal of
Transportation and Statistics 6(2/3):1–27.

TABLE 2  Percentage Change in the Transportation Services Index from Year-to-Year
May TSI (monthly average of 2000 = 100)

Year TSI

Change from 
same month 

previous 
year (%)

Freight 
TSI

Change from 
same month 

previous 
year (%)

Passenger 
TSI

Change from 
same month 

previous 
year (%)

1996 86.7 2.6 87.6 0.9 84.2 6.5

1997 91.3 5.3 92.7 5.8 87.7 4.2

1998 97.8 7.2 100.7 8.7 91.1 3.9

1999 99.8 2.0 102.6 1.8 93.4 2.5

2000 99.7 –0.1 99.5 –3.0 100.3 7.4

2001 100.0 0.3 99.9 0.5 100.2 –0.2

2002 99.3 –0.8 101.3 1.4 94.4 –5.7

2003 99.7 0.4 102.7 1.3 92.6 –1.9

2004 108.3 8.6 110.5 7.7 102.8 11.0

2005P 112.6 4.0 113.1 2.4 111.2 8.2

Note: P = preliminary.
Source: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of 
Transportation Statistics.

2 The National Bureau of Economic Research designated
March 2001 through November 2001 a period of recession.
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New ASA Section on Transportation 
Statistics Seeks Members

This notice announces the tentative formation of the Section on Transporta-
tion Statistics of the American Statistical Association (ASA). The principal
objective of this new section is to serve ASA members with special interests
in: 1) developing and applying statistical methods to problems in transpor-
tation, 2) analyzing transportation data, 3) collecting transportation data,
and 4) formulating mathematical models, whether deterministic or stochas-
tic, which describe and explain underlying mechanisms and modes of action
of fundamental processes in transportation. This section will cooperate with
the Transportation Research Board and other professional organizations in
order to sponsor joint meetings and sessions at professional meetings.

Contacts for the Section are Prem Goel (goel@stat.ohio-state.edu), Mike
Griffith (mike.griffith@fhwa.dot.gov), Cliff Spiegelman (cliff@stat.tamu.edu),
and me. Under the ASA Constitution, we need an expression of interest from
100 or more ASA members to form the Section so that we can provide the
ASA Council with our initial mailing list of Section members. A draft of the
Section charter is available and will be emailed on request. This announce-
ment is for the purpose of adding names to our initial mailing list of founding
members and for obtaining suggestions and comments. 

All section members must be willing to pay an annual section fee of $5. This
charge will appear on your next ASA membership dues statement, in the
same way that charges for other section memberships appear. The first 100
persons who respond to this solicitation will be listed as founding members
on the new section’s website. 

If you are willing to become a founding member, please send me an email
with the following statement:

I, (insert your name), support the petition to form a new ASA section to be
called the Section on Transportation Statistics. 

Thank you very much for your help in establishing what we believe will be
an active new section with a highly important mission in today’s society and
economy. If you have any questions or suggestions, please contact me.

Promod Chandhok, Ph.D.
Chair, ASA Interest Group on Transportation Statistics

promod.chandhok@dot.gov
Bureau of Transportation Statistics
Research and Innovative Technology Administration
U.S. Department of Transportation
Washington, DC 20590
and
The George Washington University
Washington, DC
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JOURNAL OF TRANSPORTATION AND STATISTICS
Guidelines for Manuscript Submission

Please note: Submission of a paper indicates the
author’s intention to publish in the Journal of Trans-
portation and Statistics (JTS). Submission of a manu-
script to other journals is unacceptable. Previously
published manuscripts, whether in an exact or approx-
imate form, cannot be accepted. Check with the Man-
aging Editor if in doubt.

Scope of JTS: JTS publishes original research using
planning, engineering, statistical, and economic analy-
sis to improve public and private mobility and safety in
all modes of transportation. For more detailed infor-
mation, see the Call for Papers on page 112.

Manuscripts must be double spaced, including quota-
tions, abstract, reference section, and any notes. All
figures and tables should appear at the end of the
manuscript with each one on a separate page. Do not
embed them in your manuscript.

Because the JTS audience works in diverse fields,
please define terms that are specific to your area of
expertise.

Electronic submissions via email to the Managing
Editor are strongly encouraged. We accept PDF, Word,
Excel, and Adobe Illustrator files. If you cannot send
your submission via email, you may send a CD by
overnight delivery service or send a hardcopy by the
U.S. Postal Service (regular mail; see below). Do not
send CDs through regular mail.

Hardcopy submissions delivered to BTS by the U.S.
Postal service are irradiated. Do not include a disk in
your envelope; the high heat will damage it.

The cover page of your manuscript must include the
title, author name(s) and affiliations, and the telephone
number and surface and email addresses of all authors.

Put the Abstract on the second page. It should be
about 100 words and briefly describe the contents of
the paper including the mode or modes of transporta-
tion, the research method, and the key results and/or
conclusions. Please include a list of Keywords to
describe your article.

Graphic elements (figures and tables) must be called
out in the text. Graphic elements must be in black ink.
We will accept graphics in color only in rare circum-
stances. 

References follow the style outlined in the Chicago
Manual of Style. All non-original material must be
sourced.

International papers are encouraged, but please be
sure to have your paper edited by someone whose first
language is English and who knows your research
area.

Accepted papers must be submitted electronically in
addition to a hardcopy (see above for information on
electronic submissions). Make sure the hardcopy cor-
responds to the electronic version.

Page proofs: As the publication date nears, authors
will be required to proofread and return article page
proofs to the Managing Editor within 48 hours of
receipt.

Acceptable software for text and equations is limited
to Word and LaTeX. Data behind all figures, maps,
and charts must be provided in Excel, Word, or Delta-
Graph (unless data are proprietary). American Stan-
dard Code for Information Interchange (ASCII) text
will be accepted but is less desirable. Acceptable soft-
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