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Letter from the Editor-in-Chief

Dear JTS Readers,

This issue completes our seventh volume of JTS and seventh year of publica-
tion. As the new JTS Editor-in-Chief, I’d like to bring your attention to several
changes in the journal that have taken place over the last few months. You can
see on the front cover of this issue that the Bureau of Transportation Statistics
(BTS) is now an office of the new Research and Innovative Technology
Administration (RITA) within the Department of Transportation (DOT).
RITA’s staff come several groups within DOT: the Research and Special Pro-
grams Administration’s Office of Innovation, Research, and Education,
including the Volpe National Transportation Systems Center in Cambridge,
Massachusetts, and the Transportation Safety Institute in Oklahoma City; the
Secretary’s Office of Intermodalism; and, of course, BTS. I do believe that JTS
will have the opportunity to flourish within this new research environment.

In line with my vision for the journal, our editorial board endorsed a broader
scope for JTS. We are just starting to include more applied papers. In the
future, some of these papers will be from authors within RITA, keeping you,
the readers, informed regarding DOT data and research directions. In this
way, we hope to provide more information to researchers and planners, to
applied and theoretical statisticians and economists, and to readers involved
in numerous aspects of transportation analysis. As always, all papers we pub-
lish will undergo a thorough peer review.

You should note two new sections that make their appearance in this issue of
the journal—Data Reviews and Book Reviews. Our Data Review editor,
Jennifer Brady, will present synopses on new data releases from BTS. In this
issue, she gives us an interesting discussion of BTS’s America’s Freight Trans-
portation Gateways and the Gateways Resource CD, which contain detailed
analysis and data on merchandise trade into and out of the United States. 

Our second new section is Book Reviews. Vincent Yao, from the Institute for
Economic Advancement at the University of Arkansas at Little Rock, joins the
JTS staff as this section’s editor and coordinator. Vincent’s contact informa-
tion appears at the beginning of the new section, so get in touch with him if
you would like to author a book review in the future. We thank our editorial
board for suggesting these additions—I hope you find them of value in your
research. 

Finally, this issue includes two new calls for papers. The first is a general call
for papers reflecting our broader scope. The second is for a special JTS issue
on transportation investment, which is scheduled for publication in 2007.
Vincent Yao, along with Cletus C. Coughlin (Vice President and Deputy
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Director of Research, Federal Reserve Bank of St. Louis), and Randall W.
Eberts (Executive Director of the W.E. Upjohn Institute for Employment
Research), will be guest co-editors. If you’re interested in submitting a paper,
check out the details on page 99. 

BTS, as part of RITA, continues to pursue its mission of making the best pos-
sible transportation data available to improve the quality of transportation
decisionmaking. JTS authors play a key role in this process by providing high-
quality quantitative analysis as it applies to transportation issues. I hope the
articles in the journal, along with the new sections that appear in this issue,
will provide valuable information that you can use in your work.

PEG YOUNG, Ph.D.
Editor-in-Chief
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Unregistration Rates for On-Road Vehicles in California 

ABSTRACT

Motivated by the need to develop regional air pollu-
tion control strategies, a comprehensive field study
was conducted throughout California to character-
ize the unregistration rate of light-duty vehicles in
the state. Based on an analysis of more than 98,000
vehicle records, the average unregistered rate was
found to be 3.38 ± 0.13%. This included vehicles
unregistered for a period of less than three months
(2.41% of the total), vehicles unregistered between
three months and two years (0.95% of the total),
and vehicles unregistered for more than two years
(0.03% of the total). About half of the counties had
unregistration rates between 2% and 4%, with
most counties’ rates below 5%. The unregistered
fleet was more heavily weighted toward older vehi-
cles than the registered fleet. Department of Motor
Vehicles (DMV) unregistration rates were compared
with the field study rates. DMV estimates ranged
from 6.2% to 7.5%, which were higher than those
obtained in the field study. It was also found that
1.7% of the vehicles identified in the survey were
registered outside the state or the country.

KEYWORDS: Motor vehicle registration, motor vehicle
emissions.
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INTRODUCTION

Development of regional air pollution control strat-
egies requires accurate estimation of the regional
emissions inventory. Understanding and accurately
portraying the in-use vehicle population is one of
the most important aspects of obtaining accurate
emissions inventory estimates. The registered vehicle
population accounts for a majority of the vehicles
on the road, however, unregistered and out-of-state
vehicles represent an important proportion of the
total inventory as well. Given that the unregistered
vehicle population likely includes a higher percent-
age of older vehicles with emissions too high to meet
Inspection and Maintenance (I&M) requirements,
these vehicles may have a disproportionate effect on
the emissions inventory. 

To date, limited information is available on the
contribution of unregistered vehicles to the emis-
sions inventory. The California Air Resources
Board’s (CARB’s) EMFAC1 model provides esti-
mates of current emissions for on-road motor vehi-
cles in the state, based primarily on the population
of vehicles registered with the Department of Motor
Vehicles (DMV). Unregistered vehicle estimates are
a recent addition to the EMFAC vehicle population.
In making these estimates, CARB examined DMV
records and found that approximately 7.4% of the
total records for passenger cars were unregistered
(CARB 2000). For the EMFAC2000 model, CARB
added approximately 4.5 million vehicles to the in-
use California vehicle population to account for
vehicles in the process of being registered and those
that were unregistered. CARB also estimated that
0.56% of the vehicle population that was chroni-
cally unregistered (unregistered for a period of more
than 2 years) contribute 1% to the emissions inven-
tory, depending on the pollutant and year being
modeled (CARB 2000). CARB did not determine
the total contribution from the unregistered vehicle
population as a whole, however. 

For modeling emissions inventories, states out-
side of California use the U.S. Environmental Pro-
tection Agency’s MOBILE2 model. MOBILE does
not explicitly include the contribution of unregis-

tered vehicles in its emissions rate estimates,
although provisions are made for states to incorpo-
rate unregistered vehicles in their calculations.  

Most previous studies of the population of
unregistered vehicles have focused on California.
Hunstad (1999) conducted a study to characterize
uninsured motorists and provide estimates of the
number of uninsured and unregistered vehicles.
Hunstad examined DMV records and other esti-
mates of unregistration, including studies by the
California Energy Commission, estimates based on
California Highway Patrol violations, DMV driver’s
license records, estimates based on surveys, and
fatal accident reports. Using these collective studies,
Hunstad came up with average yearly estimates of
between 8.5% and 11.7% for unregistered vehicles. 

Dulla et al. (1992) examined license plate num-
ber (LPN) records of vehicles in parking lots in the
late 1980s and found total unregistration rates
ranging from 8.3% to 9.3% with chronically unreg-
istered vehicles (i.e., greater than 2 years) represent-
ing about 0.56% of the in-use fleet. Although the
impact of unregistered vehicles on emissions inven-
tories in other states is important, limited informa-
tion exists on unregistration rates outside of
California. North Carolina is one state that has
developed a database from accident reports to pro-
vide estimates of the vehicle-miles traveled in urban
areas by vehicles registered outside of the area
(Norowzi 2003).  

Data that are available on the population of
unregistered vehicles still have considerable limita-
tions. DMV database sources do not, for example,
provide a good indication of whether the vehicles
travel on the road. The DMV files can contain vehi-
cles that may have become inoperative or may be
located outside of the county of record. Because
these vehicles are not part of the in-use fleet that
would be operated in the designated area, their
inclusion would result in an overestimate of the
actual on-road fleet’s emissions. 

The most recent on-road unregistered vehicle
population study was conducted over a decade ago
in California (Dulla et al. 1992). Since that time,
California added a requirement that vehicle owners
show proof of insurance before a vehicle’s registra-
tion can be issued or renewed. Furthermore, I&M

1 EMFAC is short for Emission FACtor.
2 MOBILE = Mobile Source Emission Factor Model.
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testing procedures have been increased from an idle
to a dynamometer test at 15 mph and 25 mph in
areas that do not meet air quality standards. The
possibility exists that these two requirements may
contribute to the increased number of unregistered
vehicles in the state, especially poorly maintained
vehicles that cannot pass a smog test. 

Given the potentially significant emissions inven-
tory impact and the limitations of the current unreg-
istered vehicle population estimates, improving the
understanding of both the number and types of
unregistered vehicles on the road is important. The
objective of this work was to obtain a better under-
standing of the population and characteristics of
unregistered vehicles. As the primary component of
this study, a statewide field survey was conducted to
provide an estimate of the unregistered vehicle pop-
ulation. As part of the survey, a database of more
than 98,000 vehicle LPNs was obtained. This sur-
vey represents the most comprehensive study of
vehicle unregistration rates to date and encompasses
all regions of California. In addition to the total
unregistration rate, the following information was
collected:

� a breakdown of the time period of unregistered
status into instantaneous (less than 3 months),
long term (3 months to 2 years) and chronic
(more than 2 years) categories by county for
California;

� characteristics of unregistered vehicles including,
but not limited to, model year; and

� the percentage and identity in each county of
non-California vehicles or vehicles that origi-
nated out of county.

Durbin et al. (2002) presents the detailed results of
this survey.

METHODOLOGY 

A comprehensive field survey was conducted to
determine the population of unregistered vehicles in
California. The survey involved photographing
license plates of vehicles that were parked in com-
mercial parking lots to obtain registration and other
information. Data were collected between June and
December 2000. 

A county-based stratified random sample of all
California counties was conducted, with the sam-
pling population and number of sites in each of the
larger counties proportional to the county popula-
tion. To ensure that the sample was demographi-
cally representative, each county was resolved to the
zip code level, with zip codes selected randomly
from the list of all zip codes in each county. Within
the selected zip codes, as many commercial parking
lots were surveyed as possible. Where security, sam-
ple team safety, or geographic size prevented com-
plete sampling, locations were geographically
balanced across the zip code. To ensure a reasonable
distribution of destination types, a minimum num-
ber of sites in each county was sampled. In total,
409 zip codes were sampled during the field study,
out of a total of 1,586 zip codes in California at the
time of study. Because the zip codes included
national parks and forests, sampling in those areas
was performed as appropriate for a given county.

The sites for this study were restricted to destina-
tions rather than residences. This provided a high
probability that the vehicles captured in the survey
were driven on a regular basis. Sites were also
selected to represent a variety of different destina-
tions. The primary collection sites were shopping
malls, businesses, and retail stores, although the
range of sites also included park and ride lots, medi-
cal facilities, and others. Overall, the different site
types did not show significant variation in unregis-
tration rates. In particular, all but one of the site
types where at least 1,000 samples were collected
had unregistration rates within 1% of the overall
average (Durbin et al. 2002). It should be noted that
this site selection and sampling methodology might
not be fully representative of all vehicles distributed
throughout the state. Families with multiple vehi-
cles, for example, may use a specific vehicle for
some applications such as shopping, while other
vehicles may be used for longer trips or other tasks.

Consideration was given to sampling vehicles
during actual driving on the road (i.e., with a license
plate recorder) to obtain a broader cross section of
vehicles. Because the primary purpose of this study
was for support of development of the CARB
EMFAC model, this approach was not chosen. In
particular, it was thought that the fleet obtained
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from sampling on the road would be more heavily
weighted by vehicle-miles traveled and would be
less consistent with the in-use population data pres-
ently used in CARB’s EMFAC from the DMV. 

To collect the data at each specific site, one to two
photographers, using digital cameras with a reload
time of less than a second between shots, took pic-
tures while riding in a car as it slowly moved
through a parking lot. Data from the photographic
records were entered and compiled into a spread-
sheet along with other information, such as the date
and time of the site visit and a description of the site
and its location (city, county, and zip code). The
vehicle make and model were determined for
roughly half of the vehicles photographed. The data
were validated by double entry and cross-checking a
5% subsample as well as random spot checks of
individual vehicles. The error rate for data entry of
LPNs was consistently below 1%.

Given the nature of the rapid data collection in
the field and the need to get large numbers of
records, a percentage of the LPN photographs col-
lected in the field were unreadable. The overall
unreadable LPN rate averaged about 15% with a
range from 1% or 2% to over 40% in some zip
codes. Sites surveyed during rain events or near sun-
down made up the highest percentages of unread-
able LPNs. Field teams generally attempted to
collect 10% to 20% more photographs for each zip
code to compensate for the expected unreadable
percentage.

RESULTS 

County Unregistration Rates

The field survey brought in more than 98,000
records. Table 1 presents data analysis for all coun-
ties with more than 1,000 samples and for the entire
field survey sample population. (See Durbin et al.
(2002) for detailed records for all counties).  

Vehicles were considered to be unregistered if the
year sticker was 1999 or older, regardless of the
month, and registered if the year sticker was 2001.
For vehicles with year 2000 stickers, the month of
registration was evaluated against the time period
when the vehicle was identified to determine the
registration status. The percentage unregistered was
calculated by dividing the number of unregistered

vehicles by the sum of registered vehicles, unregis-
tered vehicles, and dealer plates (registration is paid
at the time of vehicle purchase, so vehicles with
dealer plates were considered registered).

The overall average unregistration rate for all
surveyed vehicles was 3.38 ± 0.13%, where the
uncertainty represents the 95% confidence interval
based on the sampling statistics (Vollset 1993). The
unregistration rate ranged from 0% to 6.45% for
different counties. Figure 1 presents the data for all
the surveyed counties and for the most populous
counties (population > 300,000). These data show
that roughly 50% of the counties have unregistra-
tion rates ranging between 2% and 4%. Nearly all
counties had unregistration rates below 5%. In gen-
eral, larger counties had slightly higher unregistra-
tion rates than the overall distribution, with
unregistration rates in larger counties generally
ranging from 2% to 5%. 

Counties with unregistration rates of less than
1% tended to be smaller, with sample sizes of fewer
than 500 vehicles. In some small counties, the field
data contained no unregistered vehicles. Alpine
County has the highest rate of unregistered vehicles
at 6.45%, but this figure may be due in part to the
small sample size for that county. Data show that
Calaveras, San Diego, and Madera counties have
the next-highest unregistration rates of 5.22%,
4.99%, and 4.51%, respectively. 

A one-way ANOVA test showed highly statisti-
cally significant differences in registration rates
between different counties in the study (p < 0.0001).

FIGURE 1  Percentage of Unregistered Vehicles in 
Large and All Counties
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The individual zip code data contained a wider
range of unregistration rates than the overall county
data. Kern, San Diego, Santa Cruz, and San Benito
counties each had one zip code with an unregistra-
tion rate above 20%, although most of these zip
codes had limited sample sizes. Only the San Diego
zip code contained a significant sample size (507).

In analyzing the data, correlations between the
unregistered vehicle population percentage and
demographic variables such as household income
were examined. Using data obtained from the
2000 census, regression analyses revealed the
influence of household income, total county pop-
ulation, and renter/owner percentage on unregis-
tration rates at both the county and zip code
level, using the unregistration rate as a dependent
variable. Zip codes with fewer than 25 vehicles
were removed from this analysis, because the
small number of samples makes estimation of the
rate of registration highly variable. A statistically
significant regression (p = 0.004, R2 = 0.250) for
household income was found at the county level.
This regression was not statistically significant on
the zip code level, however, and the low R2 value
of regression at the county level indicates that the
relationship does not explain the majority of the
variability observed in the unregistration rate.
Statistically significant regressions of at least the
90% confidence level were found between unreg-
istration rates and population at the county level
(p = 0.096, R2 = 0.049) and the registration zip
code level (p = 0.007, R2 = 0.009) but not the zip
code where the vehicle was observed (p = 0.658).
Again, the low R2 values indicate that none of
these relationships can account for most of the
observed variability in unregistration status,
although such research may be of interest in the
future.

The overall 3.38% unregistered rate was bro-
ken down by the length of time a vehicle was
unregistered. A total of 2.41% of the California
licensed vehicles were classified as instantaneous
(<3 months) unregistered. A total of 0.95% of the
California licensed vehicles were classified as long-
term (3 months to 2 years) unregistered. Chronic
(>2 years) unregistered accounted for 0.03% of the
California licensed vehicles.

A subset of vehicles operated in California were
registered in other states or countries. As shown in
table 1, this represents approximately 1.7% of the
vehicles in this survey. In general, higher percentages
of out-of-state vehicles were found in the border
counties and in counties having zip codes with well-
known tourist attractions. Border counties such as
Del Norte, Sierra, Nevada, Alpine, Inyo, Imperial,
and Kings County in the Central Valley all had rela-
tively high proportions (>10%) of out-of-state vehi-
cles. (Durbin et al. (2002) provide a map of out-of-
state vehicle percentages by county.)

Comparisons with DMV Data 

The data obtained from the field study were cross-
referenced with two different DMV databases to
determine the DMV registration status of the vehi-
cles identified in the field survey. Because the field
survey included only vehicles used typically on the
road, this should represent a more accurate estimate
of the unregistered population than a straight DMV
run that could include a mixture of vehicles used
infrequently or not at all. The DMV databases used
for this comparison correspond to late 1998 and
2001. 

Table 2 provides a comparison of the DMV
results and the field survey registration status for the
April 2001 DMV database. The results for the 1998
DMV database were similar and are presented else-
where (Durbin et al. 2002). Overall, the DMV data-
base shows a similar profile of unregistered vehicles,
with roughly half as many long-term unregistered
vehicles in comparison with instantaneous unregis-
tered vehicles and smaller numbers of chronically
unregistered vehicles. Differences were observed,
however, for the various registration categories
between the DMV database and the field study. For
example, a number of vehicles identified as regis-
tered in the field were unregistered in the DMV
database and vice versa. 

Several possible explanations exist for the vehi-
cles observed to be registered in the field survey, but
subsequently found to be unregistered. First, differ-
ences between the time of the field survey and the
time of the DMV run may account for the discrep-
ancy. In particular, vehicles registered at the time of
the field study may have subsequently fallen out of
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registration. The fact that a majority of the vehicles
in this category were found to be instantaneously
unregistered supports this conclusion. A second pos-
sibility is that some vehicles identified as registered
in the field had stolen tags or switched LPNs,
although this probably represents a smaller fraction
of the vehicles.

Interestingly, many of the vehicles found to be
long-term or chronically unregistered in the field
study were also found to be registered. For vehicles
found to be unregistered in the field but registered
with the DMV, it is probable that the vehicle was
registered subsequent to the field study. This would
account for the large percentage of instantaneously
unregistered vehicles in the field study that were
found to be subsequently registered with the DMV.
Given the small number of vehicles in this category,
it is possible that the owners of these vehicles simply
did not adhere their registration stickers. Another
subset of vehicles were long-term unregistered in the
field study but instantaneously unregistered in the
DMV. This subset of vehicles could be attributed to
a combination of factors including an unattached or
stolen sticker in conjunction with a subsequent late
registration.

Differences also exist in the total unregistration
rate between the two DMV databases and the field
study results. For the 2001 DMV database run, for
example, the unregistration rate was approximately
7.5% compared with the 3.38% obtained from the
field results. The 1998 DMV database shows a
higher estimated unregistration rate of 6.2%. It
should be noted that since the data entry error rate
for the field study records was typically below 1%,

we anticipate that this accounts for only a small
portion of the observed discrepancy.

Unregistered Vehicle Model Year 
Distributions

The observed LPNs from the field study were also
cross-referenced with DMV records to obtain the
model year for all vehicles having readable LPNs.
Figure 2 presents a model year distribution for all
observed vehicles. The model year distribution is
heavily weighted to newer vehicles, as expected. 

Figure 3 shows the model year for vehicles unreg-
istered for more than 3 months (i.e., long-term and
chronic unregistered vehicles), using data from the
field study. Figure 4 shows the percentage unregis-
tered for each model year category. For model year
2000 vehicles, 1 out of 10 had a long-term unregis-
tered status, causing the percentage for that model
year to be high. When compared with figure 2, the
unregistered vehicle population is more heavily
weighted to the older model years. 

Comparison with Inspection and 
Maintenance Data 

To better understand the relationship between
unregistration rates and the requirements that vehi-
cles pass an I&M test for registration, field study
records were cross-referenced with I&M records.
To do this, the LPNs for all registered and unregis-
tered vehicles (over 90,000) were sent to the Bureau
of Automotive Repair (BAR). BAR provided I&M
test results from mid-1996 to the present for all
vehicles with a license plate match. The observed
plates were matched with data from both the
BAR90 and BAR97 programs. 

TABLE 2  Cross-Tabulation of Registration Status with the 2001 DMV Database

Field study status Total
DMV 

registered
DMV 

unregistered
DMV 

instantaneous
DMV long 

term
DMV 

chronic

Registered 70,418 65,425 4,993 3,630 1,156 207

Unregistered 2,459 2,124 335 107 201 27

Instantaneous 1,771 1,636 135 20 106 9

Long term 670 480 190 86 93 11

Chronic 18 8 10 1 2 7

Front 6,627 6,092 535 307 193 35

Unknown 9,153 8,397 756 136 573 47

Total 88,657 82,038 6,619 4,180 2,123 316
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The BAR90 and BAR97 programs represent two
levels of I&M programs in California. The BAR90
program, an older emissions test, uses a two-speed
idle test. The BAR90 program is used only in areas
of California that do not require enhanced I&M.
The BAR97 program, in use since 1998 in enhanced
I&M areas of California, employs an accelerated
simulation mode dynamometer test at 15 mph and
25 mph. 

BAR rates data as “good” or “bad.” Bad files
can indicate unknown or aborted tests or records
with incorrect entries such as the vehicle identifica-
tion number (VIN). Because the data were matched
based on LPNs instead of VINs, these bad records
were initially included and the aborted and
unknown tests were subsequently separated out.
The cross-tabulation of the I&M data and the
observed data yielded 66,436 matching records.

FIGURE 2  Model Year of all Observed Vehicles

FIGURE 3  Model Year of all Unregistered Vehicles for Less Than 3 Months

Note: An older version of the DMV database was used to determine the model year, hence, information on 
1999 and 2000 model-year vehicles was limited.
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Bad data accounted for only 1,400 records out of
the 66,436 BAR matches.

Table 3 presents a comparison of registration sta-
tus and I&M test results. The I&M test results are
broken into six categories: passed, failed, gross pol-
luter, tampered, test aborted, and unknown (where
no results were recorded). The results show the
majority of the vehicles in all categories passed their
last I&M. A large number of unknown and aborted
I&M results come from the BAR-classified bad
data. Overall, the percentage of vehicles passing the
last I&M drops with the length of time since the
vehicle was last registered. A chi-square test of inde-
pendence between smog check results and unregis-
tration status showed that the differences in the
overall failure rate for the registered vehicles and
instantaneous and long-term unregistered vehicles
were statistically significant at the 0.0001 level.
Chronically unregistered vehicles were not included
in this chi-square test due to the small number of
samples. The test indicates that smog check results
are not independent of observed registration status,
with a higher proportion of unregistered vehicles
failing the smog check test. Interestingly, three vehi-
cles that were chronically unregistered when
observed by the survey team in 2000 had since
taken and passed an I&M test in 2001. One vehicle
identified as unregistered in the field study was

tested and found to be a gross polluter in 2000,
indicating that the lack of registration for the vehicle
may have been related to failing the I&M. 

The I&M failures rates for the matched vehicles
from the survey are less than the average failure rate
for all vehicles taking the test in the state, which is
slightly above 15% (CARB/BAR 2004). Because the
fleet surveyed represents vehicles driven on a more
regular basis, it is probable that the survey vehicles
are newer than recorded during I&M. Furthermore,
vehicles that are model years 1991 or newer have
failure rates below the statewide average, while
vehicles from the early 1980s have more than dou-
ble the statewide average for failed inspections
(CARB/BAR 2004). Vehicles that initially fail the
I&M test can also pass a retest after repair to obtain
registration. 

DISCUSSION AND CONCLUSIONS

Overall, the results of this study showed a generally
consistent average statewide unregistration rate of
between 3.4% to 7.5%, with an additional 1.7% of
the vehicles registered out of state. The DMV and
field studies also yielded similar distributions of
largely instantaneous unregistered vehicles, with
smaller numbers of chronic and long-term unregis-
tered vehicles. Although differences were observed
in the specific unregistered populations, both show

FIGURE 4  Percentage of Total Vehicles, by Model Year that are Unregistered for 
More Than 3 Months 
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trends that, on a continuous basis, approximately
3% to 8% percent of the on-road vehicle popula-
tion is unregistered and needs to be accounted for in
emissions inventory models. 

The results of this study can be compared with
those from a limited number of other estimates.
BAR has conducted some analyses of remote sens-
ing device (RSD) data collected throughout the state
as part of various studies over the years (Amlin
2002). From this data, BAR found that vehicles
unregistered for a period of more than one year
comprised approximately 0.6% to 0.7% of the on-
road fleet. Because the RSD data would tend to be
more heavily weighted toward vehicle-miles trav-
eled (VMT), the BAR estimate includes an adjust-
ment to compensate for older unregistered vehicles
that would be driven fewer miles. The BAR study
also found that the VMT for unregistered vehicles is
significantly lower than the VMT for registered
vehicles. 

For comparison with these results, the percentage
of vehicles unregistered for more than one year was
determined using the present data. Of the vehicles in
the field study, 0.15% were unregistered for a
period of more than one year, which was less than
the BAR estimates. BAR also examined the DMV
database and found that between 5.1% and 5.5%
of the DMV population had delinquent registration
but renewed at some point in time. 

Dulla et al. (1992) conducted an earlier parking
lot survey of unregistered vehicles in the South
Coast Air Basin of Southern California during
1989. In their field study, these researchers found
that approximately 9.3% of vehicles had expired

license plates, with fewer than 2% of the vehicles
unregistered for more than one year. These values
are higher than the 3.38% overall unregistration
with less than 1% unregistered for more than one
year found in the present study. 

In looking more specifically at the counties sam-
pled in the Dulla et al. study, the unregistered rates in
Los Angeles, Orange, Riverside, and San Bernardino
Counties in this field study were 3.53%, 3.20%,
4.41%, and 3.52%, respectively; also lower than
those found by Dulla et al. It is worth noting that
the sample population in the Dulla et al. study was
targeted more toward older vehicles, because the
vehicles randomly sampled in parking lots are likely
to be newer than the universe of vehicles found in
the DMV database, and older vehicles are typically
driven less. In fact, the sample population included
a larger portion of older vehicles than the DMV
population. Since the DMV data include a larger
percentage of older vehicles than the on-road popu-
lation, it is possible this estimate is biased high rela-
tive to the on-road population. In this regard, for
vehicles less than 10 years of age, Dulla et al. (1992)
found the unregistered population was 6.9%.

Hunstad (1999) also provided some estimates of
unregistered vehicles based on available database
sources including California Energy Commission
data, California Highway Patrol (CHP) citations,
driver’s license records, surveys, and fatal accident
reports. Estimates based on vehicle-not-at-fault in
fatal accidents, CHP violations, and DMV records
for vehicles unregistered less than one year were all
in the range of 8% to 12% on an annual basis.
Analysis of driver’s license citations, on the other

TABLE 3  Cross-Tabulation of BAR Smog Check Test Results with Registration Status

Field 
status

Passed Failed
Gross 

polluter Tampered Aborted Unknown

Number # % # % # % # % # % # %

Registered 51,974 50,423 97.0 682 1.3 250 0.48 25 0.1 391 0.8 203 0.4

Instantaneous 1,449 1,385 95.6 30 2.1 13 0.90 2 0.1 12 0.8 7 0.5

Long term 601 549 91.4 18 3.0 19 3.16 2 0.3 10 1.7 3 0.5

Chronic 13 11 84.6 1 7.7 1 7.69 0 0.0 0 0.0 0 0.0

Front 4,921 4,716 95.8 91 1.9 44 0.89 4 0.1 44 0.9 22 0.5

Unknown 7,387 7,015 95.0 157 2.1 66 0.89 13 0.2 83 1.1 53 0.7

Total 66,346 64,100 979 393 46 540 288

Key: BAR = Bureau of Automotive Repair.
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hand, indicated a 3% to 4% unregistration rate.
Citations appearing on driver’s license records differ
somewhat from other citation sources in that only
convictions appear on an individual’s driver’s license
record, not citations that are ruled unjustified by the
court. In each of the categories examined by Hun-
stad, a number of factors could bias this estimate
upward or downward. In general, these data should
provide a rough estimate of the unregistered per-
centage. Not-at-fault fatal accident victims data are
probably one of the less biased data sources, but
include a large fraction of unknown license plates
that had to be accounted for in the estimated unreg-
istered percentage. This unknown category is for
vehicles for which there is no identifying informa-
tion, perhaps because the vehicle left the scene, or
for which no DMV records could be found. 

Surveys of unregistered ownership were also ana-
lyzed with unregistration rates found to be between
7% and 16%. For these surveys, it is important to
note that estimates based on ownership of unregis-
tered vehicles would be biased high relative to on-
road population estimates if the vehicles are not
driven on a regular basis. Data collected in surveys
tend to support this hypothesis. 

The results of the present study indicate that the
population of unregistered vehicles was biased
toward older vehicles relative to the total on-road
fleet. To this extent, it is estimated that unregistered
vehicles would make a disproportionate contribu-
tion to the emissions inventory on a population
basis. Smog check records also indicate a higher per-
centage of failures for unregistered vehicles. The
majority of the unregistered vehicles in all categories
were found to pass their last smog check, however,
indicating this is probably not the most significant
contribution to the unregistered vehicle population. 

Given the differences in unregistration rates
found for various methodologies, further research
should be conducted in this area. In particular, our
results indicate there could be a range of as much as
3% to 8% for estimates of unregistered vehicles,
with a wider range of estimates when other studies
are also considered. With the higher emissions rates
that can be assumed for the older unregistered vehi-
cle fleet, this could represent a considerable uncer-
tainty in emissions inventory estimates. 

Within this study, more detailed analysis and
comparison between the field study results and the
DMV results could provide some important insights
into this issue. In particular, for vehicles whose reg-
istration status does not match between the field
study and the DMV results, the individual LPN
records could be analyzed to better understand
these differences. The analysis of the individual
vehicle records would allow a better determination
of whether the differences can be attributed to vari-
ations in the time period of the population snap
shots, stolen stickers or license plates, errors in the
database, or other factors. 
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A Bayesian Network Model of Two-Car Accidents

ABSTRACT

This paper describes the Bayesian network method
for modeling traffic accident data and illustrates its
use. Bayesian networks employ techniques from
probability and graph theory to model complex sys-
tems with interrelated components. The model is
built using two-car accident data for 1998 from Slo-
venia, and inferences are made from the model
about how knowledge of the values of certain vari-
ables influences the probabilities for values of other
variables or outcomes (e.g., how seat-belt use affects
injury severity). An advantage of the Bayesian net-
work method presented here is its complex
approach where system variables are interdependent
and where no dependent and independent variables
are needed.

INTRODUCTION

This paper presents a Bayesian network model of
two-car accidents based on different factors that
influence accident outcomes. The outcomes exam-
ined are “fatality or serious injury” and “other out-
comes.” Influencing factors include:

1. road characteristics (e.g., roadway, pavement),
2. traffic flow characteristics,
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3. time/season factors (e.g., weather, season,
weekday, daytime, rush hour),

4. characteristics of the people involved in an
accident (e.g., age, sex, driving experience,
health status, intoxication),

5. use of protective devices (seat belt, air bag),
6. types of vehicles (especially their crash resis-

tance design), and
7. speed of the vehicles involved.
Besides these factors, other stochastic influences

affect the likelihood of an accident and its outcome.
The factors presented above are highly interrelated.
For instance, road conditions are influenced by the
weather. Traffic flow depends on the time of the
day, whether it is a weekday or weekend, and
weather conditions. The characteristics of people
involved (e.g., age, sex, experience) can often be
related to the speed of the vehicles in an accident
and the use or non-use of seat belts. The outcome of
an accident is, by and large, dependent on the speed
of the vehicles involved.

A large road accident dataset was used to model
the interdependence among the variables related to
accidents (“knowledge of the subject”) and the
dependence of the outcome on the relevant vari-
ables. Bayesian networks1 seem particularly useful
for representing knowledge in domains where
large sets of interrelated (and relevant) data are
available. They are based on a combination of
probability theory, which deals with uncertainty,
and graph theory, which deals with complexity
(interrelatedness). These networks are an impor-
tant tool in the design and analysis of machine
learning algorithms and are based on the idea of
modularity whereby a complex system is built by
combining simpler parts. Probability theory con-
nects parts and ensures the consistency of the sys-
tem as a whole while providing the possibility of
interfacing the models with the data (see Jordan
1999). This paper aims to show that Bayesian net-
works can also prove their potential in modeling
road accidents.

BAYESIAN NETWORKS

A Simple Example of a Bayesian Network

This section presents a simple Bayesian network for
road accidents. The example is merely for illustra-
tive purposes and is not intended to present a valid
model. The aim is to introduce the concept of Baye-
sian networks by example.

Using a given geographic area, the number of
road accident casualties per day can be schemati-
cally explained. Many factors are interrelated: the
number of road casualties depends on how many
trips car drivers took in the area and the danger
level; the number of trips is related to weather con-
ditions and the season (e.g., summer means more
vacation travel); season and weather are also
related; the level of danger is influenced by the aver-
age speed of vehicles on the roads and on road con-
ditions (e.g., a slippery road); and road conditions
depend on the weather and season and influence the
average speed and level of danger. Figure 1 presents
these relationships in a directed acyclic graph where
the nodes correspond to different variables that are
characteristic of the given domain under consider-
ation. Links2 in the graph represent dependence
between variables, and acyclic means that there is
no node from which it is possible to follow a
sequence of (directed) links and return to the same
node.

Let us suppose that all variables can only take on
a finite number of discrete values. We are interested
in identifying the probabilities of different events
expressed in given values for all variables. This can
be expressed with a joint probability distribution
over all possible events in the given domain. The
number of possible events grows exponentially with
the number of relevant variables and, therefore, the
joint probability function approach quickly
becomes unmanageable. Bayesian networks can
streamline the process, because they are a compact
way of factoring the joint probability distribution
into local, conditional distributions that reduce the
number of multiplications necessary to obtain the
probability of specific events.  

1 Some similar or synonymous concepts are graphic mod-
els, belief networks, probabilistic networks, independence
networks, causal networks, and Markov fields.

2 In Bayesian network literature, the terms vertex and
edge are sometimes applied instead of node and link.
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If we interpret the Bayesian network in probabi-
listic terms, the related joint distribution function
over a given domain can be written (described by n
variables) with the product3: 

(1)

where Xi is the variable and xi is its value; Pa (Xi) is
the set of variables that represents Xi’s parents4 and
pa(Xi) is a vector of actual values for all parents of Xi.
Let us note here the general validity of the chain rule
formula:

From our example in figure 1, we have:

Aside from the global semantics reflected in equa-
tion (1), there is also a local meaning related to a
Bayesian network. From figure 1, we see:

where X4 is independent of the variable X3 given X1
and X2 (reflecting the fact that X3 is not among the
parents of X4). These local semantics are very useful
for constructing a Bayesian network. Here, only
direct causes (or predispositions) are selected as the

parents of a given variable, which leads to the auto-
matic fulfillment of local independence conditions.

Links in Bayesian networks may have different
meanings. If we have a link from node A to node B,
this could mean:

1. A causes B,
2. A partially causes or predisposes B,
3. B is an imperfect observation of A,
4. A and B are functionally related, or
5. A and B are statistically correlated.

This paper employs the second meaning of a link.
Bayesian networks for a certain domain can be

used for inference purposes. With the network in
figure 1, we will illustrate the meaning of inference
and also show the difference between a Bayesian
network model and better known classical models,
such as logistic regression. After a product specifica-
tion (equation (1)) of a joint probability distribution
is obtained, the probability of any event in the
domain can be expressed. Conditional events where
certain variables have known values are especially
interesting. This type of probabilistic inference is
called a belief update. An example for the domain
represented in figure 1 is the following:

FIGURE 1  Example of a Bayesian Network
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Number of journeys
X4

Weather
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Average speed
X5
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3 The probability of the event A is denoted by P(A).
4 Node A is the parent of node B if there is a link from A
toward B in the graph.
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For illustrative purposes, we have assumed that one
possible value of the variable X3 (road conditions) is
“slippery.” This variable can also take on other val-
ues. A similar description holds for variable X7.
This expression can be further simplified, but this is
unnecessary here. 

Let us now illustrate the difference between the
Bayesian network model and the classical logistic
regression (for logistic regression see Agresti
(1990) or Hosmer and Lemeshow (2000)). The
most significant difference is that with logistic
regression the model’s dependent and indepen-
dent variables must be chosen; while, with the
Bayesian network model, all variables are treated
equally. The logistic regression has a response (or
dependent) variable Y that is a categorical vari-
able with J (J ≥ 2) classes and a vector X (with p
components) of explanatory (or independent)
variables that are also categorical5 variables.
Here, Y could be the number of casualties (with
Y = 1 for “high” and Y = 0 for “other”). The
components of vector X could be the six other
variables from figure 1. The generalized logit
model can be put in the following way:

(2)

If the attributes X are also 0/1 variables, then the
following formula is valid6:

The expression is called the odds ratio and allows
an easy interpretation of the estimated parameters.7

In the logit model for figure 1,  is the odds
that the number of casualties will be high in the cir-
cumstances given by variable xk = 1 relative to the
odds that the number of casualties will not be high
in the circumstances given by variable xk = 0.

It is obvious that the model shown in equation
(2) does not explicitly take into account eventual
interdependence between variables of X, nor does it
allow for an estimation of other probabilities that
could be of interest (e.g., the belief update given as
an example for the network in figure 1). Interdepen-
dences among variables in a Bayesian network are
explicit and represent a distinguishing feature of the
method.

The general problem of computing posterior
probabilities (or of a belief update) for large and
structurally more complex Bayesian networks is
computationally very demanding (more precisely:
NP-hard). The computational burden was the rea-
son that the inference in Bayesian networks was ini-
tially limited only to special types of structures,
namely tree-structured networks. Later, efficient
algorithms were proposed for more general types of
network structures (Lauritzen and Spiegelhalter
1988; Zhang and Poole 1996).

Formal Definition of Bayesian Networks

Bayesian networks contain qualitative (structural)
and quantitative (probabilistic) parts. The qualita-
tive part is based on statistical independence state-
ments and can be represented by a directed acyclic
graph. The nodes are related to random variables of
interest for a given domain, while the links corre-
spond to a direct influence among the variables. The
quantitative part is captured by local probability
models, given by a set of conditional probability dis-
tributions. Both the qualitative and quantitative
parts of the Bayesian network uniquely represent
the joint probability distribution over a domain.
The definitions follow.
Definition 1. A Bayesian network B is a triplet (X,
A, P) where:

1. X is a set of nodes
2. A is a set of links that, together with X, repre-

sent a directed acyclic graph:
G = (X, A)

3.
where Pa(X) is the set of parents of X, and pa(x) is
its instantiation.8 P stands for probability.

5 In a general logistic regression, they are not limited to
only these types of variables.
6 A similar interpretation is possible if we have categori-
cal variables with more than two values.
7 Explanatory variables can be interdependent. Their
interdependence plays a role in the estimation of these
parameters (see chapter 2 in Hosmer and Lemeshow
2000).
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8 When the state of a variable is known, we say that it is
instantiated. We have an instantiation of a set of variables
if each variable is instantiated (Jensen 2001).
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It is clear that P is the set of conditional probabilities
for all variables, given their parents. From definition
1, the conclusion can be drawn that nodes and vari-
ables are used interchangeably. Variables in a Baye-
sian network are called nodes when we speak about
the graph. 

Graph G corresponding to a Bayesian network
has to be acyclic. If cycles were allowed, the feed-
back influence would be enabled. It is well known
that feedback cycles are difficult to model quantita-
tively and no calculus has been developed for the
Bayesian network to cope with these.

The notion of conditional independency is a
basic concept of Bayesian networks. We say that
(random) variables A and B are independent given
the variable C if the following is true:

P(A|B,C) = P(A|C)
This means that if the value of variable C is known,
then knowledge of B does not alter the probability
of A.

The Bayesian network provides a graphic repre-
sentation of many independency relationships that
are embedded in the underlying probability model.
No formal definitions are provided here, but it
should be understood that the mathematical con-
ception of d-separation is fundamental relative to
independence (Jensen 2001). 

The next definition gives the global interpretation
of Bayesian networks. 

Definition 2. The prior joint probability PB of a
Bayesian network B is defined by the following
expression:

The factorization in definition 2 rests on a set of
local independence assumptions, asserting that each
variable is independent of its predecessors9 in the
network, given its parents. The opposite is also true.
We can use the interdependence in constructing
Bayesian networks from expert opinion, because
selecting as parents all the direct causes of a given
variable satisfies the local conditional independence
conditions (Pearl 2000).

For the Bayesian network from figure 1, the prior
joint probability is equal to:

When we have a joint probability distribution
defined on a set of variables X, we can calculate the
probability distribution of any subset S of X. This
calculation is called marginalization and is very use-
ful in inference exercises on Bayesian networks.

Definition 3. Let S be a subset of the set of vari-
ables X. The marginal probability PB(S) is defined
by

Let us now suppose that some variables have spe-
cific values. In our example from figure 1, variables
X7 and X3 may be observed to have values “high”
(X7) and “slippery” (X3). If  is the set of vari-
ables with actual (observed) values, Y0 is the corre-
sponding vector of values and  is the set of
variables of interest , then the follow-
ing definition of posterior probability is useful.

Definition 4. The posterior probability
 of X1

is defined by the expression

THE MODEL

Data

This paper focuses on road accidents in which two
car drivers were involved. The empirical part is
based on data from the road accidents database
assembled by the Slovenian Ministry of the Interior
from police reports. For the model, 1998 data con-
taining 36,704 Slovenian police accident reports
were used. From this total, 17,558 (48%) were of
the selected type. To illustrate the risk of Slovenian
drivers being involved in a two-car accident, some
basic data show that, in 1998, 797,855 cars were
registered in Slovenia (the country has 2 million
inhabitants). Because we are looking at accidents
involving two cars, we know that approximately

9 A is a predecessor of B if a directed path (a sequence of
links) exists from A to B.
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4% of the Slovenian car fleet was involved in acci-
dents of this type that year.

Table 1 presents data on two-car accidents for
selected variables. Variables from Accident_type to
Cause (the first column of table 1) are related to the
accident, while variables from Age to Injury are
related to the drivers.10 The share of accidents that
resulted in a fatality or serious injury of at least one
person is 1.9%. Over 70% of accidents occur in
built-up areas and more than half happen in good
weather and under normal traffic conditions.
Among participants, the lion’s share corresponds to
drivers 25 to 64 years old, yet the share of drivers
under 25 years of age is also relatively high (23%).
For drivers involved in accidents, a significant pro-
portion has less than one year of driving experience
(12.9%). Only a small share of drivers involved in
accidents was intoxicated (4.3%). 

Bayesian Network Estimation

A Bayesian network for a given domain can be esti-
mated using different approaches. This paper uses a
template model that should not vary from one prob-
lem to another. Our purpose here is to estimate a
fixed Bayesian network over a given set of variables,
obtained by a combination of expert judgment and
empirical data. Specifications for some alternative
possibilities for estimating a Bayesian network are
presented below.

A difficult part of building a Bayesian network is
quantifying probabilities, which can be derived
from various sources:

1. from domain experts (subjective probabilities),
2. from published statistical studies,
3. derived analytically, or
4. learned directly from raw data.

This paper uses the last option, mainly because of
the availability of a relatively large database.

Sometimes the process of learning the structure
of a Bayesian network (if necessary) may be even
more difficult than quantifying probabilities.
According to the structure, models can be classified
as those with a known structure or those with an

unknown structure. We experimented with both
options.

There are basically two different approaches to
learning the structure of a Bayesian network from
data: 1) search and scoring methods and 2) depen-
dency analysis methods. In the first approach, dif-
ferent scoring criteria are used for evaluating
competing structures. Two of the well-known meth-
ods of this type are the Bayesian scoring method
(Cooper and Herskovits 1992) and the minimum
description length method (Lam and Bacchus
1994). Because learning a Bayesian network struc-
ture by a search and score approach is NP-hard, dif-
ferent heuristic searches have been proposed.
Algorithms from the second group try to discover
the dependences among variables from data and
then use them to infer the structure. During this pro-
cess, a conditional independence test, usually based
on the concept of mutual information of two nodes
(variables), X and Y, is used

In this expression, Pe denotes the observed relative
frequencies in the dataset. Conditional mutual
information is defined analogously: 

Z can be a single node or a set of nodes. Mutual
information I is non-negative and equal to 0 when
X and Y are conditionally independent. The higher
the mutual information, the stronger the depen-
dence between X and Y. In heuristic algorithms a
certain threshold  is usually used: if I(X,Y) is
smaller than , then X and Y are taken as margin-
ally independent. Similarly, if I(X,Y|Z) is smaller
than , we consider X and Y as conditionally inde-
pendent given Z. 

All these methods can be expected to find the
correct structure only when the probability distribu-
tion of the data satisfies certain assumptions. But
generally both types of methods find only approxi-
mations for the true structure. 

According to the available data, models for learn-
ing Bayesian networks can be classified into those
with complete data available or those with incom-
plete data available. In the first case, all variables are

10 Passengers are taken into account only indirectly. A
fatal accident may mean that both drivers were only
injured, but at least one passenger was killed.
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TABLE 1  Data on Two-Car Accidents in Slovenia: 1998

Variable Values Frequency
Relative 

frequency (%)
Accident_type Fatality or serious injury 654 1.9

Other 34,462 98.1

Alco121 No 32,164 91.6
Yes 2,952 8.4

Weekday After weekend 5,442 15.5
Before weekend 6,338 18.0

Weekend 9,140 26.0
Workday 14,196 40.4

Settlement No 10,156 28.9
Yes 24,960 71.1

Weather Bright 20,088 57.2
Cloudy 9,094 25.9

Fog 454 1.3
Rainy 4,264 12.1
Snow 882 2.5
Other 334 1.0

Traffic Dense 5,530 15.7
(Grid)lock 122 0.3

Normal 20,214 57.6
Sparse 8,830 25.1

Unknown 420 1.2
Roadway Dry 24,142 68.8

Ice 546 1.6
Other 220 0.6

Slippery 1,938 5.5
Snow 698 2.0

Wet 7,572 21.6
Night No 26,658 75.9

Yes 8,458 24.1
Cause HI   Inappropriate speed 4,956 14.1

OS   Other 1,472 4.2
PD   Failing to give way 7,244 20.6
PR   Wrong overtaking 1,520 4.3

PV   Car maneuvers 8,296 23.6
SV   Wrong side/direction 4,754 13.5

VR   Unsuitable safety distance 6,874 19.6
Age ≤ 24 8,008 22.8

25–64 25,538 72.7
65–inf 1,570 4.5

Experience 0–1 4,530 12.9
1–5 7,000 19.9

6–10 7,235 20.6
11–inf 16,351 46.6

Alcohol No 33,593 95.7
Yes 1,523 4.3

At-fault driver No 16,651 47.4
Yes 18,465 52.6

Sex Female 9,036 25.7
Male 26,080 74.3

Belt use No 4,342 12.4
Yes 30,774 87.6

Injury Fatality or serious injury 247 0.7
Other 34,869 99.3

1 Alco12 (defined for each accident) is determined by the value for the variable Alcohol (defined for both drivers 
involved in the accident). Its value is "Yes" if at least one of the two drivers was intoxicated and is "No" otherwise.

Source: Database of the Slovenian Ministry of the Interior.
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observed for all instances in the database while, in
the second case, values for some variables may be
missing or some variables may not even be observed
(hidden variables). Because the available database
used for this paper contains complete data, the first
possibility is relevant.

Variables Considered in the Model 
Some conditions of an accident may be called exog-
enous. They are tied to the accident and happen
without the volition or action of the drivers
involved. Variables from table 1 in this category are:

1. weather condition,
2. weekday,
3. settlement (whether an accident occurs in a

built-up area or not), and
4. daytime (whether an accident occurs during

the night or day).
These external conditions influence some internal
and objective conditions also tied to the accident,
such as traffic and the roadway. For each accident,
these conditions are also exogenous.11 

Besides these internal and objective conditions,
there are also internal subjective (and not volitional)
conditions that relate to the drivers involved:

1. age and sex,
2. driving experience,
3. intoxication (alcohol), and 
4. use of a seat belt.

Objective and subjective internal conditions influ-
ence the cause of an accident. The particular
cause further influences the outcome of the acci-
dent. Here, only two types of accident outcomes
are considered: a fatality or serious injury, and
other.12 Subjective internal conditions and the
cause of an accident influence the type of driver
injury.

Different network structures can reflect these
conditions. In the process of finding a suitable
network structure, we experimented with Power-
Constructor. PowerConstructor (Cheng et al.
2001) is a computer program that can estimate

the Bayesian network structure if a database of
cases is available. The method (Cheng et al. 1997)
used in PowerConstructor for comparing compet-
ing structures is of the dependency analysis type
and requires O(n4) conditional independence
tests (n being the number of variables). The pro-
gram is able to take into account additional
restrictions on variables (e.g., partial ordering,
forbidden links, roots, leaves, and causes and
effects). 

For this research, external variables and the
variables related to the driver (e.g., age, sex, and
experience) were among the root nodes (links can
only point out of such nodes). Variables relating to
the type of accident and the drivers’ injuries were
put among the leaf nodes (links can only point into
such nodes). The variable related to the fault of the
two drivers involved was also put among the
leaves. PowerConstructor produced results pretty
much as anticipated, except for some links that
were missing.

Our anticipation was also based on some rele-
vant findings from the literature. Kim (1996) ana-
lyzed the differences between male and female
involvement in motor vehicle collisions in Hawaii
and found that male drivers are:

1. 4 times more likely than female drivers to not
wear a seat belt,

2. 3.6 times more likely than female drivers to be
involved in alcohol-related collisions,

3. 2 times more likely than female drivers to be
involved in speed-related collisions, and

4. 1.3 times more likely than female drivers to be
involved in head-on collisions.

For the relationship between road accident severity
and recorded weather, Edwards (1998) based her
conclusions on data from police reports and found
that:

1. accident severity decreases in rain as compared
with good weather,

2. accident severity in fog shows geographical
variation, and

3. evidence for accident severity in high winds is
inconclusive.  

11 It is assumed that an individual driver does not signifi-
cantly influence traffic conditions.
12 The variable Accident_type is related to the accident,
while the variable Injury is related to the driver. This pre-
sents no problem for an analysis with Bayesian networks.
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It is also well known that older drivers are more
likely to be killed if involved in a fatal crash than
younger drivers. Based on these results and com-
mon sense, additional restrictions for PowerCon-
structor included the following links:

1. Age → Injury (older drivers are expected to be
more prone to serious injuries than younger
drivers)

2. Seat belt → Injury (drivers not wearing a seat
belt are likely to be more vulnerable)

3. Experience → At-fault driver (drivers with lit-
tle driving experience are more likely to be at
fault)

4. Sex → Seat belt use
5. Sex → Alcohol
6. Alcohol → At-fault driver

The resulting network is presented in figure 2. It is
evident that only a small number of all theoretically
possible interdependences was found to be
important. 

FIGURE 2  The Network Structure
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Weekday, daytime, and weather conditions influ-
ence traffic. An assumption was made that the share
of intoxicated drivers is greater for accidents that
happen at night than during the day. Only weather
influences road conditions.13 The type of accident
and the use of a seat belt also depend on whether an
accident happens in a built-up area or not (settle-
ment variable). A smaller share of drivers wearing a
seat belt in built-up areas was expected. 

Figure 2 also takes into account the different
characteristics of drivers. Drivers with little driving
experience are more likely to be at fault in an acci-
dent than more experienced ones. There are also sig-
nificant differences between men and women, with
women being more likely to use seat belts than men.
On average, older drivers are more prone to serious
injuries than younger ones.

The central variable in figure 2 is the cause of an
accident,14 which is influenced by road, weather,
and traffic conditions and by the variable related to
driver intoxication. Finally, the outcome of an acci-
dent (defined as the most serious injury to partici-
pants in an accident) is largely conditioned by the
cause of the accident.

The estimated structure seems plausible, but a
different one may also be acceptable. The scoring
functions used in the optimizing approach could
shed some light on the quality of the estimated
Bayesian network. Furthermore, the Kullback-
Leibler measure of divergence could be used. Its
value could be computed for the structure at hand
but would only be of interest when comparing two
or more specific structures. By presenting the most
probable explanation (MPE), the corresponding
probability, and the relative frequency obtained
from the database, the statistical quality of the given
network can be seen. MPE is given by the most
probable configuration of values for all variables in
the Bayesian network. For the estimated structure,
the MPE is given by the following values for
variables:
Night = No; Weekday = Wrk (working day);
Weather = Bright; Settlement = Yes; Experience =
E11–Inf (driver’s experience of 11 years or more);
Sex = Male; Age = A25–64; Seat_belt = Yes; Alcohol
= No; Alco12 = No; Roadway = Dry; Traffic =
Norm (normal); Cause = PV (car maneuvers); At-
fault_driver = No; Injury = Oth (other then fatality
or serious injury); Accident_type = Oth

Given the estimated structure of the Bayesian net-
work and the conditional probabilities for each
node, the probability of the MPE can be computed
as shown below.  

P(MPE) = P(Night = No)  P(Weekday = Wrk)  P(Weather = Bright)  P(Settlement = Yes)  
P(Experience = E11–Inf)  P(Sex = Male)  P(Age = A25–64)  
P(Roadway = Dry|Weather = Bright)  
P(Traffic = Norm|Weather = Bright, Weekday = Wrk, Night = No)  
P(Belt_use = Yes|Sex = Male, Settlement = Yes)  
P(Alcohol = No|Night = No, Weekday = Wrk, Sex = Male)  
P(Alco12 = No|Night = No, Weekday = Wrk)  
P(At-fault_driver = No|Experience = E11–Inf, Alcohol = No)  
P(Cause = PV|Roadway = Dry, Traffic = Norm, Weather = Bright, Alco12 = No)  
P(Injury = Oth|Age = A25–64, Belt_use = Yes)  
P(Accident_type = Oth|Settlement = Yes, Cause = PV) = 0.00181

13 New variables could have been added here but were
not in order to maintain a more manageable total number
of variables.
14 This is partly conditioned by the large number of pos-
sible states (seven) and by the method used in Power-
Constructor.
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An examination of databases for 1998 and 1999 pro-
duced the following relative frequencies for MPE:

Pe(1998) = 94 / 35116 = 0.00268
Pe(1999) = 103 / 39950 = 0.00258

It is obvious that even the most likely explanation has
a small probability of its appearance. A comparison
of P(MPE) and Pe(MPE) can serve as an indication of
the quality of the estimated Bayesian network.

Figure 3 presents probabilities (also called beliefs)
estimated from the database of accidents for 1998
and based on the assumption of the network struc-
ture given in figure 2. Values of variables related to
the different nodes are self-explanatory. Let us recall
the abbreviation used for accident type and injury: 1)

Fos means a fatality or serious injury, and 2) Oth
means other (less serious) outcomes. (Abbreviations
for values related to the variable Cause are explained
in table 1.) Figure 3 shows only the unconditional
probabilities that correspond to each node (and not
the conditional probabilities discussed earlier).

INFERENCE IN THE BAYESIAN NETWORK   

The discussion here focuses on only three tables with
specific inference results. For the inference process,
Netica software (Norsys 1997) was used, and it
proved to be very convenient and effective. Results
are presented in tables 2 to 4 where predetermined

FIGURE 3  Estimated Unconditional Probabilities of the Bayesian Network

Note: See table 1 for explanation of variables.
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values for a selected categorical variable (or variables)
are given in the first column and probabilities for
variables of interest are seen in other columns.

Table 2 shows inference results based on evidence
for the variable related to the type of accident. Infer-
ence results are presented only for variables Cause,
Settlement, Night, and Alco12. The probability that
the cause of the accident is inappropriate speed (HI)
is 0.279 in the case of accident type “Fos” (fatality
or serious injury) and 0.134 for the accident type
“Oth” (less severe injury). The odds ratio is there-
fore 2.1. Only a slightly smaller odds ratio is found
for cause SV (wrong side/direction); a similar odds
ratio for the Settlement variable (2.2); smaller odds
ratios for variables Night and Alco12; and odds
ratios smaller than 1 for cause PV (car maneuvers),
OS (other), and VR (safety distance).

Table 3 reports the inference results based on the
evidence for the intoxication variables (Alcohol and
Alco12). The probability of an accident taking place
at night is 0.752 if drivers are intoxicated and 0.206
if they are not. The odds ratio is, therefore, 3.7.
Odds ratios are also high for variables Sex, At_fault,

and Cause (for the values related to inappropriate
speed and driving on the wrong side of the road). 

Inference results based on the evidence for some
exogenous variables are presented in table 4. The
results shown correspond to a risky situation (driv-
ing at night, outside built-up areas, on the weekend,
and in rainy weather) and to risky demographic vari-
ables (young and inexperienced drivers, i.e., males
less than 25 years of age and less than 1 year of driv-
ing experience). Nonrisky values were defined with
the opposite values for binary variables. For other
(non-binary) variables, the following values were
used: age between 24 and 65, driving experience
more than 11 years, and for the weekday the work-
ing day. Odds ratios are especially high for the type
of accident and intoxication variables. 

While more inference results and a complete pic-
ture of the influence on all variables are available,
this paper presents only the more interesting vari-
ables because the primary aim is to illustrate the
capabilities of Bayesian networks in this domain of
knowledge. A more indepth analysis of inference
results could be used for detecting any weaknesses

TABLE 2  Inference Results: Evidence for Accident Type 
Probabilities

Acc_
type

Cause
(HI)

Cause
(OS)

Cause
(PD)

Cause
(PR)

Cause
(PV)

Cause
(SV)

Cause
(VR)

Settl
(No)

Night
(Yes)

Alco12
(Yes)

Fos 0.279 0.034 0.276 0.065 0.092 0.229 0.026 0.612 0.253 0.106

Oth 0.134 0.046 0.204 0.048 0.238 0.133 0.196 0.283 0.241 0.083

Key: Fos = fatality or serious injury, HI = inappropriate speed, OS = other, Oth = other, PD = failing to give way, PR = wrong overtaking, 
PV = car maneuvers, Settl = settlement, SV = wrong side/direction, VR = unsuitable safety distance.
Note: For definition of Alco12, see table 1.

TABLE 3  Inference Results: Evidence for Intoxication Variables 
Probabilities

Intox
Cause

(HI)
Cause
(OS)

Cause
(PD)

Cause
(PR)

Cause
(PV)

Cause
(SV)

Cause
(VR)

Sex
(Male)

Night
(Yes)

At_fault
(Yes)

Yes 0.204 0.050 0.180 0.069 0.129 0.254 0.113 0.909 0.752 0.879

No 0.131 0.045 0.208 0.046 0.245 0.125 0.201 0.753 0.206 0.510

Key: HI = inappropriate speed, OS = other, PD = failing to give way, PR = wrong overtaking, PV = car maneuvers, SV = wrong side/direction, 
VR = unsuitable safety distance.

TABLE 4  Inference Results: Evidence for Some Exogenous Variables 
Probabilities

Exogenous
variables

Injury
(Fos)

At_fault
(Yes)

Acc_type
(Fos)

Alcohol
(Yes)

Alco12
(Yes)

Risky values 0.015 0.605 0.046 0.145 0.245

Nonrisky values 0.008 0.497 0.009 0.004 0.043

Key: Fos = fataility or serious injury.
Note: For definition of Alco12, see table 1.
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in the Bayesian network and for improving its struc-
ture. By using data for more than one year, the
results become more reliable. New variables can
also be added, for example, actual data on traffic
flows on the road sections on which accidents occur
or other specific characteristics of roads and regions.

CONCLUSIONS 

This paper deals with road accidents involving two
car drivers. A model of such accidents is presented
to capture the interrelations between different rele-
vant variables. To this end, Bayesian networks that
have proved their modeling capabilities in different
knowledge domains were used. The paper first
introduces Bayesian networks on a small example
and then formally defines them. After presenting
data on two-car accidents for Slovenia in 1998, a
structure is proposed based on knowledge of the
domain and on computer experiments. For this
structure the corresponding probabilities were esti-
mated from the available database. We then demon-
strate how the estimated Bayesian network can be
used for drawing inferences. Inference results are
consistent with expectations as far as the direction
of influence is concerned.

The estimated Bayesian network can be regarded
as a compact and structured representation of the
given database of two-car accidents. This represen-
tation relates to specific types of accidents in a given
country and year. It also enables different inferences,
but other methods, such as logistic regression,
should also be used. 

Based on the research presented here, we feel that
Bayesian networks can be fruitfully applied in the
domain of road-accident modeling. Compared with
other well-known statistical methods, the main
advantage of the Bayesian network method seems
to be its complex approach where system variables
are interdependent and where no dependent and
independent variables are needed. The method’s
chief weakness is the somewhat arbitrary search for
an appropriate network structure. Nevertheless, the
results shown here are encouraging and point to
possible directions for improvement, such as includ-
ing more variables and larger datasets that cover
more years. Extending the Bayesian network (with
good performance results) into a decision network
is another possibility.
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Development of Prediction Models for Motorcycle Crashes at 

Signalized Intersections on Urban Roads in Malaysia

ABSTRACT 

Because more than half of the motor vehicles in
Malaysia are motorcycles, the safety of this form of
transportation is an important issue. As part of a
motorcycle safety program, Malaysia became the
first country to provide exclusive motorcycle lanes in
the hopes of reducing motorcycle crashes along
trunk roads. However, little work has been done to
address intersection crashes involving motorcycles.
This paper provides models for predicting motorcy-
cle crashes at signalized intersections on urban roads
in Malaysia. A generalized linear modeling tech-
nique with a quasi-likelihood approach was adopted
to develop the models. Traffic entering the intersec-
tion, approach speed, lane width, number of lanes,
shoulder width, and land use at the approach of the
intersection were found to be significant in describ-
ing motorcycle crashes. These findings should enable
engineers to draw up appropriate intersection treat-
ment criteria specifically designed for motorcycle
lane facilities in Malaysia and elsewhere.

INTRODUCTION

Motorcycle crashes continue to be a problem in
both developing and developed countries. Fatality
rates (measured in deaths per 10,000 registered

KEYWORDS: Motorcycle crashes, generalized linear
models, prediction model, intersection crashes, motorcycle
crash model.
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vehicles) in these crashes are much higher than in
nonmotorcycle1 crashes. In the United States, the
National Highway Traffic Safety Administration
(USDOT 2002) reported a fatality rate of 6.5 per
100 million vehicle-miles traveled, and motorcy-
clists were about 26.1 times as likely as passenger
car occupants to die in a motor vehicle traffic crash.
The Canadian rate was 4.7 in 1999, which rose to
5.1 in 2000; the Canadian nonmotorcycle fatality
rate in 2000 was 0.7 (Transport Canada 2001).
Similarly large rates have been reported in other
developed countries: Australia’s rate was 6.2 in
2001, an increase of about 9% from 2000 and more
than 4 times the fatality rate of other road users
(ATSB 2002); the United Kingdom’s rate was 7.3 in
2000, decreasing to 6.6 in 2001, about 10 times the
fatality rate for passenger car occupants (DfT
2002); Swedish (SI 2000), French, and German
(OECD 2002) rates in 2000 were 4.1, 5.3, and 2.2,
respectively. 

In developing countries, deaths and serious inju-
ries from motorcycle accidents constitute a large
portion of total road casualties especially in Asian
countries, because motorized two-wheelers make up

40% to 95% of their vehicle fleets. As a result, more
than half the road fatalities were riders or pillion
passengers.

In Malaysia, motorcycles constitute more than
half the total vehicle population and contribute
more than 60% of the casualties (deaths and serious
and slight injuries) in traffic crashes. In 2000,
79,816 crashes involved motorcycles, an increase of
almost three-fold from 1990. Of these, almost
3,000 motorcyclists were killed every year during
this period (figure 1). Moreover, motorcyclist casu-
alties were much higher than those of occupants in
other types of vehicles (figure 2). 

In an attempt to reduce casualties, exclusive
motorcycle lanes were constructed along major
trunk roads in the country. Since the implementa-
tion of this initiative, a number of studies (Radin
Umar 1996; Radin Umar et al. 1995, 2000) have
been carried out to evaluate the impact of these
lanes on motorcycle crashes on highway links.
Results indicate the lanes had a significant effect (p
<0.01), reducing motorcycle crashes by 39% fol-
lowing the opening of the lanes to traffic. However,
little research has been done on motorcycle crashes
at intersections. Indepth studies would allow traffic
engineers to establish appropriate intersection treat-

FIGURE 1  Motorcycle Crashes in Malaysia: 2000

Source: Polis Di Raja Malaysia, Statistical Report: Road Accidents, Malaysia 2000 (Kuala Lumpur, Malaysia: 2002, Traffic Branch, 
Royal Malaysian Police). 
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ment criteria specifically designed for motorcycle
lane facilities.

Recent studies on traffic crash modeling have
used the generalized linear modeling (GLM)
approach (McCullagh and Nelder 1989) with Pois-
son or negative binomial error structure. This
approach is widely accepted as more appropriate for
the characteristics of crashes (i.e., discrete, rare, and
independent) than the classical linear model based
on normal error structure with a constant variance.
Crashes can be characterized by their mean number
per unit time and are simply represented by a Pois-
son random variable.

Many researchers have reported the usefulness of
the GLM approach in developing predictive models
for traffic crashes using either cross-sectional or
time series analysis (Griebe and Nielsen 1996;
Mountain et al. 1996, 1998; Tarko et al. 1999; Vogt
and Bared 1998; Vogt 1999; Radin Umar et al.
1995, 2000; Radin Umar 1996; Bauer and Har-
wood 2000; Saied and Said 2001; Taylor et al.
2002). For example, an earlier study on crashes at
intersections prepared for the Federal Highway
Administration of the U.S. Department of Transpor-
tation in connection with the development of the
Interactive Highway Safety Design Model (IHSDM)

(Bauer and Harwood 2000) provided direct input
into the Accident Analysis Module of the IHSDM. 

The analysis included all collision types using
three-year crash frequencies (1990 to 1992) and
geometric design, traffic control, and traffic volume
data from a database provided by the California
Department of Transportation. The analysis was
performed using the SAS GENMOD procedure.
The models were developed using the GLM
approach with a log-normal regression model and a
loglinear regression model (a Poisson regression fol-
lowed by a negative binomial regression model). In
this study, the 10% significance level of the t-statis-
tic of the parameter estimates was used to assess the
significance of the fitted model. The explanatory
variables (continuous and categorical) that follow
were found to be significant in explaining crashes at
intersections: 

� major road ADT (average daily traffic) and
minor road ADT, 

� average lane width on major roads, 

� number of lanes on major and minor roads, 

� design speed of major roads, 

� major-road right-turn and left-turn channelizations,

� access control on major roads, 

� functional class of major roads, 

� outside shoulder width on major roads, 

� terrain, 

� road lighting, 

� minor-road right-turn channelization, 

� major-road left-turn prohibition, and 

� median on major roads.

As an extension to our earlier analysis (Harnen et
al. 2003a, 2003b), this paper presents the develop-
ment of prediction models for motorcycle crashes at
signalized intersections along both the exclusive and
non-exclusive motorcycle lanes on urban roads in
Malaysia. We used the GLM approach with Poisson
error structure to develop our models. The para-
meter estimates and tests of their significance were
carried out using GLIM 4 statistical software (NAG
1994), which is specifically designed for fitting gen-
eralized linear models.

FIGURE 2  Motorcycle Rider Casualties Compared 
with Casualties for Occupants in Other 
Types of Vehicles: 2000

Key: Fatality rate = fatalities per 10,000 registered vehicles; injury 
rate = injuries per 10,000 registered vehicles; casualties (%): as a 
percentage of all casualties in traffic crashes in Malaysia.

Source: Polis Di Raja Malaysia, Statistical Report: Road Accidents, 
Malaysia 2000 (Kuala Lumpur, Malaysia: 2002, Traffic Branch, Royal 
Malaysian Police).
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THE DATA

Selected Intersections

The intersections studied were located on urban roads
in four districts of the state of Selangor, Malaysia. The
data collected covered motorcycle crashes, traffic and
pedestrian flow, approach speed, intersection geome-
try, number of legs, and land use. The intersections
were selected based on the following conditions
between 1997 and 2000: a) only marginal change in
land use; b) no major modifications or upgrading; c)
an equal number of lanes on the corresponding major
and minor roads; d) only marginal change of signal
characteristics, for example, signal timing and signal
phasing; e) no access road within a 50-meter distance
from the intersection stop lines; and f) intersections
must have had fatalities and/or serious and slight inju-
ries in crashes. Please note that while data were col-
lected on signal characteristics they are not analyzed
here. However, they will be included in future work.
Based on the intersection files (142 signalized intersec-
tions with motorcycle crashes in the period 1997 to
2000) extracted from the Microcomputer Accident
Analysis Package (MAAP) database and visits to the
sites to ensure that they met the requirements, 51
intersections were chosen. In this study, motorcycle
crashes occurring within 50 meters of the correspond-
ing stop lines of the intersection were classified as
intersection crashes.

Motorcycle Crash Data

Four-year’s worth of motorcycle crash data on the
selected intersections, from 1997 through 2000, were
collected from the police crash record form, POL 27
(Pin 1/91). The POL 27 is designed for easy comple-
tion (Radin Umar et al. 1993) and is fully compatible
with the MAAP database developed by the Transport
Research Laboratory (Hills and Baguley 1993). Data
were extracted from two complementary sources: the
MAAP database for fatal and serious injury crashes,
and the Computerized Accident Recording System
(CARS 2000) database for slight injury crashes. Both
databases are based on the POL 27 record form.2

Traffic Flow Data

In this study, the estimated annual average daily
traffic (AADT) defines the traffic flow on each
selected intersection. Hourly traffic volume (dis-
aggregated by nonmotorcycles and motorcycles)
was counted on major- and minor-road
approaches and then converted to AADT by
using hourly, daily, and monthly factors. These
factors were determined based on 24-hour per-
manent traffic count station and traffic census
data, available from the Highway Planning Unit,
Ministry of Works in Malaysia (HPU 2001a,
2001b) and were developed using the method
proposed by McShane et al. (1998). The AADT is
expressed in terms of the number of nonmotorcy-
cles per day and motorcycles per day.

Other Data Used

Approach speed and pedestrian flow were also con-
sidered in this study. However, while these data were
not available in the database, they were collected
onsite following criteria used by Golias (1997) in an
earlier study. The 85th percentile approach speed on
major and minor roads was used to represent the
approach speed on each intersection. Arndt and
Troutbeck (1998) also considered this characteristic
in an earlier study on traffic crashes. The approach
speeds were measured at a 50-meter distance
upstream from the corresponding stop lines of the
intersection and were counted for all vehicles mov-
ing during the time the signal was green. 

Pedestrian flow at each intersection was defined
as the total number of pedestrian crossings per hour
counted on major- and minor-road approaches. It
should be noted that pedestrians per hour rather
than pedestrians per day was used because there
was no supporting data to convert hourly pedes-
trian flow to annual average daily pedestrians (the
AADT for pedestrians).

Intersection geometry, number of legs, and land
use for each selected intersection were also observed
onsite. Of the 51 selected intersections, 27 were
three-legged while 24 were four-legged. The land
use adjacent to the intersection was classified into
two categories: commercial and noncommercial
areas. A commercial area was defined as an area
with a concentration of offices, shops, and railway
and bus stations, while residential areas and unused
land come under the category of noncommercial

2 The MAAP database is located at the Road Safety
Research Center, Universiti Putra Malaysia, while the
CARS 2000 database is located at the Traffic Branch,
Royal Malaysian Police Headquarters.
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area. Of the 51 intersections, 33 were located in
commercial areas and 18 were in noncommercial
areas. Figure 3 shows a typical layout of intersection
geometry considered in the study.

MODEL DEVELOPMENT

Prior to carrying out the statistical modeling, we did
some preliminary work to facilitate the modeling
process. This included formulating the theoretical
models, specifying the error structure and link func-
tion, identifying the model variables, and defining
the goodness-of-fit and significance tests.

Using our earlier analysis of motorcycle crashes at
intersections (Harnen et al. 2003a, 2003b) and studies
of traffic crashes at intersections (Griebe and Nielsen
1996; Vogt and Bared 1998; Vogt 1999; Bauer and
Harwood 2000; Saied and Said 2001), we defined the
model structure and the variables included.

Two separate models (Models 1 and 2) were pro-
posed. These models used the same data and struc-
ture but employed different explanatory variables. In
Model 1, the response variable was the number of
motorcycle crashes and the explanatory variables

were traffic flow (disaggregated by nonmotorcycles
and motorcycles both for major and minor roads),
pedestrian flow, approach speed, lane width, number
of lanes, number of legs, shoulder width, and land
use. The continuous variables were identified as traf-
fic flow, pedestrian flow, approach speed, lane width,
and number of lanes, while the categorical variables
were number of legs with two-factor levels, shoulder
width with three-factor levels, and land-use with two-
factor levels. In Model 2, the response variable was
motorcycle crashes, while the explanatory variables
were traffic flow and shoulder width. Both traffic
flow and shoulder width were continuous variables.

The main differences in these two models are the
explanatory variables included. Model 2, which has
three continuous variables, is simpler than Model 1
and can be used further to establish major- and
minor-road flow criteria for intersection treatment.
This can be done by using the design curves relating
major- and minor-road flows and shoulder widths
developed based on Model 2. 

Model 1, which has 13 variables (combination of
continuous and categorical), was aimed at giving
more room to engineers for analyzing the variables
contributing to motorcycle crashes. Software that is
specifically designed for Model 1 application could
make it easier and faster to analyze the variables
and estimate motorcycle crashes.

Taking the earlier studies on intersection crash
modeling into consideration, the theoretical models
containing all terms used in this study were formu-
lated as follows:

Model 1

(1)

where 

Model 2

(2)

where MCA is motorcycle crashes per year. Descrip-
tions of all the explanatory variables are presented

FIGURE 3  Typical Layout of Intersection Geometry

Key: LWm1, 2, 3, 4 = lane width on major road approaches;
LWn1, 2 = lane width on minor road approaches;
LNm1, 2 = number of lanes on major road approach;
LNn1 = number of lanes on minor road approach;
SHDW1, 2, 3, 4, 5, 6 = shoulder width on major- and minor-road 
approaches.
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in table 1. The k1, k2, , , , , , , ,
, , , , , , , , and  are the

parameters to be estimated and the (e) term is the
error representing the residual difference between
the actual and predicted models.

Using a logarithmic transformation, the loglinear
version of the model is:

Model 1

(3)

Model 2

 (4)

To allow direct interpretation of the parameter esti-
mates produced by GLIM 4, the flow functions in
equations (3) and (4) need to be transformed using a
natural logarithmic (Ln), while the others do not. It
should be noted that the total four-year crash fre-
quencies were used to fit the models. However, by
introducing an offset variable in the fitting process,
the final model would be able to estimate the number
of crashes per year. This approach has also been
implemented in earlier studies on traffic crashes at
intersections (Mountain et al. 1998) and motorcycle
crashes at intersections (Harnen et al. 2003a, 2003b).

We based the model on the Poisson error struc-
ture and used the quasi-likelihood approach
(McCullagh and Nelder 1989) to overcome the dis-
persion problem. A loglinear cross-sectional model
was employed with the link function specified as the
log (NAG 1994). This approach has been used in
earlier studies on motorcycle crashes on highway
links (Radin 1996; Radin et al. 1995, 2000) and in
our earlier analysis of motorcycle crashes at intersec-
tions (Harnen et al. 2003a, 2003b). 

Using the quasi-likelihood approach, the disper-
sion parameter was estimated from the mean devi-
ance (scaled deviance over its degrees of freedom).
This may result in a model where the scaled devi-
ance is equal to its degrees of freedom. The final
model was based on the goodness-of-fit and signifi-

cance tests carried out on the models such as the
change in scaled deviance from adding or removing
the terms, the ratio of scaled deviance to its degrees
of freedom (mean deviance), and the 5% signifi-
cance level of t-statistics of the parameter estimates.

Both multivariate and univariate analyses were
conducted for Model 1, while only multivariate
analysis was undertaken for Model 2. We used mul-
tivariate analysis to assess which of the variable(s)
had the most effect on the probability of motorcycle
crashes. The univariate analysis was employed to
obtain a complete picture of the effect of all explan-
atory variables on motorcycle crashes. It should be
noted that only those variables found significant at
the 5% level in the univariate analysis were subse-
quently included in the multivariate analysis.

RESULTS

Model 1

Table 2 presents the results of the univariate analysis
for Model 1. It can be seen that all terms, except
QPED, LNn, and NL, were significant at the 5%
level. The respective scaled deviance was equal to its
corresponding degrees of freedom, as the quasi-like-
lihood approach had been introduced in the fitting
process. Because the terms QPED, LNn, and NL
were not significant at the 5% level, they were then
excluded from any further analysis. 

The multivariate analysis (table 3) shows that all
explanatory variables were significant at the 5%
level. The scaled deviance was equal to its degrees of
freedom, changing from 15,022.0 to 39.0 with a
loss of 11 degrees of freedom. The mean deviance
changed from 300.4 to 1.0.

On the basis of the multivariate analysis, the final
model is:

(5)

where

and where MCA is motorcycle crashes per year,  =
0.0, 0.01755, and 0.02554 for SHDW = 1, 2, and 3,
respectively,  = 0.0 and 0.01591 for LU = 1 and 2,

α1 α2 α3 α4 α5 β1 β2

β3 β4 β5 β6 β7 β8 δ1 δ2 λ1

Ln MCA( ) Ln k( ) α1Ln QNMm( ) α2Ln QNMm( )+ +=

α+ 3Ln QMm( ) α4Ln QMn( ) α5Ln QPED( )+ +

β1 SPEED( ) β2 LWm( ) β3 LWn( ) β4 LNm( )+ + + +

β5 LNn( ) β6 NL( ) β7 SHDW( ) β8 LU( ) e+ + + + +

Ln MCA( ) Ln k( ) δ1Ln Qmajor( )+=

δ2Ln Qminor( ) λ1 SHD( ) e+ + +

MCA 0.002822 QNMm0.3241 QNMn0.0835•= •

QMm0.0683 QMn0.1296  EXPz••

z 0.02602 SPEED  0.0727 LWm– 0.0718 LWn–=

0.01758 LNm– β7SHDW– β8LU+

β7

β8
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respectively (table 1). Figure 4 shows the actual and
predicted motorcycle crashes.

Model 2

Table 4 presents the results of the multivariate anal-
ysis of Model 2. All terms were found to be signifi-

cant at the 5% level. The scaled deviance was equal
to its degrees of freedom, because the quasi-likeli-
hood approach had also been introduced in the fit-
ting process. The scaled deviance changed from
854.8 to 47.0 with a loss of 3 degrees of freedom
and the mean deviance changed from 17.1 to 1.0.

TABLE 1  Description, Factor Levels, Coding System, and Basic Statistics of the Explanatory Variables 

Explanatory 
variables Description

Factor 
levels

Coding system 
in GLIM Min Max Mean Median

MODEL 1
QNMm Nonmotorcycle flow on major 

road (nmpd)
QNMm 14,527 50,529 31,389 32,354

QNMn Nonmotorcycle flow on minor 
road (nmpd)

QNMn 2,133 20,129 11,276 11,129

QMm Motorcycle flow on major road 
(mpd)

QMm 5,510 21,899 12,228 10,792

QMn Motorcycle flow on minor road 
(mpd)

QMn 1,752 4,771 3,183 3,142

QPED Pedestrian flow (pedestrians/
hour)

  QPED 0 235 36 19

SPEED Approach speed (km/hour) SPEED 53.00 68.00 59.57 59.50

LWm Average lane width on major 
road (m)

LWm 3.30 4.00 3.58 3.60

LWn Average lane width on minor 
road (m)

LWn 3.40 4.00 3.69 3.60

LNm Number of lanes on major road 
(lanes/traffic direction)

LNm 2 5 2.6 2.0

LNn Number of lanes on minor road 
(lanes/traffic direction)

LNn 1 3 1.6 2.0

NL Number of legs 2 (1) 3-legged
(2) 4-legged

1 2 1.5 1.0

SHDW Average shoulder width on 
major and minor roads

3 (1) SHDW = 0.00 m
(2) 0.00 < SHDW 

< 1.00 m
(3) SHDW > 1.00 m

1 3 1.7 2.0

LU Land-use category 2 (1) Noncommercial 
area

(2) Commercial 
area

1 2 1.7 2.0

MODEL 2

Qmajor Traffic flow on major road 
(vehicles/day)

Qmajor 20,043 72,428 43,617 42,258

Qmajor Traffic flow on minor road 
(vehicles/day)

Qminor 4,504 24,900 14,459 14,293

SHD Average shoulder width on 
major and minor roads (m)

SHD 0 1.3 0.5 0.9

Key: km = kilometers; m = meters; mpd = motorcycles per day; nmpd = nonmotorcycles per day.
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The final model developed in this analysis was:

(6)

Tables 2, 3, and 4 show that the variables have a
consistent effect on motorcycle crashes. This is indi-
cated by the sign (plus or minus) of the parameter

estimates for each of the corresponding variables
that are identical.

DISCUSSION

Model 1

The final Model 1 reveals that the number of
motorcycle crashes per year is proportional to the

TABLE 2  Univariate Analysis of Model 1

Explanatory 
variables Estimates

Standard 
errors

Degrees of 
freedom

Scaled 
deviance t-statistics

Sig. at 
0.05

Constant –9.2260 0.3480 49 49 –26.55 Yes
QNMm 0.9835 0.0334 29.42 Yes

Constant –1.2210 0.2160 49 49 –5.64 Yes

QNMn 0.2490 0.0243 10.26 Yes

Constant –0.7520 0.2580 49 49 –2.92 Yes
QMm 0.1943 0.0288 6.76 Yes

Constant –2.0910 0.3790 49 49 –5.51 Yes
QMn 0.3877 0.0478 8.12 Yes

Constant 0.8636 0.0748 49 49 11.54 Yes

QPED 0.0357 0.0237 1.51 No

Constant –3.6760 0.1090 49 49 –33.63 Yes
SPEED 0.0771 0.0018 42.83 Yes

Constant 3.2900 1.1800 49 49 2.79 Yes
LWm –0.6510 0.3290 –1.98 Yes

Constant 3.0200 1.0500 49 49 2.88 Yes

LWn –0.5800 0.2950 –1.97 Yes

Constant 1.1960 0.1260 49 49 9.47 Yes
LNm –0.1023 0.0519 –1.97 Yes

Constant 1.0780 0.1200 49 49 8.97 Yes
LNn –0.0744 0.0697 –1.07 No

Constant 1.0020 0.1280 49 49 7.83 Yes

NL (2) –0.0294 0.0826 –0.36 No

Constant 1.0578 0.0524 48 48 20.17 Yes

SHDW (2) –0.1812 0.0856 –2.12 Yes

SHDW (3) –0.2750 0.1190 –2.32 Yes

Constant 0.8316 0.0752 49 49 11.05 Yes
LU (2) 0.1774 0.0885 2.01 Yes

Note: Estimates for factors (2) and (3) are the differences compared with the reference level (1).

MCA 0.0004693 Qmajor0.5948 Qminor0.2411•= •

EXP 0.0589 SHD–  
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traffic flow entering the intersection. The estimates
of QNMm, QNMn, QMm, and QMn indicate that
an increase in nonmotorcycle and motorcycle flows
on major and minor roads is associated with more
motorcycle crashes (figure 5). For instance, dou-
bling nonmotorcycle flow on a major road
(QNMm) is expected to cause an increase of about
25% in motorcycle crashes. If all traffic entering the
intersection is doubled, an increase of about 45% in
motorcycle crashes would result. We also found that
nonmotorcycle flows on major roads (QNMm) was
the most important variable for the probability of

motorcycle crashes. The results support the findings
of earlier studies on traffic crashes at intersections
(Summersgill 1991; Mountain et al. 1998; Rod-
riguez and Sayed 1999; Vogt and Bared 1998; Vogt
1999; Bauer and Harwood 2000). 

The SPEED estimate shows that an increase in
approach speed is associated with a rise in motor-
cycle crashes. For instance, if the approach speed
goes up by 10 kilometers per hour, 30% more
motorcycle crashes can be expected. Our findings
support earlier studies on the relationship of traffic
speed to crashes (Griebe and Nielsen 1996; Vogt
and Bared 1998; Bauer and Harwood 2000; Lynam
et al. 2001; USDOT 2002; Taylor et al. 2002).

The estimates of LWm and LWn imply that a
wider lane is associated with a reduction in motor-
cycle crashes. For instance, widening the lane on
major and minor roads by 0.50 meters is expected
to reduce motorcycle crashes by some 3.6% and
3.5%, respectively. This result is in line with the
finding reported in an earlier study on traffic crashes
at intersections (Bauer and Harwood 2000).

Meanwhile, the estimate of LNm indicates that
an increase in the number of lanes on a major road is
associated with a reduction in motorcycle crashes.
However, the effect of this variable is marginal
(1.7%). The result seems to be in line with the find-
ing reported by Bauer and Harwood (2000). This
reduction was probably the result of the presence of

TABLE 3  Multivariate Analysis of Model 1

Explanatory 
variables Estimates

Standard
errors

Degrees of 
freedom

Scaled 
deviance t-statistics

Sig. at
0.05

Mean 
deviance

Constant –5.8700 0.4580 50 15,022.0 –12.81 Yes 300.4

QNMm 0.3241 0.0297 49 748.6 10.91 Yes 15.3

QNMn 0.0835 0.0183 48 483.6 4.57 Yes 10.1

QMm 0.0683 0.0188 47 241.5 3.64 Yes 5.1

QMn 0.1296 0.0230 46 142.8 5.63 Yes 3.1

SPEED 0.0260 0.0033 45 75.1 7.79 Yes 1.7

LWm –0.0727 0.0320 44 70.7 –2.27 Yes 1.6

LWn –0.0718 0.0305 43 69.1 –2.35 Yes 1.6

LNm –0.0176 0.0044 42 55.0 –3.97 Yes 1.3

SHDW (2) –0.0176 0.0069 40 47.5 –2.55 Yes 1.2

SHDW (3) –0.0255 0.0100 40 47.5 –2.56 Yes 1.2

LU (2) 0.0159 0.0055 39 39.0 2.91 Yes 1.0

Note: Estimates for factors (2) and (3) are the differences compared with the reference level (1).

FIGURE 4  Actual and Modeled Motorcycle Crashes: 
1997–2000 (Model 1)
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an exclusive right turn lane on the major road. Of
the 51 intersections we studied, 48 had an exclusive
right turn lane on each major road approach. The
presence of such lanes may reduce rear-end crashes
for motorcycles. It should be mentioned that an
exclusive turning lane was counted as a lane in our
measurements of LNm. Earlier studies confirmed the
benefit provided by such lanes for crash reduction at
intersections (Kulmala 1992; Vogt 1999; Bauer and
Harwood 2000) and at links (Tarko et al. 1999).
However, for a better explanation, a separate model
should be developed to explain the effects of an
exclusive left, exclusive right, and short turning lanes
on all types of motorcycle crashes at intersections.

The SHDW estimates indicate that a wider paved
shoulder is associated with fewer motorcycle
crashes. The result seems to be in line with the find-
ing reported by Bauer and Harwood (2000). For
instance, 25% more motorcycle crashes occur at
intersections without a shoulder than at intersec-
tions with a shoulder wider than 1.0 meters. When
we compare motorcycle crashes at intersections
without a shoulder with crashes where the shoulder

width is between 0.0 meters and ≤1.0 meters, the
difference is smaller, only 1.7% more crashes occur
when there is no shoulder. This finding seems rea-
sonable because motorcyclists use the available
shoulder width when approaching an intersection,
and the rates of rear-end and sideswipe crash types
between motorcycles on the shoulder and other
vehicles on the adjacent lane should be lower if the
shoulder is wider. This situation is common in coun-
tries like Malaysia with a high population of motor-
cycles. However, a better explanation can be
provided, and a separate model was developed to
explain the effect of shoulder width on all types of
motorcycle crashes at intersections. 

The estimate of LU shows that signalized inter-
sections located within commercial areas are associ-
ated with increased motorcycle crashes. The result
confirms the findings of an earlier study on traffic
crashes at four-legged signalized intersections (Wang
and Ieda 1997). However, the difference in the esti-
mation of motorcycle crashes between commercial
and noncommercial areas is marginal (1.6%). As
explained earlier, this study includes only those
intersections located within commercial areas hav-
ing no access road to the adjacent land use within
50 meters of the intersection stop lines. As such, the
number of conflicts between vehicles entering or
leaving the intersection and vehicles turning into or
out of the adjacent land use may be reduced, hence
fewer crashes. The effect of access control or the
number of accesses on traffic crashes has also been
reported in earlier studies (Vogt 1999; Bauer and
Harwood 2000).

Model 2

Model 2 results verify the contribution of traffic flow,
both on major roads (Qmajor) and minor roads
(Qminor), to motorcycle crashes. The estimates of
the variables show that an increase in traffic flow on

TABLE 4  Multivariate Analysis of Model 2

Explanatory 
variables Estimates

Standard 
errors

Degrees of 
freedom

Scaled 
deviance t-statistics

Sig. at
0.05

Mean 
deviance

Constant –7.6640 0.4650 50 854.8 –16.49 Yes 17.1

Qmajor 0.5948 0.0707 49 65.4 8.41 Yes 1.3

Qminor 0.2411 0.0640 48 52.1 3.77 Yes 1.1

SHD –0.0589 0.0261 47 47.0 –2.25 Yes 1.0

FIGURE 5  Effects of Traffic Flow on Motorcycle 
Crashes: Model 1

0 20 40 60 80 100 120
0

10

20

30

40

50

QNMm

QNMn
QMm

QMn

Total flow

Motorcycle crash increment (%)

Traffic flow increment (%)



HARNEN, RADIN UMAR, WONG & WAN HASHIM 37

major and minor roads is associated with a greater
number of motorcycle crashes, and an increase in
shoulder width (SHD) is associated with a reduction
in these crashes. For example, widening the shoulder
by 1.0 meters is expected to reduce the number of
motorcycle crashes by about 6%. In this model, the
effect of shoulder width on motorcycle crashes can be
directly quantified when the width is changed, and
this is one of the main differences between Model 1
and Model 2.

As described earlier, design curves relating major-
and minor-road flows for different shoulder widths
can be developed based on Model 2 (figure 6). As
discussed, wider shoulders at intersections offer
higher levels of safety to motorcyclists approaching
the junction. Based on the relationships among the
variables developed based on Models 1 and 2,
future work includes carrying out an indepth analy-
sis of whether intersection treatments that have non-
exclusive motorcycle lane facilities could reduce
motorcycle crashes.

CONCLUSIONS

This paper presents motorcycle crash prediction
models for signalized intersections on urban roads
in Malaysia. The models reveal that traffic flow,
approach speed, intersection geometry, and land use
are significant factors in explaining motorcycle
crashes at signalized intersections. The number of
crashes is proportional to the level of traffic entering
the intersections. An increase in motorcycle crashes
is associated with a larger total vehicle flow on
major and minor roads. Nonmotorcycle flows on
major roads had the most effect on the likelihood of
motorcycle crashes. 

An increase in approach speed is associated with
more motorcycle crashes, while wider lanes, a
greater number of lanes, and wider shoulders bring
a reduction in these crashes. Furthermore, more
motorcycle crashes occur at signalized intersections
located within commercial areas than at intersec-
tions located outside of commercial areas.

The models developed in this study present
information to aid traffic engineers in deciding the
appropriate level of intervention for intersection
treatment with respect to motorcycle crashes.
Using our models, design parameters for intersec-

tions may be changed to achieve appropriate safety
levels. Decisions on whether special treatment to
minimize motorcycle conflicts is needed at intersec-
tions can be objectively carried out based on the
models. However, the models might only be valid
for a typical traffic environment in developing
countries like Malaysia, where the proportion of
motorcycles is 20% to 40% of all vehicles at sig-
nalized intersections.

For design options, further investigation of the
role of parameters of traffic flow by time periods
(hourly, peak hour, peak periods) and categorizing
the models by time period(s) is suggested, and the
need for further categorization of model structure
by different intersection geometric configurations
(e.g., intersections with and without exclusive
motorcycle lanes) is also advised.
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FIGURE 6  Relationship of Major- and Minor-Road 
Flows with Differing Shoulder Widths 
(based on Model 2)
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Effects of Extreme Values on Price Indexes: 

The Case of the Air Travel Price Index

ABSTRACT

This paper examines the effects of extreme price
values on the Fisher and Törnqvist index formulas.
Using a simple model, we first consider the impact
of outliers on the unweighted arithmetic, harmonic,
and geometric means of a collection of values. Then,
under the same model, we investigate the effect of a
single extremely high or low price on the price index
formulas (weighted means). Further investigation
using Taylor series approximations leads to some
general conclusions regarding the relative robust-
ness of the Fisher and Törnqvist indexes. These are
illustrated with empirical results based on airfare
data from the U.S. Department of Transportation’s
Origin and Destination Survey.

INTRODUCTION

Many economists have come to favor the “superla-
tive” Fisher and Törnqvist price indexes over the
more traditional Laspeyres formula (see, e.g., Diewert
1976; Aizcorbe and Jackman 1993). The U.S. Bureau
of Labor Statistics recently began publishing a new
price index series targeting the Törnqvist formula.
The choice between the Fisher and Törnqvist formu-
las may be based on a variety of factors, including
other price index formulas currently in use by the

KEYWORDS: Price index, extreme value, Taylor series.
JEL Categories: C43, C13, E31.
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organization producing the index and the relative
sensitivity of the two formulas to extreme values. In
this study, we compare the Fisher and Törnqvist for-
mulas with respect to the latter criterion—sensitivity
to extreme values.

Extreme-valued price ratios often occur as a result
of deep discounts or “free” promotional goods or
services. Such extreme-valued ratios can be either
large or small, depending on whether the discounted
price appears in the numerator or denominator of
the price ratio. Less often, extremely high prices
appear with converse effects. The Laspeyres formula
is sometimes criticized as sensitive to extreme values,
because it is based on an arithmetic mean of the
price ratios. We will see, however, that such sensi-
tivity depends on the direction of the outlying value
(high or low), as well as on the weights used in the
selected mean. 

In the next section, we consider the effect of an
extreme value on the unweighted arithmetic, har-
monic, and geometric means. The third section
contains a discussion of the corresponding effects
on the Fisher and Törnqvist index formulas under
differing assumptions regarding the correlation
between the expenditure-share weights and the
prices. This correlation is related to the elasticity of
substitution (i.e., the extent to which consumers
shift their purchases toward lower priced items
when relative prices change). 

The fourth section presents an empirical exam-
ple: the case of air travel index estimates com-
puted using data from the Passenger Origin and
Destination Survey collected by the Bureau of
Transportation Statistics. The extreme-valued price
ratios in this application resulted from a change in
data-collection procedures and are in this sense arti-
ficial. They do, however, provide an opportunity to
compare the performances of the different index
formulas under the conditions represented by the
application. We summarize our conclusions in the
final section.

EFFECTS OF EXTREME VALUES ON 
UNWEIGHTED MEANS

The following simple model shows the effects of an
extreme value on three types of unweighted means.
Let x1, ..., xn be a collection of nonnegative values,

where  for i = 1, ..., n – 1, while  for
some factor y > 0; that is, xn is an outlier in the collec-
tion. We define the unweighted arithmetic, harmonic,
and geometric means, respectively, as follows:
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and

.
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.
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, , and
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We first consider the rate at which the various
means approach  as n approaches infinity. For
fixed y, we have

as ∞. For the harmonic mean also,
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as ∞. Thus, as n becomes large, all three of the
means approach  at approximately the same rate.
Their behavior in the presence of an outlier differs,
however, under various assumptions about the
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outlier itself. If we suppose that n is fixed, we may
follow derivations similar to those above to arrive
at the results, which are summarized in table 1.

The results shown in table 1 for fG(y) may lead
us to conclude that price index formulas based on
the geometric mean are, overall, the most robust
formulas available; at the very least, they represent
a sensible choice when both high and low outliers are
expected to occur. By contrast, while A is robust to
low outliers, it is sensitive to high outliers; similarly,
H is robust to high outliers but sensitive to low ones.
In most applications, however, price indexes are not
computed as unweighted means. In the next section,
we examine the effect of expenditure-share weights
on the Laspeyres, Paasche, Fisher, and Törnqvist
indexes, with special emphasis on the latter two.

EFFECTS OF EXTREME VALUES ON 
PRICE INDEXES

Price Index Formulas

We begin by presenting several population index for-
mulas. The Laspeyres index measuring price change
between time periods 1 and 2 is defined as

,

where pjt denotes the price of item j at time
, qjt denotes the quantity of item j pur-

chased at time t,
, 

and N denotes the number of items in the target
population. The weight wjt is the expenditure share
for item j in period t; the price ratios pj2/pj1 are often
called price relatives. Clearly L is the arithmetic
mean of the price relatives with weights representing

first period expenditure shares. The Paasche index is
a harmonic mean of the price ratios, with second
period expenditure-share weights:

.

The Fisher index is simply defined as ,
while the Törnqvist is a geometric mean of the price
ratios with weights representing the averages of the
period 1 and period 2 expenditure shares, shown as

,

where wj,1,2 = (wj1 + wj2) /2.

Extreme Values and the Elasticity
of Substitution

To examine the effects of an outlier on the indexes
described above, suppose we have a collection of n
items priced in time periods 1 and 2. Suppose further
that for j = 1, ..., n we have pj1 = qj1 = 1 and that for
j = 1, ..., n – 1 we also have pj2 = 1, while pn2 = y
(i.e., we assume for simplicity that the  above is
1.) For , let xjt = pjtqjt, the expenditure
level for item j in period t. We wish to allow the
quantity of an item purchased to vary in response
to price change and an assumed elasticity level.
When pj2 = pj1, we assume that qj2 = qj1. Otherwise,
let

where , and  is assumed constant. Then

.
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We define the elasticity  in this way, because 
provides a convenient means of examining the effects
of extreme values under conditions of high and low
elasticity, defined relatively. Note that higher values
of  indicate less impact of price change (represented
by the price ratios) on second period item-level
expenditure levels.

For j = 1, ..., n – 1, we have qj2 = qj1 = 1; and
.

The resulting first and second period expenditure-
share weights are as follows:

;

;

and
.

The “average weights” used in the Törnqvist index
are

,

and

.

Note that when  is small (low or zero elasticity)
and y is large,

, (1)

so the Laspeyres index gives less weight to high out-
liers than does the Törnqvist index. Similarly, when

 and y are both small,

, (2)

indicating that the Paasche index gives less weight
to low outliers than the Törnqvist. Under conditions
of low elasticity, we therefore observe the following
phenomena: although the Laspeyres index, based on
the arithmetic mean, is sensitive to high outliers, it
assigns them weights that are low relative to the
Törnqvist weights, while the Paasche index, a har-
monic mean, assigns lower weights to low outliers.
The weights in the Laspeyres and Paasche indexes
can therefore be expected to compensate, at least
partially, for the sensitivity of the arithmetic and har-
monic means to high and low outliers, respectively. 

Under this simple model, the values of the
Laspeyres, Paasche, Fisher, and Törnqvist indexes
are as follows:

;

;

;

and

.

Both the Fisher and Törnqvist indexes are known
as superlative indexes, because economic theory
suggests that they approximate a true cost of living
index under relatively weak assumptions regarding
economic conditions (Diewert 1987). (In the appli-
cation considered in the next section, these indexes
should be viewed as cost of flying indexes rather
than as cost of living indexes.) We, therefore, focus
on the relative robustness of F (n, y, ) and T (n, y,

) under the assumptions  and . The
value  indicates that consumers shift their
purchases toward items (or item categories) whose
relative prices have decreased between periods 1 and
2, while  close to zero represents the case of little or
no change in buying behavior in response to price
change. 

First consider the case , where a value of 
represents the assumption that consumers alter the
quantities of the items they purchase so as to main-
tain the same level of expenditure on each item—a
situation corresponding to a fairly high level of elas-
ticity. In this case, we have, for fixed n and large y,

, (3)

while

. (4)

So, for reasonably large n, T is more robust than F
in the presence of high outliers. For the case of low
outliers, we have
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(5)

and

(6)

for fixed n as y approaches 0. Under the simple
model, we may therefore conclude that, with regard
to robustness, conditions of high elasticity favor the
Törnqvist index over the Fisher.

With , we have

,

and

.

Note that F (n, y, 0) = L (n, y, 0) = P (n, y, 0). For
fixed n and large y,

, (7)

while

. (8)

As a rough rule of thumb, the above approxi-
mations suggest that T is likely to outperform F
whenever outliers are as large as n2. The relative
robustness of T and F thus depends on the relative
values of y and n, which may, in turn, depend on the
aggregation level being considered. Equations (4)
and (8) also indicate that, for large values of n, T is
much more robust to high outliers under high elas-
ticity than it is under low elasticity. For low outliers,
however, the elasticity assumption has less impact
on T. With n fixed and y small, we have

, (9)

and

, (10)

revealing that, under conditions of low elasticity, T
is more sensitive to low outliers than F. Equations
(5), (6), (9), and (10) suggest that T is somewhat

more robust to low outliers for  than for
, while F is much more robust.

The above results lead us to conclude that, under
conditions of low elasticity, the Fisher index may
often be more robust to outliers than the Törnqvist:
the Fisher is more robust to low outliers and, when
n is sufficiently large relative to any price ratios in
the dataset, the Fisher is also more robust to high
outliers. Conditions of higher elasticity (  close to
1) render both indexes more robust to extremely
high values. Under conditions of high elasticity, the
Törnqvist is preferable to the Fisher, because it is
less sensitive to both high and low outliers.

The numerical examples shown in appendix A
illustrate these conclusions. Tables A1 and A2 give
values of the Fisher and Törnqvist indexes under
the single outlier scenario described above. (Note
that these are not random values produced by a
Monte Carlo simulation but simply the values of
the functions F (n, y, ) and T (n, y, ) for the given
parameters.) Table A1 gives index values under the
assumption that  (high elasticity). Under this
assumption, the Törnqvist is clearly more robust
than the Fisher to both high and low outliers. 

Table A2 shows values of the indexes under the
assumption that . The bold numbers in this
table highlight points at which y becomes large
enough, relative to n, to render the Törnqvist index
better than the Fisher for approximating the mean

 in the presence of a high outlier. As expected,
the turning points occur as y approaches n2. The
examples in table A2 also illustrate that, under low
elasticity, both indexes are more sensitive to high
outliers and less sensitive to low outliers than they
are under high elasticity.

Taylor Series Results

The single outlier model employed in the previous
subsections does not, of course, account for the data
complexity often encountered in practical applica-
tions. Here, we look beyond the single outlier model
to examine Taylor series expansions that shed fur-
ther light on the relative robustness of the Fisher and
Törnqvist indexes under the general assumption of
low elasticity. Following and expanding on the
development of Lent and Dorfman (2004a), we
assume that the price indexes are computed from a
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collection of expenditure share weights and sub-
indexes Ig, which here take the place of the price
ratios pj2/pj1 in the previous subsection. Each  is
an aggregate of the ratios pj2/pj1 for all items j in a
particular item category g. In practice, the standard
formulas are often applied in this two-step fashion.
The categories into which we divide the items may
be defined according to item characteristics, geo-
graphic area of purchase, or both.

We begin by defining some notation. For
 and for each item category g, let 

,

and let

,  ,  

and 

.

Next, with wg defined as the Törnqvist weights, 

,

let

,  ,

and

.

We expand each of the superlative indexes about
the point at which all of the sub-indexes Ig equal the
mean . The relevant partial derivatives are given in
appendix B. From the general form of the third-
order approximation given by Lent and Dorfman
(2004a) for a geometric mean, we have the following
approximation of the Törnqvist index:

. (11)

The second-order approximation for the Fisher
index is

(12)

Thus, to the second order, we have

. (13)

Consider the relative values of wg1 and wg2 in the
presence of high outliers among the Ig and high cor-
relation between the Ig and the wg2 (the case of low
elasticity). Under these conditions, we are likely to
have wg2 > wg1 for large values of  and thus
TI – FI > 0. Similarly, in the presence of low outliers,
we are likely to have wg2 < wg1 for large values of

, resulting in negative values of TI – FI.
Thus, the approximation shown in equation (13)
indicates that, under conditions of low elasticity, the
Fisher index may be more robust than the Törnqvist
to both high and low outliers.

AN EMPIRICAL EXAMPLE

For the air travel price index series, the apparent
elasticity of substitution is low—in some cases, even
negative. The series, therefore, exemplify only the
behavior of the different indexes under conditions of
low elasticity (  close to 0). Note that the elasticity
reflected in the data, rather than the actual elasticity,
is the quantity that affects the performance of the
indexes; Dorfman et al. (1999) showed that the elas-
ticity reflected in sample survey data need not always
equal the true population elasticity. 

The air travel price index series shown in figures
1 through 6 are based on data from the Bureau of
Transportation Statistics’ quarterly Origin and Des-
tination (O&D) Survey. The sample for the O&D
Survey comprises about 10% of all passenger itiner-
aries having some U.S. component (i.e., itineraries
that include at least one flight arriving at or depart-
ing from a U.S. airport) and includes about 6 to 7
million itineraries per quarter. Data items collected
include trip route, class of service (e.g., coach, first
class), and transaction fare including taxes. Note
that the scales differ across figures, so comparisons
across figures are distorted in some cases.

When goods and services are sampled for the
purpose of estimating a price index, the sample
items generally remain in the sample over an
extended time period (e.g., two years) unless they
are taken off the market by the retailer. The stable
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sample allows comparison of prices across time for
identical items. Ratios of prices in different time
periods for individual items are the building blocks
of the traditional price index estimators. 

In the O&D Survey, however, the sampling is
performed independently for each reference quarter.
Since the itineraries selected in a given quarter may
not match those selected for a previous or subsequent
quarter, we developed and tested a two-stage process
for matching categories of itineraries across quarters
and comparing average prices within categories
across time. The ratio of average prices for different
time periods is called a unit value index. These sub-
indexes are then aggregated by the Fisher, Törnqvist,
and other index formulas. The index series are
based only on data from sample itineraries flown on
domestic carriers and are chained quarterly.1 Lent
and Dorfman (2004b) provide a more detailed
description of the index estimation methodology.

The figures show the Laspeyres, Paasche, Fisher,
and Törnqvist index series for various classes of
service and for all classes combined. Note that, in all
of the figures, the Paasche series runs either slightly
below the Laspeyres series or even (for business
class service) above the Laspeyres, indicating low or
negative elasticity of substitution. Lent and Dorfman
(2004a) describe a method of estimating the elasticity
of substitution; elasticity estimates computed by their
method, measuring elasticity of substitution between
unit value categories as described above, run close
to 0 for these data. Although air travel passengers
readily substitute one carrier for another in response
to fare changes, little substitution across trip origin/
destination pairs occurs. Since origin/destination
pairs far outnumber carriers, this substitution behav-
ior leads to low overall estimates of elasticity of
substitution between the unit value categories.

In examining figures 1 through 6, it is important
to note that the Class of Service variable in the
O&D Survey was redefined and standardized in
1997–98. (Formerly, air carriers had used a variety

of service classifications in reporting this informa-
tion, so the variable values had to be recoded by
the Bureau of Transportation Statistics.) We there-
fore expect some unusual data values to affect the
index series during this period; indeed, many of the
series display a visible break between the fourth
quarter of 1997 and the first quarter of 1998.
These breaks may be exacerbated, because a lower
percentage of the O&D Survey observations were
“matched” across time during 1997–98 (see Lent
and Dorfman 2004b for a description of the across-
time matching method), resulting in lower than
usual effective sample sizes.

Figures 1 and 2 show the series for all classes of
service combined and for restricted coach class (by
far the largest class), respectively. The series in figure
2 behave in typical fashion: the Laspeyres series runs
just above the others, displaying a slight upward
drift, while the Paasche shows a similar downward
drift, and the two superlative series run between
them, closely tracking each other. This type of
behavior results from the large number of observa-
tions and because the 1997–98 break has relatively
little impact on these series. Figure 1 is similar to
figure 2, except for the noticeably larger effect of the
1997–98 change, which lifts the Törnqvist series
slightly above the others. Recall that, under condi-
tions of low elasticity, the Törnqvist index is often
more sensitive to outliers than the Fisher. 

Index series for other classes of service (categories
comprising fewer observations) are shown in fig-
ures 3 through 6. For the unrestricted first and
restricted first class indexes (figures 3 and 4), the
Laspeyres series runs very slightly above the
Paasche, indicating low but positive elasticity. For
the unrestricted first class series, the 1997–98 break
sends the Törnqvist above the other series, while
the Törnqvist for restricted first class is “bumped
down” and runs well below the others for 1998
and subsequent years. In both cases, the Törnqvist
continues to roughly parallel the Fisher after the
break, indicating that unusual data values generated
the level shifts. Note also that the Törnqvist’s
upward shift for unrestricted first class is noticeably
less severe than its downward shift for restricted
first class, perhaps due to its greater robustness to
high outliers than to low ones.     

1Price index chaining is done by estimating long-term
price changes as products of shorter term changes (links).
Quarterly chaining can lead to “chain drift,” as seen in
the Laspeyres and Paasche series in the figures in this sec-
tion. For more information on chain drift in the airfare
indexes, see Lent 2003.
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The business class index series (figures 5 and 6)
display the relatively rare phenomenon of negative
elasticity. The Paasche series runs above the
Laspeyres, indicating that consumers are shifting
their purchases toward higher priced services as
relative prices change. It is important to note that
sample survey data may not always reflect true pop-
ulation elasticity; in this case, the class-of-service
categories are coarsely defined, and many different
types of restrictions may apply to tickets in the
restricted categories. (Restrictions may include, for
example, a requirement of advance ticket purchase
or, in the case of roundtrip itineraries, a Friday or

Saturday night stay at the destination.) Elasticity
estimates based on these data reflect substitution
between these categories but not within them (for
the same route and carrier) and may therefore suffer
a downward bias. 

On the other hand, since business class service is
typically paid for by a third party (i.e., the passen-
ger’s employer), very low elasticity is expected. Some
business class passengers may even choose higher
priced tickets assuming that “you get what you pay
for,” and such behavior could also explain the nega-
tive elasticity indicated. Under negative elasticity,
quantities purchased are positively correlated with

FIGURE 1  All Classes of Service: Quarterly Chained Preliminary Series

FIGURE 2  Restricted Coach Class: Quarterly Chained Preliminary Series
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price change, and this correlation may cause expen-
diture shares to increase dramatically when prices
increase. The Törnqvist index, whose weights are
average expenditure shares, therefore assigns large
weights to some high price ratios. Apart from the
negative elasticity, the movements of the business
class series appear similar to that of the first class
series, that is, the Törnqvist index is shifted up or
down during the 1997–98 period, while the other
series are less affected by the unusual values. Table
A3 in appendix A shows unweighted percentiles of
the distributions of the unit value indexes for the
first class and business class categories over the

crucial period. The outliers are clearly sufficient in
number and severity to impact the tails of the sample
distributions.

CONCLUSIONS

Practitioners may often consider robustness to out-
liers an important criterion in selecting a price
index formula, especially for item categories such
as airfares, in which extreme prices may regularly
result from frequent flyer awards and other price
discriminatory discounts. Although price index for-
mulas based on different types of means inherit the

FIGURE 3  Unrestricted First Class: Quarterly Chained Preliminary Series

FIGURE 4  Restricted First Class: Quarterly Chained Preliminary Series
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relative robustness of these means, the weights
applied in price index calculation also play a crucial
role. This paper shows that, under conditions of
low elasticity of substitution, the high correlation
between the weights and the price ratios may offset
the sensitivity of the Laspeyres and Paasche indexes,
making the Fisher a more attractive option than the
Törnqvist. The choice between index formulas is
therefore more complex than the mere selection of
an arithmetic, harmonic, or geometric mean. It
requires information on the elasticity of substitution
reflected in the data as well as an estimate of the
magnitude of outliers (high or low) that can be
expected.
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TABLE A1  Values of Fisher and Törnqvist Indexes with a Single Outlier
 = 1,  = 1

Outlier
y

n = 5 n = 10 n = 15

F T F T F T

0.010 0.18 0.40 0.27 0.63 0.34 0.74

0.025 0.27 0.48 0.41 0.69 0.49 0.78

0.050 0.37 0.55 0.53 0.74 0.62 0.82

0.100 0.48 0.63 0.66 0.79 0.74 0.86

10 1.65 1.58 1.37 1.26 1.26 1.26

20 2.18 1.82 1.70 1.35 1.50 1.35

50 3.28 2.19 2.43 1.48 2.06 1.48

80 4.09 2.40 2.98 1.55 2.50 1.55

90 4.33 2.46 3.14 1.57 2.63 1.57

100 4.56 2.51 3.30 1.58 2.76 1.58

TABLE A2  Values of Fisher and Törnqvist Indexes with a Single Outlier
 = 0,  = 1

Outlier
y

n = 5 n = 10 n = 15

F
0
T F T F T

0.010 0.80 0.63 0.90 0.79 0.93 0.86

0.025 0.81 0.68 0.90 0.83 0.94 0.88

0.050 0.81 0.73 0.91 0.85 0.94 0.90

0.100 0.82 0.77 0.91 0.88 0.94 0.92

10 2.80 2.87 1.90 2.06 1.60 1.74

20 4.80 4.70 2.90 3.26 2.27 2.67

50 10.80 9.05 5.90 6.38 4.27 5.25

80 16.80 12.49 8.90 8.92 6.27 7.47

90 18.80 13.52 9.90 9.68 6.93 8.14

100 20.80 14.51 10.90 10.41 7.60 8.79

Note: Bold indicates the points at which y becomes large enough, relative to n, to render the Törnqvist index 

better than the Fisher for approximating the mean  = 1 in the presence of a high outlier.

τ µ

τ µ

µ
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APPENDIX B

Partial Derivatives

To derive equations (11) and (12), the function FI

is expanded around the point .
The general formula for the third-order Taylor
expansion is

.

For a derivation of the third-order expansion of TI

(equation (11)), see Lent and Dorfman (2004a). The
first- and second-order partial derivatives of FI

evaluated at  (used in the derivation of equa-
tion (12)) are as follows:

 

TABLE A3  Unweighted Percentiles of the Unit Value Sub-index Distributions
for the Airfare Index Application

1997 1998

Quarter 3 Quarter 4 Quarter 1 Quarter 2

Unrestricted business class

No. of sub-indexes 2,944 1,739 1,800 2,985

50th percentile 0.999 1.004 1.000 1.008

90th percentile 1.286 1.292 1.376 1.565

95th percentile 1.636 1.765 1.970 3.671

99th percentile 50.464 189.000 76,283.000 10,421.000

Unrestricted first class

No. of sub-indexes 8,552 7,313 2,888 5,636

50th percentile 0.992 1.051 1.000 1.000

90th percentile 1.231 1.462 3.947 1.387

95th percentile 1.696 2.222 7,500.000 2.644

99th percentile 14,850.000 9,700.000 148,400.000 52,700.000

Restricted business class

No. of sub-indexes 2,617 2,600 2,011 1,898

50th percentile 1.000 1.005 0.982 1.000

10th percentile 0.588 0.589 0.102 0.383

5th percentile 0.245 0.297 0.009 0.100

1st percentile 0.000 0.003 0.000 0.000

Restricted first class

No. of sub-indexes 9,524 9,428 3,655 3,756

50th percentile 1.000 1.015 1.000 1.000

10th percentile 0.840 0.860 0.270 0.646

5th percentile 0.639 0.671 0.000 0.339

1st percentile 0.000 0.000 0.000 0.000
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ABSTRACT

The estimation and forecasting of travel times has
become an increasingly important topic as Advanced
Traveler Information Systems (ATIS) have moved
from conceptualization to deployment. This paper
focuses on an important, but often neglected, com-
ponent of ATIS—the estimation of link travel time
correlation. Natural cubic splines are used to model
the mean link travel time. Subsequently, a Bayesian-
based methodology is developed for estimating the
posterior distribution of the correlation of travel
times between links along a corridor. The approach
is illustrated on a corridor in Houston, Texas, that
is instrumented with an Automatic Vehicle Identifi-
cation system. 

INTRODUCTION

Estimating and forecasting link travel times has
become an increasingly important topic as Advanced
Traveler Information Systems have moved from
conceptualization to deployment. Sen et al. (1999)
proposed estimating the correlation of travel times
between various links of a corridor as an open prob-
lem for future research. In this paper, we assume
that instrumented vehicles are detected at discrete
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points in the traffic network, and links are defined as
the length of roadway between adjacent detection
points. The set of contiguous links forms a corridor.
The link travel time for a given instrumented vehicle
is calculated based on the times at which each of
these vehicles passes a detection point. 

Using these observations, link summary statis-
tics, such as travel time mean and variance as a
function of time of day, can be obtained. The travel
time statistics for the corridor may be obtained
directly or be based on the sum of the individual
link travel times. In the latter case, a covariance
matrix often is required, because link travel times
are rarely independent. 

This paper focuses on estimating the correlation
of link travel times using Bayesian statistical infer-
ence. While the problem is motivated and demon-
strated using vehicles instrumented with Automatic
Vehicle Identification (AVI) tags, the methodologies
developed can be generalized to any probe vehicle
technology. In addition, while the AVI links have
fixed lengths, the procedure can be applied to links
of any length. 

The mean link travel time is a key input for
estimating the link-to-link travel time correlation
coefficient. A continuous estimate of the mean link
travel time as a function of the time of day is an
important input to this process. In this paper, we use
a natural cubic splines (NCS) approach to estimate
the mean travel time as a function of time. The dif-
ference between each individual vehicle travel time
and the corresponding estimated mean travel time is
used, along with standard correlation equations, to
obtain a point estimate of the correlation coeffi-
cient. A technique for calculating the variability of
the estimate is also developed in order to make
inferences about the statistical significance of this
correlation coefficient. 

Traditionally, variability is estimated using
asymptotic theory. However, for the travel time
estimation problem, this approach is complicated
because of the nonparametric nature of the estimator
and the covariance between links. Consequently,
we adopted a Bayesian approach, which had a
number of benefits in terms of interpretation and
ease of use. An added benefit to this approach is
that the actual distribution of the parameter is

provided, which allows a much broader range of
statistical information, and consequently better
results, to be obtained. Further, we hypothesized
that the distribution of the correlation coefficient
could be used by traffic operations staff to help
characterize the corridor in terms of the consis-
tency of individual vehicle travel times relative to
the mean travel time. As such, it may be considered
a performance metric for traffic operations.

In this paper, an 11.1 kilometer (km) (7.0 mile) test
bed located on U.S. 290 in Houston, Texas, was used
to demonstrate the procedure. AVI data were obtained
from the morning peak traffic period. We chose this
time period because U.S. 290 experiences the highest
levels of congestion in the morning than at any other
time, and because estimating and forecasting travel
times during congested periods are considerably more
complex than during noncongested periods. 

This paper is divided into four sections. First we
present a traditional approach to correlation coeffi-
cient estimation with a special focus on the inherent
complexities and difficulties. Next we provide
detailed discussion of the proposed Bayesian
approach. The third section demonstrates the meth-
odology using AVI data observed from the test bed
and compares the Bayes approach to a more tradi-
tional approach for estimating correlation. We
found that the estimates and their intervals can be
calculated using the proposed approach. Then, the
estimated correlation coefficients are examined
from the viewpoint of traffic flow theory. The last
section gives concluding remarks.

We hypothesized that the positive correlation
indicates the links can be categorized as consistent
in that drivers who wish to drive faster (or slower)
than the mean travel time can do so. Conversely, if
the correlation between links is negative, then the
links can be categorized as inconsistent. In this situ-
ation, drivers who are slower (or faster) than aver-
age on one link are more likely to be faster (or
slower) than average on the other link. Finally,
when the correlation coefficient is at or near zero,
then the system is operating between the two
extremes. Here, the drivers are unable to maintain
consistently lower or higher travel times between
links, again in relation to mean travel time, and the
link travel times may be considered independent.
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This latter case is often assumed in corridor travel
time forecasting and estimation, although the
assumption is rarely tested.

TRADITIONAL APPROACH AND 
SMOOTHING SPLINES

Over the last 10 years, most urban areas of North
America have seen extensive deployment of intel-
ligent transportation system (ITS) technologies.
ITS traffic monitoring capabilites can be catego-
rized based on whether they provide point or
space information. For instance, inductance loop
detectors provide point estimates of speed and
volume. Conversely, AVI systems provide space
mean speed estimates of instrumented vehicles. The
focus of this paper is on AVI-equipped systems.
Note that even though the focus is on AVI systems,
the procedure can be readily generalized to other
systems that provide space information such as
those that utilize global positioning satellites or cell
phone location technology.

Because of the nature of AVI systems, the speed
of any one vehicle at a given time is unknown;
instead, the travel time (or space mean speed) of
each vehicle on each link is calculated based on
the time stamps recorded at each AVI reader. The
travel time of vehicle i along link l on any given
day is defined as Yil. Because the relationship
between travel time variability and time of day may
be considered unstable, a natural log transformation
zil = ln(Yil) is used to stabilize the relationship.
Assume that gil is the expected value of zil. It is
assumed that the distribution of this transformation
has a multivariate normal (MVN) distribution as
shown below: 

(1)

where
gil is a smooth function repre-

senting the mean log travel
time for link l; and

is the variance-covariance
matrix of the log travel time
between links l and .

The normality assumption can be checked glo-
bally by inspecting the residuals. In this paper gl , the

column vector of gil’s from i = 1,…,n, will be esti-
mated using NCS, an approach that is discussed in
detail elsewhere (Green and Silverman 1995;
Eubank 1999). The fundamental calculation of an
NCS is linear in nature. For example, ,
where zl is the column vector of zil’s, gives the mean
log travel time profile for a particular day on link l,
where is the tuning parameter. The tuning param-
eter is discussed later, and details for the calculation
of  are shown in the appendix under “NCS
Algorithm.”

The test bed for this study is a three-lane section
of U.S. 290 located in Houston. It has a barrier-
separated high-occupancy vehicle (HOV) lane that
runs along the centerline of the freeway, but the data
utilized are from the non-HOV section of the free-
way. Eastbound (inbound) travel time data were
collected over a 11.1 kilometer (7.0 mile) stretch of
U.S. 290 from 4 AVI reader stations (yielding 3
links). The lengths of links were 2.5 (1.6), 4.6 (2.9),
and 4.0 (2.5) kilometers (miles), respectively. The
data were collected over 20 weekdays in May 1996
from 6:00 a.m. to 8:00 a.m.

Figure 1 and table 1 outline an example of the
above calculation for a subset of the data (i.e., 18
observations on day 1 that begin at 7 seconds and
run to 6,822 seconds). In general, a tuning parame-
ter, , that is too large produces a mean estimate

zil[ ]
i id

MVN gil ] Σ) i l,∀,[(∼

Σ σl l ′[ ], where=

[σll ′] σl
2

when l l ′==
l′

FIGURE 1  Logarithm of Travel Time for 
Link 1 v. Time of Day
Seconds from 6 a.m. on day 1
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that is too smooth and does not follow the pattern
laid out by the data. For example, it can be seen
that when  = 1x1011, the NCS is basically a
decreasing straight line and captures none of the
traffic dynamics. Conversely, a tuning parameter
that is too small yields a rough NCS. It may be seen
that when  = 8x103, the function essentially runs
through each observation point and does not pro-
vide adequate smoothing. However, for the interme-
diate value  = 3x105, there is an adequate tradeoff
between the travel time dynamics and the smooth-
ing. Therefore, it is important to identify a tuning
parameter that is smooth but appropriately follows
the dynamic trend. This can be accomplished using
visual inspection or by automatic techniques.

A popular choice for automating the selection of
the tuning parameter is using the Generalized Cross
Validation (GCV) method (Green and Silverman
1995, p. 35). In this method, the smoothing curve
for one choice of tuning parameter is calculated
without the first value. Subsequently, the average

square error is calculated using the remaining values.
This is repeated for all times during the day. A modi-
fied version of the process eliminates the need to
remove each value by using the following formula:

.

In essence, a convex function of the tuning parameter
is drawn and the choice of tuning is the minimum of
this function. The advantage of using this procedure
is that the process is automated.

Figure 2 shows the log travel time as a function of
time of day (6 a.m.–8 a.m.) for test bed links 1 and
2. For illustration purposes, a subset of the vehicles
has its log travel times highlighted with a circle
around the observation. In this particular example,
the log travel time experiences only slight changes
during this period of time: it begins relatively flat,

TABLE 1  Logarithm of Travel Time for Link 1 v. Time of Day
Seconds from 6 a.m. on day 1

Estimated mean ln (travel time)

Time of entry
t (seconds)

Observed 
ln (travel time)

 = 8x103 
(Low)

 = 3x105 
(Medium)

 = 1x1011 
(High)

7 6.15 6.15 6.12 6.03

816 5.80 5.80 5.90 5.85

1,415 5.85 5.84 5.77 5.72

1,888 5.58 5.58 5.64 5.62

2,252 5.58 5.58 5.51 5.54

2,607 5.43 5.43 5.32 5.46

3,148 4.93 4.93 4.99 5.34

3,691 4.74 4.73 4.85 5.22

4,086 4.69 4.73 4.97 5.14

4,282 5.27 5.22 5.09 5.09

4,569 5.23 5.27 5.24 5.03

4,731 5.47 5.44 5.30 5.00

4,952 5.43 5.43 5.31 4.95

5,356 5.05 5.06 5.17 4.86

5,811 5.02 5.00 4.90 4.76

6,222 4.38 4.41 4.61 4.67

6,531 4.52 4.48 4.43 4.60

6,822 4.29 4.31 4.28 4.54

α α α

α

α

α

GCV α( )
n 1– {zil gil }

2
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i 1=

n

∑
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i 1=

n

∑–
⎩ ⎭
⎨ ⎬
⎧ ⎫
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experiences an increase at around 2,000 seconds and
decreases starting at 4,000 seconds. Figure 2 also
shows three NCS where each one has a different tun-
ing parameter. For this example, a tuning parameter
of  = 1x105 was chosen based on visual inspection
and  = 0.065x105 was identified based on the

GCV process. For a particular day, the same tuning
parameter is applied to all links along the corridor. 

To illustrate the correlation between travel times
on the two links, consider the first highlighted
vehicle that begins to traverse link 1 at approxi-
mately t1 = 11 seconds. Note that this vehicle has a

FIGURE 2  Log Travel Time v. Time of Day for Links 1 and 2
Seconds from 6 a.m. on day 19
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lower than average travel time on both links 1 and
2. The second highlighted vehicle begins to
traverse link 1 at approximately t = 548 seconds,
and it can be seen that its observed link travel
times are above the mean travel time on links 1
and 2. Eight of the 12 highlighted vehicles in figure
2 show evidence of positive correlation. Notice
that this method requires that the vehicles traverse
both links, and vehicles entering after the begin-
ning of the first link or exiting before the end of
the second link are not included in the correlation
calculation. Later we employ these calculations for
three links where we include only vehicles that
traverse the entire three-link corridor. 

To quantify the above relationship, we calculated
the cross product of the residuals. More specifically
the covariance, 

 and 

 

where  as defined earlier, was obtained using the
following procedure. The mathematical details of
the procedure are in the appendix under “Classic
Estimation of Correlation.”

 Step 1:  Transform the data to logarithms.
 Step 2:  Estimate the mean function by using 

NCS.
 Step 3:  Calculate residuals by subtracting the 

mean function from the logarithm travel 
times.

 Step 4:  Estimate the variance and covariance 
using the procedure outlined in the 
appendix.

 Step 5:  Calculate confidence intervals of the 
correlation using standard asymptotic 
distribution theory (Wilks 1962). 

For the example data shown in figure 2, the
above procedure resulted in an estimated correla-
tion of  = 0.6918. This relatively high value
reflects the positive correlation for the log travel
time of vehicles between the links.

Note that the above approach is problematic
because it results only in a partial solution. First, it
would be desirable to have the correlation coeffi-
cient for the untransformed data Yil and not the
natural log of the data, ln(Yil). Because the above

correlation coefficient reflects the transformed,
rather than untransformed, scale, interpretation is
difficult. Secondly, and more importantly, in order to
make statistical inferences regarding the correlation
coefficient, the distribution of the untransformed
correlation coefficient is required. Identifying the
distribution of the untransformed correlation coef-
ficient is equivalent to finding the standard error of
this estimate in the normal distribution case using
large sample theory. Additionally, because the cor-
relation calculation requires an estimate of the
mean function using NCS, this stage of uncertainty
should be incorporated into the estimate of the
standard error. The entire process is very difficult to
accomplish, because the NCS and the sum of
squares residuals need to be calculated simulta-
neously. The traditional or classic approach outlined
in the appendix yields an approximation that does
not account for the uncertainty in the NCS. To over-
come these difficulties, an approach for obtaining
the distribution of the correlation coefficient on the
untransformed scale using Bayesian methodology is
developed. 

BAYESIAN APPROACH

To address the covariance problems identified in
the preceding section a Bayesian methodology is
employed.

General Background

In Bayesian inference, the unknown parameters of
the probability distributions are modeled as having
distributions of their own (Gelman et al. 2000).
Generally, the identification of the distribution of
the parameters, or prior distribution, is done before
the data are collected. Suppose that  is a vector
containing unknown parameters with a prior distri-
bution . The observed data are used to update
this prior distribution. The data are stored in the
vector  and its distribution, conditional on the
parameter vector , is the likelihood . The
parameters’ distribution is updated using the Bayes
theorem as shown below:

. (2)
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Once the posterior distribution, h(.,.), is identi-
fied, it can be used to make inferences about the
model parameters and to identify the percentiles,
the mean, and/or the standard deviation of the dis-
tribution of the parameter. 

Because the distribution shown in equation 2 is
very difficult to solve, a simulation method known
as Gibbs Sampler or Markov Chain Monte Carlo
(MCMC) is used to approximate the distribution.
This approach has become increasingly popular over
the last 10 years for Bayesian inference (Gelfand
2002). The Gibbs Sampler is generally constructed
of univariate pieces of the posterior distribution. (For
more on the this topic, see the appendix under
“Gibbs Sampler.”) Note that the Gibbs Sampler
requires a number of simulation replications that we
denote as nreps.

The procedure is best illustrated by a simple
example. Consider a travel time/time-of-day rela-
tionship where the mean travel time does not fluc-
tuate and there is no need for an NCS (shown in
figure 3). In this situation, it is reasonable to treat
this distribution as being normally distributed,

. In this case, the parameter vector is

where  is the mean travel time and  is the vari-
ance of travel time. When choosing the prior distri-
butions, it is convenient to choose a distribution of
a conjugate form (Gelman et al. 2000). Because the
posterior distribution is of the same family as the
prior distribution, it leads to a straightforward
complete conditional distribution. The prior distri-
butions of conjugate form that we adopted in this
paper are  and , where
IG is the inverse gamma distribution. (A more
detailed discussion of the technical reasons for
choosing conjugate prior distributions can be found
in Gelman et al. (2000). The details of the Gibbs
Sampler algorithm for the example are in the
appendix under “Example Gibbs Sampler.”) 

For the simple example, nreps was set to 2,000
and the distributions are summarized with histo-
grams as shown in figure 3. In figure 3B, the mean
parameter is summarized. The 5th and 95th percen-
tiles of  are 5.068 and 5.086 seconds, respec-
tively. Because of the simple nature of the example,

it is possible to use standard methods to calculate
the 90% credible intervals. Note that the classical
t-distribution-based 90% confidence interval, which
would be 5.069 to 5.085 seconds, is comparable to
the percentiles of the Bayes approach because of
the diffuse priors. An added advantage of the sim-
ulation is that any function of the distribution can
be summarized. For example, figure 3C displays
the distribution of  in the form of a histo-
gram. It shows that, like the mean, the log variance
tends to have a normal distribution. This is similar
to the normal distribution properties associated
with maximum likelihood estimators. 

Natural Cubic Spline 
Bayesian Method

While the idea of Bayesian NCS has been used in
other applications (Berry et al. 2002), here we
expand the concept in order to calculate the covari-
ance function for the travel time for vehicles
between links. The travel time along link l when
starting at time ti is defined as Yil. Because travel
time variability is unstable as a function of time, the
variance is stabilized using a natural log transfor-
mation . It is assumed that this distri-
bution will have a multivariate normal (MVN)
distribution with a smooth mean function and a
fixed covariance matrix as shown in equation 3
where:

(3)

gl is a smooth function representing the
mean log travel time for link l; and

is the variance-covariance
matrix of the log travel time.

This assumption can be checked globally in the
model using Bayes p-values (Gelman et al. 2000).

As discussed earlier, the area of focus is on the
untransformed space and, therefore, standard
techniques are used to calculate expectations of
exponential space random variables (Graybill
1976). The moment generating function (MGF)
for the multivariate normal distribution is

. Using this MGF, it can
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be shown that the covariance for an individual
vehicle between two links as a function of time is 

(4)

The correlation coefficient of the untransformed
data is shown in equation (5), and it is important to
note that it is not a function of time. This allows a
point estimate of the covariance between links to be

specifically obtained for any given day. This is
shown below: 

. (5)

The prior distribution of the smooth mean for link l
is

 

FIGURE 3  Example Problem with Static Travel Time
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where  and  are used in calcu-
lating NCS and . The matrices
Q and B are defined in the appendix. “Inv-Wishart”
denotes the inverse Wishart distribution. If a non-
informative version of the inverse Wishart distribu-
tion is used, the following posterior distribution is
obtained: 

(6)

where

The above posterior distributions are extensions
of the multivariate calculations found in many
Bayesian texts (e.g., see Gelman et al. 2000). The
distributions can readily be calculated with a two-
step Gibbs Sampler. The approach is summarized in
the appendix under “NCS Bayesian Algorithm.” 

The steps can be calculated easily in any matrix-
based programs that can simulate a multivariate
normal distribution and an inverse Wishart. For
example, S-plus, MATLAB, R, or SAS-IML would
be appropriate. 

DATA ANALYSIS

The methodology is illustrated on the test bed using
three days’ data representing three different traffic
conditions: moderate, heavy, and light congestion.
In all cases sampled, nreps is set to 500. 

An assessment of this log fit can be found using
Bayes factors or Bayes p-values (Gilks et al. 1996).
In this paper, Bayes p-values were used to verify
model goodness-of-fit and to check the validity of
the underlying assumption. Two steps are involved
in this calculation. First, the predictive values of the
MCMC output are calculated using the MCMC
model parameters. In this paper, the predictive dis-
tribution for all links at ti is 

where 

 and 

p stands for predictive distribution with the
“b”th iteration of the MCMC. 
From the output, a  discrepancy function is

calculated between the observed data and the
parameters, as well as between the predicted data
and the parameters from the MCMC. The discrep-
ancy functions are calculated for each of the itera-
tions of the MCMC. In addition, the proportion of
iterations from the MCMC for which the data dis-
crepancy is larger than the predicted discrepancy is
enumerated. 

The flexibility in the choice of discrepancy
function allows the user to test many alternatives.
The average within-link auto-correlation per day is
a relevant and interesting criterion to test. This dis-
crepancy function uses the standardized dataset’s
one lag auto-correlation. The standardized data are 

 

and the one lag correlation for the data and the pre-
dictive data is 

  and

. 

From this, the

A test using this choice of discrepancy function,
on all days, found that 75% of the days have a p-
value within an acceptable range of 0.01 to 0.99.
The other 25% of the days report a p-value less
than 0.01. These latter p-values come from days
that have predominately free-flow traffic conditions.
These results indicate that while the model fits for
traffic that is dynamic, it needs additional work for
free-flowing traffic days. It is hypothesized that an
extra parameter that accounts for auto-correlation
may reduce this discrepancy. Because free-flow
traffic conditions are not as interesting from a
traffic monitoring center (TMC) point of view,
this extension is not performed here. 

Figure 4 presents data for a day with moderate
traffic congestion. Figures 4A and 4B show the
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relationship between the log travel time and time of
day for links 1 and 2, respectively. In both instances,
the natural log travel time fluctuates between six
(high) and four (low). Using the Gibbs Sampler, the
5th and 95th percentile values of the covariance of
the travel times were calculated and are shown in
figure 4C. Note that the covariance is positive and

fluctuates proportionally to the mean travel times of
the links. Because the correlation result in equation
5 is time-independent, figure 4D can be used to
show the distribution of the correlation coefficient.
The distributions for the Bayes approach are sum-
marized with the 5th and 95th percentile values. We
refer here to this region as the 90% Bayes credible

FIGURE 4  Illustration of Covariance Function and Correlation
for a Moderately Congested Two-Link Example: Day 10
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region (BCR). The classic approach utilizes a 90%
confidence interval (CI) based on normal asymptotic
theory. This corresponds to a 90% BCR of (0.26,
0.42). The classic 90% CI was slightly narrower
(0.30, 0.45). 

Figure 5 shows an analysis similar to that in fig-
ure 4 but for a day in which the congestion is much
greater. It can be seen that the correlation is negative
between adjacent links. The 90% BCR of the corre-
lation coefficient is (–0.39, –0.12). The classic 90%
CI was narrower and had a shift of (–0.42, –0.17).  

FIGURE 5  Illustration of Covariance Function and Correlation 
for a Very Congested Two-Link Example: Day 7
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Lastly, figure 6 shows a situation where the
travel times are less dynamic with high levels of
free-flowing traffic, reflected by the positive corre-
lation. The 90% BCR of the correlation coefficient
is (0.59, 0.69). The classic 90% CI is (0.61, 0.71).
In summation, this correlation coefficient reflects

the amount of freedom an individual vehicle has in
traveling at a consistent speed relative to the overall
average travel time. Figure 6 shows a high positive
correlation, while figures 4 and 5 show correlation
nearer zero or negative correlation, respectively. 

FIGURE 6  Illustration of Covariance Function and Correlation 
for a Less-Congested Two-Link Example: Day 20
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The “C” component of all three figures reports
the covariance as a continuous function of the time
of day (equation (4)). It is the pretransformed space
that allows for interpretations on the original scale.
Notice that the fluctuations are proportional to the
mean travel time from the NCS. This result illus-
trates the distinct advantage of the Bayes approach
over the frequentist approach. In order to derive a
confidence interval when using a frequentist
approach, a large sample size is required to be able
to apply the linear assumption used in asymptotic
theory. In addition, there is a propagation of the
uncertainty in the covariance because there are sev-
eral steps in its estimation. For example, there is a
logarithm transformation and an adjustment for the
smooth mean via NCS.

In contrast, the Bayesian approach does not rely
on the large sample size assumption. In addition,
the nature of the MCMC iterations implicitly
accounts for the transformed space. Specifically, the
covariance function’s actual distribution is calcu-
lated while ensuring that all forms of error are
propagated. However, given the large number of
probe vehicles observed, it seems conceivable that
the large sample properties hold. Therefore, we
compare the frequentist-based approach (or classic
approach) to the Bayesian method. 

One interesting result is that for any given day
equation (5) summarizes the correlation between
pairs of links. Because the equation relies on the
variance and covariance between links, which
requires the estimate of the mean travel times, the
distribution still needs a method that includes the
error propagation mentioned above. 

Figure 7 summarizes the correlation coefficients
for all 20 days. The correlation BCR percentiles for
all three links and their pairs are shown along with
the classic 90% CI that appears next to the BCR
for comparison purposes. For the adjacent links 1
and 2, there are four days that either have a negative
correlation or a correlation where the 90% BCR
covers zero. There are six such days between the
adjacent links 2 and 3. The results are consistent
for the non-adjacent links (i.e., links 1 and 3).
This illustrates that the nonpositive correlation
remains constant from link to link and seems to be
a within-day characteristic. 

Also, in terms of space mean speed, this correla-
tion measure can be compared with traditional
traffic congestion measures. Suppose a link is con-
sidered congested when the speed falls below 56
km/hr (35 mph). For the first 12 days, all links had
a minimum space mean speed that ranged from 8
km/hr (5 mph) to 32 km/hr (20 mph). This latter
case corresponds to days when the 90% BCR was
below 0.5. In contrast, the last eight days have a
minimum space mean speed ranging from 73 km/
hr (45 mph) to 105 km/hr (65 mph) and at least
one link pair with a 90% BCR covering 0.5. This
demonstrates that the single correlation measure
matches traditional measures of congestion that
are based on speed. In general, the heavier the con-
gestion, the lower the correlation of travel time
between links.

Indeed, an obvious question raised by figure 7 is
to ask whether the MCMC method is necessary or
if the classic approach is an adequate approxima-
tion. The lengths of their respective 90% intervals
indicate that on average the Bayes intervals are
10.5% longer than the classic intervals. The
MCMC approach has longer intervals because it
accounts for the uncertainty in the estimate of the
smoothing spline. The user of our algorithm may
want to balance the gain in the MCMC approach
with the loss in time it takes to implement the algo-
rithm. For the data from day 1, the 500 MCMC
iterations take 36 seconds to implement using
MATLAB on a 2.00 GHz processor with 1.00 GB
RAM, whereas the classic approach takes less than
1 second to implement. This difference in imple-
mentation time might be different but is well worth
the effort for those users who wish to account for
all of the uncertainty generated in the estimate of
interlink correlation. Given the rapid increase in
computational abilities, it is our belief that compu-
tation concerns will not be a deciding factor. 

The NCS smoothing technique is commonly used
in statistics but not extensively in transportation
engineering. There is an explicit tradeoff between
the tuning parameter and the fitted curve, and it is
important that the tuning parameter be selected in
an appropriate and consistent manner. Figure 8A
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shows the correlation between links 1 and 2 (i.e.,
) as a function of the logarithm of the tuning

parameter value for day 7. The arrow represents the
“optimal” tuning parameter based on the General-
ized Cross Validation method. However, note that
in that figure (8A), the sign of the correlation is pos-
itive for tuning values but negative for others.
Therefore, it is important that the tuning parameter

be identified correctly, otherwise the correlation
value might be not only erroneous but of a different
sign. 

Figures 8B and 8C show the correlation between
links 1 and 2 (i.e., ) as a function of the loga-
rithm of the tuning parameter value for days 10 and
20, respectively. The link-to-link correlation seen in
these figures is relatively high and stable. For these

FIGURE 7  90% Bayes Credible Regions for the Correlation for 20 Days

Note: Dashed lines indicate the classic interval approach and solid lines denote the Bayes interval approach. 
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examples, the travel time fluctuation is relatively
smooth, and the large values of the tuning parame-
ter safeguard the dynamic trend.

CONCLUDING REMARKS

This paper demonstrates that for the travel time
estimation problem the traditional approach is
complicated because of the nonparametric nature of
the estimator and the covariance between links. We

adopted a Bayesian approach that had a number of
benefits in terms of interpretation and ease of use.
As an added benefit, this approach provided the
actual distribution of the parameter, which allowed
a much broader range of statistical information, and
consequently better results, to be obtained. We
found that, contrary to a common assumption used
in many transportation engineering applications,
the link covariance is non-zero. Furthermore, the

FIGURE 8  Correlation Coefficient for Links 1 and 2 as a Function of the Tuning Parameter
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distribution of the correlation coefficient has the
potential to be used as a performance metric for
traffic operations.

From a transportation engineering perspective,
this work is important for two reasons. First, this
paper shows that the common assumption that
link travel time covariance is zero is erroneous.
More importantly, we developed a method for cal-
culating the covariance with appropriate intervals.
This technique can be readily incorporated for cal-
culating travel time variance and the associated
interval. This will have relevance in a wide range of
applications including route guidance and traffic
system performance measurement. Secondly, corre-
lation coefficients have the potential for categorizing
the performance of the traffic system, because they
are a direct measure of how constrained drivers are
with respect to traveling at their desired speed. The
use of the proposed technique in the above trans-
portation applications will be the focus of the next
step in the research.

Two caveats to our study are as follows. First, the
results depend on the length of the links in which the
vehicles traverse. Suppose that the travel times for
the three links have a positive correlation. However,
if for that distance the links were shorter (i.e., six
links over the same length) there is no guarantee the
relationship will remain the same (e.g., all six links
are positively correlated). No study finds the extent
to which this occurs. This issue could be addressed
in future research by utilizing a vehicle simulation
program such as TRANSIMS (2003). With this sim-
ulation program, the researcher can examine these
types of issues by playing “what if” scenarios with
variations of the length of the links under assorted
dynamic and complex traffic conditions. 

The second caveat to our study is that during
severely congested traffic, link travel times are essen-
tially constant. In this case, researchers will find it
difficult to utilize link travel time correlation as a
congestion measure. This case is similar to the free-
flow case where drivers can go at the speed they wish.
In both situations, sophisticated congestion measures
are not needed. However, when things are rapidly
changing, this approach would be very useful. We
show that the method is appropriate under several
dynamic conditions, where the speed ranged from

8 km/hr (5 mph) to 105 km/hr (65 mph). These
would be the most interesting traffic conditions
(e.g., where the travel time fluctuates in and out of
free-flow and congested traffic conditions) from a
traffic management perspective.
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APPENDIX

NCS Algorithm

The travel times for each of the individual vehicles
are yl1, yl2, yl3,…, yln and are recorded at times
t1,…, tn. The steps for calculating are as
follows:

1. Let Q be a matrix of zeros of dimension n–2
by n. For i from 1 to n–2 let

2. Let B be a matrix of zeros of dimension n–2
by n–2. 
For i from 2 to n–3 let Bii–1 = ti+1–ti, 
Bii = 2(ti+2–ti) and Bii+1 = ti+2–ti+1.

Let B11 = t2–t1, B12 = t3–t2, 
Bn–2n–3 = tn–1–tn–2 and Bn–2n–2= tn–tn–1.

3. Set
B = B/6.

4.  .

5. The quantity being analyzed is 
.

Classic Estimation of Correlation

The correlation between two links,
, 

is estimated using the following procedure:
1. Given the tuning parameter , use an NCS to

derive a continuous estimate of the mean

travel time over the analysis period for the two
links and call them  and .

2. For each link estimate the residuals for each
vehicle:  and .

3. Calculate the equivalent degrees of freedom
(EDF): 

4. Estimate the covariance between links 1 and 2:

.

Estimate the variance for links 1 and 2 respec-
tively:

.

5. Calculate the estimated correlation:

Note that the basic concept of EDF is to penalize
the estimation of the covariance matrix using the
proper equivalent of degrees of freedom. The EDF
for splines is discussed in Green and Silverman
(1995) and Ruppert et al. (2003).

Inferences utilizing the above approach can be
accomplished with large sample distribution theory
based on Wilks (1962, p. 594). The result indicates
that as the number of vehicles approaches infinity
the statistic  has an
approximate normal distribution with mean

 and variance 1/n. Thus,
this distribution is used to calculate a 90% confi-
dence interval with the formula

 

where 
 and 

. 

The 1.645 corresponds to the 90th percentile of the
standard normal. 
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Gibbs Sampler

The approach is simulation-based where nreps is
the number of simulations performed on the
parameter vector and b = 1,2,3,…,nreps. The Gibbs
Sampler begins with a reasonable starting value

 (i.e., estimates of the parameters from a tradi-
tional approach). From this starting value, the kth

component of  is updated conditional on the data
and all the other components of the parameter
vector, . The next step is
to simulate the subsequent component of the
parameter vector .
This is repeated for all unknown parameters until
nreps simulations for each component of the
parameter vector have been completed.

Example Gibbs Sampler

The following steps are used to perform the Gibbs
Sampler simulation: 

1. Set the prior distribution parameters to be
diffuse 
a = 0, p2 = ∞, c = 0 and d = 0.

2. Set the starting values for the unknown
parameters

.

3. Generate the mean portion

,

which is of conjugate form (see Gelman et 
al. 2000 for the derivation).

4. Generate the variance portion

, which is of 

conjugate form.

5. Repeat steps 3 and 4 nreps times.

NCS Bayesian Algorithm

For convenience, the approach is summarized in
algorithmic form:

1. Calculate .

2. Obtain the starting values  and  using
techniques previously discussed in the section,
“Traditional Approach and Smoothing
Splines.”

3. Simulate
.

Note that the same tuning parameter will be
used throughout the algorithm. The g’s and 
are defined in equation (3).

4. Calculate
, 

where

 and .

5. Summarize the function(s) of the unknown
parameters.
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Speeds on Rural Interstate Highways Relative to Posting 

the 40 mph Minimum Speed Limit

ABSTRACT

The relevance of posting the 40 mile per hour (mph)
minimum speed limit on the Interstate Highway Sys-
tem has been increasingly called into question since
the National Highway System Designation Act of
1995 repealed the federally sanctioned maximum
speed limit. In this study, data were collected on
major interstate highways in Florida to evaluate
speed distribution relative to the 40 mph posted min-
imum speed limit. The data revealed that the 15th
percentile speed at all sites was 60 mph or above on
both four-lane and six-lane highway sections. The
analysis showed that the average speed at all sites
was approximately 5 standard deviations above the
40 mph minimum. The coefficient of variation
ranged from 7% to 11%, while the trimmed vari-
ance analysis showed that vehicles traveling below
55 mph contributed insignificantly to the variation
in traffic speeds. A comparison of data collected
before the speed limit rose from 65 mph to 70 mph
showed that the average speed increased by 5 mph,
while the variances did not change significantly. The
coefficients of variation, however, increased signifi-
cantly. The results reported here suggest that speed
variability at the lower end of the distribution is not
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a significant factor in traffic operating characteristics
on Florida rural interstate highways.

BACKGROUND

The decades-old practice of posting minimum speed
limits on rural interstates and other limited access
highways is predicated on the desire to reduce vehicle
conflicts caused by speed variability in a traffic
stream. The relevance of the 40 mile per hour (mph)
posted minimum speed limit found on the Interstate
Highway System is increasingly being called into
question in light of the National Highway System
Designation Act of 1995, which repealed the feder-
ally sanctioned maximum speed limit of 65 mph on
rural highways. Most states, including Florida, then
raised the maximum speed limits, and by the end of
1997, most parts of Interstates 4, 10, 75, and 95 in
Florida posted 70 mph, which is the maximum speed
allowed by the Florida state statutes. While the maxi-
mum speed limit fluctuated over time, the minimum
did not and, in Florida, the 40 mph limit was in effect
and posted across many sections of rural interstate
highways, even when the U.S. Congress required
states to lower the speed limit to 55 mph in 1974. 

With such a wide (30 mph) gap between maxi-
mum and minimum speed limits, it is logical to
question the relevance of the 40 mph posted mini-
mum. If the review of the current speed distribution
shows that the 15th percentile speed is much higher
than the 40 mph posted minimum, perhaps the min-
imum speed needs to be increased or rescinded.
Also, it is important to know if the continued post-
ing of the 40 mph minimum speed limit results in
the increase in speed variability on rural interstate
highways. A review of traffic operations on sections
of Florida highways may provide answers to these
questions.

HISTORICAL PERSPECTIVE

The promise behind the posting of minimum speed
limits on interstate highways was to reduce interac-
tions between fast and slow moving vehicles. Many
states based their minimum speed limits on the Uni-
form Vehicle Code (UVC) published by the
National Committee of Uniform Traffic Laws and
Ordinances (National Committee 1954). The UVC
stipulated that minimum speed limits be established

on highways whenever traffic and engineering
investigations concluded that slow-moving vehicles
consistently impeded the normal flow of traffic on
the highways. 

Studies showed that, by 1962, many states had
adopted slow speed laws in their statutes in compli-
ance with the UVC (National Committee 1964).
Florida was among the states adopting slow-speed
provision, making 40 mph the minimum on the
four-lane interstate system, the Turnpike, and
defense highways. Basically, the Florida statutes
made it illegal to drive at a slow speed that impedes
the normal and reasonable flow of traffic on rural
highways. 

The literature reveals that, in the early 1960s, 41
states and the District of Columbia instituted slow-
speed laws in verbatim or significantly conforming
with the UVC, while the remaining 9 states did not
add minimum speed regulations in their codes. Like
Florida, Georgia and South Dakota statutes explic-
itly stated that the minimum speed limit was 40
mph, while Michigan and North Carolina main-
tained a 45 mph minimum speed rule on their inter-
state highways.

A 2003 survey of minimum speed practices in dif-
ferent states conducted for the Florida Department of
Transportation showed that, following the 1995
National Highway System Designation Act, 43 states
raised the maximum speed limit on their Interstate
Highway System roads (Mussa 2003). However, the
posted minimum speed on these systems did not
change. In fact, the survey showed that 14 states still
use 40 mph minimum speed limit signs, 10 states use
45 mph, and 1 state uses 55 mph. Furthermore, the
survey showed that 25 states do not post minimum
speed limit signs. Some respondents in states that do
not post minimum speed limit signs indicated that
slow driving is not a big problem on their highways
and if a need arose for enforcement, various rules in
their state statutes, such as “impeding traffic flow,”
can be used to warn or cite slow drivers.

UNDESIRABLE EFFECTS OF SPEED 
VARIABILITY

Posting a minimum speed limit was and still is moti-
vated by the desire to reduce speed variability in a
traffic stream and its attendant consequences in effi-
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ciency and safety of traffic operations. Numerous
studies have documented the negative effects of
speed variability. 

In determining the extent to which the 55 mph
federally sanctioned maximum speed limit affected
safety, a Transportation Research Board (TRB)
study found that the probability of crashes occur-
ring increases as the speed variance rises. The study
showed that speed variation causes significant lane
changing and passing maneuvers, which are known
to be potential sources of conflicts and crashes (TRB
1984). The significance of speed variance was
observed by developing a fatality model that
included highway safety characteristics such as traf-
fic density, percentage of vehicles exceeding 65 mph,
percentage of teenagers, and enforcement activity, as
well as speed variance and average speeds. The TRB
model revealed that speed variance had a statisti-
cally significant effect on fatality rates—states with
wider variances in vehicle speed on the highway
tended to have higher fatality rates. The study fur-
ther found that the mean speed only affected the
severity of crashes. Holding the effect of speed vari-
ance constant in the model presented no statistically
significant relationship between the fatality rate and
any other speed variables. The study concluded that
controlling speed variance could be an effective tool
in improving highway safety.

Another study of 36 crashes that occurred on
Indiana highway 37 indicated that the crash
involvement rates per million vehicle-miles of travel
were higher for vehicles whose speeds were below
and above the mean speed (West and Dunn 1971).
After removing data on all crashes related to turning
maneuvers, the authors found that the crash risk
associated with vehicles traveling faster or slower
was more than six times the involvement rates at the
mean speed. The West and Dunn findings were sup-
ported by Hauer (1971) who developed a mathe-
matical model to correlate accident involvement
rates and vehicle travel speeds. Hauer found that the
imposition of a minimum speed limit on highways
was two to three times as effective as an equivalent
maximum speed limit in reducing the frequency of
overtaking and thereby crash involvement rates.
Hauer suggested that the relationship between vehi-
cle speed deviations and crashes might be due to a

higher incidence of passing maneuvers from which
the vehicle passes or is passed by another vehicle—a
situation caused by the presence of slower vehicles
impeding fast vehicles in the traffic stream.

Lave (1985) found that the major highway safety
benefits obtained after the enactment of the 1974
National Maximum Speed Limit Act—which
reduced the maximum speed limit on interstate
highways to 55 mph—were due to the reduction of
speed variance rather than average speed. The
author argued that a reduction in speed variance
was realized because speed differences between slow
and fast moving vehicles were reduced enough to
cause a uniform flow of traffic on interstate high-
ways. Thus, with small speed variances there are
fewer passing and overtaking maneuvers, eventually
leading to the reduction in the potential for conflicts
and crashes. Lave concluded that slow drivers are
just as dangerous as fast drivers and thus posting
minimum speed limits is desirable so as to reduce
speed variance in a traffic stream.

RESEARCH AGENDA FOR A MINIMUM 
SPEED LIMIT

The posting of higher maximum speed limits on
rural interstate highways necessitates an evaluation
of the relevance of posted minimum speed limit
signs that existed prior to raising the maximum
speed. Some studies (e.g., West and Dunn 1971;
Hauer 1971; and Lave 1985) documented that post-
ing the minimum speed limit has the beneficial effect
of smoothening traffic flow by removing perturba-
tions caused by speed differences. 

While evidence obtained from past research
shows that vehicle speed variability contributes to
crashes, it is a big and unsubstantiated leap to say
that posting 40 mph minimum speed limit signs on
a highway with a 70 mph maximum speed limit, as
is the case on the Florida rural Interstate Highway
System, contributes to large differences in vehicle
speeds. The effect of the 40(min)/70(max) seeming
mismatch can be evaluated through a carefully
designed field study in which driver characteristics
and the resulting operating speeds are observed over
a long period of time on highway sections with sim-
ilar geometrics and traffic characteristics but with
some having the 40 mph minimum posted and oth-
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ers not having the minimum posted. Furthermore,
knowing whether the minimum speed limit should
be increased above 40 mph and by how much, given
that the maximum speed limit has been raised from
65 mph to 70 mph, would also be useful. To obtain
this information, a study would require experimen-
tal highway sections with the desired minimum
speed limit signs posted.

This study aimed at evaluating operating speed
characteristics on the Florida Interstate Highway
System where 40 mph minimum speed limit signs
are posted. It would have been desirable to conduct
a study designed as described above but control sites
with no minimum speed limit signs were not avail-
able. An experimental site with 40 mph minimum
speed signs removed or covered can be created for
conducting a longitudinal study where both opera-
tional and traffic crash data are collected and later
compared with the current conditions. However,
creating such sites has legal implications that are dif-
ficult to resolve at this time. Thus, this study was
limited to the following: determining how speed
characteristics deviate from the 40 mph limit, and
determining the speed variability that resulted
before and after the limit was raised.

Note that the relevance of the 40 mph minimum
speed limit is analyzed in this paper from the opera-
tional standpoint only. Certainly, law enforcement
personnel would prefer to have these signs erected
to provide support for warning or citing slow mov-
ing drivers; the “impeding traffic flow” criterion
may be less useful for enforcement purposes.

STUDY SITES

There are four interstate highways in Florida, Inter-
states 4 and 10, oriented in the east-west direction,
and Interstates 75 and 95, which go in a north-
south direction. In addition, the Florida Turnpike is
a tollway from central to south Florida oriented in
the north-south direction. 

Site selection targeted rural sections of these
roads where minimum speed limit signs are posted.
The established site selection criteria required
choosing sites where the geometric characteristics
produced the highest free-flow speed possible, that
is, sites devoid of horizontal and vertical curves, sus-
tained grades, or other geometric constraints.

Another criterion used was to select sections with
telemetered traffic monitoring stations that collect
traffic flow data on volume, occupancy, and individ-
ual vehicle speeds on a 24-hour basis throughout
the year. The Florida Department of Transportation
operates and maintains these sites. We could not
select a site on Interstate 4 because the Tampa-
Orlando-Daytona Beach corridor, through which
this highway runs, is heavily congested throughout
the week with few periods in which free-flow speeds
are attainable. Table 1 shows the study sites selected
based on the established criteria discussed above.

DATA COLLECTION

As part of the data collection strategy, the project
team drove through the entire Interstate Highway
System to observe geometrics and traffic operating
conditions. In addition, the project team evaluated
over 320 telemetered traffic monitoring sites to
determine their locational suitability in relation to
the research objective of evaluating speed character-
istics. The field review resulted in choosing sites
described in table 1. The elements of the data-
collection plan including the data quality checks are
explained below.

Individual Vehicle Records

Telemetered traffic monitoring stations use loop
detectors that provide individual vehicle records com-
posed of the exact time of passage of a vehicle, its
speed, the lane of passage, the number of axles and
axle spacing, vehicle length, and, in some stations, an
individual vehicle’s axle weight. A cursory review of
the speed characteristics at most sites indicated that
there were minor differences between weekend and
weekday traffic speed distribution. Thus, data from
all sites were collected on weekdays in good weather
conditions and dry pavement. The integrity of the
data was verified by checking for errors.

Data Error Checks

Logic checks on the recorded data elements were
applied to the raw data files downloaded from the
count stations. Typical data errors included
improper recording of speeds and loop failures on
some lanes. We set an initial criterion that if more
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than 5% of the data were bad, the dataset for the
whole day was discarded and another day’s data
were downloaded. The accuracy of individual vehi-
cle speeds was checked by relating vehicle length
and its corresponding recorded speed. When the
length of the vehicle was missing, it was assumed
that the vehicle did not cross both loops in the speed
trap thus suggesting that the recorded individual
vehicle speed was erroneous. The number of records
with missing speed or length was used to check the
percentage of usable counts with respect to raw data
elements and finally to decide whether the data for
that particular day was within acceptable limits
needed for further analysis.

Next, outliers were removed prior to performing
the statistical analyses. All outliers, defined as data
points that were inconsistent with the general trend
of the data elements, were eliminated by a computer
program developed for this purpose. The computer
program discarded data points showing zero speed
or speed greater than 120 mph (the maximum speed
value the equipment can record). The time slots in
which data were discarded were coded as missing
data. In all datasets used for further analysis, the
percentages of data coded as missing were less than
one. All individual vehicle records were then sum-
marized per hour and per lane and the required vol-
ume, speed, and headway statistics were calculated.

Analyses proceeded only after assuring the data
quality through these error checks.

VOLUME ANALYSIS

Under low to moderate traffic congestion, as
demand on travel lanes increases so does the need of
fast moving vehicles to pass slow moving vehicles.
The combination of passive and active passing
maneuvers creates the potential for conflicts in the
traffic stream. Higher operating speeds are generally
attainable at level of service (LOS) A1 and continu-
ally decrease as the speed-volume relationship
moves toward congested flow conditions. An hour-
by-hour volume analysis of the 24-hour dataset was
conducted at all eight sites to determine the volume
distribution across the travel lanes, the percentage
of trucks on each lane, and the minimum and maxi-
mum volumes and their hour of occurrence. The
traffic volumes were expressed on a per-lane basis,
because, in general, volume varies by lane. The aver-
age annual daily traffic, which is the gross indicator
of traffic activity, usage, and need, was estimated by
multiplying the 24-hour recorded volume with the

TABLE 1  Description of the Study Sites

Site code Highway
Number of 

lanes
FDOT 

district County Milepost
Geographical 

location

320 I-75 6 2 Columbia 22.4 Between I-10 and 
US 90

9904 I-75 6 2 Alachua 3.0 3 miles north of the 
Marion County line

9905 I-95 6 2 Duval 4.4 2 miles south of the 
I-295 interchange

9901 I-10 4 3 Jefferson 18.2 1 mile east of County 
Road 257

9928 I-10 4 3 Walton 10.3 1.3 miles west of Boy 
Scout Road

351 I-75 4 1 Collier 41.5 At Everglades 
Boulevard overpass

9919 I-95 4 7 Brevard 9.9 3.5 miles south of 
State Route 514

9932 Florida 
Turnpike

4 8 Osceola 30.2 North of the County 
Road 525 underpass

Key: FDOT = Florida Department of Transportation.

1 LOS classifies the quality of operation provided by the
roadway from A through F, with “A” representing the
most favorable driving conditions and “F” the worst,
measured at the peak hour period of the day (USDOT
2000).
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adjustment factors developed by the Florida Depart-
ment of Transportation Statistics Office. Table 2
shows the results of the volume analysis.

Table 2 presents the results categorized by the
number of lanes on the highway (i.e., four or six
lanes) and by direction of travel. Examination of the
hourly variation at each site showed that the
demand volumes were at their lowest from mid-
night to dawn hours, while the peak-hour demand
occurred in the afternoon, typically from 3 p.m. to 5
p.m. with a few exceptions. The lane distribution
analysis for the six-lane highway sections showed
that flow rates in the middle lane were typically
higher than on shoulder and median lanes. On four-
lane sections, the flow rates on the shoulder lanes
were higher than on the median lanes.

We also analyzed the distribution of trucks in
each lane. Vehicles traveling at the low end of the
speed distribution tended to be trucks, recreational
vehicles, and vehicles towing trailers. Table 2 shows
that truck percentages are higher on the shoulder
lanes in both four-lane and six-lane sections. Note
that on Sites 320 and 9904 on Interstate 75 in north
Florida trucks are not allowed to travel on the
median lane of three-lane (in one-direction) sections
(i.e., they can only use the two outermost lanes). 

A comparison of the peak-hour and 24-hour
truck percentages suggests that more trucks travel
during the offpeak hours. The need to change lanes
and to pass some slow moving vehicles—typically
trucks and RVs—is high during offpeak hours. The
LOS in most of the sections was B or better during
these time, thus operating speeds tend to be high
due to fewer traffic interactions. With trucks and
RVs typically among the slower moving vehicles,
changing lanes and passing, resulting from the speed
variances, might be a concern.

SPEED ANALYSIS

The analysis of speed is presented in two parts. The
first part of the analysis details the central tendency
of the speed data while the second part looks at the
speed variability in the traffic stream. The analysis
of both measures of center and dispersion takes into
account the demand volume, lane of travel, and the
type of vehicles—passenger cars or trucks—in the
traffic stream.

Central Tendency Analysis

Figure 1 shows the 24-hour mean speed of all vehi-
cles categorized by facility type (i.e., four-lane or six-
lane highway). Examination of the graphs in figure
1 reveals that average speeds of vehicles vary from
shoulder to median lanes with median lanes experi-
encing higher average speeds. At four-lane sites, the
average speeds ranged from 66 mph to 74 mph in
shoulder lanes and 67 mph to 85 mph in median
lanes. At six-lane sites, the average speeds of the
vehicles on the shoulder, middle, and median lanes
ranged from 67 mph to 70 mph, 72 mph to 75
mph, and 75 mph to 81 mph, respectively.

Pairwise comparisons of the average speeds
using a t-test showed that, on four-lane sections,
average speeds differed significantly between
shoulder and median lanes (p = 0.0002). Further
analysis showed that the average speeds were sig-
nificantly different between shoulder-middle
lanes and middle-median lanes on six-lane sec-
tions (p � 0.0001 and p � 0.0001). These results
confirm that slow-moving vehicles generally use
the shoulder lanes while fast moving vehicles use
the median lanes. At the prevailing LOS, it seems
that the influence of traffic intensity was not a sig-
nificant factor, because at six-lane sites the middle
lanes carried higher volumes than shoulder lanes
yet they had higher average speeds. To further
understand the profile of speeds at these highway
sections, table 3 presents the overall 24-hour
mean speeds by lane and vehicle type. Table 3 also
shows the harmonic mean speeds weighted by
lane volumes and by vehicle type. The harmonic
mean speeds were calculated as follows:

(1)

where 
 = the harmonic mean speed weighted by the

24-hour lane volume in lane i, 
 = the harmonic mean speed weighted by 24-

hour vehicle type j volume, 
 = the 24-hour mean speed of all vehicles in

lane i, 
 = the total 24-hour volume in lane i, 
 = the 24-hour mean speed of all vehicles of

type j, and 
 = the total 24-hour volume of vehicle type j.
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TABLE 2  Results of the Volume Analysis

Site
Direction 
of travel

Lane 
of travel

Min. hourly 
volume and time 

of occurrence

Max. hourly 
volume and time 

of occurrence

%
trucks 

(peak hr)

% 
trucks 
(24-hr)

Peak 
hour 
LOS AADT

Six-lane sites

320          
(I-75)

NB

Shoulder 195

4 – 5 a.m.

458

3 – 4 p.m.

41 51

A

51,065

Middle 144 761 17 21

Median 17 389 3 3

SB

Shoulder 119

3 – 4 a.m.

496

2 – 3 p.m.

41 47

AMiddle 99 851 17 19

Median 12 459 2 3

9904        
(I-75)

NB

Shoulder 128

2 – 3 a.m.

682

3 – 4 p.m.

38 51

B

64,172

Middle 109 1,015 11 18

Median 13 576 1 2

SB

Shoulder 145

1 – 2 a.m.

490
11 a.m. – 
12 p.m.

52 54

BMiddle 74 733 23 20

Median 9 376 2 2

9905       
(I-95)

NB

Shoulder 162

2 – 3 a.m.

640

7 – 8 a.m.

21 38

B

64,284

Middle 102 1,198 12 21

Median 12 601 2 6

SB

Shoulder 177

3 – 4 a.m.

744

5 – 6 p.m.

18 36

BMiddle 95 1,179 7 18

Median 5 630 3 6

Four-lane sites

9901          
(I-10)

WB
Shoulder 120

2 – 3 a.m.
756

5 – 6 p.m.
30 37

A

25,627
Median 12 224 15 15

EB
Shoulder 109

3 – 4 a.m.
234

3 – 4 p.m.
28 39

A
Median 16 523 9 16

9928           
(I-10)

WB
Shoulder 73

2 – 3 a.m.
479

3 – 4 p.m.
25 34

A

18,728
Median 9 224 15 16

EB
Shoulder 82

2 – 3 a.m.
468

1 – 2 p.m.
28 32

A
Median 8 184 10 19

351          
(I-75)

WB
Shoulder 36

1 – 2 a.m.
424 11 a.m. – 

12 p.m.
15 20

A

19,047
Median 3 165 2 5

EB
Shoulder 38

3 – 4 a.m.
439 11 a.m. – 

12 p.m.
14 20

A
Median 2 149 4 5

9919           
(I-95)

NB
Shoulder 65

1 – 2 a.m.
564

4 – 5 p.m.
45 27

A

33,917
Median 11 451 7 12

SB
Shoulder 79

1 – 2 a.m.
628

3 – 4 p.m.
30 32

A
Median 7 457 11 14

9932 
(TNPK)

NB
Shoulder 61

4 – 5 a.m.
486 11 a.m. – 

12 p.m.
15 16

A

27,163
Median 11 262 5 9

SB
Shoulder 119

3 – 5 a.m.
616

1 – 2 p.m.
12 21

A
Median 20 399 6 10

Key: AADT = average annual daily traffic; EB = eastbound; LOS = level of service; NB = northbound; SB = southbound; WB = westbound.
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FIGURE 1  Hourly Variations of Average Lane Mean Speeds

Shoulder lane: 4-lane highway section Shoulder lane: 6-lane highway section
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TABLE 3  Mean Speed Characteristics

Site code 
(highway)

Direction 
of travel

Travel 
lane

24-hour 
passenger car 
lane volume

24-hour 
truck volume 

Lane-based 
mean speed 

 

Vehicle 
type-based 
mean speed 

 

Trimmed 
mean 
speed

Average 
mean 
speed

Six-lane highway sections

320 
(I-75)

NB

Shoulder 4,003 4,074

73 73

70 70

Middle 8,173 2,202 73 74

Median 3,609 99 79 79

SB

Shoulder 4,350 3,850

74 74

69 70

Middle 9,109 2,175 75 75

Median 4,976 140 80 81

9904 
(I-75)

NB

Shoulder 4,614 4,436

71 73

69 67

Middle 10,606 2,227 73 72

Median 6,512 107 76 76

SB

Shoulder 3,814 4,184

73 72

69 68

Middle 8,899 2,058 75 74

Median 4,658 78 77 78

9905 
(I-95)

NB

Shoulder 5,685 3,209

72 72

68 68

Middle 12,288 3,072 73 73

Median 5,711 316 78 77

SB

Shoulder 7,004 3,766

72 72

68 68

Middle 10,992 2,279 73 73

Median 4,471 280 77 77

Four-lane highway sections

9901 
(I-10)

WB
Shoulder 4,959 2,729

74 74

73 73

Median 2,356 367 78 78

EB
Shoulder 4,843 2,844

74 74

73 73

Median 2,254 407 78 78

9928 
(I-10)

WB
Shoulder 4,551 2,122

69 69

68 68

Median 2,081 266 73 73

EB
Shoulder 4,894 2,107

70 71

70 70

Median 1,867 257 72 72

351 
(I-75)

WB
Shoulder 4,522 1,097

73 73

72 72

Median 2,087 122 77 77

EB
Shoulder 4,399 132

78 79

74 74

Median 2,297 1,103 85 85

9919 
(I-95)

NB
Shoulder 3,649 3,574

69 69

70 68

Median 5,118 2,640 75 70

SB
Shoulder 5,427 3,730

66 67

68 66

Median 3,642 1,440 69 67

9932 
(Turnpike)

NB
Shoulder 6,479 1,142

72 72

70 70

Median 3,074 192 75 77

SB
Shoulder 7,733 1,400

73 73

70 71

Median 4,415 361 76 78

Key: EB = eastbound; NB = northbound; SB = southbound; WB = westbound.

u1 u2
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Table 3 also includes the straightforward average
speeds of all vehicles and the trimmed mean speeds.
The trimmed mean speeds were calculated by dis-
carding the lowest 15% and the highest 15% of
vehicle speeds. We statistically analyzed the signifi-
cance of the difference between the speed types dis-
played in this table. Pairwise comparisons of  and

 showed no and slightly significant differences
(p = 0.7 and p = 0.08) between lane-based and vehi-
cle type-based mean speeds on both six-lane and
four-lane highway sections, respectively. Statistical
comparisons between trimmed mean speed and
average speeds in each lane indicated lack of a dis-
cernible difference in both six- and four-lane sec-
tions (p = 0.57 and p = 0.40). The non-existence of
the difference between trimmed speed and mean
speed shows that the presence of fast and slow mov-
ing vehicles in the speed distribution has no signifi-
cant effect on the average speeds on these facilities.
The average speed of the bottom 15th percentile of
the vehicles was 62 mph on both facility types,
while in the upper 15th percentile, the average speed
of vehicles was 81 mph and 83 mph on six-lane and
four-lane sections, respectively.

Speed Dispersion Analysis

The dispersion of speeds was analyzed by lane and
vehicle type using the standard deviation, coefficient
of variation, and 10-mph pace, which is the 10 mph
speed range with the highest number of observa-
tions of vehicles in the speed distribution. In addi-
tion, as is the case in most traffic engineering design
and operational analyses, the 85th and 15th percen-
tile speeds were also calculated. The results follow.

Facility Type Speed Distribution

We computed the standard deviations of vehicle
speeds and the corresponding coefficient of varia-
tion. The results showed that their values varied
depending on facility type. On six-lane sections, the
standard deviation of speeds ranged between 4 mph
and 6 mph, while on four-lane sections the standard
deviations were as high as 10 mph. Specifically, Sites
351 and 9919 showed high values of standard devi-
ations—9 mph and 10 mph on the median lanes,
respectively. The field review revealed that these two

sites are on highway stretches that are longitudinally
straight for at least 10 miles. 

The coefficient of variation, which measures rela-
tive dispersions of vehicle speeds from the average
speed, was also calculated by lane for each site. This
statistic was necessary to compare speed variations
by examining the magnitudes of deviation relative
to the magnitude of the mean given that there were
different mean speeds grouped by lane. The analysis
of the coefficients of variation in each lane showed
that they ranged from 5% to 14%. When coeffi-
cients of variation for adjacent lanes on each site
were compared, the results showed that the differ-
ences were less than 2%. These results suggest that
the scatters of the vehicle speeds from the average
speed are small. Therefore, the traffic speeds are
very closely clustered about the mean speeds in all
sections analyzed.

Speed Distribution by Vehicle Type
On average, the results of the speed distribution
analysis by vehicle type showed that passenger
car speeds were higher than truck speeds by at
least 1 mph on both six-lane and four-lane sec-
tions. The results further showed that the coeffi-
cients of variation did not differ significantly
between passenger cars and truck speeds for six-
lane highway sections but were significant on
four-lane sections (p = 0.027). Figure 2 displays
the results of the speed distribution analysis at the
lower end of distribution.

With respect to the vehicles traveling at the lower
end of speed distribution (i.e., less than 60 mph), we
found that more trucks on four-lane sections trav-
eled below 60 mph than passenger vehicles at Sites
9901, 9919, and 9928, while more passenger cars
traveled below 60 mph at Sites 351 and 9932. The
results were also mixed on six-lane highway sec-
tions. At Sites 320 and 9904, which are on the same
stretch and approximately 70 miles apart, different
patterns of vehicles traveling below 60 mph were
observed. While at Site 9904 more passenger cars
traveled at speeds below 60 mph, at Site 320 more
trucks traveled below 60 mph. At Site 9905, more
passenger cars than trucks had speeds below 60
mph in all lanes.

The results further showed that on both four-lane
and six-lane sections the percentage of vehicles at

u1
u2
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each site traveling below 40 mph (the posted mini-
mum speed limit) was approximately zero. In fact,
the results showed that at all sites only 1% of the
vehicles traveled below 55 mph. Both passenger cars
and trucks averaged speeds below 60 mph but
above 55 mph on six-lane sections. On four-lane
sections, the speed of vehicles traveling below 60
mph averaged above 54 mph.

Percentile and Pace Characteristics
Table 4 displays the 15th and 85th percentile
speeds in each lane, 10 mph pace speeds, and the
percentages of vehicles within the pace. Analysis
of percentile speeds showed that, in four-lane and
six-lane sections, the 85th percentile speeds
ranged from 71 mph to 94 mph and 73 mph to
86 mph, respectively, while the 15th percentile
speeds ranged from 60 mph to 77 mph and 62
mph to 76 mph, respectively, depending on the
lane of travel (i.e., median lanes had higher per-
centile speeds than shoulder lanes). Of significant
interest was the 15th to 85th percentile range,
because it represents the proportion of vehicles
traveling close to the mean speed. At the six-lane
sites, the percentile speeds ranged from 7 mph to
10 mph, 8 mph to 10 mph, and 10 mph to 12
mph on the median, middle, and shoulder lanes,
respectively. The ranges for four-lane sites were 7

mph to 11 mph and 11 mph to 12 mph on the
median and shoulder lanes, respectively.

Note that the results from Sites 351 and 9919
do not particularly follow the trend of other sites
because of the somewhat large differences
between percentile speeds at the two sites—14
mph and 19 mph, respectively. These differences
could result from the straightness of the segments
as well as a low volume of traffic that induces
high-speed travel by some drivers. Furthermore,
these two sites also showed the highest values of
standard deviations. Table 4 further details that
the paces ranged from the mid-60s to the mid-80s
on both facility types with shoulder lanes experi-
encing lower pace speeds. The results in table 4
show that there is no direct relationship between
the number of lanes on a highway and pace
speeds.

Trimmed Variance Analysis
A trimmed variance analysis determined the contri-
bution of slow- and fast-moving vehicles on overall
speed variation. Using five different scenarios, vehi-
cles traveling slower than 40 mph, 45 mph, 50 mph,
55 mph, and 60 mph were removed from the
dataset when calculating the variance. The resulting
speed variances from these trimming processes were
then compared. At all sites, the 15th percentile

speed was about 65 mph, 25 mph above the posted minimum speed of 40 mph. 

FIGURE 2  Analysis of Vehicles Traveling at Speeds Below 60 mph

Note: In the median lane on highway 320, no vehicles traveled below 60 mph.
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TABLE 4  Percentile and Pace Speed Characteristics

Site 
(highway) Direction Lane

15th 
percentile 

speed (u15)

85th 
percentile 

speed (u85)
10 mph 

pace

Vehicles 
in pace 

(%)

Six-lane freeway sections

320
(I-75)

NB

Shoulder 64 76 66 – 76 66

Middle 69 79 70 – 80 76

Median 75 83 74 – 84 76

SB

Shoulder 63 75 66 – 76 66

Middle 70 80 71 – 81 78

Median 76 86 76 – 86 70

9904
(I-75)

NB

Shoulder 62 73 65 – 75 68

Middle 69 77 67 – 77 77

Median 73 80 71 – 81 76

SB

Shoulder 64 74 65 – 75 77

Middle 71 79 68 – 78 75

Median 74 82 70 – 80 70

9905
(I-95)

NB

Shoulder 63 74 63 – 73 68

Middle 68 78 68 – 78 72

Median 72 83 74 – 84 60

SB

Shoulder 63 73 63 – 73 70

Middle 69 78 70 – 80 78

Median 73 81 74 – 84 72

Four-lane freeway sections

9901
(I-10)

WB
Shoulder 67 78 69 – 79 69

Median 73 82 73 – 83 75

EB
Shoulder 67 78 69 – 79 70

Median 73 82 73 – 83 72

9928
(I-10)

WB
Shoulder 62 73 64 – 74 66

Median 69 78 68 – 78 77

EB
Shoulder 65 75 66 – 76 69

Median 68 77 67 – 77 77

351
(I-75)

WB
Shoulder 65 79 69 – 79 62

Median 70 84 72 – 82 59

EB
Shoulder 67 81 70 – 80 57

Median 77 94 82 – 92 52

9919
(I-95)

NB
Shoulder 63 74 67 – 77 60

Median 60 79 72 – 82 49

SB
Shoulder 62 72 64 – 74 63

Median 64 71 64 – 74 63

9932
Turnpike

NB
Shoulder 64 76 65 – 75 66

Median 72 81 72 – 82 70

SB
Shoulder 65 77 68 – 78 60

Median 73 84 73 – 83 70

Key: EB = eastbound; NB = northbound; SB = southbound; WB = westbound.
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The results showed no discernable contribution
to speed variance for vehicles with a speed of less
than 55 mph, primarily because very few vehicles at
each site traveled at speeds less than 55 mph. In fact,
at each site vehicles with speeds under 55 mph made
up 1% of those recorded, while the percentage of
vehicles with speeds of less than 40 mph was negli-
gible (i.e., 0.15%). Although the contribution to the
standard deviation of vehicles with speeds less than
55 mph is very minor, the safety implications of the
presence of vehicles with very low speeds cannot be
ignored. Even though only a few vehicles cause
speed differential conflicts, these vehicles could be a
contributory factor in crashes.

PLATOON ANALYSIS

Highway travel is generally composed of free-
flowing and platooned vehicles. In free-flowing traf-
fic, drivers can choose their speeds as they desire as
long as conditions are such that slow-moving vehi-
cles do not impede their ability to change lanes at
will. Platooned vehicles travel close to each other
mostly because of lack of passing opportunities,
thus causing other vehicles to be trapped behind the
lead vehicle. No definition exists in the literature of
a headway value below which vehicles are consid-
ered to be moving in a platoon. Thus, in this study,
four definitions were considered—less or equal to 1,
2, 3, and 4 seconds. 

The analysis showed that six-lane highway sec-
tions carried larger proportions of platooned vehi-
cles than four-lane sections. Further, the middle
lanes of six-lane sections carried more platoons than
the shoulder and median lanes. To study the effect
of platooned vehicles on the distribution of speed,
the mean speeds of platooned vehicles were com-
pared with the mean speeds of nonplatooned (or
free-flowing) vehicles. The statistical analysis here
uses a t-test in which platooned and nonplatooned
vehicles were paired by site and by lane of travel.
The results showed that the difference between the
speeds of platooned and nonplatooned vehicles
were insignificant for both four- and six-lane high-
way sections regardless of whether the cut-off point
was 1, 2, 3, or 4 seconds of time headway. These
results indicate that platooned vehicles are not slow
moving and thus do not create a need for free-

flowing vehicles catching up behind them to pass.
However, it should again be noted that the highway
sections analyzed were relatively uncongested, oper-
ating at levels of service B or better for a majority of
the hours in a year.

BEFORE AND AFTER COMPARISON

To understand the change in speed characteristics
following the increase in the speed limit, table 5 pre-
sents a comparison of before-and-after data. In
1996, the speed limit was 65 mph at all the sites
indicated in the table. Data-collection sites for both
1996 and 2002 were physically very close, and the
field review of the sites indicated that for all practi-
cal purposes the geometric characteristics prevailing
at these sites would produce similar driver behavior.

The results in table 5 show that the average
speeds across all sites increased by 5 mph to 72
mph. The 15th percentile speed also showed a sig-
nificant increase of 3 mph when averaged across all
sites (p � 0.0001). A statistical F-test comparison of
the variances indicated no significant difference
between the 1996 and 2002 data (p = 0.50). How-
ever, significant differences were found in the vari-
ances on four-lane sections (p = 0.0003). Further
analysis indicated that in 1996, the average speed
on six-lane sections was 4.75 standard deviations
above the 40 mph minimum posted speed limit. In
2002, it was 5 standard deviations above the 40
mph minimum. In four-lane sections, the results
show that the average speeds were 6 and 5 standard
deviations above 40 mph in 1996 and 2002, respec-
tively. Examination of the coefficients of variation
between the two datasets indicated that 2002 data
show significant large variations compared with
1996. However, the coefficients of variation are still
below 10%, indicating a reasonable equity in travel
speeds.

DISCUSSION OF RESULTS

This paper presents a review of traffic operating
characteristics on rural interstate highways in Flor-
ida. Using various analytical techniques, we deter-
mined speed characteristics in relation to the posted
minimum speed limit of 40 mph. Our intent was to
examine the relevance of the 40 mph minimum
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TABLE 5  Comparison of Before-and-After Speed Data

Highway Location, direction, and year

Mean 
speed 
(mph)

Standard 
deviation

(mph)

Coefficient 
of variation 

(%)
15th percentile 
speed (mph)

Six-lane highway sections

I-75

Between I-10 & CR136, NB, 1996 66 4 6 63

Site 320, NB, 2002 73 6 8 67

Between I-10 & CR136, SB, 1996 66 5 8 61

Site 320, SB, 2002 74 7 9 66

Between CR234 & SR21, NB, 1996 68 5 7 63

Site 9904, NB, 2002 71 6 8 64

Between CR234 & SR21, SB, 1996 67 5 7 63

Site 9904, SB, 2002 71 6 8 64

I-95

Between CR210 and I-295, NB, 1996 67 4 6 64

Site 9905, NB, 2002 72 7 10 65

Midpoint CR210 and I-295, SB, 1996 63 6 10 60

Site 9905, SB, 2002 72 6 8 65

Near Flagler CL, NB, 1996 69 4 6 65

Site 9905, NB, 2002 72 7 10 65

Near Flagler CL, SB, 1996 64 5 8 63

Site 9905, SB, 2002 72 6 10 65

Four-lane highway sections

I-75

At mile marker 89, WB, 1996 66 4 6 61

Site 351,WB, 2002 74 7 9 66

At mile marker 89, EB, 1996 68 6 9 63

Site 351, EB, 2002 78 9 11 68

I-10

Overpass E. of SR 85, WB, 1996 67 4 6 64

Site 9901, WB, 2002 74 6 8 68

Overpass E. of SR 85, EB, 1996 69 4 6 64

Site 9901, EB, 2002 74 6 8 68

C-280 overpass, WB, 1996 68 5 7 65

Site 9901, WB, 2002 74 6 8 68

C-280 overpass, EB, 1996 67 4 6 64

Site 9901, EB, 2002 74 6 8 68

Between SR257 & US221, WB, 1996 67 5 7 62

Site 9928, WB, 2002 70 6 9 66

Between SR257 & US221, EB, 1996 69 5 7 65

Site 9928, EB, 2002 71 5 7 68

East end of Aucilla River, WB, 1996 67 5 7 62

Site 9928, WB, 2002 70 6 8 66

East end of Aucilla River, EB, 1996 69 4 6 64

Site 9928, EB, 2002 71 5 7 68

Key: EB = eastbound; NB = northbound; SB = southbound; WB = westbound.
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speed limit in light of the increase in the maximum
speed from 65 mph to 70 mph.

It is clear from the analysis that raising the speed
limit increased average speeds on rural interstate
highways. The comparison of 1996 data with 2002
data showed that average speeds rose by 5 mph,
which is the same amount of the speed limit
increase. The comparison further showed a slight
increase in the coefficient of variation after the max-
imum speed went up; however, the increase is statis-
tically insignificant and under 10%, a threshold that
can be considered to indicate uniform operations. In
addition, the 15th percentile speed showed an
increase of 3 mph when averaged across all sites. In
relation to the 40 mph posted minimum speed, the
2002 average speed on all sections was 5 standard
deviations above this minimum speed, compared
with 5.4 standard deviations for the 1996 data.

In light of the above data and analyses, from a
traffic operations standpoint, several questions
arise: Is the practice of posting the 40 mph mini-
mum speed irrelevant or is it successful in ensuring
that vehicles do not travel below 40 mph? Should
the 40 mph posted minimum speed limit be
scrapped or should it be raised to a higher value?
What should that value be? These are important
questions that could not be adequately answered
through the research paradigm reported here. How-
ever, the data reveal a few pointers. 

First, the 40 mph posted minimum speed limit
probably does not have a significant influence on
driver behavior given that the number of vehicles
traveling below 55 mph at all sites was negligible
(i.e., 1%). If these signs influenced drivers, we
would expect a higher percentage of vehicles to
travel at speeds in the 40 mph to 50 mph range, as is
the case on the higher side of the speed distribution
where a large percentage of drivers maintain speeds
between 70 mph and 80 mph. 

It has been suggested in the past (e.g., McShane
et al. 1998) that the 15th percentile speed may be
used as a measure of the minimum reasonable speed
for the traffic stream. (This suggestion mirrors the
attempt to use the 85th percentile speed as a mea-
sure for setting the maximum speed limit). The data
reported here indicate that, in all sections studied,
the 15th percentile speeds on the aggregate ranged

from 60 mph to 70 mph, which is 20 mph to 30
mph above the posted minimum speed limit value.
Does this mean that the minimum speed limit
should be set at 60 mph? There are number of con-
cerns that would need to be addressed before a
change like this could be made. First, Florida stat-
utes (Florida Statutes 2002) state that “no school
bus shall exceed the posted speed limit or 55 mph.”
Second, as a tourist state, some Florida visitors drive
recreational vehicles (sometimes towing a trailer) or
motor homes, and field review indicated that these
are the vehicles that tend to make up the lowest
15% of the speed distribution at all sites. Third, a
safety analysis would be needed to fully justify any
change in the minimum highway speed.

Instead of increasing the minimum speed, should
it be eliminated? After all, the results of a survey
conducted as part of this research showed that 25
states do not post minimum speeds on interstate
highways. Currently, Florida statutes state that:
“The minimum speed limit on interstate and
Defense Highways, with at least 4 lanes, is 40
mph.” The Florida Highway Patrol in the context of
this research study indicated that such a statute is
required to enable law officers to issue citations. A
question was raised that in the absence of the mini-
mum speed rule, can the law officers use another
Florida statute that states “No person shall drive a
motor vehicle at such a slow speed as to impede or
block the normal and reasonable movement of traf-
fic” to warn or issue citations to slow moving vehi-
cles? One police officer pointed out that if a vehicle
is alone on the highway traveling at, say 25 mph,
what traffic is the driver impeding?

RECOMMENDATIONS

Further research is needed to ascertain the effect of
the current posted minimum speed limit on driver
behavior. While the data seem to indicate that the
40 mph minimum speed might not be that relevant
based on prevailing operating speed distributions, it
is not clear what the effect would be if the signs
were removed from rural interstate highways. The
answer to most of the questions raised above
requires field evaluation, as simulation analysis
would not appropriately depict driver behavior on
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roadways with and without posted minimum speed
limit signs. 

Additional research that is planned includes col-
lecting data on interstate highway sections in states
that do not have minimum speed limits posted but
have similar geometric and driver characteristics. A
comparison of multistate data might shed some
light on the relevance of posting minimum speed
limit signs. Multistate data would also be of interest
to traffic engineers who want to compare safety
characteristics on sites with and without posted
minimum speed limits.
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Transportation Labor Issues and Regulatory
Reform, volume 8 in Elsevier’s Research in Trans-
portation Economics series, is a pleasant surprise in
a couple of ways. First, edited volumes often end up
being mélanges of contributions united by little
more than their bindings. Articles in this volume,
however, cover the topic well and in a logical order.
In a refreshingly concise introduction, the editors
lay out the rationale for the book, its organization,
and the main points of the chapters and how they
relate to one another. Second, the book is worth-
while. As one of the semi-unemployed “soldiers” in
the struggle that led to transport deregulation, I

appreciate efforts to breathe life into the subject,
although I begin to question the relevance of an
event older than most of my students and some of
my clothes. But the volume analyzes a range of
issues that, in many cases, have continuing impor-
tance within transportation. Of perhaps even more
significance, the volume is a rich case study of the
impacts of regulatory changes on labor and man-
agement compensation and employment levels, as
well as working conditions. As such, it would be of
value to researchers and practitioners in transporta-
tion, human resource management, safety, and
industrial organization.  

The book may be thought of as being in three
sections: 1) safety; 2) employment, productivity, and
working conditions; and 3) compensation. All three
sections have merit. If they had to be ranked, safety
is the strongest and compensation the weakest. 

Safety: Chapters 2 and 3  
In a 23-page tour de force, Ian Savage examines
trends in injuries since deregulation in trucking, rail-
roads, and airlines. His command of the issues and
data is impressive. Of particular importance, he
makes the almost always neglected point that crash
data alone provide an incomplete picture of worker
safety. In trucking and railroads, transportation
accidents account for only 12% of lost workdays
and a mere 4% of those in the airline industry.
Safety trends are examined using a variety of mea-
sures, such as lost workdays per full-time employee
and per unit of output. Comparisons are provided
with either all private industry or manufacturing.  

In the next chapter, Daniel Rodriguez et al.
explore relationships between, on the one hand,
motor carrier financial performance, firm size and
type of operations, and driver payment method
with, on the other hand, driver safety.  Not surpris-
ingly, the sometimes confounding effects of these
relationships, as well as data limitations, sap the
strength of the results. But the authors do reach
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some important conclusions and the study is of
value as an example of a very competent empirical
investigation of complex issues.

Employment, Productivity, and Working 
Conditions: Chapters 4, 5, and 6
Kristen Monaco and Dale Belman examine the
impacts of technology on working conditions for
truck drivers. The study presents considerable infor-
mation about the types of technologies in use, who
uses them, and to what extent. Most interesting are
their findings with regard to the ability of satellite-
based systems to substitute for driver experience
and to increase revenue-miles.  

Next, Nancy Johnson and Jonathan Anderson
explore employment, productivity, and working
conditions in airlines following deregulation. The
piece is a rich source for data about airline profit-
ability, bankruptcies, and output. Some of this could
have been relegated to appendices, though all of us
enjoy checking out when our favorite or most hated
carrier went belly up. The authors clearly lay out
how swings in employment and productivity relate
to technological innovations, such as the hub-and-
spoke system, and the health of the overall economy. 

The analysis of changes in working conditions,
though, seems to be trying a bit too hard to make a
case for deterioration. For example, Johnson and
Anderson show that between 1970 and 2001,
average weekly hours worked by pilots increased
from 29 to 42. While acknowledging that airline
accident rates steadily declined over this period and
that 42 hours may not seem a very high number,
they point out that pilots may suffer from jet lag
and that even slight fatigue may result in cata-
strophic miscalculations. They do not mention,
however, that aircraft in 2001 automatically took
care of many more pilot tasks than was the case in
1970.  Suggestive of increasing strain on airline
attendants, the authors point out that between 1995
and 2000 incidences of crews having to enforce dis-
cipline on unruly passengers rose from 140 to 266.
They fail, however, to put these statistics into any
context, that in 1995 there were 0.00002 such inci-
dents per plane departure, versus 0.00003 in 2000. 

Daniel Rich’s investigation of productivity, tech-
nology changes, and labor relations is the best of this
section. Incorporating rail, air, truck, and water

transport, Rich explores the interplay of labor-saving
and labor-using technologies on the sources of pro-
ductivity changes and employment and compensa-
tion levels. The discussions of the setting, relevant
theories, data, empirical approaches, and results are
all first rate. It is simply an excellent treatment of an
extremely worthwhile, but complex, topic. I recom-
mend it to you and will insist on it for my students.

Compensation: Chapters 7, 8, and 9
Though not without considerable merit, for two
reasons the weakest contribution in the volume is
Stephen Burks et al.’s study of executive earnings in
trucking in the era of post-deregulation. The first is
not the authors’ fault. Data problems limited the
investigation to 1977 to 1986, too short a period to
see the full effects, if any, of deregulation. 

The second reason is another matter. After a
brief dip past 1980, the authors find that executive
compensation recovered and, thereafter, increased
continually, despite much less rosy compensation
trends for their subordinates. In their conclusions
they state: “From 1985 onwards they [i.e., trucking
executives] received pay increases in line with the
wider boom in executive pay.” I believe there is a
simple explanation that did not enter into the
empirical investigation nor discussion given by the
authors. Joe, out on the loading dock or driving a
truck, may have few alternatives outside the indus-
try and his salary is pegged to variations in the for-
tunes of his company. But many of the skills needed
for managing a firm are not industry-specific and, as
such, executive compensation in trucking would
be influenced by compensation levels for executives
throughout the economy. The immediate post-
deregulation dip in compensation might have
reflected a transition from executives with skills of
specific value under regulation to those better suited
to lead firms in unregulated environments.  

John Bitzan presents an analysis of compensation
levels for low- and mid-level managers in airlines,
trucking, and rail. Similar to Burks et al., Bitzan does
not account for earning levels outside of a manager’s
industry when examining the impacts of deregula-
tion on their earnings and, like Burks et al., he finds
little or no effect. As if to atone for these “sins,” the
bulk of the chapter addresses whether the qualifica-
tions of managers in transport industries changed
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after deregulation, how these changes compared
with those in nontransportation industries, and how
managers were compensated for their qualifications.
These are important questions. Bitzan deals with
them well and gets some intriguing results.

The editors, John Peoples and Wayne Talley, fin-
ish off the batting order with an examination of
motor carrier owner-operators serving port cities.
It is a perfect finale for the volume. They examine
how changes in regulations affecting maritime
shipping and advances in containerization impacted
one segment of the motor carrier industry. The
study is competently done and its results of interest.
Of perhaps more significance, their work challenges
readers to consider the broader impacts of policy
changes in one industry throughout the economy.
This may be a self-serving attempt to set the stage
for their next volume. At least that is something to
be wished for.

Reviewer address: Richard Beilock, University of Florida, 
PO Box 110240, Gainesville, FL 32611-0240, USA. 
Email: rpbeilock@ifas.ufl.edu.
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Transportation analysis has changed dramatically in
the last 50 years. For example, the sequential four-
step model of travel forecasting is slowly being
replaced by activity-based analysis in addition to
changes in the types of techniques and methods
used. We have seen cross-classification analysis
replaced by linear regression, and statistical and
econometric methods such as hazard-based duration
models and structural equations have become an
integral part of the methodological framework of
travel forecasting. With this evolution in methods

comes a tremendous need for books that synthesize
and extend the usual statistical theory presentation
to one suitable for application-oriented audiences.
Washington et al.’s book provides an excellent and
needed addition to this genre of texts.

The book catalogs many of the major modeling
techniques used in practice, most of which are also an
important springboard for more advanced theoretical
and largely academic transportation modeling. In
this sense, the book is an excellent addition to a
practicing transportation analyst’s library as well as
a perfect companion to a first year graduate model-
ing or methods course including, for example, travel
forecasting, safety, and traffic engineering. One of
the book’s most useful features is its singular focus
on transportation. All of the examples relate to, and
are focused on, transportation problems. As an
added benefit, the datasets used to develop the
examples can be accessed via the publisher’s website
(http://www.crcpress.com/e_products/downloads/). 

Washington et al.’s book is organized into three
major sections: the fundamentals, continuous depen-
dent variable models, and count and discrete
dependent variable models. The fundamentals section
presents basic statistical theory and includes topics
such as central tendency, variability, hypotheses test-
ing, and nonparametric tests. Part 2 includes discus-
sion of regression, simultaneous equations, latent
variables, and duration models, as well as panel data
and time series analysis. In Part 3, count data models
and the now familiar discrete choice and discrete/
continuous models are presented.

Deciding what to include in and what to leave
out of a methods book aimed at a transportation
audience is often very difficult. Practitioners may
not have the appropriate statistical background to
immediately grasp the main concepts without some
review of basic theory, yet too much foundation
material overlaps with many statistical texts already
available to graduate students. In Part 1, much of
the material covered is readily available in most
introductory statistical texts. It is useful material
even for some first year graduate students; however,
I would have liked to have seen this material divided
into two sections, with most of the basic material
going into an appendix. Part 1 could then be
expanded to include many of the new modern
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graphical display techniques (e.g., Wilkenson 1999;
Heiberger and Holland 2004) and perhaps some
discussion about software and statistical computing
(e.g., Gentle 2002). Despite this relatively minor
caveat, the material presented in Part 1 is well done,
with examples that clearly link theory to practice.

Part 2 is where the book really begins to distin-
guish itself. The first third deals with the basic linear
regression model and includes a fairly comprehen-
sive presentation of regression theory, assumptions,
departures from assumptions, and the practical
aspects of manipulating variables and estimating
elasticities. The remaining two-thirds of Part 2 is
devoted to fairly contemporary modeling tech-
niques, at least in terms of transportation practice. 

Of the various chapters, those dealing with time
series and panel data analysis are perhaps the
weakest. The remaining chapters in Part 2 are well
written and the authors have done an excellent job
summarizing the major modeling approaches and
the main assumptions for each of the modeling
techniques. For example, in their chapter on dura-
tion models, they begin with a brief discussion of the
Kaplan-Meier method (the predominant nonpara-
metric model used in survival analysis); the authors
then turn to a longer exposition on semi-parametric
and fully parametric models. Each section begins
with a presentation of the basic model, followed by
an example, which helps to motivate the method’s
application. In the chapter on duration models, all
of the modeling approaches are tied together with a
brief discussion comparing the different techniques.
Finally, the chapter ends with a discussion of the
modeling assumptions, which very cleverly motivates
several more complicated modeling approaches
addressing, in part, violations of the basic modeling
assumptions.

In Part 3, the authors limit their coverage to three
very important modeling approaches. The first
approach is used for response variables that are
considered count data and include the family of
Poisson and negative binomial models. The second
approach focuses on discrete choice models and the
final section on discrete/continuous models. All of
these modeling approaches are accessible to practi-
tioners and increasingly form the foundation for
handling many types of transportation problems. As

with Part 2, each chapter begins with a presentation
of the model structure and concludes with an exam-
ple highly relevant to transportation planning and
engineering practice.

Overall, this text adroitly fills a very important
niche between practice and theory. Although I would
liked to have seen a few additional topics—for exam-
ple, more on contemporary graphical techniques and
some elaboration on simulation methods, which are
playing an increasingly important role in travel fore-
casting—in general, the book is very well written. I
recommend it for most transportation analysts and
believe it to be a good, solid addition to the libraries
of transportation graduate students.
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Transportation After Deregulation
B. Starr McMullen, editor
Elsevier Science
2001, 140 pages 
ISBN: 0-7623-0780-3
$97.95 € 97.95   £64.95 

The U.S. Railroad Revitalization and Regulatory
Act of 1976 funded the reorganized bankrupt north-
east and midwest railroads that formed Conrail.
After the act went into effect, subsequent legislation
initiated deregulation across the transportation
industry and lifted most of the remaining motor car-
rier restrictions, including those imposed by the
states. The six papers in this volume in the series,
Research in Transportation Economics, all deal
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with the theme of transportation deregulation and
regulatory reform and can be classified under one of
the following topics: timing and impacts of deregu-
lation, technological change issues, safety, and rail-
road mergers. 

In the paper by Wesley Wilson and William
Wilson, the authors discuss the impact on the mar-
keting patterns of railroads of the Staggers Rail Act,
legislation that deregulated the railroad industry.
Implementation of the act resulted in lower rates
for shipment of goods, especially grain products.
The authors present an econometric analysis of rail
rates between 1972 and 1995 that focuses on five
grain commodities. Their empirical model includes
demand, cost, and price relationships based on the
New Empirical Industrial Organization (NEIO)
models and a specification for regulatory regimes
that uses a dummy intercept and a time trend for
regulatory reform. Their results indicate the prices
of the five commodities decreased over time, but the
magnitude across these commodities differed, rang-
ing from 40% to 71%. 

Lawrence Wong’s study assesses the effects of
deregulation in the motor carrier sector by sorting
out the independent impact of deregulation from
those changes caused by the interaction of deregula-
tion and new technologies. To do this, Wong used a
translog cost function model with a time trend
incorporated as a third-order truncated Taylor series
expansion for data from 1976 through 1987. Addi-
tionally, the modeling efforts allowed for the
decomposition of the technological change into
three components: input bias, output bias, and char-
acteristic bias. The author attempts to test the
Schumpeter hypothesis for the less-than-truckload
(LTL) sector, but the evidence to support this
hypothesis in the LTL sector was not present. The
empirical results show that although implementa-
tion of new technologies provided labor-saving
advantages, they required greater expenditures and
induced input biases because of shifts in the out-
put level. The results also showed that the LTL
sector of the motor carrier industry is capital-
intensive, which creates higher barriers for entry. 

The paper by Kristen Monaco and Taggert
Brooks presents a unique analysis of how deregula-
tion affected wages in the motor carrier sector.  The

authors used a time series approach because prior
transportation wage studies that employed cross-
sectional methods could not control for macro-
economic effects. Motor carrier wages are modeled
as a function of manufacturing wages, and the rela-
tionships between the two series are then assessed.
Their results show that the effects of deregulation
on wages in this sector was felt most strongly
between 1980 and 1984 and that wages in this sec-
tor declined from 1972 to 1996. 

Atreya Chakraborty and Mark Kazarosian do not
explicitly address the productivity in the motor car-
rier industry in their paper, but instead, their analysis
assesses the relationship between marketing strategy
and information technology (IT). Some firms are
likely to use IT to increase the timely delivery of
goods, while those that may produce the same level
of output (measured in ton-miles) as their IT-using
counterparts may be less concerned with timeliness
than they are with lower rates. Given these two
approaches, which are aggregated into one dataset,
analysis of motor carrier productivity is inconclusive
without controlling for marketing strategies. 

Although the financial condition of railroads has
improved significantly since 1980, policymakers are
rightly concerned about the future vitality of the sec-
tor if costs are not contained. C. Gregory Bereskin’s
paper focuses on the potential for transcontinental
railroad mergers, a controversial issue given the
small number of railroads in service and the concern
that mergers could result in a monopoly. Mergers
would likely increase efficiency and provide a higher
quality of service, thus attracting more shippers and
raising rail revenues. More specifically, the empirical
analysis reveals that unexploited economies of scale
could result in monopolistic pricing, a standard the-
ory in market structure research.

In the final paper in this volume, Frank Rusco
and W. David Walls examine the effects of deregu-
lation on safety operations. Opponents of freight
deregulation often assert that it would create
increased competition but at the cost of making
freight transportation less safe. The authors apply
this hypothesis to the minibus market in Hong
Kong, which is both regulated and unregulated.
The authors’ model shows that minibus drivers in
the unregulated market tend to drive faster and
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experience higher accident rates than their regu-
lated counterparts. 

Deregulation in the transportation sector of the
United States has resulted in great savings and
increased flexibility. For example, freight transpor-
tation costs dropped sharply. Railroad rates fell
from 4.2¢ per ton-mile in the 1970s to 2.6¢ per ton-
mile in 1998. In addition, the railroad industry
became more profitable. The cost of shipping by
truck fell by $40 billion from 1980 to 1988, and
deregulation has improved flexibility and enabled
businesses to provide timelier deliveries, which con-

tributes to a reduction in inventory costs. Despite
the multitude of positive benefits from deregulation,
there are some interesting policy issues that resulted,
and these papers provide further empirical assess-
ment. While readers may choose to peruse papers of
topical interest, it would be valuable to read all of
the papers because they provide current research on
the effects of deregulation on the industry. 

Reviewer address: Brian Sloboda, Bureau of Transportation 
Statistics, U.S. Department of Transportation, 400 Seventh 
St, SW, Room 3430, Washington, DC 20590. 
Email: brian.sloboda@dot.gov.
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Data Review

America’s Freight Transportation Gateways

 OVERVIEW

The Bureau of Transportation Statistics (BTS) new
report, America’s Freight Transportation Gateways,
and the accompanying Gateways Resource CD
include detailed data on the movement of freight
into and out of the United States. Over 400 sea-
ports, airports, and land border crossings currently
move international freight in the United States. This
new report profiles the top 25 gateways, including
the nation’s largest gateway by value, the Port of
Los Angeles. 

Folded into the back cover of the report is the
Gateways Resource CD, which provides detailed
data on over 200 gateways. The CD also contains
extensive information on countries of origin and
destination for goods passing through U.S. gate-
ways and the firms moving goods across interna-
tional borders.

The major sources of data for the Gateways
report are: 

� Transborder Surface Freight Data from the
Bureau of Transportation Statistics,

� air cargo data from the Bureau of Transportation
Statistics, 

� U.S. Merchandise Trade Data from the U.S.
Census Bureau, 

� border-crossing data from U.S. Customs and
Border Protection,

� water data on seaports from the U.S. Army
Corps of Engineers, and

� port calls and capacity data from the Maritime
Administration

THE REPORT

U.S. international trade increased at an average rate
of 6% per year between 1990 and 2003, increasing
from $899 billion to about $2 trillion. Water trans-
portation carried the most trade, in terms of both
tonnage and value. In 2003, vessels carried 78% of
the total weight of trade and 41% of the total value
(figure 1). Truck, train, and other land modes (e.g.,
pipelines) carried 22% of the total weight and 28%
of the value. Although air transportation accounted
for less than 1% of the total weight of trade, its
transport of high-value goods made it responsible
for 26% of the value.

FIGURE 1  Land, Water, and Air Gateways’ Share
of U.S. Merchandise Trade by Value: 
1990 and 2003

1 Includes truck, rail, pipeline, and miscellaneous surface modes.
2 Includes purchased vehicles such as aircraft or boats moving 
from manufacturer to customer where the vehicle itself is the 
shipment, pedestrians carrying freight, and miscellaneous.

Source: U.S. Department of Transportation, Bureau of 
Transportation Statistics, based on total trade, from U.S. 
International Trade Commission, USITC Interactive Tariff and 
Trade Dataweb, available at http://dataweb.usitc.gov/ as of Sept. 
15, 2004.
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The majority of trade is concentrated in a hand-
ful of gateways. The top 5 gateways handled more
than one-quarter of the nation’s trade by value,
while the top 15 handled more than 50% and the
top 50 handled 80% (table 1).

The top three gateways, by value, represent the
three transportation modes (i.e., water, air, and
land). The Port of Los Angeles was the leading gate-
way, with $122 billion in international shipments in
2003. This port grew tremendously from 1999 to
2003, reflecting increased trade with Asia and the

Pacific Rim. During this period, imports increased
52% and exports increased 20%. Other gateways
experienced an average import/export growth rate
of 14%.

Import trade heavily outweighs export trade
through the Port of Los Angeles. In 2003, import
goods comprised 86% of the value of freight moving
through this port. The national average for imports
is approximately 66%. 

The second largest gateway by value, John F.
Kennedy (JFK) International Airport in New York,

TABLE 1  Top 50 U.S. Freight Gateways, Ranked by Value of Shipments: 2003 (Current $, billions) 

Rank Port name Mode
Total 

U.S. trade Exports Imports
Exports as
% of total

1 Port of Los Angeles, CA Water 122 17 105 13.8

2 JFK International Airport, NY Air 112 47 65 41.7

3 Port of Detroit, MI Land 102 55 47 53.5

4 Port of New York and New Jersey Water 101 24 77 24.0

5 Port of Long Beach, CA Water 96 17 79 17.9

6 Port of Laredo, TX Land 79 32 46 41.1

7 Los Angeles International Airport, CA Air 64 33 31 51.1

8 Port Huron, MI Land 62 23 40 36.4

9 Port of Buffalo-Niagara Falls, NY Land 59 27 32 46.1

10 Chicago, IL Air 54 21 34 37.9

11 Port of Houston, TX Water 50 21 28 43.0

12 San Francisco International Airport, CA Air 47 21 26 44.1

13 Port of Charleston, SC Water 39 13 26 34.0

14 Port of El Paso, TX Land 39 17 22 42.6

15 Port of Norfolk Harbor, VA Water 29 11 18 37.4

16 New Orleans, LA Air 27 14 14 50.0

17 Port of Tacoma, WA Water 26 5 21 19.8

18 Port of Baltimore, MD Water 26 6 20 21.9

19 Port of Oakland, CA Water 25 8 17 30.9

20 Dallas-Fort Worth, TX Air 24 11 12 48.3

21 Port of Seattle, WA Water 23 6 17 24.6

22 Miami International Airport, FL Air 23 14 9 61.5

23 Anchorage, AK Air 22 6 16 25.5

24 Port of Savannah, GA Water 21 7 14 34.7

25 Port of Otay Mesa Station, CA Land 20 8 11 42.0

26 Port of New Orleans, LA Water  19 11   8 57.9

27 Cleveland, OH Air  19 10   9 51.3

28 Atlanta, GA Air  18 8   10 45.6

29 Port of Miami, FL Water  17 7   10 41.1

30 Port of Champlain-Rouses Point, NY Land  14 5   9 36.2
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handled $112 billion in international trade. The top
three origins of goods delivered through JFK are
London, Brussels, and Frankfurt. However, further
review of the data shows that most merchandise
originates in Asia, and Europe is the last link in that
supply chain. The top two carriers operating out of
JFK, American Airlines and Lufthansa, together
transported 21% of the imports and 17% of the
exports passing through this gateway.  

Detroit, the third largest gateway in the United
States and the largest land gateway, moved $102
billion in trade. Of the top 25 gateways, Detroit is
one of only three that handled more exports than
imports. Trucks carried the majority of merchandise
traveling by land through Detroit—83% by value.  

The gateway ranking would change if listed by
tonnage. Tonnage data are incomplete, however,
because for land exports these data are not available

Rank Port name Mode
Total 

U.S. trade Exports Imports
Exports as
% of total

31 Port of Hidalgo, TX Land  14 6   8 43.6

32 Newark, NJ Air  13 3   10 20.1

33 San Juan International Airport, PR Air  12 5   7 42.4

34 Port of Blaine, WA Land  12 5   7 43.6

35 Port of Portland, OR Water  12 3   9 25.1

36 Port of Jacksonville, FL Water  11 2   9 20.8

37 Port Everglades, FL Water  10 4   6 41.4

38 Port of Nogales, AZ Land  10 4   7 34.2

39 Port of Philadelphia, PA Water  10 1   10  6.1 

40 Port of Morgan City, LA Water  10 0   10  1.8 

41 Port of Brownsville, TX Land  10 5   5 51.5

42 Port of Alexandria Bay, NY Land  10 4   6 38.2

43 Port of Corpus Christie, TX Water  10 2   8 19.8

44 Port of Beaumont, TX Water  10 1   9  9.9 

45 Port of Pembina, ND Land  9 5   4 53.1

46 Boston Logan Airport, MA Air  9 6   3 62.0

47 Port of Calexico-East, CA Land  9 4   5 42.4

48 Philadelphia International Airport, PA Air  9 5   4 53.8

49 Port of Sweetgrass, MT Land  7 4   4 48.1

50 Seattle-Tacoma International Airport, WA Air  7 4   3 56.8

Total, top 50 gateways 1,587 576 1,011 36.3
Total, U.S. merchandise trade 
by all modes 1,983 724 1,259 36.5
Top 50 gateways as share of
U.S. total (percent) 80.0 79.6 80.3

Notes: All data—Trade levels reflect the mode of transportation as a shipment enters or exits a U.S. Customs port. Flows through individual 
ports are based on reported data collected from U.S. trade documents. Low-value shipments (imports less than $1,250 and exports less than 
$2,500) and intransit shipments are not included in trade data. Air—Data for all airports are based on U.S. port classifications and include a 
low level (generally less than 2% to 3% of the total value) of small user-fee airports located in the same region. Air gateways not identified by 
airport name include major airports in that geographic area in addition to small regional airports. Also due to U.S. Census Bureau 
confidentiality regulations, data for some of the air gateways include courier operations.  For example, data for New Orleans International 
Airport, include FedEx air cargo activity in Memphis, TN.

Sources: Air—U.S. Department of Commerce, U.S. Census Bureau, Foreign Trade Division, special tabulation, August 2004. Water—U.S. 
Department of Transportation, Maritime Administration, Office of Statistical and Economic Analysis, special tabulations from Waterborne 
Databank, August 2004. Land—U.S. Department of Transportation, Bureau of Transportation Statistics, Transborder Surface Freight Data as 
of August 2004.

TABLE 1  Top 50 U.S. Freight Gateways, Ranked by Value of Shipments: 2003 (Current $, billions)  (continued)
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in official records. For example, among seaports,
the Port of Los Angeles, which ranks first by value,
ranks ninth insofar as waterborne tonnage is con-
cerned. The need for more complete tonnage data is
one of the findings of this report.

THE GATEWAYS RESOURCE CD

America’s Freight Transportation Gateways profiles
the busiest gateways in America.  Researchers inter-
ested in performing analysis for other gateways may
use the detailed data available on the CD, included
at the back of the report. The CD contains 11
Microsoft Access files.  

Smaller Gateways

All of the data breakouts presented in the Gateways
report can also be performed for smaller gateways
not included in the report. Some of the relevant
databases on the CD include: Export Air Cargo,
Freight Border Crossing and Entry Data, Import
Air Cargo, Maritime Tons by Foreign Ports, Mari-
time Value by U.S. Ports, TEUs by U.S. Ports,
Transborder Surface Freight, U.S. Freight Gateways
by Value, and U.S. Seaports by Calls-Capacity.

The CD includes data on trade levels at border
crossings, ports, and airports. For example, using
the Maritime Tons by Foreign Ports database, the
trade volume between specific U.S. ports and Euro-
pean cities can be determined. Depending on the
data needed, either the port names or the port num-
bers can be used, as designated by the U.S. Census
Bureau. The database can also provide an historical
overview of how port traffic changed from 1993
through 2003. Other uses include: comparing the
weight of trade moving through ports, airports,
and land borders using short tons; and comparing
the value of imports for each mode.

Trading Partners

Researchers interested in analyzing trade between
the United States and partner countries can turn to a
number of relevant databases on the CD: Interna-
tional Freight by Country and Mode, Maritime

Tons by Foreign Ports, Import Air Cargo, and
Export Air Cargo.

The International Freight by Country and Mode
database contains data on 232 countries, from
1997 through 2003. This database can be used to
compute the total value of imports or exports by
mode and the total weight of imported and
exported goods by vessel and air. 

In 2003, the five countries with the greatest value
of imports to the United States (by all modes) were
Canada, China (mainland), Mexico, Japan, and
Germany. The same five countries supplied the
greatest value of imports to the United States in
1997; however, at that time, Japan’s trade level was
greater than both China and Mexico.

The top five countries for exports by value in
2003 were Canada, Mexico, Japan, the United
Kingdom and Germany. Mainland China was the
sixth largest recipient of U.S. goods by value. In
1997, Germany was not in the top five and Korea
was.

Analysis of the cargo weight (in short tons) by
carrier, origin airport, and destination airport can be
computed using the Export Air Cargo dataset. For
example, the weight of trade (in short tons) between
Auckland International Airport in New Zealand
and all airports in the United States grew 12% from
1999 to 2003. Trade from Auckland to Los Angeles
International Airport increased 10%.

Import air cargo is similar to export air cargo,
where the country of destination is the United
States. Analysis of the cargo weight (in short tons)
by carrier, origin airport, and destination airport
can be computed using the Import Air Cargo
dataset. 

Industry Profiles

The Import Air Cargo and Export Air Cargo data-
bases provide information on trade volume by air.
The database provides air carrier codes and names.
Use of common air carrier and airport codes allows
the user to link the Gateways database with other
BTS air data products. These datasets can be partic-
ularly useful for providing information on where
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air carrier firms operate and the level of business
conducted by each firm.

Vessel Types

U.S. Seaports by Calls-Capacity includes the num-
ber of port calls and capacity for 10 vessel types
and 133 ports. Not all ports received all types of
vessels. For example, Albany, New York, only
received calls from dry bulk vessels and tankers. In
contrast, Boston received at least one call from
each type of vessel. The largest percentage of port
calls in Boston were by tankers and product tank-
ers, and the smallest number of port calls were by
crude tankers, general cargo vessels, and combina-
tion vessels. The largest number of ports, 97,
received dry bulk vessels; the smallest number of
ports, 33, received vehicle-carrying vessels.

COPIES AND QUESTIONS

BTS provides this report, with the CD included, free
of charge, from:

Customer Service
Bureau of Transportation Statistics
Research and Innovative Technology 

Administration
U.S. Department of Transportation
400 Seventh St SW, Room 4117
Washington, DC 20590
Email: orders@bts.gov
Online: www.bts.dot.gov, click on Products, then

type the name of the report in the Search Products
box.

Questions about this report: send an email to
answers@bts.gov or call 800-853-1351.
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call for papers
JTS is broadening its scope and will now 

include original research using planning, 
engineering, statistical, and economic analysis to 
improve public and private mobility and safety 
in transportation. We are soliciting contributions 
that broadly support this objective. 

Examples of the type of material sought include

❍ Analyses of transportation planning and 
operational activities and the performance of 
transportation systems

❍ Advancement of  the sciences of acquiring, 
validating, managing, and disseminating 
transportation information

❍ Analyses of the interaction of transportation 
and the economy 

❍ Analyses of the environmental impacts of 
transportation

See our website at www.bts.dot.gov/jts for 
further details and Guidelines for Submission.

If you would like to receive a free subscription 
send an email to the Managing Editor: 
marsha.fenn@dot.gov

Journal of Transportation 
and Statistics
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Call For Papers
Journal of Transportation and Statistics

Special Issue on Transportation Investment

In conjunction with the national conference on 

Transportation and Economic Development 

(TED 2006) to be held in Little Rock, Arkansas, on 

March 29 and 30, 2006, the editors of the Journal 

of Transportation and Statistics are planning a 

special issue on transportation investment. We 

invite submissions relating to any mode of 

transportation, with an emphasis on economic 

and statistical models generating policy-relevant

results. We are interested in papers dealing 

with longer term planning, particularly those 

focusing on safety, infrastructure, 

environmental, or economic issues, but we will 

consider other areas.

All papers will be peer reviewed. Please refer to the 

journal or visit the website (www.bts.gov/jts, and 

scroll to Guidelines for Manuscript Submission) for 

editorial requirements. Authors are encouraged to 

submit an abstract via the registration website for 

TED 2006 and present your work at the conference. 
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