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Truth in Transportation Planning

DONALD C. SHOUP

University of California, Los Angeles

ABSTRACT

Transportation engineers and urban planners often
report uncertain estimates as precise numbers, and
unwarranted trust in the accuracy of these precise
numbers can lead to bad transportation and land-
use policies. This paper presents data on parking
and trip generation rates to illustrate the misuse of
precise numbers to report statistically insignificant
estimates. Beyond the problem of statistical insignif-
icance, parking and trip generation rates typically
report the parking demand and vehicle trips
observed at suburban sites with ample free parking
and no public transit. When decisionmakers use
these parking and trip generation rates for city plan-
ning, they create a city where everyone drives to
their destinations and parks free when they get
there.

Beware of certainty where none exists.
DANIEL PATRICK MOYNIHAN

INTRODUCTION

How far is it from San Diego to San Francisco? An
estimate of 632.125 miles is precise but not accu-
rate. An estimate of somewhere between 400 and
500 miles is less precise but more accurate, because

KEYWORDS: parking, regression analysis, urban planning.
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the correct answer is 460 miles.1 Nevertheless, if
you did not know the distance from San Diego to
San Francisco, whom would you believe: someone
who confidently says 632.125 miles or someone
who tentatively says somewhere between 400 and
500 miles? You would probably believe the one
who says 632.125 miles, because precision creates
the impression of accuracy.

Although reporting estimates with extreme preci-
sion suggests confidence in their accuracy, transpor-
tation engineers and urban planners often use
precise numbers to report uncertain estimates. As
examples of this practice, I will use two manuals
published by the Institute of Transportation Engi-
neers (ITE): Parking Generation (ITE 1987a) and
Trip Generation (ITE 1987b, 1991, 1997). These
manuals have enormous practical consequences for
transportation and land use. Urban planners rely on
parking generation rates to establish off-street park-
ing requirements, and transportation planners rely
on trip generation rates to predict the traffic impacts
of development proposals. Yet a close look at the
parking and trip generation data shows that placing
unwarranted trust in these precise but uncertain
estimates of travel behavior leads to bad transporta-
tion and land-use policies.

TRIP GENERATION

Trip Generation reports the number of vehicle
trips as a function of land use. Transportation
engineers survey the number of vehicle trips to and
from a variety of locations, and for each land use
the ITE reports a trip generation rate that relates
the number of vehicle trips to a characteristic of
the land use, such as the floor area or number of
employees at a site. The sixth (and most recent)
edition of Trip Generation (ITE 1997, vol. 3, pp.
ix and 1) describes the data used to estimate trip
generation rates as follows:

This document is based on more than 3,750 trip
generation studies submitted to the Institute by
public agencies, developers, consulting firms,
and associations. . . . Data were primarily col-

lected at suburban localities with little or no
transit service, nearby pedestrian amenities, or
travel demand management programs.

ITE says nothing about the price of parking at the
study sites, but since parking is free for 99% of
vehicle trips in the United States, most of the study
sites probably offer free parking.2 Trip Generation
uses these 3,750 studies to estimate 1,515 trip gen-
eration rates, one for each type of land use. Half the
1,515 reported trip generation rates are based on
five or fewer studies, and 23% are based on a single
study.3 The trip generation rates thus typically mea-
sure the number of vehicle trips observed at a few
suburban sites with free parking but little or no pub-
lic transit service, pedestrian amenities, or travel
demand management (TDM) programs. Urban
planners who rely on these trip generation rates as
guides to design the transportation system are there-
fore planning an automobile-dependent city.

Figure 1 shows a typical page from the fourth
edition of Trip Generation (ITE 1987b).4 It reports
the number of vehicle trips to and from fast food
restaurants on a weekday. Each point in the figure
represents one of the eight studies and shows the
number of vehicle trips per day and the floor area at
a restaurant. Dividing the number of vehicle trips by
the floor area at that restaurant gives the trip genera-
tion rate at that restaurant. A glance at the figure
suggests that vehicle trips are unrelated to floor area
in this sample. The extremely low R2 of 0.069 for
the fitted curve (regression) equation confirms this

1 The airline distance between San Diego and San Fran-
cisco is calculated from the latitudes and longitudes of the
two cities. See “How far is it?” at http://www.indo.com/
distance/. “Accurate” implies fidelity to fact and freedom
from error, while “precise” implies exactness.

2 The U.S. Department of Transportation’s 1990 Nation-
wide Personal Transportation Survey (NPTS) asked
respondents, “Did you pay for parking during any part of
this trip?” for all automobile trips made on the previous
day. Of the responses to this question, 99% were “no.”
The NPTS asked the “did you pay for parking” question
for all vehicle trips except trips that ended at the respon-
dents’ homes, thus free parking at home does not explain
this high percentage.
3 This refers to the sixth edition of Trip Generation (ITE
1997). The ITE Trip Generation Handbook (ITE 2001, p.
10) notes that the warning “Caution—Use Carefully—
Small Sample Size” is placed on each trip generation
report if the sample includes five or fewer sites. At most
sites, vehicle trips are observed during the course of only
one day.
4 The fourth edition (ITE 1987b) is shown because this is
the date of the most recent edition of Parking Generation,
to which Trip Generation will be compared. Vehicle trips
were surveyed at McDonald’s, Dunkin Donuts, Burger
Chef, and similar fast food restaurants.
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impression.5 Nevertheless, ITE reports the sample’s
average trip generation rate—which urban planners
normally interpret as the significant relationship
between floor area and vehicle trips—as precisely
632.125 trips per day per 1,000 square feet of floor
area.6 The trip generation rate looks accurate
because it is so precise, but the precision is mislead-

ing. Few transportation or land-use decisions would
be changed if the ITE reported the trip generation
rate as 632 rather than 632.125 trips per 1,000
square feet, so the three-decimal-point precision
serves no purpose other than to give the impression
of accuracy.

The equation at the bottom of figure 1 suggests
that a fast food restaurant generates 1,168 trips (the
intercept) plus 242.75 trips per 1,000 square feet of
floor area (the coefficient), but the 95% confidence
interval around the floor area coefficient ranges
from –650 to +1,141 trips per 1,000 square feet.7

Since this confidence interval contains zero, the data

FIGURE 1  Fast Food Restaurant with Drive-Through Window 
(Land Use 834)
Average Vehicle Trip Ends vs: 1,000 Square Feet
Gross Floor Area
On a: weekday
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R2 = 0.069

DIRECTIONAL DISTRIBUTION: Not available.

FITTED CURVE

284.00–1,359.00

Institute of Transportation Engineers, Trip Generation, 4th edition (Washington,  
DC: 1987), p. 1,199.

5 “The coefficient of determination [R2] is defined as the
percent of the variance in the number of trips associated
with the variance in the size of the independent variable”
(ITE 1997, vol. 3, p. 19). An R2 of zero shows complete
lack of correlation between the two variables, and one
would expect some correlation in a sample by chance. The
significance test for the regression equation shows there is
a 53% chance of getting an R2 of 0.069 or higher even if
there were no relationship between floor area and vehicle
trips.

6 ITE (1987b, p. 9) divides the sum of all vehicle trips by
the sum of all floor areas to calculate the weighted aver-
age trip generation rate.
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do not show that vehicle trips are related to floor
area. Reporting the average trip generation rate
implies that larger restaurants generate more vehicle
trips, but the figure shows that the smallest restau-
rant generated the most trips, and a mid-sized res-
taurant generated the fewest. The data plot contains
the warning “Caution—Use Carefully—Low R2,”
which is good advice, but how can we carefully use
a trip generation rate derived from data that show
no relationship between vehicle trips and floor area?
Despite its precision, the average trip generation
rate (623.125 vehicle trips per day per 1,000 square
feet) is far too uncertain to use for transportation
planning.

PARKING GENERATION

Parking generation rates, which report peak park-
ing occupancy as a function of land use, suffer
from similar uncertainty. ITE’s second, and most
recent, edition of Parking Generation (ITE
1987a, p. vii–xv8) describes the data used to esti-
mate parking generation rates.

A vast majority of the data . . . is derived from
suburban developments with little or no signifi-
cant transit ridership. . . . The ideal site for
obtaining reliable parking generation data
would . . . contain ample, convenient parking
facilities for the exclusive use of the traffic gen-
erated by the site. . . . The objective of the survey
is to count the number of vehicles parked at the
time of peak parking demand.

Half the 101 parking generation rates are based on
4 or fewer studies, and 22% are based on 1 study.
The parking generation rates thus typically measure
the peak parking demand observed at a few subur-
ban sites with ample free parking but little or no
transit ridership. Urban planners who use these
parking generation rates to set minimum parking
requirements therefore shape a city where everyone
will drive wherever they go and park free when they
get there.

Figure 2 shows the page for fast food restaurants
from the most recent edition of Parking Generation

(ITE 1987a). Each point in the plot represents one
study (based on the observations at one site on one
day). For example, if parking occupancy was
observed at one restaurant for five days, this was
counted as five studies.9 Dividing the peak parking
occupancy observed in a study by the floor area at
the restaurant gives the parking generation rate for
the study. The parking generation rates in the 18
studies range between 3.55 and 15.92 spaces per
1,000 square feet of leasable floor area. The largest
restaurant in the sample generated one of the lowest
peak parking occupancies, while a mid-sized restau-
rant generated the highest. The R2 of 0.038 for the
equation at the bottom of the figure confirms the
visual impression that parking demand is unrelated
to floor area in this sample. Nevertheless, ITE
reports the average parking generation rate for a
fast food restaurant as precisely 9.95 parking spaces
per 1,000 square feet of floor area.10 

Again, the precision is misleading. The fitted
curve equation at the bottom of figure 2 suggests
that a fast food restaurant generates a peak parking
demand of 20 spaces plus 1.95 spaces per 1,000
square feet of floor area, but the 95% confidence
interval around the floor area coefficient ranges
from –3 to +7 spaces per 1,000 square feet. Since
this confidence interval contains zero, the data do

7 The confidence interval around the coefficient of floor
area was calculated by re-estimating the regression equa-
tion from the eight observations in the data plot.
8 ITE expects to publish a new edition of Parking Genera-
tion in 2003.

9 It appears that eight restaurants were observed for one
day, one restaurant was observed for two days, and two
restaurants were observed for four days. We are not told
the hour(s), the weekday, or the month when parking
occupancy was observed. The 18 studies of parking occu-
pancy at fast food restaurants are an unusually large sam-
ple. In contrast, consider the report on Technical Colleges
(Land Use 541). Parking occupancy was observed for one
hour on one day at one site, and on this basis the parking
generation rate for a technical college is reported as 0.82
parking spaces per student (ITE 1987a, p. 88). Parking
occupancy was observed for only one or two hours for
many of the studies in Parking Generation. Because only
the peak occupancy at a site is needed to calculate a park-
ing generation rate, the observer’s main concern is to
report the peak number of cars parked during the hour(s)
of expected peak demand.
10 The significance test for the regression equation shows
there is a 42% chance of getting an R2 of 0.038 or higher
even if there were no relationship between floor area and
parking occupancy. ITE (1987a, p. viii) divides the sum of
all parking generation rates by the number of studies to
calculate the unweighted average parking generation rate.
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not show that parking demand is related to floor
area.11 The average parking generation rate of 9.95
spaces per 1,000 square feet is due mainly to the
intercept, which is independent of floor area.12

Predicting a parking demand of 26 spaces for every
restaurant in this sample—regardless of restaurant
size—produces about the same average error as

predicting a parking demand of 9.95 spaces per
1,000 square feet.13

We cannot say much about how floor area affects
either vehicle trips or parking demand, because the
95% confidence interval around the floor area
coefficient includes zero in both cases.14 This is not to
say that vehicle trips and parking demand are unre-
lated to a restaurant’s size, because common sense
suggests some correlation. Nevertheless, factors other

FIGURE 2  Fast Food Restaurant with Drive-In Window
(Land Use 836)
Peak Parking Spaces Occupied vs: 
1,000 Gross Square Feet Leasable Area
On a: weekday
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Institute of Transportation Engineers, Parking Generation, 2nd edition  
(Washington, DC: 1987), p. 146.

11 The confidence interval around the coefficient of floor
area was calculated by re-estimating the regression equa-
tion from the 18 observations in the data plot.
12 Because the intercept is 20 spaces and the average floor
area is 3,000 square feet, the average parking generation
rate would be 6.7 spaces per 1,000 square feet even if the
coefficient of floor area were 0.

13 The average peak parking occupancy for the 8 studies
was 26 spaces.
14 Statistical insignificance does not imply that floor area
has no effect on parking demand or vehicle trips; rather, it
means that floor area does not reliably predict either vari-
able.
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than the floor area explain most of the variation in
vehicle trips and peak parking occupancy at these res-
taurants. Size does not matter much in these two
samples of parking and trip generation, and it is mis-
leading to publish precise average parking and trip
generation rates based on floor area.

Parking generation rates are hardly scientific, but
the authority inherent in ITE publications often
means that planners automatically regard ITE rates
as scientifically valid and do not examine them fur-
ther. ITE offers a precise number without raising
difficult public policy questions, although it does
warn, “Users of this report should exercise extreme
caution when utilizing data that is based on a small
number of studies” (ITE 1987a, p. vii). Neverthe-
less, many planners recommend parking generation
rates as minimum parking requirements. For exam-
ple, the median parking requirement for fast food
restaurants in the United States is 10 spaces per
1,000 square feet—almost identical to ITE’s reported
parking generation rate.15 

STATISTICAL SIGNIFICANCE

The combination of extreme precision and statisti-
cal insignificance for the parking and trip genera-
tion rates for a fast food restaurant raises an
important question: how many of the parking and
trip generation rates for other land uses are statisti-
cally significant? The fourth edition of Trip Gener-
ation (ITE 1987b) does not state a policy on
statistical significance, but it does show the plots
and equations for most land uses with more than
two data points. Nevertheless, it fails to show the
plots and equations for some land uses with more
than 10 data points. For example, consider the
report of trip generation at recreational land uses.
ITE presents 14 studies of trip generation at recre-
ational land uses but says “No Plot or Equation
Available—Insufficient Data.” The trip generation
rates in the 14 studies range from a high of 296 to
a low of 0.066 trips per acre on a weekday: a ratio
of 4,500 to 1. Given this wide range, reporting the

average trip generation rate as precisely 3.635 trips
per acre is clearly misleading.16

ITE first stated a policy regarding statistical sig-
nificance in the fifth edition of Trip Generation (ITE
1991, p. I-8):

Best fit curves are shown in this report only
when each of the following three conditions are
met:

• The R2 is greater than or equal to 0.25.

• The sample size is greater than or equal to 4.

• The number of trips increases as the size of the
independent variable increases.17

The third criterion is notably unscientific. For exam-
ple, suppose the R2 is greater than 0.25 and the sam-
ple size is greater than four, but vehicle trips
decrease as floor area increases (i.e., the first two
criteria are met but the third is not). In this case, ITE
would report the average trip generation rate
(which implies that vehicle trips increase as floor
area increases), but not the regression equation that
would cast doubt on this rate. The stated policy,
therefore, omits evidence that would contradict the
presumed relationship.

Figure 3 from the fifth edition of Trip Generation
(ITE 1991) shows how these three criteria affect the
report of trip generation at a fast food restaurant. It
shows the same eight data points from the fourth edi-
tion, but it omits the regression equation, the R2, and
the warning “Caution—Use Carefully—Low R2.”
The omitted R2 remains 0.069 because the data are

15 The Planning Advisory Service (1991) surveyed the park-
ing requirements in 127 cities. The median of 10 spaces per
1,000 square feet applies to cities that base their require-
ments for fast food restaurants on gross floor area.

16 In the fourth edition of Trip Generation, Land Use 400
(Recreational) includes bowling alleys, zoos, sea worlds,
lakes, pools, and regional parks (ITE 1987b, p. 537).
17 ITE gives no explanation for showing the regression
equation and the R2 only when all three criteria are met.

Peak Parking Occupancy vs. Parking Demand

A big difference exists between “parking occupancy”
and “parking demand.” Transportation engineers
define the former as the number of parked cars.
Economists define the latter as the functional
relationship between the price of parking and the
number of parked cars, and they define the actual
number of parked cars at any time as the quantity of
parking demanded at a specific price. Economists call
the peak parking occupancy observed at a site that
offers free parking the quantity of parking demanded
at a zero price at the time of peak parking demand.
These differing definitions show the confusion that can
result when ITE’s parking generation rates are loosely
referred to as parking demand.
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unchanged from the fourth edition, but the fifth
edition is more cautious about needless precision; it
truncates the average trip generation rate from
632.125 to 632.12 trips per 1,000 square feet.18

ITE revised its reporting policy in the sixth (most
recent) edition of Trip Generation (ITE 1997, p.
19). Regression equations are shown only if the R2

is greater than or equal to 0.5, while the other two

criteria remain the same (the sample size is four or
more, and vehicle trips increase as the independent
variable increases). Figure 4 shows the sixth edi-
tion’s report of trip generation at a fast food restau-
rant. The number of studies increased to 21, and the
average trip generation rate fell to 496.12 trips per
1,000 square feet. The R2 is below 0.5, but we are
not told what it is. Since the fifth edition’s rate was
632.12 trips per 1,000 square feet, anyone compar-
ing the two editions might conclude that vehicle trips
at fast food restaurants declined 22% between 1991
and 1997. But since both the previous rate (632.12)
and the new one (496.12) were derived from data

FIGURE 3  Fast Food Restaurant with Drive-Through Window 
(Land Use 834)
Average Vehicle Trip Ends vs:
1,000 Square Feet Gross Floor Area
On a: weekday
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Institute of Transportation Engineers, Trip Generation, 5th edition  
(Washington, DC: 1991), p. 1,308.

18 Figure 3 (from the fifth edition) also differs from figure 1
(from the fourth edition) in two other respects. First, the
directional distribution of vehicle trips was “not available”
in 1987, but for the same data became “50% entering,
50% exiting” in 1991. Second, the standard deviation was
not reported in 1987 but was reported as 266.29 in 1991.
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that show almost no relationship between floor area
and vehicle trips, this decline seems unlikely.19

The 1997 edition shows regression equations for
only 34% of the trip generation rates, which means
that 66% of the 1,515 trip generation rates fail to
meet at least one of the three criteria. This statistical

insignificance is not surprising given that circum-
stances vary enormously among different sites for
the same land use (e.g., a fast food restaurant).
Floor area is only one among many factors that
influence vehicle trips at a site, and we should not
expect floor area or any other single variable to
accurately predict the number of vehicle trips at any
site or land use.20

FIGURE 4  Fast Food Restaurant with Drive-Through Window 
(Land Use 834)
Average Vehicle Trip Ends vs: 1,000 Square Feet Gross Floor Area
On a: weekday
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Actual Data Points ----- Average Rate

Fitted Curve Equation: Not given R2= ****

Number of Studies: 21
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Directional Distribution: 50% entering, 50% exiting

Institute of Transportation Engineers, Trip Generation, 6th edition (Washington,  
DC: 1997), p. 1,401.

19 If the 8 studies from the fourth (ITE 1987b) and fifth
(ITE 1991) editions are included among the 21 studies
reported in the sixth (ITE 1997) edition, the average trip
generation rate for the 13 new studies must be well below
496.12 in order to reduce the average rate for the 21 stud-
ies to 496.12. All of the 8 study sites in the fourth and
fifth editions were exactly 2,000, 3,000, or 4,000 square
feet, but none of the 21 study sites in the sixth edition
matched these sizes.

20 Trip generation rates are a stripped-down version of
the gravity model for travel forecasting. The gravity
model predicts aggregate traffic between origin and desti-
nation zones as a function of zone sizes and generalized
travel cost, while trip generation rates predict traffic to
and from one site as a function of floor area (or another
variable) at that site, without reference to cost.
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Although 66% of the trip generation rates fail to
meet ITE’s significance criteria, ITE nevertheless
publishes a precise trip generation rate for every land
use. For example, a report of trip generation at truck
terminals (figure 5) presents two sites, with the larger
site generating fewer vehicle trips. Nevertheless, ITE
reports the average trip generation rate as precisely
81.90 vehicle trips per acre on a weekday and plots a
line that suggests larger sites generate more vehicle
trips.

Reporting statistically insignificant estimates
with misleading precision creates serious problems,
because many people rely on the ITE manuals to
predict how urban development will affect parking
and traffic. When estimating the traffic impacts of
development, for example, developers and cities
often debate over whether a precise trip generation
rate is correct. Some cities even base zoning catego-
ries on trip generation rates. Consider this zoning
ordinance in Beverly Hills, California:

The intensity of use shall not exceed either six-
teen (16) vehicle trips per hour, or 200 vehicle
trips per day for each 1,000 gross square feet of
floor area for uses as specified in the most recent
edition of the Institute of Traffic Engineers’ pub-
lication entitled Trip Generation.21

The precise but uncertain ITE data thus govern
which land uses the city will allow.

Parking and trip generation rates are difficult to
challenge once they are incorporated into municipal
codes. Planning is an inherently uncertain activity,
but the legal system of land-use regulation makes it
difficult to acknowledge uncertainty in planning
regulations. Calling attention to the flaws in the
reporting of the parking and trip generation rates
would expose land-use decisions to countless law-
suits from developers, neighborhood groups, and
property rights advocates, all of whom could rightly
question the legitimacy of the reasoning used to
establish off-street parking requirements and to
argue for either more or less parking. This desire for
the appearance of certainty explains why transpor-

tation engineers, urban planners, developers, and
elected officials rely on precise point estimates—
rather than ranges—to report the highly uncertain
parking and trip generation rates.

PLANNING FOR FREE PARKING

ITE’s parking and trip generation rates can create
serious problems when they are used for urban
planning. Most ITE samples are too small to draw
statistically significant conclusions, and ITE’s method
of collecting data skews observations toward sites
with high parking and trip generation rates. Larger
samples might solve the problem of statistical insig-
nificance, but a basic problem with parking and trip
generation rates would remain: they measure the
peak parking demand and the number of vehicle trips
at suburban sites with ample free parking. This situ-
ation is troubling, because ITE rates greatly influence
the outcome of transportation and land-use planning,
ultimately contributing to decisions that result in
more traffic, lower density, and more urban sprawl.

To explain how ITE’s parking and trip generation
rates influence transportation and land-use plan-
ning, consider what appears in practice to be the
six-step process of planning for free parking in the
United States. 

� Step 1. Transportation engineers survey the peak
parking demand at a few suburban sites with
ample free parking but no transit service, and
ITE publishes the results in Parking Generation
with misleading precision. 

� Step 2. Urban planners consult Parking Genera-
tion to set minimum parking requirements. The
maximum observed parking demand thus
becomes the minimum required parking supply. 

� Step 3. Developers provide all the parking that
planners require, and the ample supply of park-
ing drives the price of most parking to zero,
which increases vehicle travel. 

� Step 4. Transportation engineers survey vehicle
trips to and from suburban sites with ample free
parking but no transit service, and ITE publishes
the results in Trip Generation with misleading
precision. 

21 Section 10-3.162(5) of the Beverly Hills Municipal
Code. (ITE changed its name from the Institute of Traffic
Engineers to the Institute of Transportation Engineers in
1976.)
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� Step 5. Transportation planners consult Trip

Generation as a guide to design the transporta-
tion system with adequate capacity to bring cars

to the free parking.22 

� Step 6. Urban planners limit density so that
development with ample free parking will not

generate more vehicle trips than nearby roads can
carry. This lower density spreads activities farther
apart, further increasing both vehicle travel and
parking demand. 

We come full circle when transportation engi-
neers again survey peak parking demand at subur-
ban sites that offer free parking but no transit
service and find that more parking spaces are
“needed.” Misusing precise numbers to report
uncertain data gives a veneer of rigor to this elabo-
rate but unscientific practice, and the circular logic
explains why planning for transportation and land
use has contributed to increased traffic and sprawl.

FIGURE 5  Truck Terminal 
(Land Use 030)
Average Vehicle Trip Ends vs: Acres
On a: weekday
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Institute of Transportation Engineers, Trip Generation, 6th edition (Washington,  
DC: 1997), p. 66.

22 Transportation planners often use the Urban Transpor-
tation Modeling System (UTMS) to predict modal flows
on links between zones in a network, and the first of the
four major steps in the UTMS model is “trip generation.”
The four-step UTMS model is thus used to carry out step
5 of the six-step process of planning for free parking.
Meyer and Miller (2001) explain the UTMS model.



SHOUP 11

The ITE manuals do not cause this circular pro-
cess, which started long before ITE began collecting
data on parking and trip generation. In 1965,
economist Edgar M. Hoover described the circular
planning process in words that still apply today:

In practice, the separation of highway-building
programs from parking programs (they are in
different and quite independent bureaucracies or
authorities) introduces a still further pernicious
element. We know the story of the man who
took another piece of bread in order to finish his
butter, then another piece of butter in order to
finish his bread, and so on till he burst. Simi-
larly, every provision of new freeways into a
congested area heightens the observed demand
and the public pressure for more parking facili-
ties; every additional downtown parking garage
heightens the demand for more new freeways to
bring people to it; and so on back and forth
indefinitely. Each of the two independent public
authorities involved can argue persuasively that
it is merely trying to keep up with an undeniably
strong and growing demand. (Hoover 1965, pp.
188–189)

The main change that has occurred since 1965 is
that engineers and planners now have precise parking
and trip generation data to quantify the “undeniably
strong and growing demand” for parking and high-
ways. The interaction between transportation engi-
neers and urban planners in gathering and
interpreting these data helps to explain why planning
for parking in the United States is essentially planning
for free parking. Urban planners set parking require-
ments without taking into account the price of park-
ing, the cost of parking spaces, the local context, or
the wider consequences for transportation, land use,
the economy, and the environment.

ITE warns users to be careful when the R2 is low
(although it removed this warning from the plots of
trip generation rates in the two most recent editions
of Trip Generation). ITE also advises users to
modify trip generation rates in response to spe-
cial circumstances.

At specific sites, the user may want to modify
the trip generation rates presented in this docu-
ment to reflect the presence of public transpor-
tation service, ridesharing or other TDM
measures, enhanced pedestrian and bicycle trip-
making opportunities, or other special charac-
teristics of the site or surrounding area. (ITE
1997, vol. 3, p. 1)

Nevertheless, ITE does not suggest how a user
might modify the rates in response to any special
characteristics of a site or its surrounding area,
and the price of parking is prominently not on the
list of special characteristics that might affect trip
generation. 

Data users should always ask themselves whether
the data are appropriate for the intended purpose.
Only users can misuse data, but ITE invites misuse
when it reports statistically insignificant estimates as
precise numbers. This spurious precision has helped
to establish ITE parking requirements and trip gen-
eration rates as unquestionably authoritative in the
planning profession.

CONCLUSION: LESS PRECISION
AND MORE TRUTH

Estimates of parking and trip generation respond to a
real demand for essential information. Citizens want
to know how development will affect parking
demand and traffic congestion in their neighborhood.
Developers want to know how many parking spaces
they should provide for employees and customers.
Planners want to regulate development to prevent
problems with parking and traffic. Politicians want
to avoid complaints from unhappy parkers. These
are all valid concerns, but reporting parking and trip
generation rates with needless precision creates false
confidence in the data. To unsophisticated users,
these precise rates appear to carry the rigor of scien-
tific constants. 

When planners set parking requirements and
design the transportation system, they treat parking
and trip generation like established laws and ITE
estimates like scientific observations. But parking
and trip generation are poorly understood phenom-
ena, and they both depend on the price of parking,
an element not addressed by ITE in the two reports
discussed. Demand is a function of price, not a fixed
number, and this does not cease to be true merely
because transportation engineers and urban planners
ignore it. Most cities are planned on the unstated
assumption that parking should be free—no matter
how high the cost or how small the benefit.
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American motor vehicles consume one-eighth of
the world’s total oil production, and ubiquitous free
parking contributes to our automobile dependency.23

What can be done to improve this situation? Here are
four recommendations: 

1. ITE should state in the report for each park-
ing and trip generation rate that this rate
refers only to suburban sites with ample free
parking but no public transit, pedestrian
amenities, or TDM programs.

2. ITE should show the regression equation
and the R2 for each parking and trip genera-
tion report and state whether the coefficient
of floor area (or other independent variable)
in the equation is significantly different from
zero.

3. ITE should report the parking and trip gen-
eration rates as ranges, not as precise point
estimates.

4. Urban planners should recognize that even if
the ITE data were accurate, using them to
set parking requirements would dictate an
automobile-dependent urban form with free
parking everywhere.

Both transportation engineers and urban plan-
ners should ponder this warning from Lewis Mum-
ford: “The right to have access to every building in
the city by private motorcar, in an age when every-
one possesses such a vehicle, is actually the right to
destroy the city.” (Mumford 1981)

Parking and trip generation rates illustrate a famil-
iar problem with statistics used in transportation
planning, and placing unwarranted trust in the accu-
racy of these precise but uncertain data leads to bad
transportation and land-use policies. Being roughly
right is better than being precisely wrong. We need
less precision—and more truth—in transportation
planning.
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Discussion

CARL H. BUTTKE

Consulting Transportation Engineer

EUGENE D. ARNOLD, JR.

Virginia Transportation Research Council

Mr. Shoup’s article, “Truth in Transportation Plan-
ning,” tends to view the Institute of Transportation
Engineers’ (ITE) Trip Generation, 6th edition and
Parking Generation, 2nd edition reports as manuals
to be followed step by step rather than as informa-
tional reports to be used to help guide transporta-
tion planning and development decisions. The
intended purpose of the documents is stated in the
reports. For example, page ix of the Trip Genera-
tion User’s Guide contains the following: 

ITE Informational Reports are prepared for
informational purposes only and do not include
ITE recommendations on the best course of
action or the preferred application of the data. 

It is important to note that Trip Generation does
not represent a quick fix for transportation prob-
lems or a shortcut to planning procedures; rather, it
serves as a foundation on which the professional
engineer can build his or her own knowledge and
experience and apply this knowledge to any given
transportation-related situation. The intended users
who estimate vehicle trip generation or parking
demand are transportation professionals trained in
mathematics, statistics, traffic engineering, and plan-
ning fundamentals and who possess engineering
judgment.

ITE’s reports provide a compilation of available
data collected from numerous sources. In the sixth
edition of Trip Generation, data are combined from
more than 3,750 individual trip generation studies.
This information is by no means all inclusive; how-
ever, it represents the best information available at the
time of publication. ITE’s Trip Generation report is
updated regularly to include supplemental informa-
tion as it becomes available.

Some of Shoup’s commentary, examples, and
assertions are directed to the fourth and fifth editions
of Trip Generation. While many of these references
are used to make a point, some of the discussion is

not relevant as the data, assumptions, and reporting
techniques are updated and improved from edition
to edition. Further, we expect that transportation
professionals will use the latest edition to obtain the
most recent knowledge and data available.

In his article, Shoup correctly points out that
reporting statistics with “extreme precision may sug-
gest confidence in their accuracy.” He also rightfully
acknowledges that generation rates such as 623.12
could be reported as 623 and not affect the accuracy
of the calculation. However, there are also many
instances in Trip Generation where rates presented
with two decimal places are appropriate at that level
of precision (e.g., as a rate of 0.57 pm peak-hour trips
per occupied room of a business hotel, or 7.27 week-
day trips per occupied room). When developing the
first edition of Trip Generation, the Trip Generation
Committee wrestled with this issue of decimal place-
ment and decided to be consistent in reporting all
rates with two decimal places. 

Shoup also notes that, from a statistical stand-
point, some of the independent variables used are
simply not related to trips (e.g., he points to an
extremely low R2 value). This may be a valid point;
however, in many instances the particular indepen-
dent variable is chosen because it is the only infor-
mation available in the early stages of development
when these analyses are often undertaken. To that
end, the Trip Generation User’s Guide (vol. 3, p. 21)
notes that: “Selecting an appropriate method for
estimating trips requires use of engineering judg-
ment and a thorough understanding of the three
methodologies….”

In reference to Shoup’s remarks regarding figure 4,
the only independent variables available for this land
use for measuring weekday trips were gross square
feet and seats. We acknowledge that it is the custom-
ers and employees who make the trips, but these data
were not available when the measurements were
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made and are rarely known when estimating pro-
posed traffic impacts. Page 14 of the User’s Guide
addresses the variation in the statistics: 

These variations may be due to the small sample
size, the individual marketing of the site, eco-
nomic conditions of the business market, the
geographic location of sites studied, or the
unique character of the specific site. Accord-
ingly, judgment must be exercised in the use of
the statistics in this report.

Shoup continues with a dialogue regarding ITE’s
advice to users to modify trip rates in response to
special situations, such as the presence of public
transportation service, ridesharing, and enhanced
pedestrian facilities. We feel it is appropriate for ITE
to point out potential cautions with the use of data
without necessarily providing a solution if it cannot
be supported by current research. 

In Shoup’s conclusion, he recommends that Trip
Generation data be reported as ranges and not as
precise point estimates. Current editions of Trip
Generation and Parking Generation do provide
ranges, average rates, and a data plot. This diversity
in data presentation provides the user with a more
comprehensive look at the data. Additionally, page
18 of the User’s Guide provides a detailed descrip-
tion of a sample data page.

To produce resources supporting Trip Genera-
tion, ITE relies on the voluntary submittal of data
from the transportation community. Calls for the

submission of data have been ongoing over the
years, with the intent to provide additional data to
assist transportation professionals. ITE’s openness
about the availability of data can be seen on page
one of the User’s Guide: 

In some cases, limited data were available; thus,
the statistics presented may not be truly repre-
sentative of the trip generation characteristics of
a particular land use.

Such cautionary statements run throughout both
the Trip Generation and the Parking Generation
informational reports.

Trip Generation, 7th edition, and Parking Gener-
ation, 3rd edition, are slated for release in 2003.
Data collected from various sources, as well as com-
ments, including those provided by Shoup, are
reviewed and taken into consideration during the
revision process. ITE’s intent is to provide a helpful
resource that will guide transportation professionals
in their decisionmaking.

Editor-in-Chief’s Note: The discussants were chosen by the
Institute of Transportation Engineers.

Author Addresses: Corresponding author—Eugene Arnold,
Senior Research Scientist, Virginia Transportation Research
Council, 530 Edgemont Road, Charlottesville, VA 22903.
Email: Gene.Arnold@VirginiaDOT.org.

Carl Buttke, Consulting Transportation Engineer, PO Box
2740, Hailey, ID 83333. Email: buttke@tripgeneration.
com.
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Rejoinder

DONALD C. SHOUP

Carl Buttke and Eugene Arnold argue that nothing is
wrong with the Institute of Transportation Engi-
neers’ (ITE) Trip Generation and Parking Genera-
tion. In part, their confidence may derive from their
assumption that “the intended users . . . are trans-
portation professionals trained in mathematics,
statistics, traffic engineering, and planning funda-
mentals and who possess engineering judgment.”
But the actual users are a much broader and more
diverse group. The ITE itself says, “Trip Generation
is an educational tool for planners, transportation
professionals, zoning boards, and others who are
interested in estimating the number of vehicle trips
generated by a proposed development” (ITE 1997,
vol. 3, p. ix). Many of these people are not trained
in mathematics, statistics, and traffic engineering.
Zoning boards are rarely trained in anything—they
are elected or appointed to their positions, perform
their duties as volunteers, and rely heavily on
references such as Parking Generation and Trip
Generation. They will not realize that the reported
rates are often statistically insignificant and refer
only to suburban sites with ample free parking and
no public transit.

I would like to address three issues that Buttke
and Arnold raise, and make a recommendation.

SIGNIFICANT DIGITS

ITE’s convention of rounding every parking and trip
generation rate to two digits after the decimal point
blurs the distinction between precision and accuracy.
Buttke and Arnold agree that the two-digits-after-the-
decimal-point convention leads to inappropriate pre-
cision in some instances, but then say,

There are also many instances in Trip Genera-
tion where rates presented with two decimal
places are appropriate at that level of precision
(e.g., as a rate of 0.57 pm peak-hour trips per
occupied room of a business hotel, or 7.27
weekday trips per occupied room).

But Trip Generation’s estimate of 7.27 weekday
trips per occupied room of a business hotel is based
on only one observation.1 It illustrates perfectly the
statistical insignificance and inappropriate preci-
sion of many parking and trip generation rates.

An estimate always has some associated uncer-
tainty. The number of significant digits used to
express an estimate should reflect this uncertainty.
The least significant digit in a number is the one far-
thest to the right, and the accuracy of any number is
usually assumed to be ±1 of the least significant digit,
unless stated otherwise. In a typical engineering con-
text, one would assume that an estimate expressed
with five significant digits had been measured more
accurately than an estimate expressed with only two
significant digits. Because the number of significant
digits used to express an estimate should be related to
the uncertainty surrounding the estimate, the ITE’s
automatic two-digits-after-the-decimal-point conven-
tion is inappropriate and unscientific. 

Buttke and Arnold note that the Trip Generation
Committee wrestled with the issue of decimal place-
ment in preparing the first edition of Trip Genera-
tion in 1976, and decided to be consistent in
reporting all rates with two digits after the decimal
point.2 Accuracy is more important than digits-
after-the-decimal-point consistency, however, and
one should not use more (or less) precision than is
warranted simply for the sake of uniformity.
Precision refers to the number of significant digits,
not to the number of digits after the decimal point.

1 ITE (1997, vol. 1, p. 543). The estimate of 0.57 pm
peak-hour trips per occupied room is based on only four
studies.
2 The first (1976), second (1979), and third (1983) edi-
tions of Trip Generation report some rates with no digits
after the decimal point and other rates with one or two
digits after the decimal point. The fourth (1987) edition
reports all rates with three digits after the decimal point.
The fifth (1991) and sixth (1997) editions report all rates
with two digits after the decimal point.
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MISUSE

Statistically sophisticated users understand the
extreme uncertainty of trip generation rates and can
ignore the false precision. But many users are not sta-
tistically sophisticated. To them, ITE’s trip generation
rates are the relationship between transportation and
land use. Some zoning codes explicitly specify ITE’s
trip generation rates as the basis for making land-use
decisions and as the basis for assessing traffic impact
fees, regardless of the sample size or statistical signifi-
cance of the rates.

In Signal Hill, California, for example, the traffic
impact fee is $66 per daily vehicle trip generated by
a development project. The number of trips is calcu-
lated by multiplying the size of the project times its
trip generation rate “as set forth in the most recent
edition of the Traffic [sic] Generation manual of the
Institute of Transportation Engineers.”3 The sixth
edition’s trip generation rate for a fast food restau-
rant is 496.12 trips per 1,000 square feet, so Signal
Hill’s traffic impact fee is $32.74 per square foot of
restaurant space. The uncertain trip generation rates
thus determine cities’ tax rates.

FREE PARKING

Buttke and Arnold conclude that “ITE’s intent is to
provide a helpful resource that will guide transporta-
tion professionals in their decisionmaking.” Spurious
precision is not a real impediment for this purpose,
although it is misleading.4 The real problem with
Parking Generation and Trip Generation is that they
measure the peak parking demand and the number
of vehicle trips at suburban sites with ample free
parking and no public transit. Using these precise but
poorly understood parking and trip generation rates
as a guide to planning leads to bad transportation

and land-use decisions. Parking Generation and Trip
Generation are helpful resources in designing cities
where everyone will drive everywhere they go and
park free when they get there.

RECOMMENDATION

What can be done to make the ITE reports more
reliable? The British counterpart to Trip Generation
suggests some possible improvements. The “Trip
Rate Information Computer System” (TRICS) gives
full information about the characteristics of every
surveyed site and its surroundings.5 Users can thus
estimate a trip generation rate based on sites compa-
rable to the one under consideration. In addition to
counts of vehicles, TRICS also includes counts of all
the people (pedestrians, cyclists, public transport
users, and car occupants) who arrive at and depart
from a site. By including more than vehicle trips,
TRICS takes a broader view of transportation.
When all modes are included, the person trip rates
are often much higher than the vehicle trip rates.

With its narrow focus on counting cars at subur-
ban sites with free parking, Trip Generation pre-
sents a precise but uncertain, skewed, and
incomplete measure of the relationship between
transportation and land use in the United States.
Fortunately, the ITE’s Parking and Trip Generation
Committees seek to improve each successive edition
of Parking Generation and Trip Generation. In
future editions, they should settle for less precision,
and strive for more accuracy.

3 Section 21.48.020 of the Signal Hill Municipal Code.  The
code is available online at http://www.ci.signal-hill.ca.us/
homepage.php.
4 Even if everyone who refers to Parking Generation and
Trip Generation were an engineer or statistician, that does
not excuse  unjustified precision.  Journalists do not casu-
ally break grammar and spelling rules just because intelli-
gent readers might be able to figure out what they mean
anyway. The burden of clarity and accuracy falls on the
writer—it cannot be shifted to the reader, no matter who
one supposes the reader to be.

5 The TRICS database is available online at http://
www.trics.org/.
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ABSTRACT

Metropolitan area trip duration distributions are an
important input for estimating area-wide running
loss emissions, operating mode fractions, and vehicle-
miles traveled accumulated on local roads in the
region. This paper discusses the formulation and
implementation of a methodology for modeling trip
durations. The approach develops a log-linear regres-
sion model of trip duration as a function of trip pur-
pose, time of day of the trip start, and other land-use
and socio-demographic characteristics of the zone of
trip start, using vehicle trip data from household
travel surveys and supplementary zonal demographic
and land-use data. A distinguishing characteristic of
the methodology is the straightforward manner in
which model parameters estimated from vehicle trip
data can be applied to obtain zonal-level trip
duration distributions. The modeling framework is
applied to develop trip duration distributions for the
Dallas-Fort Worth area of Texas. 

BACKGROUND AND SIGNIFICANCE
OF WORK

The Intermodal Surface Transportation Efficiency
Act of 1991 and the Clean Air Act Amendments of
1990 require localities not meeting the National

KEYWORDS: local-road VMT, MOBILE emissions factor
model, mobile source emissions, operating mode fractions,
running loss emissions, trip duration.
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Ambient Air Quality Standards set by the Environ-
mental Protection Agency (EPA) to demonstrate
area-wide conformity with mobile source emissions
budgets established in their respective state imple-
mentation plans. For such conformity analyses, the
Mobile Source Emissions Factor Model (MOBILE)
is generally used.1

The emissions factor models use traffic-related
data as inputs. Regional vehicle trip duration distri-
bution data are one type and are important for
several reasons. First, the trip duration distribution
provides information for developing trip duration
activity parameters used by the MOBILE emissions
factor model to estimate running loss emissions.
Running loss emissions are evaporative emissions
that escape from a vehicle while the engine is oper-
ating (from spots where the vehicle’s evaporative/
purge system has become inoperative). Due to
greater heating of the engine fuel and evaporative
system on longer trips, running loss emissions con-
tinue to increase as a function of trip duration until
the emissions reach a plateau at a trip duration of
about 50 to 60 minutes (Glover and Brzezinski
2001). Second, the trip duration distribution enables
the estimation of operating mode fractions, which are
needed by MOBILE5 to calculate emissions rates.
Third, the trip duration distribution can be used to
predict the vehicle-miles traveled (VMT) on local
roads in the region. 

Trip duration is likely to depend on various fac-
tors such as the trip purpose, the time of day the trip
began, and other land-use and socio-demographic
characteristics of the zone of the trip start. In this
paper, we formulate and implement a methodology
for modeling trip durations using vehicle trip data
from household travel surveys and supplementary
zonal demographic and land-use data. The imple-
mentation is demonstrated in the context of mobile
source emissions analysis for the Dallas-Fort Worth
area in Texas. 

The next section reviews earlier studies relevant to
our subject and the motivation for our research. We
then discuss the development of the model estimation

and application framework. The following section
focuses on data sources and data assembly proce-
dures, after which we present the empirical results.
The next section discusses issues related to integrating
the trip duration model with travel demand models,
and we conclude the paper with an evaluation of the
model.

LITERATURE REVIEW AND MOTIVATION 
FOR THE STUDY

Running Loss Emissions

The methodology to estimate running loss emissions
differs from MOBILE5 to MOBILE6. In MOBILE5,
running loss emissions are modeled as a direct func-
tion of the input temperature, fuel volatility, average
speed, and trip duration. The procedure for calcu-
lating the running loss emissions entails partitioning
the vehicle trip duration into 6 time duration bins
(less than 10 minutes, 11 to 20 minutes, 21 to 30
minutes, 31 to 40 minutes, 41 to 50 minutes, and
51 minutes and longer) and obtaining the propor-
tion of VMT accumulated by trips that fall into
each time duration bin (these proportions are
referred to as the trip duration activity parameters). 

Within MOBILE5, the running loss emissions
value of an average vehicle trip is calculated as the
sum of the product of the emissions factors associ-
ated with each time duration bin (embedded within
MOBILE5) and the corresponding trip duration
activity parameter. The product of these average run-
ning loss emissions and the number of trips per day
represent the running loss emissions level. The user
can then accept default daily running loss emissions
values available within MOBILE5 (developed using
default trip-time distributions representing national
average conditions) or develop region-specific esti-
mates by using a local set of trip duration activity
parameters. The MOBILE5 manual suggests using
area-specific trip duration activity parameters to
more accurately estimate running loss emissions.

MOBILE6 advances the state-of-the-art and
practice by providing activity parameters for each
of 14 time periods in a day and by distinguishing
between weekdays and weekends. The default
MOBILE6 hourly activity estimates are based on an
EPA survey of 168 vehicles and are invariant across

1 Some metropolitan planning organizations (MPOs) still
use the MOBILE5b version of this model, although
MOBILE6 is now available. EPA has given MPOs two
years to transition to MOBILE6 from MOBILE5.
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geographic regions and trip purpose categories. Thus,
as in MOBILE5, EPA recommends the use of locally
estimated trip duration activity parameters whenever
possible. However, to our knowledge, there has been
no earlier attempt in the literature to develop such
locally estimated trip duration parameters.

In summary, using trip duration activity parame-
ters developed from local data for estimating running
loss emissions constitutes an important improvement
over using the default values embedded in the
MOBILE emissions factor model. In this paper, we
present a methodology to develop zone-specific trip
duration activity parameters that vary by time-of-day
and trip purpose using a trip duration model esti-
mated from local data.

Operating Mode Fractions

Operating mode fractions are an important input to
MOBILE5 for estimating mobile source emissions.
There are two dimensions associated with operating
mode fractions; one is the start mode of vehicle trips
(cold versus hot) and the second is the running
mode of vehicle trips (transient versus stabilized). In
an earlier paper, we focused on the start mode of
trips (Nair et al. 2002). Trip duration modeling, the
focus of this paper, affects the latter dimension of
the operating mode, that is, the running mode of
trips. To the extent that running mode fractions can
be more accurately estimated using a trip duration
model calculated from local data, such a model can
contribute toward improved mobile source emissions
forecasting. 

EPA defines the transient mode of operation as
all vehicle operations before 505 seconds after the
start of a trip and the stabilized mode as all opera-
tions after 505 seconds of a trip. EPA recommends
the following default values for running mode
fractions: transient (47.9%) and stabilized (52.1%).
Most metropolitan planning organizations (MPOs)
accept these default running mode fractions. How-
ever, these default values were developed over 20
years ago and earlier research (USEPA 1993) sug-
gests that these values may no longer adequately
represent overall vehicle emissions control perfor-
mance. In addition, the default fractions do not vary
by trip purpose, time of day, or regional land-use
and socio-demographic characteristics.

Few studies have attempted to develop locally esti-
mated running mode fractions of trips. Brodtmen
and Fuce (1984) used field data obtained by direct
on-road measurement of engine conditions to
develop running mode fractions in New Jersey. Ellis
et al. (1978) analyzed origin-destination data from
travel surveys in Alabama to develop aggregate mea-
sures of running mode fractions. Frank et al. (2000)
developed transient and stabilized mode fractions
based on vehicle trip times, using the Puget Sound
Panel Survey. Chatterjee et al. (1996) and Venigalla
et al. (1999) used a network-based approach for
modeling running modes, in which they traced the
elapsed time of vehicles from trip origins during the
assignment of trips to the highway network. Allen
and Davies (1993) have similarly used the ASSIGN
module of MINUTP, a commercially available plan-
ning model, to determine trips operating in the tran-
sient mode for the southern New Jersey area.

A limitation of the above studies is that they
compute a single set of running mode fractions for
an entire state (or for aggregate regions within a
state) and for various times of day and trip pur-
poses. In this paper, we estimate a trip duration
model using local data from a metropolitan region
and present a methodology to use this estimated
model to develop running mode fractions that vary
by zone within the region, time of day, and trip
purpose. In addition, our methodology allows for
the estimation of running mode fractions for travel
on local roads.

VMT on Local Roads 

Local roads are usually not included in the travel
demand model networks used by most MPOs; thus,
the travel speeds and volumes required to calculate
the VMT on local links are unavailable. Many
MPOs simply calculate the VMT as a percentage
(typically about 10%) of the VMT on all other
roads and use it in developing their emissions
inventories. This method is rather ad hoc in nature
and can result in VMT estimates quite different
from the actual values. A few MPOs calculate the
VMT on local roads as a product of the total intra-
zonal trips for each zone (obtained from the origin-
destination trip-interchange matrices at the end of
trip distribution) and an average intrazonal trip
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length parameter. The average intrazonal trip length
parameter is typically calculated as a function of the
total area of the zone. While this method is a sub-
stantial improvement over using a percentage of
VMT on nonlocal roads, it is still limited by the
restrictive nature of variation of the intrazonal trip
length parameter. In particular, in this method, the
intrazonal trip length (and, therefore, local VMT)
does not vary by trip purpose, time of day, and
zonal spatial attributes (other than zonal area). 

Our study develops the intrazonal trip length as a
function of time of day, purpose, and zonal
attributes. We accomplish this by estimating a trip
duration model and then multiplying the predicted
intrazonal trip duration by an estimate of average
speed on local links (it is more straightforward to
develop a direct model of intrazonal trip length, but
most household surveys collect data only on trip
duration and not trip length). 

MODEL FRAMEWORK

Our modeling approach uses vehicle trip data from
household travel surveys and zonal demographic and
land-use data from supplementary sources. The
approach develops the distribution of the duration of
trips using a log-linear regression model. The use of a
log-linear form for trip duration guarantees the non-
negativity of trip time in application of the model.

The application step of the model predicts the
trip duration distributions for each traffic analysis
zone in a metropolitan region and for each combi-
nation of time of day and trip purpose. An
important characteristic of the proposed method is
the ease with which the estimated models using
vehicle trip data can be immediately applied to
obtain zonal-level trip-time distributions. 

Model Estimation

Let q be the index for vehicle trip, t be the index for
time of day, i be the index for activity purpose (i
may be defined as a function of the activity pur-
poses at both ends of the trip q), and z be the index
for zone. Define  to be a dummy variable taking
the value 1 if vehicle trip q occurs in time period t
with trip purpose i, and 0 otherwise; define  as
another dummy variable taking the value 1 if vehi-
cle trip q is produced from zone z, and 0 otherwise.

Define Iq to be a variable that takes the value 1 if
vehicle trip q is intrazonal, and 0 otherwise. Let xz
be a vector of zonal attributes.

We assume the trip duration to be log-normally
distributed in the population of trips, and develop a
linear regression model for the duration as a func-
tion of trip purpose, time of day, and land-use and
socio-demographic characteristics of the zone of trip
production. Let dq be the duration of vehicle trip q.
Then, we write the log-linear regression equation
for the trip duration as

(1)

where
 is the generic constant to be estimated; 

the ’s (t = 1, 2,…,T; i = 1,2,…,I) are scalars cap-
turing the effects of time of day and activity pur-
pose on trip duration (these scalars are to be
estimated); 

 is a vector of parameters representing the effects
of the characteristics of the zone of trip produc-
tion (the vector  is also to be estimated).

, , and  are similar to , , and , respec-
tively, but are introduced as specific to intrazonal
trips (note that Iq takes the value 1 if vehicle trip
q is an intrazonal trip, and 0 otherwise).  is a
normally distributed random error term intro-
duced to complete the statistical specification. 
In equation (1) above, we have not allowed inter-

actions between zonal attributes xz and time of day/
trip purpose combinations ; however, this is
purely for notational convenience and for ease in
presentation of the model application step. Interac-
tions between xz and  can be included within
the model structure without any additional concep-
tual or estimation complexity. Similarly, the nota-
tion structure implies full interactions of time and
trip purpose (as defined by the dummy variable

), though more restrictive structures such as
single dimensional effects without interaction can be
imposed by appropriately constraining the  and
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 scalars across the different time/trip purpose
combinations. 

The reader will note that the inclusion of the
intrazonal dummy variable, and interactions of this
variable with exogenous variables, allows us to
accommodate separate trip duration distributions
for intrazonal vehicle trips and interzonal vehicle
trips. The model from equation (1) can be estimated
using any commercially available software with a
linear regression module. 

Model Application

Trip Duration Activity Parameters
for Running Loss Emissions
The trip duration distribution for any zone in the
study area by time period and trip purpose can be
predicted in a straightforward manner after estima-
tion of equation (1). The (log) trip duration distribu-
tion of interzonal vehicle trips in time t for trip
purpose i produced from zone z may be written as

. (2)

The superscript a in the above equation is used to
denote interzonal trips. The mean  and vari-
ance  of this distribution can be estimated from
the parameter estimates obtained in the estimation
stage. The corresponding distribution of intrazonal
vehicle trips in time t for trip purpose i in zone z
may be written as

(3)

where the superscript l is used to denote intrazonal
trips.

The objective in our effort is to obtain the fraction
of VMT accrued by trips in each of six trip duration
bins (as needed by MOBILE; see the Running Loss
Emissions section earlier in this paper) for each zone
and for each trip purpose and time-of-day combina-
tion. Let k be an index for time-bin (k = 1,2,...,6),
and let k be bounded by the continuous trip duration
value of mk–1 to the left and by mk to the right. Let
Vk be the average speed of trips in time-bin k and let

 be the fraction of trips originating in zone z that
are intrazonal.2 Then, the fraction of VMT accrued
by interzonal trips in time-bin k, during time of day
t, for trip purpose i, produced from zone z
( ) can be obtained as (the derivation of the
expression is available from the authors)

(4)

where

(5)

(6)

(7)

In the above equation structure,  represents
the proportion of interzonal trips in time period t,
for trip purpose i, produced from zone z that fall in
trip duration bin k.  represents the mean trip
duration of interzonal trips in time period t, for trip
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purpose i, produced from zone z that fall in trip
duration bin k. The product of  and  with
Vk represents the VMT accrued by interzonal trips
in time period t, for trip purpose i, produced from
zone z that fall in trip duration bin k.  rep-
resents the total VMT accrued by interzonal trips in
time period t, for trip purpose i, produced from
zone z, and is obtained by summing the VMT
across all trip duration bins. 

The fraction of VMT accrued by intrazonal trips
in time-bin k, in time t, for trip purpose i, produced
from zone z ( ) can be obtained by sub-
stituting instead of in equations (4)
through (7). 

Finally, the fraction of VMT accrued by all trips
in each time-bin k, for trip purpose i, from zone z,
during time t may be written as

(8)

Running Mode Fractions for MOBILE5

This section presents the method to obtain the
proportion of transient and stabilized trips required
as an input to MOBILE5. We begin by discussing
the approach for interzonal trips; the approach is
identical for intrazonal trips, with appropriate
replacements to reflect the mean and variance of
intrazonal trips.

Let the assumed speed of vehicles be v mph. Let
the mean of the distribution of trips of duration less
than 8.42 minutes (505 seconds) occurring in time
period t, with trip purpose i, produced from zone z
be  and let the corresponding mean of the distri-
bution of trips of duration greater than 8.42 min-
utes be  (  and  represent the means of
the right- and left-truncated normal distributions of
trip duration, respectively). 

We obtain the analytical expression for  (see
Greene 1997) as

(9)

The transient mode VMT accumulated by trips of
duration less than (or equal to) 8.42 minutes, is
given by

[Number of trips of duration ≤ 8.42
min]. Trips of duration greater than 8.42 minutes
are in the transient mode for the first 8.42 minutes
of their operation. The transient mode VMT accu-
mulated by such trips is given by

[Number of trips of duration > 8.42
min]. Therefore, the total transient mode VMT in
time period t, of purpose i, due to trips produced
from zone z is given by the following expression 

(10)

[Total number of trips]

The mean duration of trips greater than 8.42
minutes, , is given by

(11)

The VMT in the stabilized mode in time t, for trip
purpose i, originating in zone z can be obtained as

[Number of trips of
duration > 8.42 min]. 

Therefore, the expression for the VMT accumulated
in the stabilized mode is

(12)
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Finally, the fraction of VMT in transient versus
stabilized modes in zone z, during time period t,
and trip purpose i can be obtained from equations
(10) through (12).

The reader will also note that the running mode
fractions for intrazonal trips may be readily
obtained after replacing  with ,  with

, and  with , respectively, in equa-
tions (10) through (12).

VMT on Local Roads

As noted in the model estimation section, the intra-
zonal nature of a trip is captured through the inter-
action effects of Iq with exogenous determinants of
trip duration. The logarithm of the trip duration of
intrazonal trips in time t, with trip purpose i, in zone
z is normally distributed, as shown in equation (3).
It follows from this that the trip duration distribu-
tion of intrazonal vehicle trips in time t, with trip
purpose i, in zone z is log-normally distributed with a
mean  and variance  given by the following
expressions (see Johnson and Kotz 1970):

(13)

(14)

The mean trip length of intrazonal trips is the
product of  and the average speed on local
roads (which many MPOs assume to be around 20
mph; if data on the variation of average speeds with
zone, time period, and/or trip purpose are available,
the corresponding average speed may be used). The
total VMT on local roads can next be estimated as
the product of the mean intrazonal trip length and
the total intrazonal vehicle trips (obtained from the
trip distribution step in the travel demand modeling
process). Our methodology accommodates the vari-
ation in VMT on local roads with time of day, trip
purpose, and zonal socio-demographic and land-use
characteristics through the variation of the average
intrazonal trip duration with these characteristics.

To summarize this section, we presented the
formulation for a model of trip duration as a function
of trip purpose, time of day, and zonal/trip attributes.
We proposed methods that can be implemented after
estimation of the trip duration model to predict 1)

running loss emissions, 2) running mode fractions,
and 3) local road VMT. The outputs from the
application of the model are the above three
mobile source-related parameters for each time of
day and trip purpose combination and for each
zone in a planning area. The model framework can
be integrated within a broader travel demand-air
quality forecasting procedure in a straightforward
fashion, as discussed later in this paper.

DATA PREPARATION

Data Sources

The data used in the empirical analysis were drawn
from two sources: the 1996 Activity Survey con-
ducted in the Dallas-Fort Worth (D-FW) area and
the zonal land-use and demographics characteristics
file for the D-FW area. These data sources were
obtained from the North Central Texas Council of
Governments (NCTCOG).

Sample Formation

Several data assembly steps were involved in devel-
oping the sample. First, we converted the raw com-
posite (travel and nontravel) activity file into a
corresponding person trip file. Second, we identified
person trips that were pursued using a motorized
vehicle owned by the household. Third, we translated
the person trip file into a corresponding vehicle trip
file, which provided the sequence of trips made by
each vehicle in the household. In this process, we
extracted and retained information on the time of
day of each vehicle trip start, traffic analysis process
(TAP) zone of trip production, and the purpose of the
activity being pursued at the attraction-end of the
trip. Fourth, we aggregated the traffic survey zone
(TSZ) level land-use and demographic characteris-
tics to the TAP level and appended this information
to each vehicle trip start based on the TAP in which
the trip start occurs (there are about 5,000 TSZs in
the D-FW planning area). Finally, we conducted sev-
eral screening and consistency checks on the resulting
dataset from the previous steps.3 As part of this
screening process, we eliminated observations that
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3 A flow chart of this screening process is available from
the authors.



24 JOURNAL OF TRANSPORTATION AND STATISTICS V6/N1 2003

had missing data on departure times, activity pur-
poses, and/or on the TAP location of the vehicle trip
start. 

The final sample used for analysis includes
19,455 vehicle trip observations. Of these, 2,940
trips (15.1%) are intrazonal. 

EMPIRICAL ANALYSIS

Sample Description

The dependent variable of interest in our analysis is
the time duration of trips. The mean trip duration for
interzonal trips is about 21 minutes with a standard
deviation of 24 minutes, while the mean trip duration
for intrazonal trips is about 11 minutes with a stan-
dard deviation of 18 minutes (the standard deviation
is higher than the mean because of the substantial
scatter of trip duration values, particularly in the
higher end of the duration spectrum). 

Three types of variables were considered to
explain trip duration. These were: 1) trip purpose
variables indicating the purpose of the trip, 2) time-
of-day variables identifying the time of trip start,
and 3) zonal and trip attributes. Interactions among
these three sets of variables were also considered. In
the description below, we briefly highlight some of
the characteristics of these sets of variables.

Trip purpose was characterized by two dimen-
sions: whether or not the trip was produced at home
(home-based versus nonhome-based trips) and the
purpose at the attraction end of the trip (i.e., whether
the attraction end activity is work, school, social or
recreational, shopping, personal business, or other).
Of the 19,455 trips, 14,294 (73.4%) were home-
based, and this percentage is independent of the
intrazonal or interzonal nature of trips (see table 1).
However, the percentage of interzonal trips with
work as the attraction end is higher than the percent-
age of intrazonal trips with work as the attractor end. 

The time-of-day variables were associated with
one of the following six time periods: morning (mid-
night–6:30 a.m.), a.m. peak (6:30 a.m. –9:00 a.m.),
a.m. off peak (9:00 a.m.–noon), p.m. off peak
(noon–4:00 p.m.), p.m. peak (4:00 p.m.–6:30 p.m.),

and evening (6:30 p.m.–midnight). The time periods
for the a.m. and p.m. peaks were based on the peak
period definitions employed by the NCTCOG
transportation department in the D-FW area. The
times for the offpeak periods were determined by
splitting the remaining blocks of time at noon and
midnight. The distribution of intrazonal and inter-
zonal trips by time of day is presented in table 2. In
general, the distributions by time of day are rather
similar across intrazonal and interzonal trips.

We considered several zonal (TAP-level) land-use
and demographic characteristics in our analysis. Of
these, the following zonal attributes were significant
determinants of trip duration: total zonal area,
zonal household density, acreage in retail facilities,
acreage in office space, number of people in service
employment, acreage in institutional facilities (e.g.,
hospitals and churches), acreage in manufacturing
and warehousing facilities, zonal median income,
and presence of airports or airport-related infra-
structure in the zone. The trip-related attribute
included in the model was an indicator variable for
whether or not the trip was intrazonal. 

TABLE 1  Distribution of Trips by Trip Purpose

Trip purpose

Percentage distribution for

Intrazonal Interzonal

Production end
Home 73.4% 73.5%
Nonhome 26.6% 26.5%

Attraction end
Work 12.0% 22.3%

School 3.2% 2.4%

Social/recreational 10.2% 11.3%
Shopping 6.9% 6.3%

Personal business 40.0% 41.5%

Other 27.8% 16.2%

TABLE 2  Distribution of Trips by Time of Day

Time of day
of trip start

Percentage distribution for
Intrazonal Interzonal

Morning 1.5% 4.0%

a.m. peak 22.4% 21.0%
a.m. offpeak 13.5% 12.8%

p.m. offpeak 28.4% 23.5%

p.m. peak 19.0% 22.6%
Evening 15.1% 16.1%
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We obtained the final model specification of trip
duration by systematically eliminating statistically
insignificant variables and combining those found
to have similar and comparable effects in terms of
magnitude and significance. 

Results of the Trip Duration Model

The empirical results for the log-linear regression
model are presented in table 3, which provides the
estimated values of , , , , and  (t =
1,2,…,T; i = 1,2,…,I) in equation (1). All the coeffi-
cients are statistically significant at a level of 0.02 or
lower (except for the school attraction end coeffi-
cient, which is significant only at about the 0.15
level). The R2 value (bottom of the table) is about
0.2, which indicates that the model does better than a
naive model that predicts the average (log) duration
value for all trips. However, the low R2 value also
suggests room for further specification improvement
in future studies.

The trip purpose variables were included with
nonhome-based trips as the base category (for
home-based vs. nonhome-based trips) and with
work as the base attraction end activity. The time-
of-day variables were introduced with the evening
period as the base category. The morning period is
combined with the a.m. peak period because of the
very small fraction of trips in the morning period (as
can be observed in table 1). 

The positive coefficient on the home-based trip
variable under the trip purpose category in table 3
indicates that home-based trips tend to be signifi-
cantly longer than nonhome-based trips. The coeffi-
cients on the attraction end variables under the trip
purpose category need to be interpreted jointly with
the time-of-day and trip purpose interaction effects.
The results show that work trips are of the longest
duration across all times of the day and purposes,
except for school trips pursued during the midday/
evening periods and social-recreational trips pur-
sued in the late evening. Shopping trips are the
shortest across all times of the day. The coefficient
on the time-of-day variables, when considered
jointly with the time-purpose interaction effects,
indicate: 1) peak period trips are longer than non-
peak period trips, and this is particularly the case for
work trips; and 2) work and nonwork trips under-

taken during the evening period are shorter than
trips taken at other times of the day (except for
social-recreational trips, which are longer in the
evening than earlier times of the day).

Several zonal and other trip attributes have a
statistically significant effect on trip duration. We
classify these attributes into three categories: zonal
size-related variables, zonal nonsize-related vari-
ables, and trip-related variables. 

Among the size-related variables, a larger total
area of a zone, in general, increases the duration of
trips produced from that zone. This is particularly the
case if the zone has a high acreage in office space.
Similarly, trips produced from zones with a high
number of people in service employment and with
large acreage in manufacturing facilities also have
longer durations. These may reflect congestion
effects. On the other hand, acreage in retail and
institutional facilities has a negative effect on trip
duration, possibly due to greater accessibility to shop-
ping and service-related activities in these zones. 

The zonal nonsize-related variables indicate
shorter trip durations in zones with high household
density and with high household income. However,
trips produced from zones with an airport have a
longer duration. This latter effect may be caused by
increased congestion on roadways in zones with
airport-related infrastructure or may be due to
airports occupying a large area in the zone and
thereby reducing the number of activity opportunities
in the zone. Of course, other reasons may be equally
plausible.

Finally, intrazonal trips are significantly shorter
in duration than interzonal trips, especially during
the p.m. peak, although the magnitude of this effect
is less for shopping and social-recreational trip
purposes.

INTEGRATION WITH TRAVEL
DEMAND MODELS

Existing travel demand models may be based on an
activity approach or a trip approach. Activity-based
travel demand models focus on the activities that
people pursue, as a function of the locations and
attributes of potential destinations, the state of the
transportation network, and the personal and
household characteristics of individuals (Ettema and

η αti λ χ ζti
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Timmermans 1997). If such an approach is adopted
in travel analysis, the activity stops made by indiv-
iduals are explicitly modeled as a function of origin
and destination activity categories, time of day, and
zone of origin. Thus, information on trip purpose,
time of trip start, and attributes of the zone of trip
origin are readily available for all trips. Integration of
the trip duration model developed in this paper
within this framework is straightforward. 

If a trip-based travel demand modeling frame-
work is used, the trip duration model can be
directly applied if the MPO develops zone-to-zone
production-attraction interchanges for the disag-
gregate trip purpose and time of day categories
identified in this paper. However, most MPOs use
more aggregate classes of trip purpose and time
periods (typically home-based work, home-based
other, and nonhome-based trip purposes, and peak

TABLE 3  Empirical Results for Trip Duration Model

 Variable Coefficient  t-statistic

 Constant 2.504 76.81

Trip purpose 
Production end (nonhome-based trip is base)
Home-based 0.213 16.16

Attraction end (work purpose is base)
 School 0.041 1.56
 Social-recreational 0.125 5.11
 Shopping –0.299 –16.07
 Other –0.215 –13.07

 Time-of-day variables (“evening” period is base)
morning–a.m. peak/p.m. peak 0.445 15.57
 a.m. offpeak/p.m. offpeak 0.176 6.75

 Time of day and trip purpose interaction effects
 morning–a.m. peak/p.m. peak x nonwork –0.155 –11.23
 a.m. offpeak/p.m. offpeak x social-recreational –0.261 –8.94

 Zonal and trip-related attributes
Zonal size-related variables

Zonal area x 10–5 1.243 2.56

Zonal acreage in office space x 10–3 2.363 3.85

Number of people in service employment x 10–5 2.544 9.75

Zonal acreage in manufacturing facilities x 10–4 6.917 5.19

Zonal acreage in retail facilities x 10–3 –2.266 –4.82

Zonal acreage in institutional facilities x 10–3 –1.020 –2.54

Zonal nonsize-related variables

Zonal household density x 10–3 –1.612 –4.42

Median income of zone x 10–6 –2.576 –6.55

Presence of an airport or airport-related infrastructure x 10–2 5.342 2.56

Trip-related variables
Intrazonal trip –0.777 –33.95
Intrazonal p.m. peak trip –0.189 –5.08
Intrazonal shopping/social-recreational trip 0.158 6.12

 Number of observations 19,455
 Regression sums of squares 2,737.09
 Residual sums of squares 11,058.14
 Standard error of estimate 0.754

 R 2 0.198

 Adjusted R 2 0.198
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versus offpeak time periods). In this situation, the
trip duration model can be used after post-process-
ing the aggregate production-attraction trip inter-
changes matrix to reflect the disaggregate
classifications employed here. Factors obtained
from travel surveys can be applied to achieve this
post-classification. Tables 4, 5, and 6 present such
factors developed for the D-FW region. 

MODEL EVALUATION

In this section we conduct two evaluations of our
proposed model. First, we evaluate our assumption
of normality of the distribution of (log) trip dura-
tions in our regression (equation 1). For this

purpose, we utilize normal probability plots and
also a formal statistical test of normality. Second,
we compare the performance of our proposed
model for trip duration activity parameters with the
“default” MOBILE model parameters that remain
fixed for all zones and for all time of day and trip
purpose categories (this is the state of the practice in
the D-FW and other metropolitan areas).

Testing the Normality Assumption

We use two methods to evaluate the assumption of
normality of log trip durations in our regression
model (equation 1). We first develop an “eyeball”
evaluation of the   distribution of trip durations in

TABLE 4  Split of Home-Based Work Trips by Time of Day

Trip purpose

Time of day of trip start

morning a.m. peak a.m. offpeak p.m. offpeak p.m. peak evening

Home-based work 9.02% 34.97% 6.33% 13.57% 26.57% 9.54%

TABLE 5  Split of Home-Based Other Trips by Disaggregate Trip Purpose and Time of Day

Trip purpose

Time of day of trip start

morning a.m. peak a.m. offpeak p.m. offpeak p.m. peak evening

Home-based school 0.66% 1.15% 2.42% 3.69% 4.57% 9.67%

Home-based social-recreational 0.12% 0.71% 3.07% 5.15% 4.93% 4.73%

Home-based shopping 0.29% 1.89% 4.41% 4.84% 3.78% 2.53%

Home-based personal business 0.64% 10.22% 2.20% 6.73% 6.09% 5.69%

Home-based other 0.06% 3.35% 0.94% 2.90% 1.66% 0.90%

TABLE 6  Split of Nonhome-Based Trips by Disaggregate Trip Purpose and Time of Day

Trip purpose

Time of day of trip start

morning a.m. peak a.m. offpeak p.m. offpeak p.m. peak evening

Nonhome-based work 0.02% 1.10% 3.53% 4.05% 1.05% 0.27%

Nonhome-based school 0.00% 0.12% 0.21% 0.48% 0.41% 0.04%

Nonhome-based social-recreational 0.16% 0.76% 4.36% 10.13% 2.34% 2.56%

Nonhome-based shopping 0.06% 0.41% 2.07% 4.84% 3.60% 2.19%

Nonhome-based personal business 0.14% 1.72% 6.67% 10.11% 5.27% 2.13%

Nonhome-based other 0.41% 8.35% 3.08% 7.63% 6.68% 3.04%
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our sample using normal probability plots. Next,
we apply a rigorous statistical test for examining the
normality assumption. These evaluations are dis-
cussed in the next two sections.

The “Eyeball” Evaluation
The eyeball evaluation typically entails two proba-
bility plots. The first, the normal Q-Q plot (i.e., the
normal quantile-quantile plot), is the plot of the
ordered data values against the associated quantiles
of the normal distribution. For data from a normal
distribution, the points of the plot should lie close to
a straight line. The procedure to produce a Q-Q
plot involves the following two steps: 

1. Sort the n observed data points in ascending
order so that 
x1 ≤ x2 ≤...≤ xn, 
and plot these observed values against one
axis of the graph; and 

2. Plot 

F –1((i–radj) / (n+nadj)) 
on the other axis 

where i is the rank of the respective observation on
the ascending scale, 

radj and nadj are adjustment factors (≤0.5), and

F –1 denotes the inverse of the cumulative standard
normal distribution function. 

The resulting Q-Q plot is thus a scatterplot of the
observed values against the (standardized) expected
values, given the normal distribution. 

The second plot, the P-P plot (i.e., the probability-
probability plot) is similar to the Q-Q plot except
that the observed cumulative distribution function is
plotted against the theoretical cumulative distribu-
tion function. As in the Q-Q plot, the values of the
respective variable are first sorted into ascending
order. The ith observation is then plotted on one axis
as i/n (i.e., the observed cumulative distribution func-
tion), and F(x(i)) is plotted on the other axis, where
F(x(i)) represents the value of the cumulative normal
distribution function for the respective observation
x(i). If the normal cumulative distribution approxi-
mates the observed distribution well, then all points
in this plot should fall onto a diagonal line.

In figures 1 and 2, we present the Q-Q and P-P
plots for the logarithm of the trip duration values in
our sample. The Q-Q plot is fairly linear except for

large values of trip duration. This is not uncommon,
because the Q-Q plot will amplify small differences
between the model and sample probabilities when
they are both close to one. The P-P plot is also fairly
linear, except in the middle; this effect is also
expected, because the P-P plot amplifies small
differences in the “middle” of the model and sample
probabilities.4 The linearity of the two probability
plots provides some justification for the use of a nor-
mal distribution for the logarithm of trip durations. 

Formal Statistical Test

We next conduct a formal statistical test of
normality on the logarithm of trip duration data in
our sample. In the statistical literature, several
goodness-of-fit statistics have been proposed to test
the (null) hypothesis that the sample observations
are independent draws from a normal distribution.
These tests work well for small to medium sample
sizes; however, they will almost always reject the null
when n is large (as is the case in our sample; see
Gibbons 1985, p. 76). To circumvent this problem,
we randomly chose a subsample of 1,000 vehicle
trips from our data, and conducted the Kolmogorov-
Smirnov (with Lilliefors correction) test for normality
on this subsample (see Lilliefors 1967 for a descrip-

4 See Law and Kelton (1991, pp. 374–380) for a descrip-
tion of the P-P and Q-Q probability plots.

FIGURE 1  Normal Q-Q Plot of Log 
Trip Duration
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tion of this test). The Kolmogorov-Smirnov statistic
for the subsample was 0.028, which is less than the
critical value of 0.033 (computed as = , at
the 0.01 level of significance). Therefore, based on
this test, we cannot reject the null hypothesis of nor-
mality at the 0.01 level of significance. 

From the informal plots discussed in the previous
section and the statistical test discussed above, we
conclude that our normality assumption for the log-
arithm of trip duration is reasonable.

Model Comparison

In this section, we compare the performance of our
proposed model with that of the “default” MOBILE
model. The default model uses the same trip dura-
tion activity parameters for all zones in the region,
and these parameters do not vary by time of day, and
trip purpose. 

For model evaluation, we observed data on the
proportion of trip duration activity (equivalent to
VMT) in each of the six time bins for each zone,
each time of day, and each trip purpose.5 The corre-
sponding trip duration activity parameters predicted
by both our model and the default MOBILE model

are available for analysis (note again that the default
MOBILE model-predicted trip duration activity
parameters do not vary by zone, time of day, or trip
purpose). 

The evaluation of the proximity of estimated and
actual trip duration activity parameters can then be
based on a pseudo-R2 value computed as shown
below

(15)

where 
is the actual trip duration activity parameter

(i.e., the proportion of VMT accrued) for trip
duration bin k, trip purpose i, time- period t, and
zone z, 

is the model-predicted trip duration activity
parameter, 
is the area-wide average parameter for trip dura-

tion bin k for trip-purpose i in time-period t. 
The denominator is the total variation in the actual
trip duration activity parameter values around the
mean area-wide value, summed across all trip dura-
tion bins for all zones, time periods, and trip pur-
poses. The numerator represents the variation
explained by the model. 

The denominator in the above equation cannot
be computed with the sample used in this paper,
because we do not have adequate observations in
each zone to obtain meaningful averages of VMT
accrued in each time duration bin k for each zone
and for each time-of-day and activity purpose com-
bination. However, since the denominator remains
the same for our proposed model and the default
model, a comparison of the two alternative models
can be made by taking the ratio of the values of the
numerators of the proposed and default models.
This statistic can be viewed as a “net performance
measure” that represents an index of the total varia-
tion in the trip duration activity parameters
explained by the proposed model as compared with
the default model. A value of the net performance
measure that is greater than unity will reveal that
our proposed model is superior. 

FIGURE 2  Normal P-P Plot of Log 
Trip Duration

5 This information is not available in our dataset, because
we observed only a sample of trips made by households in
each zone that did not span all of the time of day, trip pur-
pose, and trip duration bin categories.
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The computation of the net performance index as
discussed earlier is still tedious. To simplify, we
computed the measure for a restricted version of our
proposed model vis-à-vis the default model. The
restricted version ignores variations in the trip
duration activity parameters across zones. Thus, we
get the activity parameter predictions from our
proposed model for a single representative zone
(with characteristics representing the average of all
the zones in the sample) for each time duration bin
k and for each activity purpose and time-of-day
combination. We also obtained the corresponding
trip duration activity parameters from the default
model, which assigns the same values of the propor-
tion of VMT accrued in each time bin k across all
activity purposes and times of the day (table 7). The
net performance measure can be computed by
evaluating the closeness of these predictions to the
average values for each time of day and activity pur-
pose obtained from the sample.

The value of the net performance measure is
3.89. This shows that our proposed model is per-
forming about four times better than the default
model in explaining the variation in trip duration
activity parameters across zones, time of day, and
trip purpose. Additionally, we also computed per-
formance measures for each of three broad time
periods (peak, offpeak, and evening) and for each of
the 12 trip purpose combinations. Table 8 presents
these performance measures. As can be seen, the
proposed model out-performs the default model in
all the categories, revealing its efficiency in capturing
the trip duration activity parameters relative to the
default model. 

In addition to our performance measure, we
compared the two models through a statistical test.
For this, we note that the disaggregate version of
the default MOBILE model is equivalent to the
“constant-only” specification for the log (trip dura-
tion) in equation 1. An F-test of the null hypothesis

that all the parameters (except the constant) are
equal to zero would therefore test our model (the
“unconstrained” specification) against the default
model (the “constrained” specification). The corre-
sponding F-statistic is 229.05. This very strongly
rejects the null hypothesis that the zonal characteris-
tics, time of day, and trip purpose do not affect trip
duration (the relevant critical F-value at the 99%
significance level is 2.36). 

CONCLUSIONS

The modeling of trip durations in a metropolitan
area is important for three reasons. First, trip dura-
tion activity parameters used by the MOBILE emis-
sions factor model to estimate running loss
emissions can be developed from the trip duration
distribution. Second, the trip duration distribution
provides information for estimating operating mode
fractions, which are needed by MOBILE5 to estimate
emissions rates. Third, the trip duration distribution
can be used to predict the VMT accumulated on local
roads in the region. 

Trip duration is likely to depend on various factors
such as trip purpose, time of day of the trip start, and
other land-use and socio-demographic characteris-
tics of the zone of trip production. In this paper, we
formulated and implemented a methodology for
modeling trip durations as a function of these charac-
teristics, using vehicle trip data from household travel
surveys and supplementary zonal, demographic, and
land-use data. The approach involves developing the
distribution of the duration of trips using a log-linear
regression model. The modeling framework is imple-
mented in the context of mobile source emissions
analysis for the Dallas-Fort Worth area of Texas.
Model evaluation indicates that the proposed model
is superior to the default model in explaining the vari-
ation in trip duration activity parameters across
zones, times of day, and trip purposes.  

TABLE 7  EPA-Recommended Default Trip Duration Proportions

Trip duration (minutes) 0–10 11–20 21–30 31–40 41–50 >50

Proportion 6.7% 18.5% 16.8% 13.2% 8.3% 36.5%
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The proposed model contributes significantly
toward improved mobile source emissions forecasting
by systematically developing area-specific estimates
of running loss emissions, running mode fractions,
and VMT on local roads. A distinguishing
characteristic of the methodology is the straight-
forward manner in which model parameters esti-
mated from vehicle trip data can be applied to
obtain zonal-level trip duration distributions. The
model can be integrated easily within various travel
demand-air quality modeling frameworks. 

Future work in this area could include develop-
ing a generalized posterior distribution for trip
duration using a Bayesian framework that infers the
nature of the distribution of trip durations from the
sample. The trip duration activity parameters could
then be computed by numerically evaluating the
VMT proportions from this posterior distribution.
Further, rather than parameterize the trip duration
distribution, a flexible semi-nonparametric model
could be developed, which could capture (possible)
nonlinear responses in trip durations to changes in
the exogenous variables. 
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TABLE 8  Performance Measures of Proposed vs. Default Models 
for Each Trip Purpose and Time Period

Time period

Trip purpose Peak Offpeak Evening

Home-based work 7.74 5.65 6.07

Home-based school 4.99 5.97 4.85

Home-based social-recreational 3.75 4.19 4.12

Home-based shopping 3.24 3.66 2.56

Home-based personal-business 6.68 4.66 4.82

Home-based other 3.47 3.19 3.82

Nonhome-based work 6.15 5.62 3.78

Nonhome-based school 5.52 4.85 1.83

Nonhome-based social-recreational 4.73 3.12 4.09

Nonhome-based shopping 4.53 3.59 3.07

Nonhome-based personal-business 4.01 3.44 3.13

Nonhome-based other 4.60 4.21 4.44

All trip purposes/time periods 3.89
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ABSTRACT

Mapping transforms spatial data into a visual form,
enhancing the ability of users to observe, conceptu-
alize, validate, and communicate information.
Research efforts in the visualization of traffic safety
data, which are usually stored in large and complex
databases, are quite limited at this time. This paper
shows how hierarchical Bayes models, which are
being vigorously researched for use in disease map-
ping, can also be used to build model-based risk
maps for area-based traffic crashes. County-level
vehicle crash records and roadway data from Texas
are used to illustrate the method. A potential exten-
sion that uses hierarchical models to develop net-
work-based risk maps is also discussed. 

INTRODUCTION

Transportation-related deaths and injuries consti-
tute a major public health problem in the United
States. Injuries and fatalities occur in all transporta-
tion modes, but crashes involving motor vehicles
account for almost 95% of all transportation fatali-
ties and most injuries. Despite the progress made in
roadway safety in the past several decades, tens of
thousands of people are still killed and millions of
people are injured in motor vehicle crashes each

KEYWORDS: Bayes models, risk, space-time models, 
traffic safety.
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year. For example, in 1999 nearly 42,000 people
were killed in traffic crashes and over 3.2 million
more were injured. 

Motor vehicle fatalities are the leading cause of
unintentional injury deaths, followed by falls, poi-
sonings, and drownings (about 16,000, 10,000, and
4,400 deaths per year, respectively) (NSC 2002).
They are also responsible for as many pre-retire-
ment years of life lost as cancer and heart disease,
about 1.2 million years annually. In fact, motor
vehicle crashes are the leading cause of death for
people aged 1 to 33. Societal economic losses from
these crashes are huge, estimated by the National
Highway Traffic Safety Administration to exceed
$230 billion in 2000. Thus, much work remains to
be done to develop a better understanding of the
causes of vehicle crashes—their chains of events and
operating environments—and to develop counter-
measures to reduce the frequency and severity of
these crashes (USDOT 1996–1999). 

Safety is one of the U.S. Department of Transpor-
tation’s (USDOT’s) five current strategic goals, and
Rodney Slater, a former Transportation Secretary
stated: “Safety is a promise we keep together.”
Indeed, roadway safety intersects with all five core
functional areas within conventional highway engi-
neering (planning, design, construction, operation,
and maintenance) and crosscuts the boundaries of
other engineering (vehicle and material) and non-
engineering areas (human factors, public health, law
enforcement, education, and other social sciences).
Thus, research in roadway safety requires interdisci-
plinary skills and essential cooperation from various
engineering and social science fields. 

In 2002, a series of conferences was hosted by the
Bureau of Transportation Statistics under the gen-
eral title of “Safety in Numbers: Using Statistics to
Make the Transportation System Safer.” These con-
ferences supported the top strategic safety goal of
promoting public health and safety “by working
toward the elimination of transportation-related
deaths, injuries, and property damage” (USDOT
2002).

Contributing Factors, Countermeasures, 
and Resources

Motor vehicle crashes are complex events involving
the interactions of five major factors: drivers, traffic,
roads, vehicles, and the environment (e.g., weather
and lighting conditions) (e.g., Miaou 1996). Among
these factors, driver error has been identified as the
main contributing factor to a great percentage of
vehicle crashes, and many research efforts are being
undertaken to better understand human and other
synergistic factors that cause or facilitate crashes.
These factors include operator impairment due to
the use of alcohol and drugs, medical conditions, or
human fatigue and the operator’s interaction with
new technologies used on the vehicle. 

Countermeasures to reduce the number and
severity of vehicle crashes are being sought vigor-
ously through various types of community, educa-
tion, and law enforcement programs and improved
roadway design and vehicle safety technology. How-
ever, many of these programs have limited resources
and need better tools for risk assessment, prioritiza-
tion, and resource scheduling and allocation.

Recognizing that “to err is human” and that
driver behavior is affected by virtually all elements
of the roadway environment, highway engineers are
constantly redesigning and rebuilding roadways to
meet higher safety standards. This includes design-
ing and building roadways and roadsides that are
more “forgiving” when an error is made, more con-
forming to the physical and operational demands of
the vehicle, and that better meet drivers’ perceptions
and expectations in order to reduce the frequency of
human errors (TRB 1987). The relatively low fatal-
ity rate on the Interstate Highway System (about
half the fatality rate of the remainder of the nation’s
highways) is evidence of the impact of good design
on highway safety (Evans 1991). 

Many impediments keep highway engineers
from achieving their design and operational
goals, including a lack of resources and a vast
highway system that needs to be built, operated,
maintained, audited, and improved. They must
make incremental improvements over time and
make difficult decisions on the tradeoffs among
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cost, safety, and other operational objectives. Con-
sequently, knowing where to improve and how to
prioritize and schedule improvements is as impor-
tant as knowing which roadway and roadside
features and elements to add or improve. Tools for
identifying, auditing, ranking, and clinically evalu-
ating problem sites; developing countermeasures;
and allocating resources are essential for highway
engineers who make these decisions. 

Disease Mapping and Methods

In recent years, considerable progress has been
made in developing methodology for disease map-
ping and ecological analysis, particularly in the
application of hierarchical Bayes models with spa-
tial-temporal effects. This model-based development
has led to a dramatic gain in the number and scope
of applications in public health policy studies of
risks from diseases such as leukemia, pediatric
asthma, and lung cancer (Carlin and Louis 1996;
Knorr-Held and Besag 1997; Xia et al. 1997; Ghosh
et al. 1999; Lawson et al. 1999; Zhu and Carlin
1999; Dey et al. 2000; Sun et al. 2000; Lawson
2001; Green and Richardson 2001). A special issue
of Statistics in Medicine entitled “Disease Mapping
with a Focus on Evaluation” was also recently pub-
lished to report this development (vol. 19, Issues
17–18, 2000).

Among other applications, disease maps have
been used to

� describe the spatial variation in disease incidence
for the formulation and validation of etiological
hypotheses;

� identify and rank areas with potentially elevated
risk and time trends so that action may be taken;
and

� provide a quantitatively informative map of dis-
ease risk in a region to allow better risk assess-
ment, prioritization, and resource allocation in
public health.

Clearly, roadway traffic safety planning has similar
requirements and can potentially benefit from these
kinds of maps. 

Studies have shown that risk estimation using
hierarchical Bayes models has several advantages
over estimation using classical methods. One impor-
tant point that has been stressed by almost all of
these studies is that individual incidences of diseases
of concern are relatively rare for a typical analysis
unit such as census tract or county. As a result, esti-
mates based on simple aggregation techniques may
be unreliable because of large variability from one
analysis unit to another. This variability makes it
difficult to distinguish chance variability from genu-
ine differences in the estimates and is sometimes
misleading for analysis units with a small popula-
tion size. Hierarchical Bayes models, however, espe-
cially those Poisson-based generalized linear models
with spatial random effects, have been shown to
have the ability to account for the high variance of
estimates in low population areas and at the same
time clarify overall geographic trends and patterns
(Ghosh et al. 1999; Sun et al. 2000). 

Note that in the context of sample surveys the
type of problem described above is commonly
referred to as a small area, local area, or small
domain estimation problem. Ghosh and Rao
(1994) conducted a comprehensive review of hier-
archical Bayes estimations and found them favor-
able for dealing with small area estimation
problems when compared with other statistical
methods. Hierarchical models are also gaining
enormous popularity in fields such as education
and sociology, in which data are often gathered in a
nested or hierarchical fashion: for example, as stu-
dents within classrooms within schools (Goldstein
1999). In these fields, hierarchical models are often
called multilevel models, variance component mod-
els, or random coefficients models. 

The overall strength of the Bayesian approach
is its ability to structure complicated models,
inferential goals, and analyses. Among the hier-
archical Bayes methods, three are most popular
in disease mapping studies: empirical Bayes (EB),
linear Bayes (LB), and full Bayes methods. These
methods offer different levels of flexibility in
specifying model structures and complexity in
computations. As suggested by Lawson (2001):
“While EB and LB methods can be implemented
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more easily, the use of full Bayesian methods has
many advantages, not least of which is the abil-
ity to specify a variety of components and prior
distributions in the model set-up.” 

To many statistical practitioners, it is fair to say
that the challenges they face dealing with real-world
problems come more often from the difficulties of
handling nonsampling errors and unobserved heter-
ogeneity (because of the multitude of factors that
can produce them) than from handling sampling
errors and heterogeneity due to observed covariates.
One potential advantage of using the full Bayes
model is the flexibility that it can provide in dealing
with and adjusting for the unobserved heterogeneity
in space and time, whether it is structured or
unstructured. 

Objectives and Significance of Work

Mapping transforms spatial data into a visual form,
enhancing the ability of users to observe, conceptu-
alize, validate, and communicate information.
Research efforts in the visualization of traffic safety
data, which are usually stored in large and complex
databases, are quite limited at this time because of
data and methodological constraints (Smith et al.
2001). As a result, it is common for engineers and
other traffic safety officials to analyze roadway
safety data and make recommendations without
actually “seeing” the spatial distribution of the data.
This is not an optimal situation. 

To the best of our knowledge, unlike the public
health community, which has developed models for
disease mapping, the roadway safety research com-
munity has not done much to develop model-based
maps for traffic crash data. One of the objectives of
the study presented here was to initiate development
of model-based mapping for roadway traffic crashes.
Vehicle crash records and roadway inventory data
from Texas were used to illustrate the nature of the
data, the structure of models, and results from the
modeling. 

Overall, TxDOT maintains nearly 80,000 cen-
terline-miles of paved roadways, serving about 400
million vehicle-miles per day. Over 63% of the
centerline-miles are rural two-lane roads that, on
average, carry fewer than 2,000 vehicles per day.
These low volume rural roadways carry only

about 8% of the total vehicle-miles on state-main-
tained (or on-system) highways and have less than
7% of the total reported on-system vehicle crashes.
Due to the low volume and relatively low crash
frequency on these roads, it is often not deemed
cost-effective to upgrade these roads to the pre-
ferred design standards. However, vehicles on these
roadways generally travel at high speeds and thus
tend to have relatively more severe injuries when
vehicle crashes occur. For example, in 1999, about
26% of the Texas on-system crashes were fatal (K),
incapacitating injury (A), and nonincapacitating
injury (B) (or KAB) crashes, compared with over
40% of the crashes on rural, two-lane, low volume
on-system roads (Fitzpatrick et al. 2001). As a
result, we have chosen to focus this study on
crashes occurring on rural, two-lane, low-volume,
on-system roads.

This paper is organized as follows: the next sec-
tion briefly describes the sources and nature of the
data analyzed in this study, followed by a quick
review of modeling and computational techniques
and a discussion of Poisson-based hierarchical
Bayes model with space-time effects and possible
variants. Results from models of various levels of
complexities are then presented and compared, and
we conclude with a discussion of future work.

DATA

The Texas Department of Transportation (TxDOT)
currently has 25 geographic districts that are
responsible for highway development. The state's
254 counties are divided among the districts (figure
1). Each district includes 6 to 17 counties. District
offices divide their work into area offices and area
offices into local maintenance offices. The variety of
climates and soil conditions in Texas places differing
demands on its highways, so design and mainte-
nance, right-of-way acquisition, construction over-
sight, and transportation planning are primarily
administered and accomplished locally.

Annual KAB crash frequencies for rural, two-
lane, low volume on-system roads at the county
level from 1992 to 1999 were used for modeling in
this study. Figure 2 shows the number of reported
KAB crashes by county in 1999, while figure 3
shows total vehicle-miles incurred for the same year
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(in millions of vehicle-miles traveled, or MVMT). In
a bubble plot, figure 4 shows the highest, lowest,
and average of the “raw” annual KAB crash rates
by county (in number of crashes per MVMT). Note
that two of the urban counties and one rural county
were removed from the analysis for having no (or
almost no) rural two-lane roads with the level of
traffic volume of interest, i.e., fewer than 2,000
vehicles per day on average. 

As shown in figure 4, crash rates in most counties
were stable over the eight-year period, while several
counties exhibited marked differences between the
high and the low. There is a clear east-west divide in
terms of the KAB crash rates, with eastern counties
on average showing considerably higher rates.
Rural roadways in the eastern counties are limited
by the rolling terrain and tend to have less driver-
friendly characteristics, with more horizontal and

vertical curves (figures 5 and 6), restricted sight dis-
tance, and less forgiving roadside development (e.g.,
trees closer to the travelway and steeper side slopes).
In addition, with more and larger urbanized areas in
the east, rural roads tend to have higher roadside
development scores, higher access density, and nar-
rower lanes and/or shoulders (Fitzpatrick et al.
2001). In general, northern and eastern counties
have higher proportions of wet-weather-related
crashes (figure 7). Also, on average, rural roads in
eastern counties were found to have more crashes at
intersections than western counties (figure 8). 

The National Highway System Designation Act
of 1995 repealed the national maximum speed limit
and returned authority to set speed limits to the
states. In early 1996, speed limits on many Texas
highways during daylight hours were raised from
55 mph to 70 mph for passenger vehicles and 60

FIGURE 1  Geographic Districts, Counties, and Urbanized Areas in Texas

Note: The Texas Department of Transportation has 25 geographic districts; each district contains 6 to 17 counties, and gray areas show 
urbanized area contained in each district.
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mph for trucks. In a study using monthly time series
data from January 1991 to March 1997, it was
shown that for those roads on which speed limits
were raised, the number of KAB crashes increased
in five out of the six highway categories studied dur-
ing the post-intervention periods (Griffin et al.
1998). The speed limit increase also coincided with
a 14% jump in speed-related fatalities, from 1,230
in 1995 to 1,403 in 1996. The number of speed-
related injuries increased during that period as well:
3.3% for incapacitating injuries and 7.0% for non-
incapacitating injuries. Thus, for the low volume
roads considered by this study, we expected to see a
change in KAB crash rates in 1996. 

MODEL

As part of our modeling efforts, we developed a
Poisson hierarchical Bayes model for traffic crash
risk mapping at the county level for state-maintained

rural, two-lane, low volume roads (fewer than 2,000
vehicles per day) in Texas. In general, the model con-
sists of six components: 

1. an offset term (i.e., a covariate with a fixed
regression coefficient equal to 1), representing
the amount of travel occurring on these roads; 

2. a fixed TxDOT district effect; 
3. a fixed or random covariate effect component

modeling the spatial variation in crash risk due
to spatial differences in number of wet days,
number of sharp horizontal curves, and
degrees of roadside hazards; 

4. one random spatial effect component using the
inverse of the Great Circle distance between
the centroid of counties as the weights for
determining spatial correlations; 

5. a fixed or random time effect component rep-
resenting year-to-year changes; and 

FIGURE 2  Number of KAB Crashes on Rural, 2-Lane, Low-Volume, On-System Roads in Each Texas County: 1999
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6. an exchangeable random effect term, which,
for the purpose of this study, can be deemed as
a pure independent random local space-time
variation that is independent of all other com-
ponents in the model. 

In this paper, we consider a fixed effect as an
effect that is subject only to the uncertainty associ-
ated with an unstructured noninformative prior dis-
tribution with no unknown parameters and the
sampling variation.1 A fixed effect can, however,
vary by individual districts, counties, and time peri-
ods (see the discussion of model hierarchy). Note
also that unlike the traditional traffic crash predic-
tion models (Maher and Summersgill 1996; Miaou
1996; and Hauer 1997), which were concerned

principally with modeling the fixed effects for indi-
vidual sites (e.g., road segments or intersections),
this study focuses more on exploring the structure
of the random component of the model for area-
based data.    

The rediscovery by statisticians in the last 15+
years of the Markov chain Monte Carlo (MCMC)
methods and new developments, including conver-
gence diagnostic statistics, are revolutionizing the
entire statistical field (Besag et al. 1995; Gilks et al.
1996; Carlin and Louis 1996; Roberts and
Rosenthal 1998; Robert and Casella 1999). At the
same time, improved computer processing speed
and lower data-collection and storage costs are
allowing more complex statistical models to be put
into practice. These complex models are often hier-
archical and high dimensional in their probabilistic
and functional structures. Furthermore, many

FIGURE 3  Vehicle-Miles Traveled on Rural, 2-Lane, Low-Volume, On-System Roads in Each Texas County: 1999
In millions of vehicle-miles traveled or MVMT
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models also need to include dynamics of unob-
served and unobservable (or latent) variables; deal
with data distributions that are heavily tailed,
highly overdispersed, or multimodal; and work
with datasets with missing data points. MCMC
provides a unified framework within which model
identification and specification, parameter estima-
tion, performance evaluation, inference, predic-
tion, and communication of complex models can
be conducted in a consistent and coherent manner. 

With today’s desktop computing power, it is rela-
tively easy to sample the posterior distributions
using MCMC methods that are needed in full Bayes
methods. The advantage of full Bayesian treatment
is that it takes into account the uncertainty associ-
ated with the estimates of the random-effect param-

eters and can provide exact measures of uncertainty.
Maximum likelihood methods, on the other hand,
tend to overestimate precision, because they ignore
this uncertainty. This advantage is especially impor-
tant when the sample size is small. Other estimation
methods for hierarchical models are also available,
e.g., iterative generalized least squares (IGLS),
expected generalized least squares (EGLS), and gen-
eralized estimating equations (GEE). These estima-
tion procedures tend to focus on obtaining a
consistent estimate of the fixed effect rather than
exploring the structure of the random component of
the model (Goldstein 1999).

For some problems, existing software packages
such as WinBUGS (Spiegelhalter et al. 2000) and
MLwiN (Yang et al. 1999) can provide Gibbs and

FIGURE 4  “Raw” Annual KAB Crash Rates in Crashes per MVMT by County: 
Highest, Lowest, and Average Rates, 1992–1999
On rural, 2-lane, low-volume, on-system roads

Notes: Crash rate is expressed in terms of the diameter of the ball. The three balls on the lower left corner indicate 1.0, 0.5, and 0.25 crashes 
per MVMT, respectively. Low-volume roads refer to road segments carrying fewer than 2,000 vehicles per day.
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other MCMC sampling for a variety of hierarchical
Bayes models. For the models presented in this
paper, we relied solely on the WinBUGS codes. At
present, however, the type of spatial and temporal
models available in WinBUGS is somewhat limited
and will be discussed later. 

Notations

We let the indices i, j, and t represent county,
TxDOT district, and time period, respectively,
where i = 1,2,...,I; j = 1,2,...,J; and t = 1,2,...,T.
For the data analyzed, we have 251 counties,
divided among 25 districts, and 8 years of annual
data (i.e., I = 251, J = 25, and T = 8). As indi-
cated earlier, each district may include 6 to 17
counties, which will be represented by county set
Dj, where j = 1,2,...,25. That is, Dj is a set of
indices representing counties administered by
TxDOT district j. 

We define variable Yit as the total number of
reported KAB crashes on the rural road of interest in
county i and year t. We also define vit as the observed
total vehicle-miles traveled (VMT) in county i and
year t for the roads in discussion, representing the size
of the population at risk. In addition, we define xitk

as the kth covariate associated with county i and year
t. Three covariates were considered.

Covariates

The first covariate xit1 is a surrogate variable
intended to represent the percentage of time that
the road surface is wet due to rain, snow, etc. Not
having detailed weather data, we chose to use the
proportion of KAB crashes that occurred under wet
pavement conditions as a surrogate variable. In
addition, we do not expect general weather charac-
teristics to vary much between neighboring coun-
ties. Therefore, the proportion for each county is

FIGURE 5  Topographical Map of Texas
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computed as the average of this and six other
neighboring counties that are close to the county in
terms of their Great Circle distances. We do, how-
ever, expect weather conditions to vary significantly
from year to year. Thus, for each county i, we have
xit1 change with t.

The second covariate xit2 is intended to represent
spatial differences in the number of sharp horizontal
curves in different counties. The actual inventory of
horizontal curves on the highway network is not
currently available. However, when a traffic crash
occurs, site characteristics including the horizontal
curvature are coded in the traffic crash database.
We chose to use the proportion of KAB crashes
that occurred on sharp horizontal curves in each
county as a surrogate variable, and we define a
sharp horizontal curve as any road segment having
a horizontal curvature of 4 or higher degrees per
100-foot arc. Given that this roadway characteristic

is mainly driven by terrain variations, we do not
expect this characteristic to vary much between
neighboring counties. Therefore, as in the first cova-
riate, the proportion for each county is computed as
the average of this and six other neighboring coun-
ties that are close to the county in terms of their
Great Circle distances. Furthermore, for this type of
road, we did not expect the proportion to vary in
any significant way over the eight-year period in
consideration. Thus, the average proportion from
1992 to 1999 was actually used for all t. In other
words, for each county i, xit2 are the same for all t. 

The third covariate xit3 is a surrogate variable
intended to represent degrees of roadside hazards.
As in the second covariate, the actual inventory of
hazards (ditches, trees, and utility poles), available
clear zones, and geometry and surface type of road-
sides are not available. Similar to the first covariate,
a surrogate variable was devised to indicate the

FIGURE 6  Proportion of KAB Crashes1 that Occured on Sharp Horizontal Curves in Each County
In percent; averaged over the 1992–1999 period and 6 neighboring counties
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proportion of KAB crashes that ran off roads and
hit fixed objects on the roadside. We also do not
expect this characteristic to vary much between
neighboring counties over the eight-year period in
consideration. Again, the average proportion from
1992 to 1999 was used for all t, i.e., for each county
i, xit3 are the same for all t. Figure 9 shows the spa-
tial distribution of this variable.

The use of these surrogate variables is purely data
driven (as opposed to theory driven) and empirical
in nature. We use the proportion of wet crashes
(xit1) as an example to explain the use and limita-
tion of such surrogate measures in practice. First,
variables such as “percentage of wet crashes” and
“wet crashes to dry crashes ratio” are commonly
used in wet-weather accident studies. Examples in
the literature include Coster (1987), Ivey and Griffin
(1990), and Henry (2000). These authors reviewed

various wet-weather accident studies, and the
relationships between 1) skid numbers (or friction
values) of pavement and percentage of wet weather
accidents, and 2) skid numbers and wet/dry pave-
ment surfaces were quite well documented.
Although they were conducted with limited data,
these wet weather accident studies also suggest that
crash rates are higher during wet surface conditions
than under dry surface conditions, and some indi-
cate that traffic volumes are reduced by about 10%
to 20% during wet weather in rural areas (no signif-
icant reduction was found in urban areas). 

Second, the use of percentage of wet crashes as a
surrogate variable in this study to explain the
variation of crash rates by county mixes several pos-
sible relationships and has limited explanatory
power. A positive correlation of percentage of wet
crashes and crash rate mixes has at least two possible

FIGURE 7  Proportion of KAB Crashes1 that Occurred Under Wet Pavement Conditions for Each County: 1999
In percent; averaged over 6 neighboring counties
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relationships: 1) the effect of wet surface conditions
on crash rates, and 2) the effect of rainfall (or other
precipitation) on traffic volumes. Everything else
being equal, if the wet surface crash rate is the same
as the dry surface crash rate, then we do not expect
this positive correlation to be statistically significant
in the model regardless of the relative traffic volumes
during wet or dry surface conditions. We interpret a
positive correlation as an indication that a higher
crash rate is indeed experienced during wet surface
conditions than during dry conditions. However,
because of the lack of data on traffic volumes by wet
and dry surface conditions, we are not able to quan-
tify the difference in crash rates under the two sur-
face conditions. This is the main limitation in using
such a surrogate measure.

Probabilistic and Functional Structures

The space-time models considered in this study are
similar to the hierarchical Bayes generalized linear
model used in several disease mapping studies cited
earlier. At the first level of hierarchy, conditional on
mean , Yit values are assumed to be mutually
independent and Poisson distributed as

(1)

The mean of the Poisson is modeled as

(2)

FIGURE 8  Proportion of KAB Crashes1 that were Intersection, Intersection Related, or Driveway 
Access Related for Each County: 1999
In percent
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where total VMT vit is treated as an offset and  is
the KAB crash rate. The rate, which has to be non-
negative, is further structured as

(3)

where log is the natural logarithm, I(S) is the indica-
tor function of the set S defined as 

(4)

This makes the first term on the right hand side of
equation 3 the intercept representing district effects
at different years; xitk are covariates discussed ear-
lier and their interactions;  represents year-to-year
time effects due, e.g., to speed limit, weather, and

socioeconomic changes;  is a random spatial
effect; eit is an exchangeable, unstructured, space-
time random effect; and  and  are regression
parameters to be estimated from the data. As
defined earlier, Dj is a set of indices representing
counties administered by TxDOT district j. 

Many possible variations of equation 3 were and
could potentially be considered in this study. For
each component that was assumed to have a fixed
effect, the second level of hierarchy was chosen to
be an appropriate noninformative prior. On the
other hand, for each component that was assumed
to have a random effect, the second level of hierar-
chy was a prior with certain probabilistic structure
that contained unknown parameters. The priors for
these unknown parameters (called hyperpriors) con-
stitute the third level of the hierarchy. What follows

FIGURE 9  Proportion of KAB Crashes1 Involving Vehicles that Ran Off Roads and Hit Fixed Objects on the 
Roadside for Each County
In percent; averaged over the 1992–1999 period and 6 neighboring counties
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are discussions of the variation of models consid-
ered by this study, some limitations of the Win-
BUGS software, and possible extensions of the
models considered.

The intercept term, which represents the district
effect over time, was assumed to have fixed effects
with noninformative normal priors. For the covari-
ates xitk, we considered both fixed and random
effects. That is,  was assumed to be either a fixed
value or random variable. The three covariates dis-
cussed earlier and three of their interactive terms,
xit4 = xit1xit2, xit5 = xit1xit3, and xit6 = xit2xit3, were
included in the model. It is important to note that
the values of these covariates were centered for bet-
ter numerical performance. Noninformative normal
priors were also assumed for fixed-effect models.
For the random-effect model, , k = 1,2,…,6, are
assumed to be independent and normally distrib-
uted with mean  and variance , expressed as
N( , ). Noninformative normal and inverse
gamma priors (or more precisely hyperpriors) were
assumed for  and , respectively. 

With 251 counties and 8 years of data, the data
are considered to be quite rich spatially but rather
limited temporally, as are data in many disease map-
ping studies. Because of this limitation, we only con-
sidered two simple temporal effects for : fixed
effects varying by t (or a year-wise fixed-effect
model) and an order-one autoregressive model
(AR(1)) with the same coefficient for all t. Again,
noninformative priors were used for both models.
For the model to be identifiable, in the fixed-effect
model,  was set to zero, and in the AR(1) model,

 was set to be an unknown fixed constant. From
the fixed effect, we expected to see a change in  at
t = 5 (1996), due in part to the speed limit increase
in that year. 

Recent disease mapping research has focused on
developing more flexible, yet parsimonious, spatial
models that have attractive statistical properties.
Based on the Markov random field (MRF) theory,
Besag’s conditional autoregressive (CAR) model
(Besag 1974 and 1975) and its variants are by far
the most popular ones adopted in disease mapping.
We considered several Gaussian CAR models, all of
which have the following general form

(5)

where  is the conditional probability of 
given ; 
 represents all  except ,

stands for “proportional to,” 
Ci is a set of counties representing “neighbors” of

county i, 
  is a fixed-effect parameter across all i, and 

 is a positive weighting factor associated with
the county pair ( ). 

This equation is shown to be equivalent to 

where 

, and

. 

In our study, we had , 
where  is the Great Circle distance between the

centroid of county i and , and c is a constant
parameter equal to 1 or 2 (note that  ranges
roughly from 30 to 700 miles.) 

With regard to the number of neighbors, we adopted
a more generous definition by allowing every other
county  ( ) to be a neighbor of county i. 

In theory, we could treat the constant c as an
unknown parameter and estimate it from the data.
However, in the current version of WinBUGS, the
weights of the built-in CAR spatial model do not
allow unknown parameters (Spiegelhalter et al.
2000), which we found to be a limitation for our
application. In a separate attempt to find a good
range of the decay constant for the inverse distance
weight in the CAR model, we adopted a simpler
model that included only the offset, the yearwise
time effect, and the Gaussian CAR components. We
estimated the same model with different c values
between 0 and 4 and found that model performance
was best achieved when the decay constant was set
between 1 and 2 (based on the deviance information
criterion to be discussed shortly). Weights with an
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exponential form  = exp(– ) were also
examined but are not reported in this paper. 

We also explored the L-1 CAR models of the fol-
lowing form:

(6)

where   is a fixed-effect parameter the same for all
i. Weights with the same c as in the Gaussian CAR
models were considered. WinBUGS constrains the
sum of  to zero to make both the Gaussian CAR
and L-1 CAR spatial models identifiable. A non-
informative gamma distribution was used as
hyperpriors for  in equations 5 and 6.

The spatial correlation structure represented by
equations 5 and 6 is considered global in the sense
that the distribution functions and associated
parameters (c and ) do not change by i. More
sophisticated models allowing spatial correlation
structure to be adaptive or location specific are
being actively researched (e.g., Lawson 2000;
Green and Richardson 2001). Still, computational
challenges seem to be keeping researchers from
exploring more flexible, yet parsimonious, space-
time interactive effects, and more research in this
area needs to be encouraged (Sun et al. 2000). 

For the exchangeable random effects, we consid-
ered two commonly used distributions. One distri-
bution assumed eit to be independent and identically
distributed (iid) as

(7)

Another distribution assumed an iid one-parameter
gamma distribution as

(8)

which has a mean equal to 1 and a variance .
The use of a one-parameter gamma distribution
(instead of a two-parameter gamma) ensures that
all model parameters are identifiable. Again, non-
informative inverse gamma and gamma distribu-
tions were used as hyperpriors for  and ,
respectively. 

Deviance Information Criterion 
and Variants

The deviance information criterion (DIC) has been
proposed to compare the fit and complexity (mea-
sured by the effective number of parameters) of
hierarchical models in which the number of parame-
ters is not clearly defined (Spiegelhalter et al. 1998;
Spiegelhalter et al. 2002). DIC is a generalization of
the well-known Akaike Information Criterion (AIC)
and is based on the posterior distribution of the
deviance statistic 

 

where  is the likelihood function for the
observed data vector y given the parameter vec-
tor , and 

f(y) is some standardizing function of the data
alone. For the Poisson model, f(y) is usually set as
the saturated likelihood, i.e.,  

where  is a vector of the statistical means of vector
y. 
DIC is defined as a classical estimate of fit plus

twice the effective number of parameters, which
gives

(9)

where  is the deviance evaluated at , the pos-
terior means of the parameters of interest; 
pD is the effective number of parameters for the

model; and 
 is the posterior mean of the deviance statistic

. 
As with AIC, models with lower DIC values are pre-
ferred. From equation 9, we can see that the effec-
tive number of parameters pD is defined as the
difference between the posterior mean of the devi-
ance  and the deviance at the posterior means of
the parameters of interest . It was shown that
in nonhierarchical models (or models with negligi-
ble prior information) DIC is approximately equiva-
lent to AIC. It has also been emphasized that the
quantity of pD can be trivially obtained from an
MCMC analysis by monitoring both  and 
during the simulation. For the random-effect model
considered in equations 1 through 3, the parameter
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vector  should include , , ,  and eit for
all i, j, k, and t. 

In addition to DIC values and associated quanti-
ties , , and pD, we also used some goodness-
of-fit measures that attempted to standardize DIC in
some fashion. This includes DIC divided by sample
size n and , which is defined as

(10)

where   is the DIC value for the model
under evaluation; 

 is the maximum DIC value under a fixed
one-parameter model; and 

 is a DIC value from a reference model that,
ideally, represents some expected lower bound of
the Poisson hierarchical model for a given
dataset. 

Clearly,  is devised in the spirit of the tradi-
tional R2 goodness-of-fit measure for regression
models. Through simulations, Miaou (1996) evalu-
ated several similar measures using AIC for overdis-
persed Poisson models. Since DIC is known to be
noninvariant with respect to the scale of the data
(Spiegelhalter et al. 1998; Spiegelhalter et al. 2002),
an analytical development of  is difficult.
However, we know that for a model with a good fit,

 should be close to sample size n (Spiegelhalter et
al. 2002). We, therefore, chose  = n as a con-
servative measure for computing ; that is, the
effective number of parameters was essentially
ignored.

Another goodness-of-fit indicator considered is
, which is the variance of exp(eit) under the

gamma model, indicating the extent of overdisper-
sion due to exchangeable random effects. In theory,
this value could go to zero when such effects vanish.
Thus, similar to , we can devise the following
measure: 

 

where   is the variance of exp(eit) for the
model under consideration, and 

 is the amount of overdispersion under
the simplest model. 

In essence, , the expected lower bound, is set
to zero.

RESULTS

Table 1 lists 42 models of various complexities
examined by this study. These models include sim-
plified versions of the general model presented in
equations 2 and 3, as well as models for reference
purposes, e.g., models 1 to 3. Model 1 is a satu-
rated model, in which the estimates of the Poisson
means  are equal to yit. Model 2, expressed as
Alpha0, is a one-parameter Poisson model without
the offset, and model 3 is another one-parameter
model with the offset. Essentially, model 2 focuses
on traffic crash frequency and model 3 on traffic
crash rate. 

In table 1, the following symbols are used: 

� Alpha(j) stands for fixed district effects.

� Beta.Fix and Beta.N respectively represent fixed
covariate effects and random covariate effects
with independent normal priors. 

� Time.Fix and Time.AR1 respectively stand for
fixed time and AR(1) time effects. 

� For the random spatial effects, Space.CAR.N1
and Space.CAR.L1, represent the Gaussian and
L-1 CAR models shown in equations 5 and 6,
respectively, and both have a decay constant c
equal to 1. 

� Space.CAR.N2 and Space.CAR.L2 represent
similar spatial models with a decay constant c
equal to 2. 

� The components e.N and e.Gam represent
exchangeable random effects as presented in
equations 7 and 8, respectively. 

We experienced some computational difficulties for
the models that included the Beta.N component
when we tried to include all six main and interactive
effects. Therefore, for all models with the Beta.N
component, we only included the three main effects. 

In computing ,  is defined as the
maximum DIC value under a fixed one-parameter
model, which is model 2 in the table when crash fre-
quency is the focus and model 3 when crash rate is
the focus. Similarly, in computing ,  is
set as the amount of overdispersion under the sim-
plest model with an e.Gam error component, which
is model 11 for models focusing on the crash rate. 
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TABLE 1  Deviance Information Criterion and Related Performance Measures for Models of Various Complexities 

Model
no.  Model components (equations 2 and 3) PD DIC DIC/n

 

(Freq) (Rate)
 

(Rate)

1 Alpha(i,t)           [Saturated Model] 2026 61 1965 3991 1.99 0.91 0.77

2 Alpha0               [Constant Frequency Model] 23416 23414 1 23417 11.66 0.00 -----

3 Offset+ Alpha0  [Constant Rate Model] 10706 10701 5 10710 5.33 0.59 0.00

4 Offset+Alpha0+Beta.Fix 6716 6713 2 6718 3.35 0.78 0.46

5 Offset+Alpha0+Beta.Fix+Time.Fix 6686 6676 10 6695 3.33 0.78 0.46

6 Offset+Alpha(j)+Beta.Fix 5126 5090 36 5161 2.57 0.85 0.64

7 Offset+Alpha(j,t) 5316 5113 202 5518 2.75 0.84 0.60

8 Offset+Alpha(j,t)+Beta.Fix 4816 4608 208 5024 2.50 0.86 0.65

9 Offset+Alpha(j,t)+Beta.Fix+Time.Fix 4816 4623 193 5009 2.49 0.86 0.66

10 Alpha0+e.N 2116 350 1765 3881 1.93 0.91 0.78

11 Offset+Alpha0+e.Gam 2086 582 1504 3590 1.79 0.93 0.82 0.263 0.00

12 Offset+Alpha0+e.N 2146 611 1534 3680 1.83 0.92 0.81

13 Offset+Alpha0+Space.CAR.N1 2846 2473 373 3218 1.60 0.94 0.86

14 Offset+Alpha(j)+e.N 2156 988 1168 3324 1.66 0.94 0.85

15 Offset+Alpha(j)+e.Gam 2136 978 1158 3294 1.64 0.94 0.85 0.103 0.61

16 Offset+Alpha(j)+Space.CAR.N1 2846 2483 362 3208 1.60 0.94 0.86

17 Offset+Alpha(j)+Beta.Fix+e.N 2186 1085 1101 3287 1.64 0.94 0.85

18 Offset+Alpha(j)+Beta.Fix+e.Gam 2156 1046 1110 3266 1.63 0.94 0.86 0.089 0.66

19 Offset+Alpha(j)+Beta.Fix+Time.AR1+e.N 2176 1080 1096 3272 1.63 0.94 0.85

20 Offset+Alpha(j)+Beta.Fix+Space.CAR.N1+e.N 2066 1376 689 2755 1.37 0.97 0.91

21 Offset+Alpha(j)+Beta.Fix+Space.CAR.L1+e.N 2066 1375 691 2757 1.37 0.97 0.91

22 Offset+Alpha(j)+Beta.Fix+Space.CAR.N1+Time.AR1+e.N 2066 1380 686 2751 1.37 0.97 0.91

23 Offset+Alpha(j)+Beta.Fix+Space.CAR.N1+Time.Fix+e.N 2056 1377 679 2735 1.36 0.97 0.92

24 Offset+Alpha(j)+Beta.Fix+Space.CAR.N1+Time.Fix+e.Gam 2026 1342 684 2709 1.35 0.97 0.92 0.022 0.92

25 Offset+Alpha(j)+Beta.N+Space.CAR.N1+Time.Fix+e.Gam 2036 1327 709 2744 1.37 0.97 0.92 0.020 0.92

26 Offset+Alpha(j)+Beta.Fix+Space.CAR.N2+Time.Fix+e.N 2046 1360 686 2731 1.36 0.97 0.92

(continues on next page)

D D θ( )
R2DIC R2DIC
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no.  Model components (equations 2 and 3) PD DIC DIC/n

 
(Freq) (Rate)

 
(Rate)

27 Offset+Alpha(j)+Beta.Fix+Space.CAR.N2+Time.Fix+e.Gam 2016 1329 687 2703 1.35 0.97 0.92 0.021 0.92

28 Offset+Alpha(j)+Beta.N+Space.CAR.N2+Time.Fix+e.Gam 2026 1318 708 2733 1.36 0.97 0.92 0.020 0.92

29 Offset+Alpha(j)+Beta.Fix+Space.CAR.L1+Time.Fix+e.N 2056 1375 681 2736 1.36 0.97 0.92

30 Offset+Alpha(j)+Beta.Fix+Space.CAR.L1+Time.Fix+e.Gam 2026 1339 687 2712 1.35 0.97 0.92 0.022 0.92

31 Offset+Alpha(j)+Beta.N+Space.CAR.L1+Time.Fix+e.Gam 2036 1330 706 2742 1.37 0.97 0.92 0.020 0.92

32 Offset+Alpha(j)+Beta.Fix+Space.CAR.L2+Time.Fix+e.N 1966 1181 785 2751 1.37 0.97 0.91

33 Offset+Alpha(j)+Beta.Fix+Space.CAR.L2+Time.Fix+e.Gam 2016 1327 689 2704 1.35 0.97 0.92

34 Offset+Alpha(j)+Beta.N+Space.CAR.L2+Time.Fix+e.Gam 2026 1317 709 2735 1.36 0.97 0.92 0.020 0.92

35 Offset+Alpha(j,t)+e.N 2166 917 1249 3415 1.70 0.93 0.84

36 Offset+Alpha(j,t)+e.Gam 2126 886 1240 3365 1.68 0.94 0.84 0.108 0.59

37 Offset+Alpha(j,t)+Beta.Fix+e.N 2156 965 1191 3347 1.67 0.94 0.85

38 Offset+Alpha(j,t)+Beta.Fix+e.Gam 2136 962 1174 3310 1.65 0.94 0.85 0.089 0.66

39 Offset+Alpha(j,t)+Beta.Fix+Space.CAR.N1+e.N 1956 1103 853 2808 1.40 0.96 0.91

40 Offset+Alpha(j,t)+Beta.Fix+Space.CAR.N1+e.Gam 1936 1091 845 2781 1.38 0.96 0.91 0.027 0.90

41 Offset+Alpha(j,t)+Beta.Fix+Space.CAR.N2+e.N 1946 1086 860 2806 1.40 0.96 0.91

42 Offset+Alpha(j,t)+Beta.Fix+Space.CAR.N2+e.Gam 1926 1072 854 2780 1.38 0.96 0.91 0.027 0.90

Notes: i = county, j = district, and t = time period; n = sample size = 2,008;  and the saturated part of the deviance statistics = 2log[f(y)] = –8,894.

TABLE 1  Deviance Information Criterion and Related Performance Measures for Models of Various Complexities  (continued)
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As a rule, in our development we started with
simpler models, and the posterior means of the esti-
mated parameters of these simple models were then
used to produce initial values for the MCMC runs
of more complex models. In general, the models
presented in the table are ordered by increasing
complexity: intercepts only, intercepts + covariate
effect, intercepts + covariate effect + exchangeable
effect, intercepts + covariate effect + exchangeable
effect + spatial/temporal effects, and so on. Models
7 to 9 and the last eight models include a more com-
plex fixed-effect intercept term. The models are pre-
sented in the table in line with the order in which
they were estimated with the WinBUGS codes. 

The MCMC simulations usually reached conver-
gence quite quickly. Depending on the complexity
of the models, for typical runs, we performed
10,000 to 20,000 iterations of simulations and
removed the first 2,000 to 5,000 iterations as burn
ins. As in other iterative parameter estimation
approaches, good initial estimates are always the
key to convergence. For some of the models, we
have hundreds of parameters and MCMC moni-
toring plots based on the Gelman-Rubin statistics
(which are part of the output from the WinBUGS
codes). Because estimated parameters usually
converge rather quickly, their convergence plots,
which are not particularly interesting to show, are
not presented here. Table 2 shows some statistics of
the estimated posterior density of a selected number
of parameters for model 27, which was one of the
best models in terms of the DIC value and other per-
formance measures discussed above. Also, figure 10
presents estimated posterior mean crash rates, as
well as their 2.5 and 97.5 percentiles, in a bubble
plot for 1999 by county. 

From table 2, one can see that the fixed-time
effect  jumps from about 0 in previous years to
about 0.05 in t = 4 (1995) and has another increase
to about 0.09 at t = 5 (1996). The value comes
down somewhat (about 0.06) in 1998 (t = 7) and
1999 (t = 8) but is still significantly higher than
those in the preintervention periods. It has been sug-
gested that the jump in 1995 was perhaps due to
higher driving speeds by drivers in anticipation of a
speed limit increase, and higher crash rates in 1996

were due in part to the speed limit increase and less
favorable winter weather (Griffin et al. 1998).
Lower  values in 1998 and 1999 may suggest that
drivers had adjusted themselves and become more
adapted to driving at higher speeds. 

From the same model (model 27), estimates of
, i.e., district effects, range from about –0.5 to

–1.5, indicating significant district-level variations
in crash risk. The covariate effects  indicate that
the horizontal curve variable is the most influential
and statistically significant variable in explaining
the crash rate variations over space. Wet pavement
condition is the second-most significant variable.
The ran-off-road fixed-object variable is not a
statistically significant variable, which suggests
that ran-off-road fixed-object crash risk is corre-
lated with and perhaps exacerbated by the pres-
ence of sharp horizontal curves and wet pavement
conditions. 

From DIC and other performance measures in
table 1, several observations can be made:

� For the exchangeable random effect, models with
a gamma assumption (equation 8) are preferred
over those with a normal assumption (equation
7). This is observed by comparing the perfor-
mance of, e.g., model 15 with model 14, model
18 with model 17, and model 27 with model 26.

� Models with fixed covariate effects are favored
over their random-effect counterparts. This is
seen by comparing, e.g., model 25 with model 24
and model 33 with model 34. 

� Models with fixed time effects (e.g., model 23)
performed better than those with AR(1) time
effects (e.g., model 22). 

� Models with separate district and time effects (
and ) are preferred over those with joint dis-
trict time effects ( ). For example, we can com-
pare the performance of model 27 with model 42
and model 40 with model 24.

� For comparable model structures, adding a spa-
tial component decreases the DIC value quite
significantly, which indicates the importance of
the spatial component in the model. As an
example, we can compare model 17 with

δt

δt

αj

βk

αj

δt

αjt
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TABLE 2  Example MCMC Simulation Output for Model 27: Some Statistics of the 
Estimated Posterior Density for a Selected Number of Parameters 

Parameter Mean Standard error 2.5% Median 97.5%

–0.963 0.154 –1.269 –0.964 –0.662

–0.639 0.148 –0.929 –0.635 –0.356

–1.131 0.162 –1.450 –1.128 –0.823

–1.240 0.183 –1.595 –1.237 –0.882

–1.288 0.155 –1.595 –1.283 –0.993

–1.427 0.182 –1.768 –1.429 –1.066

–1.376 0.128 –1.629 –1.375 –1.127

–1.218 0.130 –1.479 –1.215 –0.978

–0.984 0.158 –1.283 –0.986 –0.666

–0.582 0.162 –0.889 –0.584 –0.260

–0.610 0.156 –0.924 –0.602 –0.321

–0.498 0.208 –0.918 –0.489 –0.097

–0.919 0.149 –1.232 –0.914 –0.634

–0.668 0.137 –0.943 –0.668 –0.398

–0.770 0.139 –1.045 –0.772 –0.503

–0.893 0.165 –1.216 –0.891 –0.551

–0.754 0.139 –1.030 –0.756 –0.495

–0.630 0.170 –0.966 –0.621 –0.294

–0.649 0.171 –0.975 –0.645 –0.326

–0.877 0.208 –1.282 –0.880 –0.459

–1.005 0.308 –1.656 –0.981 –0.442

–1.561 0.224 –1.980 –1.566 –1.114

–1.189 0.147 –1.483 –1.187 –0.901

(continues on next page)
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model 20. Except for the spatial component,
these two models have the same structures (in
intercept terms, covariate effects, and the error
component). Model 17 does not have any spatial
component, while model 20 includes a normal
CAR model. The DIC value drops from 3,287
for model 17 to 2,755 for model 20, a very
significant reduction when compared with the
differences in DIC values for various models
presented in table 1. Other comparisons that
would give the same conclusion include model
19 vs. model 22 or model 38 with models 40
and 42. 

� No particular spatial CAR models considered by
this study, i.e., CAR.N1, CAR.L1, CAR.N2, or
CAR.L2, were clearly favored over other CAR
models.

� Despite the empirical nature of the two goodness-
of-fit measures  and , seeing some of the

better models that have values exceeding 0.9 pro-
vides some comfort as to the general explanatory
capability of these models.

DISCUSSION

Most of the methodologies developed in disease
mapping were intended for area-based data, e.g.,
number of cancer cases in a county or census tract
during a study period. While we demonstrate the
use of some of these methodologies for roadway
traffic crashes at the county level, we recognize that,
fundamentally, traffic crashes are network-based
data, whether they are intersection, intersection-
related, driveway access-related, or nonintersection
crashes. Figure 11 gives an example of the locations
of KAB crashes on the state-maintained highway
network of a Texas county in 1999. 

Thus, an obvious extension of the current study
is to develop risk maps for traffic crashes on road

Parameter Mean Standard error 2.5% Median 97.5%

–1.114 0.378 –1.831 –1.127 –0.379

–1.401 0.156 –1.712 –1.396 –1.094

 (set to 0)

0.0132 0.026 –0.0380 0.0129 0.0645

–0.0156 0.027 –0.0677 –0.0156 0.0376

0.0508 0.027 –0.0009 0.0508 0.1034

0.0929 0.027 0.0418 0.0926 0.1453

0.0886 0.027 0.0365 0.0886 0.1408

0.0632 0.027 0.0111 0.0631 0.1155

0.0603 0.026 0.0089 0.0601 0.1123

0.00286 0.0018 –0.00079 0.00290 0.00648

0.00723 0.0019 0.00350 0.00721 0.01103

–0.00057 0.0014 –0.00346 –0.00057 0.00229

–0.00004 0.0002 –0.00050 –0.00004 0.00040

0.00009 0.0002 –0.00028 –0.00010 0.00048

–0.00015 0.0002 –0.00045 –0.00015 0.00014

46.52 5.04 37.83 46.18 57.41

0.0023 0.0002 0.0019 0.0023 0.0028

TABLE 2  Example MCMC Simulation Output for Model 27: Some Statistics of the 
Estimated Posterior Density for a Selected Number of Parameters  (continued)
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networks. The problem is essentially one of devel-
oping hierarchical models for Poisson events on a
network (or a graph). We expect that, in different
applications, these maps may need to be developed
by roadway functional classes, vehicle configura-
tions, types of crashes (e.g., those involving drunk
drivers), and crash severity types (e.g., fatal, injury,
and noninjury crashes). We also expect these net-
work-based maps to be useful for roadway safety
planners and engineers to 1) estimate the cost and
benefit of improving or upgrading various design
and operational features of the roadway, 2) identify
and rank potential problem roadway locations (or
hotspots) that require immediate inspection and
remedial action, and 3) monitor and evaluate the

safety performance of improvement projects after
the construction is completed. Such maps need to be
constructed from quality accident-, traffic-, and
roadway-related databases and with scientifically
grounded data visualization and modeling tools. 

Modeling and mapping of traffic crash risk need
to face all the challenges just as in the field of disease
mapping, i.e., multilevel data and functional struc-
tures, small areas of occurrence of studied events at
each analysis unit, and strong unobserved heteroge-
neity. The hierarchical nature of the data can be
described as follows: In a typical roadway network,
other than the fact that roadway networks are con-
nected or configured in specific ways, individual
road entities are classified by key geometric charac-

FIGURE 10   Estimated KAB Crash Rates1 in Crashes per MVMT by County from Model 27: 1999
97.5 percentile, mean, and 2.5 percentile of the posterior density

0.5

1.0

0.25

Data cover only KAB crashes on rural, 2-lane, low-volume, on-system roads.1

The diameter of the dark outer circle
represents the 97.5 percentile estimates;
the light gray intermediate band represents
the mean; and the medium gray inner
circle represents the 2.5 percentile estimates.
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teristics (e.g., segments, intersections, and ramps),
nested within roadway functional or design classifi-
cations, further nested within operational and geo-
graphical units, and subsequently nested within
various administrative and planning organizations.
Strong unobserved heterogeneity is expected
because of the unobserved driver behaviors at indi-
vidual roadway entities that are responsible for a
large percentage of crash events. 

Every state maintains databases on vehicle crash
records and roadway inventory data. We hope that
the results of our study using Texas data will moti-
vate the development of similar studies in other
states. We also envision that the network-based
hierarchical models we propose can potentially be

utilized in other transportation modes and in
computer and communication network studies to
further the exploration and interpretation of inci-
dence data. Furthermore, the hierarchical Bayes
models with spatial random effects described in
this paper can be used to develop more efficient
sampling surveys in transportation that alleviate
multilevel and small-area problems. Finally, the
models have been shown to have the ability to
account for the high variance of estimates in low-
population areas and at the same time clarify over-
all geographic trends and patterns, which make
them good tools for addressing some of the equity
issues required by the Transportation Equity Act
for the 21st Century. 

FIGURE 11  Locations of KAB Crashes on the State-Maintained Highway Network of a Texas County in 1999
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ABSTRACT

Traffic counting programs traditionally designed for
traffic management require some re-thinking in
order to provide accurate estimates of daily vehicle-
miles traveled (DVMT) by road class for air quality
planning. Predicting DVMT usually involves traffic
counting at random points along highways, but
local/minor roads, despite their extensive mileage,
are not routinely counted. 

We present a procedure to determine random
count locations on functionally local roads. We used
a geographic information system (GIS)-generated
grid to cut roads into point-like sections from which
we drew a random sample. The advantages of this
procedure are that it overcomes GIS local road data-
base limitations, uses standard GIS functions, and
generates output that can be directly mapped for field
crews. Cutting roads into various sizes and shapes
introduced some bias during this process. A weight-
ing procedure based on 750 local road counts in Ken-
tucky measured the effect of the bias (which was
deemed minimal and is therefore not needed in the
application). Our experience using the sampling pro-
cedures allows us to recommend grid sizes that take
into account computer processing time and file size
limitations while limiting bias and ensuring accept-
able randomness. 

KEYWORDS: geographic information systems, sampling,
traffic counting, vehicle-miles traveled.
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INTRODUCTION

Traditionally, transportation agencies conduct rou-
tine traffic volume counts on higher volume highway
corridors. However, local roads1 are also important
and unique, because they account for a considerable
amount of total roadway mileage. For example, local
roads make up 67% of the total roadway mileage in
Kentucky, the study area for this project (CKTC
1997). Because traffic counts are typically conducted
on local roads only for events such as road improve-
ment projects and specific developments, the counts
are not random and thus cannot provide accurate
estimates of total travel on this class of road. 

In September 1998, the need for estimates of the
overall travel on local roads was bolstered by a U.S.
Environmental Protection Agency (EPA) mandate
requiring 22 states and the District of Columbia to
submit state implementation plans relating to the
transport of ozone across state lines (USEPA 1998).
Oxides of nitrogen (NOx) form ozone, or smog,
which can negatively affect the environment and
human health (e.g., damaged vegetation, water
quality deterioration, acid rain, and respiratory and
heart disease). Sources of NOx emissions include
motor vehicles and electric utilities. EPA requires
state agencies to provide daily vehicle-miles traveled
(DVMT) by land-use classification, road type, and
vehicle type in order to estimate the amount of vehi-
cle emissions produced on the county level. 

DVMT is most commonly estimated from average
24-hour traffic counts at points along roads or a sub-
set of roads. To obtain the DVMT, the traffic count is
adjusted for daily and seasonal factors and then mul-
tiplied by the length of the road section. For example,
if 1,000 vehicles a day travel a 2-mile section of road,
the DVMT is estimated to be 2,000 vehicle-miles.
Likewise, if there are a total of 100 miles of a particu-
lar road class in a county and the mean of a number
of random traffic counts is 40,000 vehicles per day,
then the countywide DVMT estimate is 4 million

vehicle-miles for that class of roads. DVMT esti-
mated from the existing nonrandom local road
counts and total mileage would overestimate DVMT
given that the more heavily traveled local roads are
the ones more often counted.

When air quality, as opposed to traffic manage-
ment, is the focus of DVMT and traffic count efforts,
random locations must be chosen. One common
source of random traffic counts is the Highway Per-
formance Monitoring System (HPMS) established in
1978 by the Federal Highway Administration
(FHWA). Data in the HPMS provide current statistics
on the condition, use, operating characteristics, and
performance of the nation’s major highways. This
travel information is routinely available for major
highway systems, statewide and nationally, and is
useful for the estimation of DVMT. 

In Kentucky and elsewhere, HPMS data are used
for estimating the total DVMT for the entire arterial
and collector road systems, even though the sample
is not completely random. In order to get the HPMS
sample, each state had to break the arterial and col-
lector routes into logical roadway sections. Rural
section lengths were to range from 3 to 10 miles
while attempting to ensure homogeneous traffic
sections. Similarly, urban access-controlled facility
sections were not to exceed five miles. All other
urban sections were to be between one and three
miles. A random sample2 was then taken from this
total set of road sections, but did not include the
National Highway System and major arterial roads
that in theory have complete coverage (USDOT
2000). What made the sample nonrandom was the
various section lengths and the fact that there were
no instructions for selecting the point on the section
to take the traffic count. Some agencies may have
counted at the busiest point or at the center.
Although some states count local roads as part of
the HPMS, most do not. 

It might seem easy to produce a spatially random
sample by dividing the local roads into segments of
a particular length (one-tenth of a mile is common
for a number of purposes) and selecting a random
sample from this database. However, local road

1 In this paper, local roads are all public roads in the state
of Kentucky classified as “functionally local” by the Ken-
tucky Transportation Cabinet. These roads may be paved
or unpaved but nearly all in this study area are paved. All
local roads, regardless of the responsible jurisdiction, were
included in this study (i.e., city- and county-maintained
roads are included).

2 Unless otherwise noted, “random sample” refers to a
simple random sample as opposed to any sampling tech-
nique involving weights or resampling.
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geographic information systems (GIS) databases
from which sample locations would be drawn are
less developed than those for more major roadways.
Given a one-tenth of a mile section it would be nec-
essary to attribute starting points, ending points,
and mile point locations to every road segment in
the database in order to produce maps of the count
locations for field workers. Additionally, many local
roads, especially in urban areas, are shorter than the
segment length into which roads are normally
divided. This makes discretizing the routes compli-
cated. Roads shorter than the segment length would
always be a single segment and would have a higher
chance per unit length of being selected. If shorter or
longer roads have systematically higher or lower
traffic volumes, respectively, this would bias the
DVMT estimate if the shorter length roads were
more likely to be selected.

It would be useful to have a method for selecting
random points on the roads directly or graphically
using simple random procedures rather than
depending on weighted or proportional sampling.
In this case, the spatial procedure is analogous to
throwing a dart at a map blindfolded and counting
at the road location that the dart hit. Moving from
counting traffic on homogeneous traffic road sec-
tions to counting traffic at random points represents
a fundamental change in philosophy and is consis-
tent with the idea that traffic volume changes from
point to point at driveways and intersections.
Because of the variety of land uses on local roads
the nonhomogeneity of traffic is particularly prob-
lematic. 

The objective of this study is to develop a GIS-
based random sampling procedure to determine
count locations as random points on functionally
local roads. A total of 750 24-hour local road
counts were taken during this study in order to
evaluate the sample properties resulting from the
procedure. The large sample allowed us to analyze
the bias issues resulting from 1) the grid-based
nature of the procedure, 2) the shorter length of
some local roads, and 3) the various directions or
curves of individual roads. In application, much
smaller sample sizes are likely to be used. 

The following section describes other efforts to
estimate DVMT on local roads. The remainder of
the paper describes the GIS grid-based procedure
and the evaluation of the bias it creates. The results
of the bias analysis are presented along with a
description of a procedure to correct for the sampling
bias. However, the sampling bias was considered
small enough to recommend use of the straightfor-
ward sampling procedure without the more compli-
cated bias correction procedure.

OTHER EFFORTS TO ESTIMATE
LOCAL ROAD DVMT

Programs in several states estimate overall travel on
local roads through random samples. For example,
Tennessee takes counts on local roads for specific
highway projects, railroad crossing studies, and
intersection analysis, although the count locations
are not typically selected randomly. Because of this,
the Tennessee Department of Transportation (TDOT)
sought other methods to get a random sample of
count locations (Crouch et al. 2001). Their study
analyzed a program that collects traffic count infor-
mation for all bridges in the state with a span length
of 24 feet or greater. 

Crouch et al. (2001) proposed a method to mea-
sure the randomness of these bridge counts for
DVMT estimation on rural local roads. The traffic
counts at bridge locations were compared with a ran-
dom sample of traffic counts at nonbridge locations
on local roads in eight counties. The researchers
developed the procedure used to collect the random
sample for nonbridge locations. Each of the eight
counties was divided into four-square-mile grids (the
width and length were two miles), and a process of
repeated systematic sampling was used. 

First, the grids throughout the county were sam-
pled. Then, within each grid, the location of the
actual count was chosen by randomly selecting x and
y coordinates. Each grid cell consisted of a 10 by 10
matrix. From the randomly selected coordinates, the
closest local road location was selected, and at this
location, a traffic count was collected by TDOT. This
is indeed a random procedure with one possible bias:
shorter roads may be less likely to be closest to the
0.2 mile by 0.2 mile grid selected. When working
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with a large number of counties, the process could be
labor intensive and time consuming. Using the ran-
dom counts generated in this manner, the researchers
found the bridge counts were not a representative
sample of all rural local roads in each county. 

In a California study (Niemeier et al. 1999),
vehicle-miles traveled on dead-end unpaved roads
were estimated from a random sample. Traffic
counts were collected at random unpaved local road
access points to paved roads. Because counting was
conducted at the access points to prevent trespassing
on the private roads, researchers did not have to
deal with the issue of selecting the point along a
road and, thus, a random sample of whole roads was
taken. The count locations were mapped using GIS
so the sites could be easily found. The count provided
an estimate of the number of trips generated on the
unpaved road, which was converted into DVMT by
assuming there was a single destination on the road
and each vehicle entering or exiting the road trav-
eled half the length of the segment. However, the
assumption that the vehicle is traveling to or from
the midpoint of the road may cause the DVMT to
be incorrectly estimated. For example, dead-end,
unpaved local roads could have one origin/destina-
tion point at the end of the road. This method is
random, but it is only suitable for local roads that
dead end and have very few origin/destination
points.

As part of this research study, an email survey of
45 states was conducted using contact names pro-
vided by the FHWA division office. The 29 replies
indicated various methods for obtaining local road
volume counts and sample locations. In Oregon,
locations are picked from a select group of local
roads that a computer program indicates are under-
sampled. The most recent counts from the local
roads that are frequently sampled are then added to
the counts of the sampled roads. The total sample
may be nonrandom because the frequently sampled
local roads are usually selected based on where road
improvement projects will be located, developments
built, or traffic problems exist. These are historically
the more highly traveled areas. The random sample
of the undersampled road segments is built by
aggregating the full dataset as if it were one continu-
ous road. Microsoft Excel then randomly picks a

mile point along the road segments, and each pick
becomes a location for a traffic count. The urban
sample segments are 0.1 miles in length, while the
rural sample segments are 1 mile. The count is taken
at the center of the segment. 

Other states provided less detailed input in the
email survey. Vermont, for instance, selects the most
“important” local roads for the counts. This, of
course, is not random. West Virginia does not sample
roads that have an average daily traffic value of less
than 50 vehicles per day. This nonrandom method
would certainly cause the DVMT to be inflated if total
road length were used for the estimate. In Wisconsin,
local roads are counted for special reasons, such as a
traffic problem or new development. Again, this is
not a random sample and, therefore, the DVMT
estimate for EPA purposes could be incorrect. Wis-
consin proposed developing a random sample of
locations on local roads, but costs were prohibitive. 

Until recently, DVMT estimates were mainly
used to determine if a road needed improvements or
expansion. Now that EPA requires DVMT to pre-
dict total vehicle emissions for each county, accurate
estimates are much more important. The formerly
sufficient nonrandom sampling methods used by
many states are no longer adequate. Clearly, the
need exists for a random sampling procedure that is
not extremely labor-intensive in order to count loca-
tions to be used for estimating the DVMT on all
functionally local roads. 

GIS GRID-BASED SAMPLING 
METHODOLOGY

Challenges of Finding a Methodology

Location and alignment information for roads in
most jurisdictions is usually stored in GIS databases,
and sampling from these databases is desirable. In
addition, because maps are useful to direct field
workers to count locations it is logical to proceed
with a GIS-based method. Roadways stored in a
GIS are usually divided into segments (and, there-
fore, individual GIS features) at all intersections and
many other points, some unsystematic. 

In the road databases for the three Kentucky
counties in this study, local road segments ranged in
length from a few feet to 10 miles. ArcView, a
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Windows-based GIS produced by the Environmental
Systems Research Institute (ESRI), has a built-in
function that can select a random set of such features
or, in this case, segments. However, a random sam-
ple taken from this form of road database would
not be appropriate for several reasons. First, the
exact location on the road must be chosen and more
than one location on the same road segment must
have the opportunity to be chosen. The reasoning
for this is based on the nonuniform variation in
traffic volume along a road segment, especially for
longer local roads where different intersecting roads
and land uses affect traffic levels. Another reason
the sample could not be taken from this database is
that short and long segments would have been
weighted equally. If the sample were taken from the
existing GIS line theme, the precise location on the
selected segment would then have to be subse-
quently chosen, and thus an individual point on a
short segment would have a greater opportunity of
being selected than a point on a longer segment.
Therefore, equal weighting is not desirable. 

There are other reasons why weighting is not a
good method in our process. First, it adds two extra
steps to the sampling procedure, which is intended
to be straightforward. The length of each section
would have to be determined to be used as weights.
This might require GIS spatial analysis with poorer
quality GIS databases. After segments were selected,
another sampling procedure would be required to
choose the random point along the given road
segment. Second, weighted random sampling can-
not be undertaken with built-in functions in most
GIS programs requiring data to be transferred
between programs. 

As discussed in the introduction, another logical
approach to developing the random sample would
involve picking a random mile point or distance
measure along these roads and then mapping it for
the people conducting the counts. Knowing the
length of every local road in a particular county, a
line or row in a spreadsheet program could repre-
sent each one-tenth of a mile section. Most spread-
sheet programs are capable of taking a random
sample from the whole set. However, once the
sample is taken it is difficult to direct the people
making the traffic counts to the count location. On

local roads, there are typically no mile markers to
indicate location as there are with more major or
higher volume roads. Maps of count locations made
in ArcView could solve this problem. However, lim-
itations in the coding of local road databases
present a further difficulty for this mapping. 

Mapping a specific point on a road is very easy
with GIS road databases with a feature called
“dynamic segmentation.” Using dynamic segmenta-
tion, every road segment has two “special” attributes.
One indicates the beginning linear reference marker
at the start of the segment and the second indicates
the end reference. The GIS can then locate any mile
point on the road segment based on this information.
This allows the mile-point reference system to span
across adjacent segments. For example, the system
could span across an intersection. However, the avail-
able GIS databases for local roads rarely contain
dynamic segmentation. Therefore, use of a sampling
procedure that required start and end mile points to
allow mapping would become very labor-intensive. 

As an alternative to creating dynamic segmenta-
tion attributes in the database, each individual road
segment (as opposed to the whole road) could be
coded automatically with a starting mile point of
zero and an ending mile point of its length. How-
ever, using discrete mile-point demarcations, such as
one-tenth in the spreadsheet listing, and random
sampling presents another problem for very short
local roads, especially in urban areas. Selection of a
random continuous number between zero and each
segment’s length would be necessary in a two-stage
process like that used in Tennessee. In the first stage,
a weighted random sample with replacement, with
probability proportional to road segment length,
would be taken. In the second stage, a point or
points along the segment would be selected by
random number generation. This procedure would
require separate programming outside the GIS, and
the results would necessitate subsequent transfer
back into the GIS for mapping because mile points
are not meaningful on a segment-by-segment basis
or on local roads without field mile-point markers.

The new methodology proposed here is also two
stage but uses standard built-in functions of the typ-
ical GIS: grid generation, database intersection, and
random sampling from a feature table. The product
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is already a line feature in the database and is imme-
diately mapped. In the first stage, a GIS grid is gen-
erated and used to cut road segments into sections.
As the grid size becomes smaller, the sections
become more point-like, enabling a new theme from
which the random sample can be drawn using the
direct built-in random sample command. This
avoids the use of any weighting or resampling. The
procedure ensures that the sample locations are
spread randomly throughout the study area and
that each point-like section along all roads has an
equal chance of being in the sample regardless of the
total length of the road. 

Creating the Point-Like Sections
for Three Study Areas

In this case, the primary GIS used was ArcView. We
developed a procedure that cut the roads into small
sections using a grid; thus, the shape and density of
the local roads were considered potentially influ-
encing and affected the selection of study areas.
Because it was not feasible to include all 120
Kentucky counties, we chose three counties for this
study: Henderson, Pike, and Fayette. In total, the
Kentucky Transportation Cabinet agreed to count up
to 750 locations in these 3 counties for analysis of the
sampling strategy. The counts were performed by a
state contractor using “tube style” Peek Automatic
Data Recorders (ADR-1000) between fall 1999 and
spring 2000. Counts were taken for 24 to 48 hours
and adjusted for season and day of the week using
factors developed with historic counts by the Ken-
tucky Transportation Cabinet. No axle counts or
adjustments for heavy vehicles were undertaken. This
large number of counts was not expected to be rou-
tine but was undertaken to address the issue of vari-
ability in local road volumes in order to design future
counting programs.

The three counties for the chosen sampling proce-
dure are very different from one another. Henderson
County (440 square miles or 1,140 km2) is in the
western part of the state where the flat plain topog-
raphy results in gridlike roads (total of 601 miles or
968 km of local road). It includes the small city of
Henderson, which has a population of approxi-
mately 27,000. Pike County (788 square miles or
2,041 km2) is in the eastern, mountainous part of the

state, has winding and curvy roads, and is consid-
ered a relatively rural county (total of 829 miles or
1,335 km of local roads). Fayette County (284
square miles or 736 km2), with a population of
approximately 250,000, represents an urban county
with a dense road network (total of 734 miles or
1,182 km of local roads). The separate GIS themes
for state-maintained, county-maintained, and city-
maintained local roads were combined for the three
test counties to obtain three local road GIS data-
bases. All GIS local road databases were developed
and maintained by the Kentucky Transportation
Cabinet.

Unfortunately, ArcView does not have the capa-
bility to create a grid (a set of adjacent polygon
squares covering a certain area or extent), so grids
were created in ArcInfo (a compatible ESRI GIS) by
specifying the extent of the area and the grid size.
These grids can be used directly in ArcView. Using
the intersection function in ArcView, a “cookie cut-
ter” grid shows, for example, in the designated
square in figure 1, that the roads in the square are
now in four separate pieces or features. Each sepa-
rate, tiny line feature in the output database has a
record in the attribute table from which ArcView’s
sampling script draws the random sample. Note
that the random point-like road segments are
selected, not the squares. Therefore, there is no need
to select the road segment within a given selected
cell as was done in some past procedures. 

One obstacle of the grid approach is that some
bias can be introduced by virtue of the point-like
segments not being of equal length, as illustrated in
figure 1. The grid used to cut the roads into small
sections was orthogonal, so the roads were cut at
different angles. As a result, some of the sections
were considerably longer than others. If you have
two roads of equal length, one cut into several short
pieces and the other cut into a few long pieces, then
the road cut into several short pieces will have a
greater chance of being selected in the random sam-
ple. Given that the local road traffic volume was
found to correlate with the original road segment
length and also with differences in rural and urban
areas, in order to avoid bias, the number of
segments into which a particular road was divided
would have to be directly proportional to the length
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of that road. This means that a road with twice the
length of another road should be divided into twice
the number of sections.

Our objective then is to determine the size of the
largest grid square that brings an acceptably low
bias to the sample. As the grid size approaches zero,
the point-like sections approach true points of zero
length, which present absolutely no bias. The smaller
the grid square size, the more computer space and
time are needed for the spatial analysis that cuts the
road segments. The three counties were analyzed
with 0.2 mile, 0.15 mile, 0.1 mile, and 0.05 mile
grid square sizes. Although space issues needed to
be considered (the grid for one county at the 0.05
mile size was 148 MB) in choosing the final grid
square size, the computing time and ability of a
personal computer to do the intersection (cutting)
without crashing were certainly critical issues. 

CONSIDERATION OF BIAS IN THE 
POINT-LIKE SECTIONS

In order to compare grid sizes and determine if the
straightforward sampling procedure could be used
without a more complicated weighting procedure to
correct for the bias, it was necessary to develop a
method to measure the bias that would be present in
an average traffic count from a sample drawn using
this process. Once the road segments were cut by
the grid, the length of the original road section and

the number of point-like segments into which it was
divided were available for use in measuring bias.
Figure 2 illustrates these data for one 0.2 mile grid
in Pike County (lines and equations on this figure
are described below).

The first of several indicators of bias considered
was the coefficient on the x2 variable in the equation
for the best-fit quadratic curve. This curve is not
represented on the figure but has the form 

y = a + bx + cx2 

where a, b and c are parameter coefficients, 
x is the original road segment length, 
y is the number of segments into which the road

is cut. 
The value of the coefficient on the x2 variable is

an indication of the curvature of the line, and
increasing values of the coefficient would indicate
bias. A negative value would indicate that the line
curved downward, specifying that the longer roads
were being cut into relatively fewer pieces and were
therefore underrepresented in the sample. A positive
value would denote the opposite: longer roads were
overrepresented in the sample. The magnitude of
the coefficient for the x2 term also provides an
indication of whether it is appropriate to proceed
using a linear regression-based representation of the
relationship between road length and number of
point-like segments.

A bias analysis graph and equation such as that
in figure 2 was generated for each county and grid
size analyzed. The coefficients on the x2 variable in
the equation for the best-fit quadratic line as gener-
ated by Microsoft Excel are shown in table 1.
Within an individual county, the value of the coeffi-
cient varies. This alone is not insightful; it is the
comparison between counties that provides useful
information. The magnitude of the coefficient is
substantially greater for Fayette County than it is
for Henderson and Pike Counties, showing that the
grid process works better for rural roads than for
urban roads because they are longer and less dense.
We considered the low magnitude of these coeffi-
cients to be the justification to proceed with repre-
senting the relationship with a linear equation. 

However, it is important to note that bias could still
exist even in a linear relationship (x2 coefficient = zero).
Therefore, we undertook further consideration of the

FIGURE 1  A “Cookie Cutter” Grid on a
Network of Roads
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linear regression equation. One factor considered in
measuring this bias was the y-intercept of the best-fit
line. On one hand, this value would ideally seem to
be zero, because a road of zero length should be
divided into zero sections. However, a y-intercept of
one would indicate that a road of very small length
was divided into one section, meaning that very short
roads will be automatically overrepresented in the
sample. As evident in figure 2, some very short roads
were divided into up to three or four segments. Table
1 shows that the y-intercept value did not vary signif-
icantly as the grid size changed. For all counties and
grid sizes, the y-intercept hovered just above one,
which is expected because very short segments would
most often be cut into one piece or, at most, two
pieces. This result illustrates that some bias will be
present with all grid sizes given that short segments
are overrepresented.

The line indicating no sampling bias due to road
length would be expected to have a certain slope,
referred to here as the “target slope.” The target slope
is obtained by dividing the total number of segments
in a county by the total length of local roadway in
that county. For example, if there are 5 million
distance units of local road in a particular county, and
a specific grid size cuts these roads into 7,000

segments, the segments should be on average 714.29
distance units (i.e., 5 million distance units/7,000
segments) long. The target slope is the inverse of this
number (divided by 1,000 for the graph scale
shown), and the line on figure 2 was derived by using
this slope with a y-intercept of 1. 

Comparison of the target slope to the actual
slope first required consideration of the R2 value.
The R2 values shown in table 1 indicate that both
the sampling procedure and the weighting proce-
dure described below, which is based on the linear
slope, are better suited to non-urban areas. The
variation in the number of segments decreases with
the smaller grid square sizes, as expected. However,
the relatively high overall R2 values indicate that the
best-fit line does indeed represent the data well,
adding legitimacy to the comparison of the actual
and target slopes described below. 

Table 2 includes the target slope, the actual slope
of the best-fit line, and the percentage difference
between its slope and the target slope. The range
included with the slope is the 95% confidence inter-
val. The confidence interval was inspected for the
inclusion of the target slope. None of the target
slopes were included in the 95% confidence inter-
val, indicating bias was present. 

FIGURE 2  Bias Analysis for Pike County
(0.2 mile grid)
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TABLE 1  y-Intercept, R2, and x2 Coefficient

Coefficient 
on the x2 

variable
y-intercept
(linear)

R2

(linear)

Pike County
0.20 mile grid  –0.0007 1.071 0.97
0.15 mile grid –0.0005 1.066 0.98

0.10 mile grid 0.00001 1.023 0.99

0.05 mile grid –0.0016 1.026 0.99

Henderson 
County
0.20 mile grid –0.0005 1.049 0.98

0.15 mile grid –0.0011 1.110 0.98
0.10 mile grid –0.0001 1.038 0.99

0.05 mile grid –0.0013 1.036 0.99

Fayette 
County
0.20 mile grid –0.0054 1.005 0.74

0.15 mile grid –0.0120 1.012 0.81
0.10 mile grid –0.0073 1.016 0.90

0.05 mile grid –0.0123 1.032 0.97
Note: Values in bold are statistically significant at the 0.05 level.
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In each county the percent error between the tar-
get slope and the actual slope decreased as the grid
square size approached zero, as expected. The target
slopes are greater than the actual slopes, indicating
that as road length increases the road becomes
underrepresented in the sample. Fayette County had
percent errors greater than that for the other two
counties, again indicating that less dense roads are
better suited to the grid process. Henderson
County’s grid-like roads had smaller errors than
Pike County where roads are curvier. Therefore, it
can be inferred that the grid procedure works best
for grid-like roads and rural roads. The grid size is
more crucial in urban areas. 

In order to consider the impact of the bias due to
road length and the grid procedure, weights were
developed based on slope comparison; these weights
were then applied to the traffic counts for these
three counties. Counts were performed during cal-
endar year 2000 at points selected using the 0.2 mile
grid procedure (a worst-case scenario). The number
of 24-hour counts performed in Henderson, Pike,
and Fayette counties were 164, 243, and 337, respec-
tively. These totals were designed so that the number
of counts in each county were proportional to the
length of local roads but also ensured a minimum

number of rural and urban counts in each county
(this constraint was imposed by the Transportation
Cabinet). Counts were corrected for seasonal and
weekly factors using constants developed in Ken-
tucky based on counts on all functionally classed
roads over many years.

The best-fit line and the target line were known
for each county for the 0.2 mile grid size. In other
words, for a road of a particular length, the number
of segments into which it was divided and the num-
ber of segments into which it should have been
divided were known. The weight was calculated as
the ratio of the number of segments into which the
road of a given length should have been divided if
no bias by road length existed and the actual aver-
age number of segments into which the road was
divided. This weight varied by road length as illus-
trated in figure 3 for Pike County for all grid sizes.
We calculated a weighted average for the 24-hour
traffic count, or average daily traffic (ADT) using
the weights for the 0.2 mile grid size. 

Table 3 presents the sampled and weighted ADT
and the subsequent sampled and weighted DVMT
estimate for local roads in each county based on the
0.2 mile grid process. The table demonstrates that
without the weighted ADT, the DVMT estimate for
each county would be slightly overestimated, with
the greatest difference in Fayette County. This is fur-
ther evidence that the weighting procedure is impor-
tant for urban areas but is also a function of the
greater number of shorter roads in those areas.

TABLE 2  Slope Comparison

Target
slope

Actual
slope

Error 
(percent)

Pike County
0.20 mile grid 1.547 1.193 + 0.0100 22.9

0.15 mile grid 1.945 1.593 + 0.0103 18.1

0.10 mile grid 2.752 2.414 + 0.0116 12.3

0.05 mile grid 5.182 4.841 + 0.0137 6.6

Henderson 
County
0.20 mile grid 1.552 1.260 + 0.0120 18.8

0.15 mile grid 1.977 1.668 + 0.0143 15.6

0.10 mile grid 2.802 2.512 + 0.0161 10.3

0.05 mile grid 5.296 5.009 + 0.0245 5.4

Fayette 
County
0.20 mile grid 3.029 1.228 + 0.0170 59.5

0.15 mile grid 3.441 1.629 + 0.0183 52.7

0.10 mile grid 4.258 2.441 + 0.0190 42.7

0.05 mile grid 6.754 4.908 + 0.0206 27.3

FIGURE 3  Pike County Weights
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However, the percentage difference due to the sam-
pling bias is small and deemed acceptably low for
modeling purposes for either the planning or air
quality considerations described at the beginning of
this paper. Based on the slope comparison the bias
would be even less with the smaller grid sizes. It
would not be useful to undertake the multistage
weighting procedure calculations.

CONCLUSIONS

In summary, we developed and validated a straight-
forward sampling procedure that will allow random
sampling of traffic count locations on extensive
local road systems. Because built-in GIS commands
can be used, sampling does not require time-inten-
sive processes and the results can be directly
mapped for field use. The procedure offers a means
to determine not only a random road but also the
point along the road where counting should occur.
Furthermore, the procedure can handle very short
local roads without greatly biasing the sample.

The analysis presented here provides guidance for
determining a recommended grid size for use in
sampling that takes into account computer capabili-
ties in terms of file size and processing time while
ensuring acceptable randomness of sampling.
Attempts to use grid sizes below 0.05 miles were not
successful in ArcView for the study areas used.
Although individuals should select a grid square size
based on their computer processing capabilities and
the characteristics of the roads in their study, these
results indicated that a larger grid size can be used for
rural roads and grid-like roads. The grid square size

needs to be smaller for urban counties due to the
dense, short roads. Because it is very difficult to work
with the 0.05 mile grid square size, the 0.1 mile size is
recommended for urban counties. The recommenda-
tion for rural counties is to use the smallest grid
square size feasible, but a 0.2 mile size would be suffi-
cient, especially if roads are in a grid-like pattern. 

Although not directly related to the main topic of
this paper, several observations can be made regard-
ing traffic counts on local roads and the estimation of
accurate countywide DVMT. The state of Kentucky
undertook a significant number of 24- to 48-hour
local road traffic counts for this project, which is a
very unusual and expensive undertaking, particularly
for local roads. A total of 3,800 counts were
obtained (including the 750 used in this sample pro-
cedure research). The counts had extraordinarily high
standard deviations (386 for 2,702 counts in rural
areas and 1,323 for 1,099 counts in urban areas),
suggesting that sample sizes beyond those realistically
possible would be necessary to obtain average counts
with reasonable confidence intervals. Further disag-
gregation of roads beyond simple use of the func-
tional classification system will be necessary before
any reasonable traffic data-collection plan can be
undertaken by states for EPA travel estimations. For
this reason, we recommend that the next stage of
research be to apply the sampling procedure to
higher functional class roads where it might decrease
the total number of counts required. If tests were
conducted on the National Highway System where
the HPMS provides near universal coverage, valuable
sample size recommendations might be possible.

TABLE 3  Corrected and Uncorrected ADT and DVMT Values
(0.2 mile grid-based sample)

Number 
of counts

Average1 
ADT

(veh/day)

Average 
weighted2 

ADT 
(veh/day)

DVMT
estimate

(veh-miles)

Weighted 
DVMT

estimate
(veh-miles)

Pike County 243 454.87 453.18 377,232.79 375,831.24

Henderson 
County 164 386.27 367.59 232,105.78 220,881.16

Fayette County 337 747.06 719.56 548,177.69 527,998.74

1 Straight arithmetic mean.
2 Mean is weighted by the ratio of target and actual slopes from the regression analysis.
Key: ADT = average daily traffic; DVMT = daily vehicle-miles traveled; veh/day = vehicles per day; veh-miles = 
vehicle-miles.
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ABSTRACT

Shippers choose ports for export or import of goods
based on a number of variables, including location,
preferences for particular shipping line services, and
facilities offered. A huge port infrastructure invest-
ment is necessary to attract shippers, and ports
compete with each other for business. This paper
models the port and shipping line choice behavior of
shippers in China, using a shipper-level database
obtained from a 1998 survey of containerized cargo
shippers. We used a discrete choice model where
each shipper chooses among 10 shipping line and
port combinations and makes decisions based on
various shipper and port characteristics. This paper
incorporates the shipping line choice behavior
through model specification by nesting the choices
in a hierarchical fashion where shippers choose
from Chinese and non-Chinese shipping lines and
then from ports or vice versa. The results indicate
that the distance of the shipper from the port, the
number of ship calls at the port, the efficiency of the
port infrastructure, and the number of routes
offered at the port strongly influence decisions to
use a port. 

KEYWORDS: China, discrete choice model, port choice,
shipping.
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INTRODUCTION

Shippers choose shipping lines and ports through
which their goods can be moved reliably and eco-
nomically, particularly for containerized high value-
added cargo. In an earlier study (Tiwari et al. 2003),
we modeled the choice of ports and shipping lines
by light manufacturing industrial cargo shippers in
China. Our study emphasized the importance of
joint modeling the choice of ports and shipping
lines. 

Policy changes in China during the last two
decades (e.g., economic liberalization and trade, the
unification of mainland China and Hong Kong, and
membership in the World Trade Organization) have
strengthened the role of ports in the economy. Ports
and shipping lines play a key role in the export and
import of goods. Imports constituted 17.5% of the
Chinese gross domestic product (GDP) and exports
were 21.9% of the GDP (US$) in 1998. 

China has 16 major coastal ports (SSB Annual).
Figure 1 shows the location of the key ports. The
ports of Shanghai and Qingdao are relatively close
to each other and are more likely to compete with
one another than more distant ports. The ports of
Tianjin and Dalian compete against one another as
they are close to Beijing. In 1998, the port of Shang-
hai, the largest containerized cargo handler in
China, handled 28.4% of this cargo, measured in
20-foot equivalent units (TEUs). Port shares for
Dalian, Tianjin, and Qingdao in total TEUs were
4.9%, 9.5%, and 11.3%, respectively. Other ports
in China handled about 45.9% of the total cargo in
TEUs (Year Book House of China 1999; SSB
Annual).

Chinese ports have started to compete among
themselves, including traditionally busy ports such
as Hong Kong. Ports in South China that are closer
to cargo origins are growing by more than 40%,
while Hong Kong, which depends on South China
for about 80% of its cargo, is seeing only single-
digit increases (Mongeluzzo 2002). 

China, an emerging market economy, is in the
process of formulating policies intended to make its
ports more efficient. The port sector in China has
undergone many changes during the last decade and
is poised for significant gains in the future. Key
areas being considered include strengthening of

port infrastructure and issues related to the market
entry or exit of ports and related services and ship-
ping lines. It is essential to quantify the impact that
changes in key port infrastructure or shipping line
variables would have on the demand for port and
shipping line services. 

This paper attempts to fill the gap in the litera-
ture on this topic by formulating a model of port
and shipping line choice decisions by shippers in
China. Specifically, the model seeks to specify and
empirically estimate the underlying factors that
influence the port and shipping line selection
behavior of containerized cargo shippers in China.
The model estimates market elasticities that mea-
sure changes in market shares of various ports and
shipping lines due to changes in key infrastructure
variables.

FIGURE 1  Location of Chinese Ports
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This study is important for two reasons. First, it
supplements the currently limited amount of litera-
ture available on port and shipping line choice
behavior of shippers, particularly for China. Sec-
ond, as nations become more “global” and their
industries are affected by the pressures of interna-
tional competition, services must be provided on
an internationally competitive basis. Thus, port
authorities must understand the necessity of
improving their services in order to respond to
greater competition among ports and the growing
pressure from shippers for lower port and shipping
charges. 

Ports form a vital link in the overall trading chain
and, consequently, their level of utilization deter-
mines to a large extent their domestic and interna-
tional competitiveness. In order to maintain a
competitive edge in these markets, port authorities
must understand the underlying factors that affect
their competitiveness.

The objectives of this paper are to 1) estimate the
demand for ports and shipping lines in China, 2)
determine what factors affect the demand for ports
and shipping lines, and 3) estimate the market elas-
ticity parameters of demand. This analysis covers
shippers from most of the Chinese coastal regions
but excludes Guangdong and Hainan provinces,
which ship most of their cargo from the ports of
Hong Kong and Yantian, because these provinces
are not covered by our dataset. 

The paper is structured as follows. The next
section briefly reviews the literature, followed by a
section describing our model. Next, we present key
statistics based on the study data, and the final two
sections discuss the results and conclusions.

LITERATURE REVIEW

Earlier literature in this area focused on analyzing
the performance of shipping lines or factors influ-
encing the choice of ports. Our earlier study (Tiwari
et al. 2003) hypothesized that shippers choose
shipping lines and ports simultaneously. This is
important because most earlier studies are based on
the assumption that shippers’ deal with forwarders
and base their decisions only on service factors. The
port and shipping line choices would then be made
by forwarders on behalf of shippers. This is not

always the case in Asia. Shippers base their logistic
decisions on an overall cost-minimizing strategy.
They choose shipping lines and ports so that their
goods can be shipped economically and efficiently
to market locations. Although our earlier study
emphasized the need for direct modeling of shipping
line and port choice by shippers, our empirical
results only weakly supported the hypothesis. In
this analysis, we include all types of containerized
cargo to and from China (extending the Tiwari et
al. database) and test a hypothesis similar to that
proposed in our earlier study. 

Prior research analyzing factors responsible for
port and shipping line efficiency guided our choice
of variables for this study. Network and scale econ-
omies affect shippers’ choice of ports. Studies esti-
mating port performance indicate that the number
of ship calls is an important factor in determining
the performance of a port. The speed at which cargo
moves through a port influences its value. 

Slack (1985) analyzed port end users and freight
forwarders engaged in trans-Atlantic container
trade between the United States and Europe and
found that the number of sailings was the most
important criterion for port choice. Bird’s (1988a
and 1988b) results from perception analysis of
European freight forwarders indicate that the fre-
quency of ship service is the main reason for port
choice. Tongzon (1995) also confirmed that time is
critical in freight forwarding and the frequency of
shipping service is the major determinant of time.

Investigations of what influences the choice of
shipping line have identified three categories of fac-
tors: route (e.g., frequency, capacity, convenience,
directness, flexibility, and transit time), cost (freight
rate and other costs), and service (delays, reliability
and urgency, avoidance of damage, loss and theft,
fast response to problems, cooperation between
shipper and carrier, and documentation and tracing
capability) (Gilmour 1976; McGinnis 1979; Ogden
and Rattray 1982; Brooks 1985; Wilson et al. 1986;
and Meyrick and D’Este 1989). These studies found
that shippers are generally risk averse in their choice
of shipping lines and thus have limited options.
Service factors, particularly service frequency, take
precedence over price (Bayliss and Edwards 1970;
Brooks 1984, 1985; Wilson et al. 1986; Meyrick
and D’Este 1989; Pearson 1980).
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On the other hand, Suthiwartnarueput’s (1988)
study on the efficiency of the shipping industry in
Thailand suggests that the most important service
attribute is cost, followed by punctuality, transit
times, frequency of sailings, directness of sailings,
as well as past loss and damage experience.
Jamaluddin (1995), with reference to the Far East/
Europe trade, reported that the six service factors
to which shippers attach the most importance
were freight rate, cargo care and handling, knowl-
edgeability, punctuality, transit time, and service
frequency. Furthermore, the six service attributes
to which carriers attach the most importance are
knowledgeability, freight rate, cargo care and
handling, punctuality, transit time, and service
frequency.

Chiu (1996) evaluated the logistics performance
of liner shipping in Taiwan and found that the most
important service attributes for shippers were
prompt response by the carrier to problems, transit
time reliability, documentation services, notice of
delay, and assistance with loss or damage claims
from the carrier. For carriers, the five most impor-
tant service attributes of carriers were transit time
reliability, prompt response by them to problems,
knowing the needs of the shippers, their own repu-
tation, and knowledgeability of sales personnel. 

Previous studies concluded that service attributes
significantly influence distribution and logistics
activities. Services such as transit time, frequency of
service, reliability of delivery, speed of claims
response, on-time pickup and delivery, as well as
other aspects of physical distribution, are perceived
as crucial by shippers. 

MODEL AND VARIABLES

This paper extends our earlier analysis, which
looked at shippers’ logistics decisions for light man-
ufacturing industrial cargo in China. That analysis
was based on a multinomial logit (MNL) model in
which alternatives available to shippers were com-
binations of ports and shipping lines. The method-
ology is briefly discussed below. 

Shippers require a shipping line and port to
move goods. In our model, because of data limita-
tion, we considered only two groups of shipping

lines (Chinese and non-Chinese). We assumed (a
rather strong assumption but we explain our ratio-
nale later) that all service aspects of shipping lines
are subsumed by grouping shipping lines this way.
Shippers maximize profits by minimizing their cost
of transportation and while doing so they will
choose a combination of shipping line and port that
is the most cost-effective in terms of the overall
chain of production. This paper classifies choices as
combinations of five ports and two shipping lines.
The total number of choices available to a shipper
is 10 (2 shipping lines x 5 ports) (figure 2). We
estimated the probabilities of choosing alternative
i (i = 1,…,10) using a discrete choice modeling
framework.

The simplest and most convenient functional
form for a discrete choice probability of alternative i
is the standard MNL form (McFadden 1981).

,

where 
N = {1,…,n} denotes the set of n discrete port-

shipping line choices,
Zi = a vector of K attributes specific to choice i,

and
 = a vector of corresponding cost parameters.1

The simple MNL model is constrained by the Inde-
pendence of Irrelevant Alternatives (IIA), which
implies that the cross-elasticities of the probability
shares must be equal (Boersch-Supan and Pitkin
1988). 

McFadden (1981) generalized the MNL specifi-
cation as the nested multinomial logit (NMNL)
model based on a hierarchy that groups alternatives
into subsets of similar choices. The choice within a
cluster and the choices among the clusters within
each nest are described by a conditional logit choice
probability and conform to the IIA assumption.
Following McFadden, this paper formulates an
NMNL model with shipping lines and ports at dif-

1 The choice probability can be derived from cost minimi-
zation of shippers by defining as the sto-
chastic cost of port-shipping line choice i where  
follows a type I extreme value distribution (see McFadden
1981).
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FIGURE 2  Alternatives in Shippers’ Decision Process in China
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ferent levels of hierarchy. Figure 2 shows the vari-
ous illustrative specifications of the NMNL models
considered in this paper.

Mathematically, the probability of choosing
alternative ij in the NMNL model is

where 
i = number of subsets (e.g., in figure 2, two sub-

sets in NMNL Tree 1 and five subsets in
NMNL Tree 2) and each subset has some or
all of j = shipping lines-port combinations
(some or all of the total of 10),

P(i) = the marginal choice probability of subset i,
and 

P(j|i) = the conditional probability of choosing alter-
native j from the alternatives included in sub-
set i.

The conditional probabilities of choosing alterna-
tive j in subset i have the form of MNL choice prob-
abilities

The marginal choice probability is represented as

where the  “inclusive values” I(i) is defined by

are weighted by “similarity coefficients” s(i). These
similarity coefficients refer to their respective sub-
sets and characterize the degree of substitutability
among the alternatives in the subset. Values of
similarity coefficients between zero and one are a

FIGURE 2 Alternatives in Shipper’s Decision Process in China (continued)
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measure of the importance of similarities and dis-
similarities among choices. If, however, these values
are equal to one, the trees reduce to simple MNL.

This paper estimates the probability of choosing
alternative i based on the following variables.

Port Characteristics

Ship calls is an important variable. The sign for
this variable is ambiguous, because, as explained
earlier, an increase in the frequency of ship calls is
an attractive variable for exporters and importers.
A positive sign may be expected for this variable.
However, if the ship call variable is already high for
a port, increased congestion may result and have a
negative effect.

Total TEUs handled at the port may represent
the use of the port by shippers. However, a higher
volume of TEUs may also represent congestion. We
do not have any a priori notion about the sign of
this variable.

A higher number of TEUs per berth at the port
means that one berth caters to a large number of
TEUs. As will be discussed in more detail in the
Results section, we believe this may represent con-
gestion at the berth and shippers are expected to
react negatively to this variable.

TEUs of cargo per crane loaded and unloaded
from a ship is also another time-related factor. As
will be discussed in more detail in the Results sec-
tion, we believe a higher value for this variable indi-
cates efficiency in loading and unloading a ship’s
cargo. This variable is expected to influence the
shippers' decisions positively.

The usage factor is defined as the handling vol-
ume (thousand tons) per length of quay. The
expected sign for this factor is negative, because a
higher value for this variable represents congestion.

The number of routes offered is another fre-
quency of shipping-related variable. The greater
the number of routes offered at a port, the quicker
it is for shippers to move their goods to various
destinations. 

Port and loading charges is another variable that
would affect the decisions of shippers. However,
these charges are the same for all ports (Water
Transportation Ministry 1997).

Shipping Line Characteristics

The literature in this area considers marketing to be
a service factor. Advertising, frequency, and quality
of service are crucial factors in determining the
selection of a shipping line. Traditionally in China,
forwarding and logistics have been tightly con-
trolled. The entry of foreign companies has not been
easy. Foreign companies can operate only if they
have a Class A license from the Ministry of Foreign
Trade and Economic Cooperation. The license
strictly limits the services companies can offer and
the cities or regions in which they can operate. 

In a highly regulated environment, it is difficult
to distinguish shipping lines on the basis of services
or competitive factors. However, to capture some
aspect of competition we classified shipping lines
as Chinese and non-Chinese based on their flag of
registration. Chinese shippers prefer Chinese ship-
ping lines for two reasons: their business relation-
ship has been built over a number of years, and the
licensing system offers the most profitable routes to
the Chinese shipping lines. Because foreign shipping
lines are relatively new to the Chinese markets, cost
and service data are limited. Thus, this paper tries to
capture the differences in the attitudes of shippers
toward shipping lines using the NMNL model.

We have good data for two characteristics related
to shipping lines.

� Total TEUs handled during the year by shipping
lines. We do not have an a priori expectation
regarding its sign.

� Number of vessels. The greater the number of
vessels operated by a shipping line, the lower the
turnaround time for shippers' cargo. The number
of vessels is highly related to frequency and time-
liness and is an important service variable. We
expect that it has a positive sign.

Shippers' Characteristics

The characteristics of the shippers themselves influ-
ence their decisions regarding port and shipping line
choices. The variable we considered in our model is
the distance of the shipper from the port.
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We imputed the distance of shippers from ports
based on our calculation from China’s Road Map
Collection (Measurement Publishing 1994) and
China’s Route Map (PTPH 2000). The farther the
port is from the shipper's location, the less likely the
port will be chosen. Distance is expected to be nega-
tively related to port choice.

Cargo type also influences the choice of port and
shipping line. This paper, however, considers only
containerized cargo so the type of cargo is not a
variable that will determine the choice of ports and
shipping lines. 

DATA 

The data used in this paper are from the Survey of
International Containerized Cargo Flows on the
Yellow Sea Rim, conducted by the International
Center for the Study of East Asian Development in
Japan for 1998. The data do not include domestic
cargo flows within China. The total sample size is
2,424 and covers shippers located in 9 provinces
and 6 cities of China (Guangdong and Hainan
provinces are not covered). The survey asked ship-
pers about their choice of shipping line and port
through which they export or import goods. The
data report only the behavior of shippers. We sup-
plemented these data with various port infrastruc-
ture-related variables such as number of berths and
cranes, port charges, number of ship calls, routes

offered, and so forth, from the China Statistical
Yearbook, China Shipping Development Annual
Report 1998, and the Year Book of China Trans-
portation & Communications.

The data indicate that the most used port in
China is at Shanghai, with 4.22 million total TEUs
handled in 1998. Shanghai’s better infrastructure
accounts for this; it has 28 cranes and 19 berths. In
1998, 9,660 ships called at the port of Shanghai,
traveling on 624 routes. Qingdao and Tianjin
followed Shanghai with about 1.5 million and 1.3
million total TEUs, respectively. 

The data used in this paper include some char-
acteristics of shipping lines, for example, number
of vessels and TEUs handled. However, due to the
confidential nature of the data, we could not
obtain the names of the shipping lines. This lack of
information kept us from incorporating shipping
line service-related variables. Moreover, the survey
provided only quantitative variable data and no
information on qualitative or behavioral aspects of
shipping lines. As mentioned earlier, we classified
shipping lines into two groups according to their
country of registration: Chinese and non-Chinese.
Of those surveyed, the Chinese shipping lines had
the largest fleets, with an average of 128 vessels.
The total TEUs handled by these shipping lines is
shown in table 1.

TABLE 1  Descriptive Statistics

Port variables Dalian Tianjin Qingdao Shanghai
Average for 
other ports1

Berths (number) 5 7 5 19 4

Water depth (meters) 14 12 12 13 13

Cranes (number) 7 16 10 28 6
Total TEUs handled during the 

year (millions) 0.74 1.3 1.5 4.22 0.64
TEUs per crane 106 81 150 151 107

TEUs per berth 148 186 300 222 160

Ship calls (number) 4,216 2,498 2,549 9,660 2,445
Usage factor 5.61 6.25 8.02 8.35 4.58

Routes (number) 133 183 202 624 77

Shipping line variable Chinese Non-Chinese

Average number of vessels 128.0 71.3
1 Other ports include Qinhuangdao, Yantai, Rizhaogang, Yingkou, Lianyungang, Ningbo, Xiamen, Yantiai, Guangzhou, 
and Shekou.
Note: Usage factor is handling volume/length of quay (thousand tons/meter).
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RESULTS

As formulated in this paper, a shipper has a choice
of 10 port-shipping line combinations. Based on the
characteristics of shipping lines and ports, shippers
choose the combinations that minimize costs. Based
on model estimation trials, we retained only those
variables that were significant at the 95% level,
with the exception of the constant term. In our
model, the constant term interacts with various
alternatives to take advantage of nesting, and tech-
nically this increases the degrees of freedom. All
other variables are alternative-specific. 

The NMNL structure requires that we impute
values not only for a combination that is chosen by
the shipper but also for other choices. We imputed
these values for all levels of combinations for each

of the variables as averages for the variables. The
results are presented in table 2. 

We tried five nesting specifications (including
MNL) of the model. Though there was little
difference in the performance statistics (likelihood
value, McFadden's Rho-squared, and ex-post cor-
rect predictions) of MNL and NMNL specifications,
theoretical reasons suggest that NMNL speci-
fication is better than MNL, because unlike MNL it
is not constrained by IIA (McFadden 1981). 

Among NMNL specifications, Tree 3 (figure 2)
performs slightly better than other specifications,
and we computed elasticity of market shares based
on this specification. The value of McFadden’s Rho-
squared of NMNL Tree 3 is 0.4042. The ex-post
percentage of correct prediction is 58.75%. The
dissimilarity coefficients of all NMNL trees differ

TABLE 2  Estimated Discrete Choice Functions

NMNL
Performance statistics MNL Tree1 Tree2 Tree3 Tree4

Log likelihood –3,326.46 –3,326.10 –3,272.11 –3,325.52 –3,325.71
McFadden Rho-squared 0.4040 0.4041 0.4038 0.4042 0.4042

Correctly predicted (%) 58.746 58.746 58.705 58.746 58.746

Alternative specific variables

Distance –0.37(–37.0) –0.80(–40.3) –0.37(–36.8) –0.35(–16.9) –0.38(–31.8)
TEUs per berth –2.05(–4.5) –4.37(–9.4) –1.55(–3.3) –1.95(–4.2) –2.09(–4.6)

TEUs per crane 4.01(6.5) 8.57(13.1) 3.70(5.5) 3.80(5.8) 4.08(6.5)

Ship calls –0.91(–7.0) –1.95(–14.0) –0.72(–5.0) –0.86(–6.2) –0.93(–7.1)
Usage factor –3.27(–3.7) –7.09(–8.0) –2.82(–3.2) –3.09(–3.5) –3.33(–3.8)

Routes 0.10(6.6) 0.22(13.2) 0.07(4.1) 0.10(5.9) 0.11(6.6)

Constant variables

Chinese 1.13(23.9) 1.07(13.3) 11.33(12.8) 1.19(17.3) 1.18(17.7)
Dalian, Qingdao, other ports 0.74(0.8) 1.50(1.5) 0.69(0.7) 0.71(0.7) 0.76(0.8)

Tianjin, Qingdao –1.41(–1.4) –3.15(–3.2) –1.23(–1.3) –1.33(–1.4) –1.44(–1.5)

Shanghai, other ports 3.75(4.4) 7.91(9.0) 3.30(3.7) 3.55(4.1) 3.81(4.4)

Dissimilarity parameters

Chinese 1.00 2.16(49.7) 0.93(1.2) 1.00

Non-Chinese 1.00 2.08(18.2) 1.00 1.06(1.2)

Dalian 9.10(7.6)
Tianjin 12.20(7.0)

Qingdao 3.82(7.0)

Shanghai 12.7(30.0)

Other ports 12.56(7.6)
Note: Numbers in parentheses are t-statistics.
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from one for different levels of hierarchy and are
greater than one at some or all levels for all except
Tree 3. This suggests that trees other than Tree 3 are
inconsistent (Boersch-Supan and Pitkin 1988).
Because Tree 3 shows better performance, this
suggests that shippers compare Chinese shipping
lines and port combinations based on shipping line
and port characteristics and the ability to choose one
combination conditional on the presence of other
alternatives. However, among non-Chinese combi-
nations, choices are independent of the presence of
other alternatives (like MNL structure). Results
indicate that the distance of the port from shippers is
an important determinant of port choice. If the port
is far from the shipper’s location, the probability of
its being chosen by the shipper decreases. In fact, dis-
tance is so important in the overall decision process
of shippers that many shippers have located closer to
ports. An increase in the TEUs per berth, ceteris
paribus, decreases the probability of choice of that
port. The TEUs per crane at a port has a positive
sign, as expected, capturing the efficiency. 

The estimated coefficient for TEUs per berth is
negative, while the coefficient of TEUs per crane is
positive. This confirms our hypothesis that, for
China, TEUs per berth represent port congestion,
while TEUs per crane indicate handling efficiency.
The following discussion explains our hypothesis
and expectations about signs. 

The port of Shanghai is the largest port in China,
handling more than 4 million TEUs in 1998. Fur-
thermore, Shanghai is a river port and it suffers
from accumulated silt, making it unable to accom-
modate large container vessels. This historically
important port is located near the largest economic
center of China. As mentioned earlier, Shanghai
handled 222,000 TEUs per berth in 1998.

Qingdao, whose economy is partly supported by
trade and direct investment from Korea, is the sec-
ond largest container port. In 1998, it handled 1.5
million TEUs; however, there are only 5 container
berths at Qingdao (the same number as Dalian but
fewer than Tianjin). As a result, Qingdao’s reported
container-handling volume was 300,000 TEUs per
berth. The port authority at Qingdao developed
new deep-water berths relatively late compared
with Tianjin or Dalian and suffered from terminal

area congestion for a long time. Berth undercapacity
and terminal area congestion mean other vessels
cannot choose their desired port call timing and
may have to wait offshore until berths are vacant.
Some vessels carrying cargoes requiring quick turn-
over avoid such congested ports and shift to other
ports that can handle 150,000 to 180,000 TEUs per
berth.

The ship size allowed by the water depth, the
number of berths, and limited terminal areas
determine the absolute container port capacity.
Congestion due to the limited port capacity is a
discouraging factor. 

Two variables, the number of vessels and total
TEUs handled by the shipping line during the year,
were dropped from our estimated models because
they were not significant. As mentioned earlier, this
paper does not include variables related to cost and
service characteristics due to limited data. We opine
that classifying shipping lines as Chinese and non-
Chinese would capture essential differences. 

These results, when translated into market share
elasticities, present an interesting picture. The prox-
imity of shippers to ports plays an important role in
determining their choices. Market share elasticities
are useful for port planning and shipping line
operations and, in turn, lead to economic develop-
ment through advantages to shippers. Market
share elasticities with respect to shipper-port dis-
tance differ depending on shipping lines and ports.
Non-Chinese shipping line users tend to stay with
the ports of their choice more than Chinese shipping
line users, presumably because non-Chinese ship-
ping line calls are limited to certain ports. 

If a shipper is located far away from a port, cet-
eris paribus, preference for that port is low. The
magnitude of decrease in market share relative to
the shipper’s distance from ports also depends on
the chosen shipping line. 

Table 3 presents distance elasticities and shows
how the market share of ports changes if the ship-
per’s distance from the port increases by 1%. For
example, if the distance of a shipper from Dalian
increases by 1% and if the shipper uses Chinese
shipping lines (row 1), the market share of this
combination is reduced by 6.2% (column 1), while
the market shares of all other port-shipping line
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combinations (columns 2–5) increase by 0.28%;
for other port-shipping line alternatives with non-
Chinese shipping lines (columns 6–10) the increase
is 0.26%. Moreover, if shippers using non-Chinese
shipping lines to move goods through Dalian (row
6) change their location and the distance from this
port increases by 1%, the market share of the
Dalian-non-Chinese shipping line combination
decreases by 5.9% (column 6), while the market
shares of all other port-shipping lines combina-
tions increase by 0.83% (columns 7–10).

Distance elasticities of market shares are high for
new and secondary ports, and Dalian and Qingdao
have the potential to increase their shares by
improving their accessibility. On the other hand,
Shanghai tends to retain its shippers due to economic
maturity and related logistic functions achieved
during its long port history.

As table 3 shows, ports most affected by distance
increases are the “other ports,” whose market
share decreases by a large percentage. Of all ports
surveyed, Tianjin is the least affected. Furthermore,
Chinese shipping lines are the most affected. These
elasticity estimates are smaller in magnitude than
we estimated in our earlier study. 

Table 4 presents market share elasticities for
TEUs per berth. These numbers indicate the changes
in the port-shipping line market shares shown in the
column with respect to a 1% increase in TEUs per
berth at a port. The elasticity values are highest for
Qingdao, followed by Shanghai. Although Qingdao
is the second largest container handling port, con-
gestion is a serious problem. However, Qingdao's
congestion relief efforts and efficiency improvement
through port area development and other measures
can be expected to enlarge its share.

The elasticity of market shares for TEUs per
crane (table 5) indicates that with an increase of
TEUs per crane, Qingdao’s market share will
increase the most followed by Shanghai. 

Table 6 shows that with an increase in the num-
ber of routes offered at a port, Shanghai would gain
the most. With an increase in ship calls, however,
Shanghai loses the most, because, as mentioned ear-
lier, Shanghai is served by the largest number of
routes (table 7).

These results are interesting and indicate that
after Shanghai, Qingdao is experiencing higher
levels of use and now faces congestion problems.
Qingdao’s cargo handling services are efficient and
an increase in the routes offered and improved
infrastructure facilities would bring more cargo to
this port. 

Dalian has a new container terminal and the
results indicate that its market share is less elastic
than the other major ports with respect to conges-
tion. Since its market share elasticity with respect to
routes is second highest after Shanghai, Dalian is
expected to experience increased demand due to
greater economic activity and ship calls.

In sum, secondary and new ports other than
Shanghai have the potential to increase their market
shares through accessibility improvements, conges-
tion relief, and route diversification. Addressing
these challenges could make the Chinese port sys-
tem more efficient and further increase inter-port
competition. 

CONCLUSION

China’s acceptance into the World Trade Organiza-
tion has generated significant interest in the for-
warding and logistics services sector. Demand has
grown for quality forwarding and logistics services,
better services at ports, and upgraded port infra-
structure. 

Newer Chinese ports are starting to compete
with older, more established ports. For example,
newer ports on the southeastern coast of China
have challenged the traditional monopoly of Hong
Kong (80% of the cargo leaving Hong Kong comes
from South China). Although this paper does not
include Hainan and Guangdong provinces, where a
lot of the Chinese cargo going to the port of Hong
Kong originates, ports in these regions compete
with Hong Kong. 

China is a country of cargo originators, and the
international competitiveness of its goods depends
on cost-effective and efficient shipment. With a view
to attract more cargo, Chinese ports are competing
with each other.    
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The analysis of shippers’ choice of shipping lines
and ports is essential for policy formulation related
to improving port infrastructure and services, in
addition to market entry/exit decisions of shipping
lines. This paper models the shipping line and port
choice behavior of Chinese shippers. This is one of
the few studies that models this behavior using an
empirical model, and it may be the first study that
models the joint choice of shipping lines and ports
in China. 

The data used in this paper are unique and from
a survey of shippers conducted by the International
Center for the Study of East Asian Development in
Japan for 1998. Results indicate that Chinese ship-
pers and forwarders are conservative and prefer
Chinese shipping lines primarily because of long-
established relationships and the availability of
larger fleets. The shippers are indifferent to foreign
shipping lines, but choose them based on the ports
from which they would like to import or export
their cargo. However, foreign shipping lines have
only recently started operating in China and a
change in the behavior of Chinese shippers can be
expected in near future.

Of the variables we studied, high TEUs per berth
indicate congestion and negatively affect shippers’
decisions. High TEUs per crane indicate efficiency
in moving cargo and show a positive coefficient.
The distance of a port from a shipper's location
and the number of ship calls at a port are important
variables that determine the choice of a port. Dis-
tance and ship calls both have negative elasticity.
Ports offering more routes have higher market share
elasticity. Another variable that affects the choice of
port is the handling value (thousand tons of cargo
per meter of quay). This variable also captures con-
gestion and has a negative coefficient.
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