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ABSTRACT

The process of model validation is crucial for the
use of computer simulation models in transporta-
tion policy, planning, and operations. This article
lays out obstacles and issues involved in performing
a validation. We describe a general process that
emphasizes five essential ingredients for validation:
context, data, uncertainty, feedback, and prediction.
We use a test bed to generate specific (and general)
questions as well as to give concrete form to answers
and to the methods used in providing them.

The traffic simulation model CORSIM serves as
the test bed; we apply it to assess signal-timing
plans on a street network of Chicago. The valida-
tion process applied in the test bed demonstrates
how well CORSIM can reproduce field conditions,
identifies flaws in the model, and shows how well
CORSIM predicts performance under new
(untried) signal conditions. We find that CORSIM,
though imperfect, is effective with some restrictions
in evaluating signal plans on urban networks. 

INTRODUCTION

The validation of computer simulation models is a
crucial element in assessing their value in trans-
portation policy, planning, and operational deci-
sionmaking. Often discussed and sometimes
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informally practiced, the process is conceptually
straightforward. Data representing both the input
and the output of the model are collected, the
model is run with that input, and the output is com-
pared to field data. In reality, complications
abound: field data may be expensive, scarce, or
noisy; the model may be so complex that only a few
runs are possible; and uncertainty enters the
process at every turn. Even though it is inherently a
statistical issue, model validation lacks a unifying
statistical framework.

The need to develop such a framework is com-
pelling, even urgent. The use of computer models
by transportation engineers and planners is grow-
ing. Costs of poor decisions are escalating, and
increasing computing power, for both computation
and data collection, is magnifying the scale of the
issues. The opportunity is as great as the need.
Advances in statistical techniques for incorporating
multiple types of information, while managing the
multiple uncertainties, enable progress in quantify-
ing validation (Berliner et al. 1999; Lynn et al.
1998).

The purpose of this paper is to set out key issues
faced in the validation of transportation models
and to advance a research effort to address these
issues. Many of the issues we describe are common
to models and modelers in all areas of science and
engineering:

� give explicit meaning to validation in particular
contexts

� acquire relevant data

� quantify uncertainties

� provide feedback to model use and development

� predict performance under new (untried)
conditions

While easily outlined, the challenge is to meet
these issues. This can be achieved by describing
and developing approaches and methods that are
effective and can be implemented. That there are
many obstacles to surmount is no surprise to those
who have attempted exacting validations.
However, there are tools capable of overcoming the
impediments.

In order to make our points clear, we will use a
test bed that generates the questions a validation
must address and, at the same time, accommodates

analyses that respond to the main issues. The test
bed we use is the microscopic simulator CORSIM
in an application to the assessment and selection of
signal timing plans on an important street network
in Chicago, Illinois.

Several research issues emerge from this investi-
gation, indicating the following needs: 

� to formulate evaluation functions that capture
transportation needs and are amenable to either
direct or indirect observation in the field

� to measure and assess the impact of data quality
on evaluation functions and performance

� to develop methods for treating a variety of
problems connected with the analysis of uncer-
tainties, especially predictions

The general conclusion from the test bed is that,
despite imperfections, CORSIM is effective as a
model for evaluating signal plans on urban street
networks under some restrictions. The basis of the
statement is the validity of CORSIM prediction of
performance under new conditions assessed by a
second data collection, the gold standard of valida-
tion. The simplicity of the conclusion belies the
complexity of the process, particularly evident in
the feedback step of tuning the model to the specific
network using an initial data collection.

We introduce the test bed example and simula-
tor in the second section, along with the specific
evaluation functions we use. Acquisition of data
and the two field collections are described in the
third section. Estimation of the input to the model
is described in the fourth section. The fifth section
covers the range of validation questions and the
analyses relevant to them, including tuning, based
on the initial data collection. The next section dis-
cusses the prediction of performance under new
conditions and the subsequent validation.
Questions about uncertainty are discussed in the
following section, and our conclusions appear in
the final section. 

THE TEST BED: CORSIM AND SIGNAL
TIMING ON AN URBAN STREET NETWORK

CORSIM is a computer simulation model of street
and highway traffic. It is the quasi-official platform
used by the U.S. Department of Transportation
(USDOT) to gauge traffic behavior and compare
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competing strategies for signal control before
implementing them in the field (USDOT FHWA
1996).1 For CORSIM to fulfill this purpose, two
crucial questions must be addressed.

1. How well does CORSIM reproduce field
conditions?

2. Can CORSIM be trusted to represent reality
under new, untried conditions, such as revised
signal timing plans?

The localized and complex behavior that signal
plans induce on urban street networks makes
answering these two questions a challenge. Flows
on these networks, even on small sub-networks, are
highly complex. They include a variety of vehicles,
pedestrian-vehicle interactions, and driver behav-
ior, as well as an assortment of network conditions,
such as different lane arrangements, stop signs,
parking lots, and one-way streets. Moreover, the
traffic demands on the network are highly variable,
changing month to month, day to day, hour to
hour, and even minute to minute. Equally varied
are the many movements (legal and otherwise) of
vehicles and pedestrians. 

Since no simulator can realistically capture
behavior exactly, formulating appropriate per-
formance measures or evaluation functions is fun-
damental to the validation process. Variability,

inherent in real traffic and also present in the com-
puter model, compounds matters. Choices of per-
formance measures introduce subjective elements
and, thereby, potential sources of contention in
assessment of the computer model.

To focus the issues, we undertook a case study
with the cooperation of the Chicago Department
of Transportation (CDOT) with the ultimate goal
of optimizing the signal plans for a network more
extensive than the one here. The test bed for the
study is the network depicted in figure 1. The
internal network (Orleans to LaSalle; Ontario to
Grand) in figure 1 is the key part of a planned
Real-Time Traffic Adaptive Control System 
(RT-TRACS) study to be carried out in the future.
A different network was studied earlier (Park et al.
2001) and helped guide some of the decisions made
in the current test bed.

Traffic in the network depicted in figure 1 flows
generally south and east during the morning peak
and north and west in the evening peak. This
demand pattern is accommodated by a series of
high-capacity, one-way arterials such as Ohio (east-
bound), Ontario (westbound), Dearborn (north-
bound) and Clark and Wells (southbound), in
addition to LaSalle (north- and southbound). For
reference purposes, the Chicago central business
district (CBD) is located southeast of the network.

SACKS, ROUPHAIL, PARK & THAKURIAH 3
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CORSIM Characteristics and Inputs

CORSIM is a microscopic and stochastic simula-
tor. It represents single vehicles entering the road
network at random times moving (randomly) sec-
ond-by-second according to local interaction rules
that describe governing phenomena such as car-
following logic (rules for maintaining safe dis-
tances between cars), lane changing, response to
traffic control devices, and turning at intersections
according to prescribed probabilities. CORSIM
can handle networks of up to 500 nodes and 1,000
links containing up to 20,000 vehicles at one time.
The figure 1 network has 112 1-way links, 30 sig-
nalized intersections, and about 38,000 vehicles
moving through it in 1 hour. Streets are modeled as
directed links with intersections as nodes.

There are a variety of inputs or specifications
that must be made, either directly or by default val-
ues provided in CORSIM. Input that must be made
directly include the following. 

� specification of the network via fixed inputs
describing the geometry, such as distance
between intersections, number of traffic lanes,
and length of turn pockets; the placement of stop
signs, bus stops, schedules, and routes; and
parking conditions

� probability distributions of interarrival times

governing the generation of vehicles at each

entry node of the network; the choices in COR-

SIM of arrival-time distributions are limited, in

essence, to Gamma (Erlang) densities, = aver-

age interarrival time or 1/ is the expected num-

ber of vehicles arriving in 1 second; k determines

the shape of the Gamma density.

assumed independent (vehicle-to-vehicle, node-
to-node) but allowed to be different for each
entry node

� vehicle mix (auto or truck) through independent
Bernoulli trials with probabilities that can differ
from entry node to entry node

� probability distributions of turning movements,
assumed to be independent, vehicle-to-vehicle
and link-to-link and different from link-to-link

CORSIM provides several default inputs. The
chief inputs relate to driver characteristics, such as
car-following behavior (how closely drivers follow
other vehicles), left turn “jumpers” (drivers who
“jump the gun” ahead of oncoming traffic),
acceptance of gaps between vehicles (before mak-
ing turns or lane changes), and lane-changing
maneuvers. For example, gap acceptance is gov-
erned by a discrete distribution with 10 mass
points. The default distribution can be accepted or
altered. Other inputs with default distributions that
can be altered are dwell times for buses, effects of
pedestrians on turning vehicles, and short-term
incidents, such as an illegally parked delivery truck.

Although altering the default distributions
through data use is possible in some cases, data that
would better determine driver characteristics are
too elusive. For the test bed study, we assumed no
pedestrian traffic (normally light on this network)
and no incidents.

Signal settings are direct inputs. We single them
out as controllable factors since altering these
inputs to produce improved traffic flow drives the
study. Signal settings consist of a cycle common to
all signals, green times for movements at each inter-
section, and offsets (time differences between
beginnings of cycles at intersections).

For validation, the signal plan will be the one in
the field. For finding optimal fixed-time signal-tim-
ing plans2 or for comparing alternative plans, the
signal parameters will necessarily be manipulated.
Comparisons are best done through the simulator
since field experiments are not feasible. Relying on
CORSIM to select an alternative to an in-place plan
then raises our earlier-posed questions. 

CORSIM Output

CORSIM comes equipped with an animation pack-
age (TRAFVU) allowing visualization of traffic
movements, valuable when exploring the charac-
teristics of the model and detecting problems and
flaws. In addition to the visual output, CORSIM
provides aggregated (over selected time intervals,

λ
λ
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2 Adaptive plans are under consideration as part of the
RT-TRACS program and require extensive sensor capa-
bilities to capture dynamic traffic conditions; models
accommodating such plans are themselves subject to val-
idation study.



such as the signal cycle) numerical output for each
link. The numerical outputs include the following. 

� throughput (the number of vehicles discharged
on each link) 

� average link travel time

� link queue time (the sum over vehicles of the
times, in minutes, during which the vehicles are
stationary, or nearly so) 

� link stop-time (sum over vehicles of stationary
time)

� maximum queue length (on each lane in the link
over the simulation time) 

� link delays (simulated travel time minus free-
flow travel time, summed over all vehicles dis-
charging the link) 

Most of these statistics can be attached to move-
ments or lane levels within each link, but we do not
do so. We will take CORSIM performance meas-
ures from this output.

One hour of simulation for the test bed net-
work takes about 40 seconds on a Pentium III-850
MHz PC. During this time, approximately 38,000
vehicles are processed through the network. While
each run is quick, the need for many runs to deal
with the substantial variability induced by the sto-
chastic assumptions lengthens experimental time
considerably. A detailed uncertainty analysis
greatly increases computational demands. An
advanced computing environment (for example,
distributing the simulations across a network of
machines) could, of course, substantially reduce
computing time.

DATA COLLECTION

A crucial element in validation is designing and car-
rying out data collection both for estimating input
to the model and for comparing model output with
field data. The challenge lies in managing costs
while obtaining useful data relevant to both esti-
mation and validation. 

For our test bed example, initial field data for
the network were collected on a single day
(Thursday, May 25, 2000) for three hours in the
morning (7:00 am to 10:00 am) and three hours in
the afternoon (3:30 pm to 6:30 pm). The process-
ing of the data and the analyses were limited to the
three one-hour periods, 8 am to 9 am, 4 pm to

5 pm, and 5 pm to 6 pm. This covered the peak
periods as well as a “shoulder” period.

Acquiring data for the input to CORSIM is a
formidable task. Input such as driver characteris-
tics is extremely difficult to gather, and in the test
bed example we relied mostly on CORSIM default
values. There were very few pedestrians, and they
had no discernible effect on traffic, leading us to
ignore the pedestrian input. Incidents were not
included, despite the fact that there were illegally
parked vehicles that did affect traffic flow. Because
illegal parking was an endemic condition, we coded
the network to account for its effect. Other param-
eters, such as free-flow speed, were selected on the
basis of posted speed limits. Signal timing plans and
bus routes and stations were collected directly in
the field and entered into CORSIM.

Traffic volume data were collected manually by
observers counting vehicles and by video recording.
Human observation is notoriously unreliable, but
cost considerations did not allow video coverage of
the full network. However, the video information,
covering all the links of the internal network of fig-
ure 1, was rich enough to allow adjustment of the
observers’ counts that determined the flow rate of
vehicles at entry nodes of the network. On the
other hand, turning movements outside the internal
network could neither be confirmed nor reliably
adjusted by video information. Extracting the
video information took a considerable investment
of time and personnel, rivaling the cost of acquiring
the raw video data.

Supplemental validation data were collected on a
similar schedule on September 27, 2000. These were
extracted primarily from video. The purpose was to
answer our second question, if CORSIM accurately
represents reality under new conditions, by analyz-
ing its effectiveness of CORSIM in predicting traffic
behavior under the September conditions.

It is most convenient to collect data for valida-
tion while collecting data for inputs. The use of the
same or closely related data for both input and val-
idation is an issue rarely confronted. The conven-
tional wisdom says that such dual-use of the data is
forbidden. In fact, it can be done but the attach-
ment of computable uncertainties, essential to pro-
ducing reliable results, is not straightforward. This
issue is under study by a research team at the

SACKS, ROUPHAIL, PARK & THAKURIAH 5



National Institute of Statistical Sciences (NISS) and
Duke University. A Bayesian approach based on
Bayarri and Berger (1999) holds promise for pro-
ducing methodology to treat the issue.

A problem as yet not addressed is assessing the
impact of data of inferior quality. The problem is
complicated by the need to specify the brunt of the
impact; to quantify scenarios of alternative collec-
tions of data; and to design, execute, and analyze
computational experiments to measure the conse-
quences, or sensitivities, of model output to wrong
data input, including incorrect signal settings or
drifts in signal timing. This issue is not unique to
transportation studies and research; it permeates
virtually all sciences. 

ESTIMATION OF CORSIM INPUT FROM
INITIAL (MAY) DATA COLLECTION

The direct, fixed input required for CORSIM to
run, including signal timing plans for each of the
three one-hour periods, was obtained from the field
and entered into CORSIM. The direct input requir-
ing estimation was treated as follows.

� Vehicle mix at each entry node was estimated
from one-hour (human-observer) counts for
autos and trucks. 

� Turning probabilities (left turn, right turn,
through) at each intersection were estimated
from one-hour video counts (where available)
and from human-observer counts at other
intersections.

� Inter-arrival rates (see equation 1) were esti-
mated with the assumption that k = 1. The for
each entry node and each of the 3 one-hour time
periods was estimated as the total number of
vehicles entering the (entry) link divided by
3,600.

Some were later adjusted to reduce discrep-
ancies between downstream counts generated by
CORSIM and those observed by video; the dis-
crepancies were believed to be due to inaccuracy of
human-observer counts and the effects of parking
lots. Turning movements were left at their field esti-
mates. Measuring the ultimate effect on uncer-
tainty of these modifications is an issue that
remains to be explored.

Validation Process

Validation without purpose has little utility. For
example, our interest in CORSIM here is its value
in assessing and producing good time-of-day signal
plans. But, CORSIM could also be used to evaluate
traffic operations under disruptions, such as a
bridge closing, or to changes in the network, such
as strict enforcement of parking laws or truck
restrictions. A more subtle use could be in measur-
ing the impact of driver decisions when faced with
a network modification. Some objectives may only
reflect changes in the network; others may also
implicate induced changes in demand. 

Navigating through this variety of issues
requires multiple tools. For example, visualization
and expert opinion give an overall assessment of
whether the model output matches reality in a qual-
itative but highly subjective way. When video data
are placed next to computer animations, discrep-
ancies (and similarities) can be seen directly, partic-
ularly if viewers are experts familiar with the
network and its characteristics.

However, the stochastic nature of CORSIM and
of real traffic requires more than informal visuali-
zation. Questions remain, such as which random
animation should be used to compare with the real
traffic and is the single day of traffic recorded by
video typical. More stringent comparisons based
on a second tool, statistical analysis, become cru-
cial in reducing the subjectivity, guiding the visual-
ization through choices of animation, and pointing
to model flaws responsible for aberrant behavior.
The challenge is then to provide statistical analyses
appropriate to the desired ends.

There can be many competing analyses, one for
each evaluation criterion as defined in the follow-
ing section. Treating the multiplicity of compar-
isons in a coherent way is often disregarded. Is the
model flawed if it produces a poor match to reality
at only one (five?) of one hundred links? Added
complications come from comparisons based on
evaluations of corridor and system characteristics
as well as those of individual links. 

Thus, the initial task is to select evaluation crite-
ria. Comparison of the field and model through
selected evaluation functions in the specific appli-
cation of CORSIM to the network of figure 1 will
touch on the concerns and issues raised. 

λs

λ
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Evaluation Functions

Selecting an evaluation function is crucial and
sometimes complicated by competing practical and
theoretical considerations. First, is relevant to
the purpose? Choosing among many relevant
is sometimes eased by requiring feasibility in both
calculating model output for and collecting
field data for calculating corresponding field
value(s) of .

In our test bed example, a good criterion for
judging a signal-timing plan may be average link
travel time, complicated to obtain in CORSIM and
costly to obtain in the field. The tactic of using
probe vehicles, while possible in principle, is inhib-
ited by the cost of using large numbers of vehicles
and the need to account for the substantial variabil-
ity connected with the use of probes. Computing
vehicles’ travel time from video is highly labor-
intensive; useful, automatic area-wide detection
methods, such as Mobilizer (Lall et al. 1994), are
neither widely available nor fully adequate.

The evaluation function is likely to have ver-
sions at multiple time scales and at different levels
of spatial aggregation. For example, total queue-
time per cycle per link could be aggregated over
cycles and over links to form evaluations based on
behavior over selected corridors, over the whole
system, and over distinct time periods. The choice
of levels of space-time resolution adds to the deter-
mination of relevance and can be complicated by
questions of feasibility.

Statistical analyses of the must treat the vari-
ability arising from the intrinsic stochastic structure
of simulators such as CORSIM.3 However, field
variability is also consequential, and that cannot be
so readily captured without elaborate and costly
field-data collection. This is a confounding issue,
partly addressed below. 

Travel times are very hard to obtain in the field.
Stop time per vehicle can be calculated for each link
covered by video. Queue length per cycle can also
be calculated, but queue time is very difficult to
obtain in the field though a standard part of COR-
SIM output. 

We chose stop time (stopped delay) on ap-
proaches to intersections as the primary evaluation
function. It has been the typical measure by which
intersection level of service (LOS) is evaluated
(TRB 1994). The comparative ease of collecting
stop time data from the video strongly affected our
choice, reinforced by the fact that other criteria
such as throughput, delay, travel time, and queue
length are all highly correlated with stop time.4 In
addition, we believe that drivers on urban street
networks are particularly sensitive to stop time,
spurring traffic managers to seek its reduction. In
fact, the Highway Capacity Manual’s selection of
stopped delay for LOS designation is meant to
reflect the user’s perception of the intersection’s
quality of service. We used V (the number of vehi-
cles leaving an intersection, particularly exit nodes)
as an auxiliary evaluation function. V is readily cal-
culated from video and is also needed to calculate
stop time per vehicle discharged (STV) at a link. At
approach a,

where V0 is the count of vehicles that do not stop
on a, while Vs is the count of vehicles that do stop
on a. This raises the question of whether STV is an
adequate reflection of the characteristics of the net-
work (and signal plan) compared to the pair

We will see that these quantities provide a sharper
understanding of the comparison between COR-
SIM and the field.

STV or STVS for aggregations of approaches
(routes or corridors) is very difficult to obtain,

ϕs

ϕ

ϕ

ϕ

ϕs
ϕ

ϕ
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3 Deterministic models will not have intrinsic randomness
but will be exposed to variability either in assumptions
about input parameters or from data used to estimate
input parameters.

4 Rejection of delay was also affected by CORSIM calcu-
lations that fail to include vehicles left in the system at the
end of the one-hour simulation period, potentially result-
ing in misleading numbers under congested conditions. 



requiring the tracking of individual vehicles. But
some concept of performance on aggregation could
be important. For example, a long delay on one
link may be compensated by a short delay on the
next link downstream, leaving the corridor and the
system as a whole unaffected. By summing over the
individual links forming a corridor, we create a
“pseudo stop time” for the corridor. This will be
close to a real stop time, provided vehicles turning
off of or on to the corridor exhibit little or no dif-
ference from those traveling straight through.
However, the value of such “pseudo stop times” is
unclear, and here we only deal with individual links
and approaches.

Multiplicity questions begin with the selection of
links or approaches for comparison. We selected
links on corridors that contained the heaviest traf-
fic during the main peak period directions, east and
south in the morning and west and north in the
evening. A full treatment of multiplicity questions
will not be presented here.

Tuning

Tuning and calibrating a model are general terms,
often used interchangeably, sometimes yielding
confusion. In the previous major section, we
treated estimation of input to the model directly
from field data. When model output data are used,
either alone or with field data, to determine input
parameters, the process is often called calibration.
Tuning is a term commonly associated with adjust-
ing input parameters to match model output. As in
the usage of “calibration,” the term tuning is fre-
quently reserved for cases where the input parame-
ters are unobservable or represent physical and
other processes the model does not (or cannot) ade-
quately incorporate. 

The practice of tuning is not only common but
often essential, especially for a long-range study of
the model and its associated phenomena. Some
input parameters may be neither well-specified nor
capable of being estimated from the field data. One
example is driver aggressiveness in our test bed.
Some assumptions about input parameters may be
found erroneous after viewing the data, and their
modification may produce better simulations.
Ultimately, the validation accompanying such tun-
ing becomes problematic.

Two types of tuning were done in the test bed
example. The first addressed the blockage of turns
at two intersections and the subsequent gridlock.
We altered the network by introducing sinks and
sources that allowed the bypass of the blockage
without affecting throughput. The second was
stimulated by a substantial difference on one link
(at the LaSalle/Ontario intersection in figure 1)
between the field and CORSIM stop times. This
difference was largely resolved by changing the
free flow speed from 30 miles per hour (mph) to 
20 mph. The input of 30 mph was induced by the
speed limit; its revision to 20 mph is consistent
with the observed (from video) speed of vehicles
on the corridor (LaSalle Street).

Visual Validation

Where visualization is available, as it is with COR-
SIM animation and with video field data, a com-
pelling approach to validation is visually comparing
the two to see if traffic in CORSIM behaves like
traffic in reality. To a great extent, this is a highly
informal and subjective approach. Nonetheless, it is
of great value in assessing CORSIM’s capability to
emulate reality as well as identifying sources of
trouble or flaws in CORSIM, flaws that can some-
times be corrected by intervention in the coding.

The utility of visualization depends on the
specifics of each application. What may be learned
from the CORSIM example may pertain to other
microsimulators but not necessarily to other com-
puter models. 

A sign of problems in an application of COR-
SIM is the presence, in several of the replicate sim-
ulation runs, of spillback and gridlock in situations
where these do not occur in reality. Spillback will
occur on networks such as in figure 1, where near
saturation conditions are present during peak peri-
ods; however, recovery in the field usually takes
place reasonably quickly. A difficulty with COR-
SIM is its apparent inability to recover readily from
spillback, often resulting in gridlock. The effect on
performance measures is usually to produce large
outliers in a repeated set of simulations, sometimes
indicated by large run-to-run variance. A his-
togram of outputs can identify large outliers.
Following up with examination of the correspon-
ding animations can often identify causes. 
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In two instances, it was apparent that the cause
was an inability of CORSIM to allow driver adjust-
ment to left (or right) turn blockage, resulting in a
spillback that would never clear up. 

Numerical Comparisons

Throughput Comparison

In table 1, we present test bed results on through-
put for internal network. The net change indicates
discrepancies showing less output in the morning
and more output in the evening. This is due to the
garage effect: vehicles disappear to the parking lots
in the morning and reappear from them in the
evening. 

The means of 100 replicated CORSIM runs are
close to the observed counts in table 2, except for
eastbound Ohio/LaSalle in the morning and west-
bound Grand/Wells in the evening. The first can be
explained in large part by the disappearance of
vehicles in the morning into parking lots along
Ohio Street, a major one-way, eastbound corridor.
The second, correspondingly, can be attributed to
the appearance of vehicles from parking lots on
Grand during the evening. In addition, there is a
high enough variability in CORSIM runs to
account for a considerable part of the apparent dis-
crepancy (see figures 2 and 3).

It would be incautious to view the similarity of
real data to the model runs as evidence of the
model’s validity. Whether these internal through-
puts are good evaluation functions is unclear. They
are, however, relevant to STV and STVS because
they determine the denominators of those meas-
ures. Not taken into account is the tuning of the
model to help match inputs to the model with the
flows observed in the video. How to achieve this
formally is a matter of some delicacy and is a
research issue currently under investigation in a
National Science Foundation sponsored research
project at NISS.

Though field variability cannot be adequately
captured, we produced CORSIM and field time
series of throughputs to examine whether CORSIM
shows a degree of variability (over time) character-
istic of the field data. Figure 4 presents such time
series, obtained as follows. There are 48 signal
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TABLE 1 Comparison of Throughput on 
Internal Network (vehicles per hour)

CORSIM (vehicle)
Period Direction Field (vehicle) average s.d.*

in 11,805 11,895 48.1

8–9 AM out 11,330 11,877 52.8

net –475 –18 –

in 10,834 10,805 39.7

4–5 PM out 10,990 10,796 40.6

net 156 –9 –

in 11,431 11,449 61.9

5–6 PM out 11,756 11,422 71.9

net 325 –27 –

Note: Field data were obtained from video taken on May 25,
2000. Averages are rounded to nearest integer.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.

TABLE 2 Comparison of Throughput on 
Selected Key Links (vehicles per hour)

CORSIM (vehicle)
Period Link Field (vehicle) average s.d.*

SB LaSalle 
at Ohio 1,651 1,641 30.3

8–9 AM EB Ohio 
at LaSalle 2,790 2,894 38.9

SB Wells 
at Ohio 693 694 17.4

EB Ohio 
at Orleans 1,948 1,947 2.3

4–5 PM NB Orleans 
at Ohio 1,498 1,489 25.0

NB LaSalle 
at Ontario 1,500 1,478 28.0

EB Ohio 
at Orleans 1,897 1,896 2.5

5–6 PM WB Grand 
at Wells 1,204 1,133 21.9

NB LaSalle 
at Ontario 1,636 1,617 26.3

Note: Field data were obtained from video taken on May 25,
2000. Averages are rounded to nearest integer.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.
SB = southbound
EB = eastbound
NB = northbound
WB = westbound



cycles during the 8 am to 9 am morning peak, and
we combined throughputs over every 2 cycles, equal
to 150 seconds of elapsed time in the 1-hour period.
This leads to a time series at 24 time points. COR-
SIM was run 100 times, and the variation of each
time series was computed as 

where Y(t) represents throughput during time
interval t. We selected the representative CORSIM

time series variation as the median of the 100
variations.

CORSIM variability, as shown in figure 4 (as
well as on the link southbound LaSalle at Ohio), is
close to that of the field. Indeed, the variation of the
field series is 116 and is at the 30th percentile of the
CORSIM distribution, as shown in figure 5. 

Stop Time Comparisons

The distribution of stop time at each approach has
some probability at zero (the proportion of vehicles
that do not stop); this is singled out in the first part
of table 3. Characteristics of the conditional distri-
bution of stop time (given that a vehicle stops) are
given in table 4. There are definite discrepancies on
southbound LaSalle at Ohio during the morning,
where CORSIM generates fewer stops but longer
stop times for its stopped vehicles. On eastbound
Ohio at LaSalle, a similar (though somewhat
reduced) discrepancy is apparent. While there
appear to be differences on some of the other
approaches, none appear very significant. For
example, CORSIM stops fewer vehicles on north-
bound LaSalle at Ontario in the 5 pm to 6 pm
period, but the stop times are close.

These differences call for an explanation.
Examination of video and CORSIM animation
exposes the key cause: CORSIM does not fully
reflect driver behavior. In particular, lane utilization
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FIGURE 3 Link Throughput at Westbound 
Grand/Wells (5–6 PM)
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in CORSIM is not consistent with lane utilization
in the field. On some links, vehicles in the field
more often join long queues where they are briefly
stopped. These vehicles typically do not appear in
CORSIM simulation as having stopped. This
accounts for smaller STVS in the field than in
CORSIM. So, even though CORSIM does not fully
reflect the field, the key measure of how long truly
stopped vehicles are delayed appears to match
what is seen in the field quite reasonably.

PREDICTION AND VALIDATION

The most compelling form of validation is through
confirmation by predictions in new circumstances.
In the test bed example, a plan, different from the
one in the field in May, was put in place in
September 2000. Under these new circumstances (a
new signal plan) predictions were to be made and
data collection designed for September 27, 2000, a
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FIGURE 5 CORSIM Variation vs. Field 
(Eastbound Ohio at LaSalle,
Morning Peak)

TABLE 3 Comparison of Stop Rates on 
Key Links

CORSIM (percent)
Period Link Field (percent) Average s.d.*

SB LaSalle 
at Ohio 50 30 1.8

8–9 AM EB Ohio 
at LaSalle 56 35 3.9

SB Wells 
at Ohio 99 94 1.2

EB Ohio 
at Orleans 50 59 1.0

4–5 PM NB Orleans 
at Ohio 51 56 2.9

NB LaSalle 
at Ontario 42 47 3.6

EB Ohio 
at Orleans 48 59 1.0

5–6 PM WB Grand 
at Wells 55 53 3.3

NB LaSalle 
at Ontario 78 62 3.4

Note: Field data were obtained from video taken on May 25,
2000.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.
SB = southbound
EB = eastbound
NB = northbound
WB = westbound

TABLE 4 Comparison of Key-Links STVS 
(stop time per vehicle stopped)

CORSIM
Field (seconds/vehicle)

Period Link (seconds/vehicle) Average s.d.*

SB LaSalle 
at Ohio 27.8 32.3 1.8

8–9 AM EB Ohio 
at LaSalle 15.4 18.6 0.8

SB Wells 
at Ohio 33.1 39.6 0.4

EB Ohio 
at Orleans 18.4 18.7 0.3

4–5 PM NB Orleans 
at Ohio 20.6 20.6 1.7

NB LaSalle 
at Ontario 33.5 27.9 3.0

EB Ohio 
at Orleans 15.2 18.7 0.3

5–6 PM WB Grand 
at Wells 8.3 10.5 2.1

NB LaSalle 
at Ontario 33.4 34.2 2.9

Note: Field data were obtained from video taken on May 25,
2000.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.



day expected to be similar to the date of the first
data collection, May 25, 2000.

The simulator’s performance prediction requires
specification of the input expected at the time of the
new data collection. Believing that the conditions in
the field for the September data collection would be
the same as in May, we ran CORSIM with the May
input, except for signals.

After the data were collected in September, we
compared the results, first for throughput (table 5)
on several key links. Except for the 13% disparity
on southbound LaSalle, the throughputs were
close. Whether or not the disparity in demand on
southbound LaSalle mattered awaited further
analysis of stop time. The predictions of September
stop time performance with the May input are in
tables 6 and 7 (see also figures 6 and 7). Except for
northbound Orleans to the freeway, the STVSs are
reasonably close. For the reasons discussed earlier,
we have several disparities on stop rates. 

To clarify these matters, we first checked the
effect of change in demand on southbound LaSalle
during the morning peak. We decreased the input
demand there by 10%, reran CORSIM 100 times,
and obtained essentially no change in output. The
stop rate on southbound LaSalle at Ohio went
from 30.3% to 30.9%, while STVS went from 22.0
to 22.3 seconds per vehicle (sec/veh).

Next we explored the disparity on northbound
Orleans at the freeway in the afternoon peak and

observed, through video, that drivers effectively
used green time of 20 seconds instead of the dis-
played green time of 16 seconds. Introducing this
modification changed stop rates from 74% to
65%, and average STVS changed from 51.9 to 40.8
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TABLE 5 Field-Measured Throughput 
Comparison at Key Links

May September
Period Link (vehicle) (vehicle)

SB LaSalle 
at Ohio 1,650 1,441

8–9 AM
EB Ohio 
at LaSalle 2,790 2,798

NB LaSalle 
at Ontario 1,607 1,696

4:30–5:30 PM NB Orleans 
to Freeway 838 899

NB Orleans 
at Ontario 1,051 1,107

SB = southbound
EB = eastbound
NB = northbound

TABLE 6 Comparison of Stop Rates 
on Key-Links

CORSIM
Field (percent)

Period Link (percent) average s.d.*

SB LaSalle 
at Ohio 52 30 2.7

8–9 AM
EB Ohio 
at LaSalle 37 38 3.0

NB LaSalle 
at Ontario 36 51 4.2

4:30–5:30 PM NB Orleans 
to Freeway 53 74 4.1

NB Orleans 
at Ontario 47 43 2.0

Note: Field data obtained from video taken on September 27,
2000.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.
SB = southbound
EB = eastbound
NB = northbound

TABLE 7 Comparison of STVS (stop time 
per vehicle stopped) 

Field CORSIM
(seconds/ (seconds/vehicle)

Period Link vehicle) average s.d.*

SB LaSalle 
at Ohio 16.9 22.0 2.0

8–9 AM
EB Ohio 
at LaSalle 15.2 21.6 1.2

NB LaSalle 
at Ontario 26.4 24.8 1.8

4:30–5:30 PM NB Orleans 
to Freeway 31.4 51.9 7.6

NB Orleans 
at Ontario 21.9 24.0 1.0

Note: Field data obtained from video taken on September 27,
2000.
* s.d. is the estimated (from 100 runs) standard deviation of a
CORSIM run.
SB = southbound
EB = eastbound
NB = northbound



sec/veh with a standard deviation of 6.8. The dif-
ference between 31.4 (the field STVS) and
CORSIM’s average of 40.8 is neither statistically
significant (within 2 standard deviations) nor prac-
tically significant (same level of service; see table 9).
Nonetheless, we examined the northbound
Orleans link more carefully. We noted that COR-
SIM has difficulty dealing with storage of vehicles
on short, congested links just downstream of a
wide intersection, exactly the characteristics of
northbound Orleans at the freeway (the intersec-
tion at Ohio is 60 feet; the entire link is 240 feet;

and the link is highly congested). We could have
brought the CORSIM predictions more closely in
line with the numbers in the field by altering the
length of the link, but we regarded such tuning as
potentially misleading.

A highly informative evaluation function of
CORSIM is the change in CORSIM predictions,

CORSIM (September STVS – May STVS), com-
pared to the corresponding change in the field val-
ues, Field. Even though the CORSIM predictions
were not always accurate, the are close and of the
same sign (table 8). This is particularly important for
comparing the performance of competing signal
plans: predictions of improvements (in two links),
no change (in two links), and degradation (on one
link) in CORSIM jibes with the changes in reality.

ANALYSIS OF UNCERTAINTY

A more exacting treatment of validation requires
closer attention to the following.

� uncertainties inherent to the simulator as well as
from parameter estimates used to define input
distributions

� multiplicity questions arising from the use of
multiple evaluation functions (for example, the
multiple link/approaches in tables 1 and 2) 

The first item can be addressed through a
Bayesian analysis. For instance, in the test bed
example, the uncertainty question can be dealt with
by specifying prior distributions for the in equa-
tion (1) as well as for the probabilities p of turning
movements. Posterior distributions of can then
be computed given field data. Before each
CORSIM run, a draw from the posteriors can be

λ , p

λs

∆s
∆

∆
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FIGURE 6 Link STVS at Southbound 
LaSalle/Ohio
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FIGURE 7 Link STVS at Northbound 
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TABLE 8 CORSIM Compared with Field 

Link CORSIM Reality

SB Ohio at LaSalle 0 3

SB LaSalle at Ohio –11 –10

NB LaSalle at Ontario –9 –5

NB Orleans to Freeway 13 15

NB Orleans at Ontario 1 –2

Note: = STVS [September] – STVS [May]
EB = eastbound
SB = southbound
NB = northbound

∆

∆∆

∆∆



made, leading to a selection of , which then
provides the needed input for the run. The resulting
variability in 100 runs, for example, will then
incorporate both the inherent CORSIM variability
as well as the uncertainty stemming from the use of
the field data in estimating . 

Bayarri, Berger, and Molina (2001) are carrying
out such a Bayesian analysis. Preliminary results
indicate that while the variability of STVS may
increase, the qualitative behavior of CORSIM
remains the same. Complications in the analysis
derive from the complexity of the network and its
impact on computing the posterior distribution.
These results will appear elsewhere.

A fuller Bayesian treatment of uncertainty of
prediction, now under study, can incorporate ques-
tions of systematic bias in CORSIM predictions of
reality. One aspect of such an inquiry is the poten-
tial use of a “CORSIM adjusted by bias” predictor
in place of CORSIM itself.

The treatment of multiplicity requires appropri-
ate formulation. Methods described in Westfall and
Young (1992) and Williams et al. (1999), as well as
False Discovery Rate approaches (Benjamini and
Hochberg 1995), are not clearly applicable due to
the high level of dependence among evaluation
functions. 

Last, we note that the effect of the uncertainties
will be felt in the evaluation functions or, equiva-
lently, through loss structures that take practical
significance into account. For example, a difference
of 5 seconds in stop time can be minor, but a dif-
ference of 15 seconds may be major. One starting
point may be a comparison of the field and COR-
SIM-predicted LOS. Table 9 shows criteria for LOS
based on stopped time in the 1994 Highway
Capacity Manual. 

CONCLUSIONS

We present conclusions about the validation
process and the specific test bed model, CORSIM.
The validation process has five key elements: con-
text, data, uncertainty, feedback, and prediction.
Context is critical. It drives the formulation of eval-
uation functions or performance measures that are
ultimately the grounds on which validation must
take place and affect interpretations of uncertainty.
For example, statistically significant disparities

may, in the context of an application, be practically
insignificant. In addition, context and the specified
evaluation functions can affect the selection or col-
lection of data, both field and model output, to be
used for evaluation. Conversely, the availability or
feasibility of data collection can determine the
choice of evaluation functions. These factors may
then converge in the calculation of uncertainties
stemming from noisy data and model imperfec-
tions. The outcome of the evaluations and the asso-
ciated uncertainties points to possible flaws in the
models and feedback to model adjustments that
correct or, perhaps, circumvent the flaws.
Ultimately, it is through prediction that validation
of a model is reached.

The process we described is effective and gener-
ally applicable. Of course, implementing the partic-
ulars, done for the most part in the test bed
example, will require filling in a number of gaps,
most specifically in determining uncertainties but
also in designing data collection, assessing the
impact of data quality, and detecting flaws.

Test bed conclusions derive from the two ques-
tions we posed: Does CORSIM mirror reality when
properly calibrated for field conditions? Does
CORSIM adequately predict traffic performance
under revised signal plans?

Comprehensive calibration of CORSIM is infea-
sible; there are too many parameters that can (and
some that cannot) be calibrated with field data.
Our approach was to focus on key input parame-
ters, such as external traffic demands, turning pro-
portions at intersections, and effective number of
lanes (for example, due to illegal parking), using
CORSIM default values for other inputs. 

λ , p

λ , p
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TABLE 9 LOS Designation in the Highway 
Capacity Manual (1994)

Stopped time per vehicle
Level of service (STV; seconds/vehicle)

A STV ≤ 5

B 5 < STV ≤ 15

C 15 < STV ≤ 25

D 25 < STV ≤ 40

E 40 < STV ≤ 60

F STV ≥ 60



We found that CORSIM was effective but
flawed. A major difficulty is CORSIM’s propen-
sity to turn spillback into gridlock; inadequately
modeled driver behavior led to intersection block-
age far too frequently. CORSIM does not accu-
rately model lane distribution of traffic. Lane
selection in reality was much more skewed than in
CORSIM. CORSIM tends to stop more vehicles
than indicated in the field. In reality, drivers coast
to a near stop then slowly accelerate through the
signal, but the behavior is much more abrupt in
CORSIM. 

The first of these flaws was corrected by modi-
fying the network. The second flaw had some effect
but was relatively minor. The third flaw manifested
itself in disparate stop rates but did not seriously
affect stopped time per vehicle stopped (STVS). 

Overall, despite its shortcomings, CORSIM
effectively represented field conditions. Even
when the field observations lie outside the domain
of the CORSIM distributions, as in figures 2 and
3, there is virtually no difference in the estimated
levels of service (table 9) between the field and
CORSIM, practically insignificant even if statisti-
cally significant.5

The predictability of CORSIM was assessed by
applying revised (September) signal plans to the
May traffic network. CORSIM estimates of STVS
were reasonably close to field estimates, and the
CORSIM LOSs were, for the most part, similar to
those observed in the field. More importantly,
CORSIM successfully tracks changes in traffic per-
formance over time: on five links for which field
data were available, two links exhibited a reduc-
tion in STVS, one link an increase, and two had no
significant change; CORSIM’s predictions were
the same.

In summary, a candid assessment of CORSIM is
that with careful calibration and tuning, CORSIM
output will match field observations and be an
effective predictor. 

ACKNOWLEDGMENTS

The authors are very grateful for the support and
assistance of Mr. Christopher Krueger and Mr.
Thomas Kaeser of the Chicago Department of
Transportation. We also thank the Urban Trans-
portation Center at the University of Illinois at
Chicago for their help in the data collection. This
research was sponsored in part by grants DMS-
9313013 and DMS-9208758 from the National
Science Foundation to the National Institute of
Statistical Sciences.

REFERENCES

Bayarri, M.J. and J.O. Berger. 1999. Quantifying Surprise in
the Data and Model Verification. Bayesian Statistics 6.
London, England: Oxford University Press.

Bayarri, M.J., J.O. Berger, and G. Molina. 2001. Fast
Simulators for Assessment and Propagation of Model
Uncertainty. Proceedings of the Third International
Symposium on Sensitivity Analysis and Model Output.

Benjamini, Y. and Y. Hochberg. 1995. Controlling the False
Discovery Rate: A Practical and Powerful Approach to
Multiple Testing. Journal of the Royal Statistical Society B
57(1):289–300.

Berliner, L.M., J.A. Royle, C.K. Wikle, and R.F. Milliff. 1999.
Bayesian Methods in the Atmospheric Sciences. Bayesian
Statistics 6. London, England: Oxford University Press.

Lall, B., K. Dermer, and R. Nasburg. 1994. Vehicle Tracking in
Video Image: New Technology for Traffic Data Collection,
in Proceedings of the Second International Symposium on
Highway Capacity, Sydney, Australia, 365–83.

Lynn, N., N. Singpurwalla, and A. Smith. 1998. Bayesian
Assessment of Network Reliability. SIAM Review
40:202–27.

Park, B., N. Rouphail, J. Hochanadel, and J. Sacks. 2001.
Evaluating the Reliability of TRANSYT-7F Optimization
Schemes. Journal of Transportation Engineering
127(4):319–26.

Transportation Research Board (TRB). 1994. Highway
Capacity Manual. Washington, DC: National Research
Council.

U.S. Department of Transportation (USDOT), Federal
Highway Administration (FHWA). 1996. CORSIM User
Manual. Washington, DC.

Westfall, P.H. and S. Young. 1992. Resampling-Based
Multiple Testing. New York, NY: Wiley-Interscience.

Williams, V.S.L., L.V. Jones, and J.W. Tukey. 1999.
Controlling Error in Multiple Comparisons, with
Examples from State-to-State Differences in Educational
Achievement. Journal of Educational and Behavioral
Statistics 24(1):42–69.

SACKS, ROUPHAIL, PARK & THAKURIAH 15

5 The CORSIM distribution does not reflect the addi-
tional uncertainty induced by the field data estimates of
model input parameters. Therefore, statistical signifi-
cance here is overstated.



Discussion

LAURENCE R. RILETT
CLIFFORD H. SPIEGELMAN
Texas A&M University
and
Texas Transportation Institute

16 JOURNAL OF TRANSPORTATION AND STATISTICS V5/N1 2002

The authors are to be commended for a timely
article. With the recent advances in intelligent
transportation systems (ITS) deployment, the cor-
responding availability of large traffic databases,
and the increased use of traffic microsimulation
models by transportation engineers, the issues
examined are important. However, we would like
to take this opportunity to point out some addi-
tional issues and research questions related to the
proposed methodology.

The success of this study is attributable to a
number of factors. Determining the portability of
the methodology to other situations, even similar
situations, is a matter for further study. The model
has several inputs: data, technical expertise, and
network development. In the assessment of COR-
SIM, a large set of factors is evaluated, many of
which are inputs to CORSIM. Thus, we wonder if
a group with less expertise than the paper authors
were to change the signal timing, would they have
been as successful? If a junior engineer developed
the network input to CORSIM, would the model
have been as successful? If the data were collected
at a different location, would it have been as accu-
rate? How accurate do input data have to be for the
model to make quality predictions? 

In almost all areas of science, engineering, and
life, making a prediction and then having that pre-
diction judged accurate is powerful evidence that
the method of making the prediction is a good one.
Still one wonders how many successes and what
proportion of successes is needed to validate a
model. Babe Ruth gave a famous baseball predic-
tion when he pointed to the Yankee Stadium center
field stands and predicted that he would hit a home

run. He hit a home run immediately after his pre-
diction. Does this mean that he could repeat the
process anytime he wanted? What percentage of
times would he need to be right and out of what
number of pointing tries would he need to be right?
We think issues like those addressed in this paper
can be handled by developing an appropriate sta-
tistical theory for field experiments.

In this study only a select number of parameters
were calibrated while the majority of parameters
were left to their default values. In fact, only three
types of changes were made: new sinks/sources
were added to the network, the free flow speed on
another link was reduced, and some entry volumes
(more correctly values) were adjusted to better
reflect downstream measurements. Interestingly,
the behavioral parameters (e.g., gap acceptance,
car following headway) went untouched, which is
typically not done. For example, it is often assumed
that the field values are relatively accurate and the
behavior parameters (e.g., gap acceptance, driver
aggressiveness) are calibrated so that the modeled
output and traffic data are similar (see references).
Regardless, the question of transferability arises—
is the validation methodology appropriate for all
locations or just for those locations where the
default parameters apply? At a minimum, further
study is required before statements such as “. . . with
careful calibration and tuning, CORSIM output
will match field observations and be an effective
predictor.” In our opinion it is easy to intuit situa-
tions where no amount of expert manipulation of
input will allow CORSIM to be used, because the
behavior modeling (i.e., default behavior parame-
ters) in CORSIM would not apply to the drivers in
the traffic network being simulated. Two related
questions to the above argument are: 1) which
parameters should be calibrated and which should
be left alone? and 2) when is it reasonable to cali-
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brate high-fidelity-type microsimulation models,
such as CORSIM, with relatively low-fidelity data?

Lastly, the authors make two implicit assump-
tions in their prediction methodology that need to
be explicitly identified. The first is that the enter-
ing volumes and turning movements are fixed,
which implies that the origin-destination move-
ments are fixed. For small networks, such as the
test bed, this may be reasonable. However, for
larger networks, better signal timing will lead to an
increase in capacity—in congested networks, such
as Chicago where there can be significant latent
demand, this would normally lead to an increase in
observed volume. This is one of the reasons before
and after studies of major transportation improve-
ments are so difficult. In fairness to the authors,
they did perform a sensitivity analysis on demand
based on observed volume counts after the change.
However, the point remains that research is
required on when this assumption of constant
demand can be made. Intuitively, the relationship
between demand and network capacity would be
important for both the after analysis and the actual
traffic signal optimization. 

The second assumption is that the routes chosen
by the drivers remain constant as evidenced by the
constant turning percentages. Intuitively, if there is
a significant change in signal timing, drivers will
change their routes if they can find a faster way to
get to their destination. The fact that the authors
observed that the turning percentages changed
after the new signal timing was implemented lends
some credence to this argument. Similar to the
demand assumption, the constant route assignment
assumption needs to be studied so that the condi-
tions under which it can be made will be known.
Obviously, if either assumption is invalid then the
potential of the proposed methodology could be
limited.

In closing, we are pleased to see that traffic
microsimulation model validation is receiving the
research attention it deserves. Hopefully, the

research discussed in this paper will spur further
research in this area and the important questions
raised in the article will be adequately addressed.
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I congratulate and thank Sacks et al. for an inter-
esting and thoughtful case study of model valida-
tion in an important application area. The authors
offer an insightful description of the general
process of testing a computer model against reality,
but, more importantly, describe how they accom-
plished this task in a very specific, complex setting.
In the development of new methodology, the
“devil” is always in showing that the proposed
ideas and techniques can be relevant to the
“details” of real, important problems. Careful case
studies, such as this one, are important steps
toward improving the practice of model validation.

Each of the points I raise in this discussion has
been addressed in some form and to some degree
by the authors. I hope that my restatement and
elaboration gives readers a useful alternative view
of a few of the issues that must be faced when
designing and interpreting a validation study.

I will focus my remarks on only a few aspects of
the problem and model considered by Sacks et al.
(at least in part to avoid the certain embarrassment
that would otherwise arise because I do not have
their extensive knowledge of traffic modeling).
During any given period of time, real vehicles travel
through the area studied by the authors, each expe-
riencing some stop delay time at intersection
approaches; the total of all such times across vehi-
cles is a well-defined quantity . We have a clear
general understanding of the physical process that
gives rise to ; individual vehicles arrive at the
intersections corresponding to the entry nodes dis-
played in figure 1, negotiate their way through the
grid, and exit or disappear into garages; given
enough detail on the individual movement of each
vehicle, it is a simple matter to calculate its contri-

bution to total delay time. This simplified concept
of reality might be denoted by

where (with apologies to Sacks et al. for using nota-
tion not entirely consistent with their own) t
denotes the exact and complete collection of arrival
times at each entry node, u represents an extensive
set of variables that fully characterizes each vehi-
cle’s destination and the rules it uses in reacting to
its environment, and c represents the timing of the
signal lights (that we will “control”). The notation
“←” rather than “=” in the above expression indi-
cates that this is our idea of how reality works—not
necessarily the same thing as reality itself.
Envisioned in this way, R is conceptually simple. In
fact, a model could at least in principle be written
that does exactly what R does, given t, u, and c as
inputs.

However, models that require detailed values of
t and u that match reality are of limited practical
value because t cannot in practice be known before
the time period of interest (and then only if imprac-
tically extensive measurements could be recorded
at each entry node during that time period), and
realistically u can never be known. Instead, simula-
tion models like CORSIM are written with the idea
that these quantities can be regarded as random
processes, fully specified by a comparatively very
small number of parameters. Rather than demand-
ing the unattainable t and u as inputs, we define a
model as a sort of stochastic generalization of R:

where and are vectors that characterize dis-
tributions of random variables T and U, intended to
represent the uncertainty in t and u, and so serving
as the definition of a random variable . The prac-
tical distinction between t and u, as discussed by the
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authors, is that it is sometimes possible to collect
limited data directly related to the first, while distri-
butions used to represent the second are usually set
by “defaults.” A computer program expressing M
then serves two purposes: it generates a single real-
ization of the random vectors T and U, and then
evaluates R as if these were the actual values of t and
u. It is worth rewriting M to emphasize this:

where D expresses the distribution of T and U,
given the input parameters. One execution of the
model produces one realization of , rather than
the exact response that would follow from the fully
defined deterministic inputs. (Here, I will use the
capital letters T, U, and to denote the distribu-
tions defined when and are selected, the ran-
dom variables defined by these distributions, and
the realizations of these random variables pro-
duced when the model is evaluated; corresponding
lowercase letters are used to denote data collected
from the physical system.) The outputs from a num-
ber of repeated runs initiated with the same param-
eter inputs and yield simulation estimates of
the characteristics of the distribution of , for
example, mean, standard deviation, and quantiles.
We may wish to give this distribution a frequentist
interpretation, hoping that values of observed on
similar days will look like a random sample from
this distribution. 

Now, this formulation sounds fairly pedantic,
but it may help in describing some very serious
questions related to the model validation process.

WHICH INPUT VALUES?

Given validation data from a specific period, what
distributions (T,U) should be used in generating the
corresponding CORSIM outputs? If t or some por-
tion of it can be collected along with during the
test period, one possibility would be to calibrate D
so that the distribution T is consistent with t, that
is, compute an estimate of using these data. The
authors note in the section on Data Collection that
this is often regarded as forbidden. However, we
make one fundamental operational simplification
in writing M: we drop the demand to actually

know the very extensive vector t, settling instead
for the much easier-to-specify and hopefully “sta-
tistically similar” T. Unless the realizations of T
generated in the process of evaluating M are in
some sense credible relative to the value of t real-
ized during the validation exercise, the apparent
validation error between and can be the result
of

1. a lack of structural integrity in R,
2. problems with the distributional assumptions

expressed in D,
3. unrealistic specification of distribution

parameter inputs and , or
4. any combination of these.

It seems to me that if the testing of model structure
is of primary interest, T should be defined so as to
correspond to t as closely as possible.

However, if the goal of validation is assessment
of the prediction capability that would be obtained
from using the model in realistic situations, then
the use of t in specifying T should certainly be for-
bidden. In this case, the process of specifying T
must be viewed as a “hard-wired” piece of the
model, and validation must be carried out using T
as it would be constructed in practice. Here, vali-
dation is actually a joint test against all three kinds
of problems listed above, including those associ-
ated with the technique used to select inputs to
characterize T for the prediction time period. The
Bayesian sampling approach mentioned in the sec-
tion on Analysis of Uncertainty would be one way
to perform this joint assessment. However, improv-
ing any of the conceptual forms of R, the distribu-
tional form expressed in D, or the process used to
select input parameters can potentially improve
performance relative to this kind of validation.
Because each kind of improvement requires a dif-
ferent kind of developmental effort, the “factor-
ing” of predictive uncertainty corresponding to
these sources is an important part of the validation
process.

Practice that forbids fitting input parameters to
data collected along with validation data may
sometimes stem from fears of “overfitting” T, that
is, customizing T so that t is “too typical” an out-
come. This is certainly a legitimate concern, but
may be secondary to the more fundamental issue of
what is to be validated—the physically motivated
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R, R plus the operationally necessary D, or the full
model plus the process of setting inputs.

WHICH OUTPUT VARIABLES?

The authors stress the important fact that selection
of the output to be used in validation requires a bal-
ance between the relevance to the important ques-
tions and the feasibility of collecting the
measurements. (I’ve used and here to denote
the measured and computed quantities being com-
pared, respectively, even if they are actually func-
tions of what the programmer might ordinarily call
the model’s output.) Hence, the authors select
stopped delay time as the basis for comparing the
model with reality, even though the much more dif-
ficult-to-measure average link travel time might be
more relevant to questions concerning the timing of
signals. This quandary exists anytime a model is
produced to simulate physical circumstances that
are difficult to examine directly—a common situa-
tion because such difficulty is often a major moti-
vation for writing the model in the first place.
Sometimes the discrepancy between what can real-
istically be measured and what is of most interest is
even greater, for example, for models written to
evaluate the reliability of nuclear weapons.

In the last section, I suggest that the Sacks et al.
model validation is really a joint validation of R, D,
and the method by which distributional parameters
are set as inputs. Continuing this process, and
agreeing with Sacks et al. that any validation must
be done in the context of the purpose of the model,
I think we may also need to consider the relation-
ship between the output selected for measurement
and comparisons and the output variables most
critical in evaluating the success of setting c. Sacks
et al. note that average link travel time and stopped
delay are highly correlated (see the section on the
Validation Process) and so at least informally con-
sider this point.

In some settings, validation based on simultane-
ous comparisons of several outputs to various
kinds of measurements may be possible. There may
be few (or, in the case of the modeling of a nuclear
weapon, no) measurements available that would be
judged to be most relevant for the purposes of
model use, a considerable quantity of data avail-

able corresponding to outputs of less relevance,
and an intermediate quantity of data lying some-
where between these on some scale of relevance.
Methodology, which formally accounts for rela-
tionships between multiple sources of validation
data, and the fact that some are more relevant to
the purposes of modeling than others, will be use-
ful in such contexts.

WHICH OUTPUT VALUES?

Given specification of the input parameters by
whatever means, repeated executions of M lead to a
simulated “reference distribution” . The valida-
tion exercise may be considered successful if the
observed is a credible realization from this distri-
bution. So, for example, the authors compare the
“field” values with corresponding computed aver-
age and standard deviation values in tables 1
through 4. This amounts to a test of the hypothesis
that t and u are drawn from the joint distribution
characterized by D and the selected input parame-
ters, and that R faithfully represents reality given t
and u. However, even given effective specification of
T and U, the authors remind us that “no simulator
can be expected to capture real behavior exactly”
(see the second section of the article); various details
are always omitted, some intentionally and others
through incomplete knowledge. Thus, what I have
called the R section of CORSIM may not (and prob-
ably should not) contain explicit representations of
the effects of emergency vehicles, thunderstorms,
short-term construction work, and the use of cell
phones by the drivers of some vehicles. A more
detailed concept of reality that includes such phe-
nomena, and so is perhaps closer in some sense to
what happens in the streets, might be denoted

where v represents the additional specific determin-
istic details of these unmodeled subphenomena,
and R* is the more elaborate understanding of real-
ity that takes these into account. Suppose for sim-
plicity that v is parameterized so that R* is the same
as the simpler R when v = 0:
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Hence, even if T and U effectively represent the
physical variability of t and u, and our model
expresses R perfectly, may be inconsistent with

because of the particular value of v at the time of
validation. A strict “frequentist” might wonder
whether the average of real-world values from a
large number of days with identical t and u, but
with v varying over some implied distribution V,
might look like a reasonable realization of .
Related to this, we would consider

where equality would suggest that the model might
be trusted to predict such averages. But this is likely
not to be what the developer of the model had in
mind, and in any case, the test would require data
that are operationally or even theoretically impos-
sible to collect. Still, if such omitted effects are actu-
ally present—and they nearly always are—they
imply potential variability in , which is not repre-
sented by the random variables in our model. This
could mean that when T and U faithfully represent
variation in t and u, suggests less variation than
should be attached to . Alternatively, it could lead
to a situation in which the specified distributions T
and U must have unrealistically large variances if
the observed s are to “fill out” their matching cal-
culated reference distributions.

Since the quantity and variety of data needed to
fully answer these questions cannot typically be
obtained experimentally, the pragmatic conclusion
may be this: If it is important to predict both the
mean and variability of for specified conditions,
validation should be aimed at judging not only
whether the observed s are close enough to their
predictive means, but also, for example, whether
their squared deviations from that mean agree with
predictive variance, with the understanding that
this does not automatically follow from getting the
input distributions right (physically). The authors
do the next best thing to checking the day-to-day
variation of by looking at how some output
quantities and measured quantities vary over time
within a single validation period (see figure 4). This
may be as close to comparing day-to-day distribu-
tions as can be achieved within the constraints
imposed by sampling in this particular problem.

WHAT EFFECTS?

In thinking about experiments for validation of any
kind of computer model (whether stochastic or
not), it may be useful to remember a basic tenet of
physical laboratory experimentation. A model can-
not be expected to contain all the details of reality,
but our hope is that it faithfully represents the
major influences and effects associated with impor-
tant and interesting characteristics of the system (in
this case, the timing pattern of the signals). So,
while it may be too much to ask that a model pre-
cisely predict the activity of a certain condition, we
may hope that it usefully predicts the effect of
changing the important characteristics in the
absence of any other changes. Classical experimen-
tal design and analysis recognizes similar concepts
in its use of experimental blocks and focuses on sys-
tematic differences among treatments within a
block, rather than attempting to predict the result
of a specific treatment in an unspecified block.

The authors take this approach when discussing
the values of in table 8. A simplified view of the
experiment described in this paper is a two-treat-
ment design (signal timing settings) within a single
block corresponding to a single definition of T
(since the authors assumed that “. . . the conditions
in the field for the September data collection would
be the same as in May”). Viewed in this way, we
realize that the field information addresses the
effect of changing c at only one level of T. Would

be different at another T specification, for exam-
ple, traffic conditions at another time of day?
Traditional experiments are often designed under
the assumption of additive block effects, in hopes
that the answer to this question is “no.” Additional
experiments covering other (T; c) combinations, for
example, more blocks and treatments, may be too
expensive for practical considerations in studies of
this kind. But without them, we are left assuming
that the effects of T and c are additive, or under-
standing that our validation pertains only to the T
we have specified.

The authors have selected morning and evening
rush hours—undoubtedly the most important con-
ditions when setting signal timing; perhaps it is suf-
ficient for their purposes to certify that the model
can predict the effect of changes in the signal tim-
ing pattern for these conditions. If it is anticipated
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that T and c have important “interactions” in real-
ity, and if studies can be extended to cover other
traffic conditions, a validation exercise of broader
scope might be considered.

NOT WHETHER, BUT WHERE?

Finally, returning to the authors’ statement that
“no simulator can be expected to capture real
behavior exactly,” the most natural question to ask
will generally not be whether M can be thought of
as a universal replacement for measurements that
are difficult or impossible to make in reality; this
simply will not be the case. With careful develop-
ment and tuning, we may hope for a model that
does a respectable job within some range of condi-
tions. But just as good “weather” models do not
produce good “climate” forecasts and vice versa,
models that do a generally good job of modeling
traffic in some circumstances may be entirely unre-
alistic in others. And so a more useful (but more
difficult) eventual endpoint of model validation
may be the solution to an inverse problem: Under
what set of circumstances is M a reliable represen-
tative of reality, or where in the space of input val-
ues can M be trusted?

As with the selection of outputs for validation,
our ability to usefully answer this question depends
both on the range of circumstances of interest and
the range of circumstances over which we can
expect to collect physical data. It is of little use to
consider model validity outside of the first range,
and meaningful comparisons will be very difficult,
perhaps indirect, and sometimes impossible outside

of the second. As with other experiments, however,
the goal should be not just a simple answer to one
question, but a collection of answers that indicate
the sort of situations for which the model (or
model-and-sampling process) might be presently
“certified,” and the identification of other settings
within which further study or development is
needed. Hence the authors’ conclusion that:
“CORSIM, though imperfect, is effective in evalu-
ating signal plans in urban networks, at least under
some restrictions.”

CONCLUSION

All the issues I have noted here can be framed in
other ways, and each can be described from entirely
different viewpoints. I have variously referred to
quantities as random, fixed-and-unmeasurable, or
altogether absent as it fits my purposes, while a
mechanistic approach might ignore all randomness
except that used to define the model, and a full
Bayesian approach might always see all quantities
as random. Regardless of the perspective, the issues
of how and which data are used in setting input val-
ues, how validation data are collected and com-
pared with outputs, and how the agreement
between outputs and validation data is assessed
raise difficult questions. Sacks et al. have done an
excellent job of carefully considering and address-
ing these questions in the context of a specific and
important problem. This and other thoughtful
exercises of this sort will be the building blocks
from which new and better methods for model val-
idation may be developed.
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We thank the discussants for their comments. Their
points are well taken and add focus to some key
issues in planning or carrying out a validation. 

COMMENTS AND QUESTIONS OF RILETT
AND SPIEGELMAN

Rilett and Spiegelman raise the question of
whether a junior engineer can adopt and imple-
ment our approach for validation. Our answer is
yes. It would be a terrific learning experience, as it
was for us! 

Data Quality

They ask about the effect of data quality or accu-
racy of input data. This is a subject of great impor-
tance, wide open for study, and about which little
has been done. An exception is Bayarri, Berger, and
Molina (referred to in the Analysis of Uncertainty
section), who have incorporated in their analysis
the presence of observer error in the manually col-
lected data. 

Transferability

Is the strategy/methodology transferable to other
networks? We think so, provided we stick to urban
street networks with few pedestrians. Clearly,
attention must be paid to driver behavior. As noted
by Rilett and Spiegelman, it is typical to tune driver
behavior input distributions. We have been deliber-
ately cautious about doing so for fear of “over-tun-
ing.” We did tune in two instances: we changed the
geometry by creating a sink and source to remove a
CORSIM inability to cope with a congested inter-
section, and we adjusted the free-flow speed
parameter on one corridor to conform to actual
field conditions. In a third instance, we noted the

effect of driver behavior in utilizing, at one inter-
section, more green time than ostensibly displayed
and would incorporate this change if we were to
proceed to a third stage. 

A new network may require similar tuning. Our
recommendation would be to do so very carefully,
in a limited way and only after identifying the spe-
cific flaws that can be overcome with defensible
tuning. We are some distance away from making
this formal, but we are concerned that overly ambi-
tious tuning masks flaws and can fail to account for
natural variations.

Accuracy of Predictions

The discussants are correct that more than one
instance of accuracy of predictions are needed to
assess predictive validity lest the evaluation suffer
from the Nostradamus or Babe Ruth effect—dubi-
ous though legendary. And somebody has to keep
score. Our hope is that this is taken seriously and
made part of any program that pursues the estab-
lishment and use of simulation models.

Variations in Demand

We agree with Rilett and Spiegelman that major
changes in signal plans on large networks could
well affect demand rates and lead to unexpected
system characteristics. However, dramatic changes
in an urban context are unlikely in the short run
without major changes to the network geometry, at
which point a new context must be faced. We
would not advocate predicting characteristics
under such new conditions on the basis of old
demand rates. 

Any changes in turning movements (we did not
note any exceptional ones) after implementation of
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the new plan in September 2000 could not have
been the result of adaptation to a new signal plan—
the plan was in effect for less than 24 hours before
data were collected. 

Variations in demand rates and turning percent-
ages are being accounted for in the current work of
Bayarri, Berger, and Molina (cited above). Their
results quantify a decrease in system performance
and an increase in the variability of performance. 

Further study of the system under scenarios of
different demand (e.g., changing the input data by
fixed percentages) could be done; how to make
meaningful changes to turning percentages is less
obvious. Simulators (unlike CORSIM) that induce
routes based on origin-destination information
may be more amenable to such study, but these are
issues further down the road. 

DISCUSSION BY MAX MORRIS

Morris points out the complexity inherent in pur-
suing a validation strategy that can distinguish
among the multiple sources of uncertainty and
their effect on validation goals. This can be done, as
Morris notes, by a Bayesian formulation and analy-
sis and has recently been carried out by a team of
researchers at the National Institute of Statistical
Sciences in an application to a deterministic com-
puter model. The application to stochastic simula-
tors such as CORSIM is, in principle, doable; the
actual implementation will have considerable com-
plexity and has not yet been done. 

Morris notes that the effect of misspecification
or inadvertent omission of details in the model can

induce a bias that should be accounted for. This can
be done by adapting the Bayesian formulation of
calibration in Kennedy and O’Hagan (2001) to the
current situation, modeling the field data as simu-
lator + bias + measurement error and modeling the
bias. How to incorporate issues of variability in the
model output vis-à-vis the variability in the field is
not clear without more extensive, and expensive,
field data.

We agree with Morris that a more extensive data
collection and study would be needed to assure
validity under different contexts such as different
time periods, days of the week, or weather condi-
tions. This is also a point raised by Rilett and
Spiegelman. In reality, validation must be an ongo-
ing, and perhaps never-ending, process interacting
with model development. At any point in time, we
ought to be able to quantify the reliability of the
model. 

To conclude, we are gratified that the discus-
sants agree with us about the value and importance
of pursuing the multiple issues inherent to valida-
tion. We are possibly less skeptical than Rilett and
Spiegelman about the utility of our approach in
practice, but we seem to be in agreement with them
and with Morris about what has to be done. 
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ABSTRACT

Additional highway capacity gained by increasing
travel speed affects the share of time an individual
allocates to daily activities, such as commuting and
time spent at work, shopping, or at home. Some
activities will be undertaken more, others less.
Using the 1990 and 1995 Nationwide Personal
Transportation Surveys and Federal Highway
Administration data, this paper extends previous
research that identified and quantified induced
demand in terms of vehicle-miles traveled, by con-
sidering what type of demand is induced and which
activities are consequently reduced. While total
travel times did not significantly change between
1990 and 1995, there was a significant change in
activity duration. Further, as a result of additional
capacity, workers spent less time working and com-
muting and more time at home and doing other
activities. Nonworkers, in contrast, traveled more
and spent more time shopping and at home, but
less time at other activities. This points out the dif-
ferences in discretionary and nondiscretionary
activities for workers and nonworkers. It also sug-
gests increased highway capacity provides real
gains for people, at least in the short term, because
time, not vehicle-miles traveled, is the deciding fac-
tor for which activities are undertaken and which
are eliminated.
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INTRODUCTION

The impact of increasing the capacity of highways
is a topic of recent interest. New and faster roads
may attract more traffic than is currently diverted
from existing roads. This induced or latent demand
can be viewed as a boon or a bane. In the short
term, highway expansion is expected to increase
travel speeds. In the long run, traffic congestion
may approach or exceed earlier levels. If the sole
aim of capacity expansion is to reduce congestion,
expansions that increase traffic may prove counter-
productive. However, that same road construction
may increase accessibility and affect people’s daily
activity patterns. Time savings in travel attained
from increased highway capacity enables individu-
als to allocate more time to their activities and even
increase their number, rather than spend time trav-
eling. This ability to take advantage of new oppor-
tunities without increasing travel time enables
people to achieve greater satisfaction from con-
sumption, change to a better job, or move to a
larger house. At a minimum, they should be no
worse off. However, this additional travel may
have negative environmental consequences, exter-
nalities that individuals do not usually consider in
their travel decisions.

The objective of this research is to observe the
nature of the changes in activity and travel patterns
of individuals as a result of additional highway
capacity. Time savings from travel due to highway
expansion will give individuals more time to spend
engaged in different activities. Travel is often
referred to as a derived demand, as it reflects an
individual’s interest in taking advantage of a
resource, in this case, increased road capacity.
Carefully measuring changes in individuals’ travel
behavior will facilitate accurate travel forecasting.
This research examines the nature of and change in
activities that capacity expansion induces and
develops a model to quantify the change (in terms
of minutes per day) for workers and nonworkers.

A factor complicating the analysis of preferences
is whether “time budgets” exist for work travel, all
travel, or various activity categories. These time
budgets, perhaps just very inelastic preferences,
have appeared as empirical regularities in long-
term examination of travel behavior. For instance,
Levinson and Kumar (1994) found that in

Washington, DC, commuting times from home to
work averaged 28.5 minutes in 1958, 1968, and
1988. Similar results were found in the Twin Cities
of Minneapolis and St. Paul (Barnes and Davis
1999). Furthermore, major changes in metropoli-
tan population, demographics, female labor force
participation, and suburbanization suggest that
over the long term, individuals adjust their location
to maintain approximate constancy in their com-
mute durations, but not necessarily their distances.

Examining all travel, Levinson and Kumar
(1995a) did not find the same kind of regularity.
First, the share of workers increased, so more indi-
viduals traveled to and from work. Second, the
additional proportion of workers had more non-
work travel. Previously, in the era of the one-
worker, two-adult household, nonwork activities
would have been the responsibility of the home-
maker. Third, mobility and the near universal pres-
ence of a car for each licensed driver has changed
the ability to perform nonwork activities outside
the home, and as the cost of a favorable activity
declines, the amount demanded increases. So while
there may be a “commute travel budget,” there is
some evidence against a “comprehensive travel
budget.”

Despite the questions about commute and com-
prehensive travel budgets, there is one type of
budget that is inarguable, the daily time budget.
The 24-hour day, along with constraints associated
with necessary daily activities (working, sleeping,
eating, etc.), provide an upper limit on the possible
amount of time a person can spend traveling. While
the potential for induced time spent traveling may
be large, it is not unlimited due to daily time budget
constraints. We approached this question, using the
Nationwide Personal Transportation Survey
(NPTS) and Federal Highway Administration
(FHWA) data to measure individual changes and
activity patterns, controlling for network changes
in each state. We used travel survey data to under-
stand which types of activities and travel are being
induced by capacity changes, and consequently,
which activities and travel types are being reduced.
We developed estimates of time spent in travel and
at activities for major activity classifications (home,
shop, work, and other) for 1990 and 1995. In our
analysis, we controlled for socioeconomic and
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demographic strata including gender, work status,
age, and income, as well as lifecycle categories and
population density. For our capacity data, we
adopted an approach similar to that used by
Noland (1999), employing measures from the
Highway Statistics series of FHWA. The significant
independent variable is lane-miles of roadway,
while other independent variables control for pop-
ulation growth, gasoline prices, and income.

This paper begins with a review of the key liter-
ature in the induced demand debate, which quanti-
fies the effects of roadway capacity on some aspects
of travel demand. This is followed by a brief
description of the data used in the analysis. Then
travel times and activity durations are compared
between 1990 and 1995 using NPTS data. We dis-
cuss the theory of time use posed by economists
and extend it to better account for the real spatial
and temporal constraints that transportation ana-
lysts must consider. We pose a set of specific
hypotheses concerning how time use should change
with increased capacity. Then we develop a model
to examine the change in time use between 1990
and 1995 as a function of growth in the highway
network, controlling for demographic, spatial,
temporal, and socioeconomic characteristics. This
requires estimating a time-use model for individu-
als in the 1990 dataset. We then apply that model
to the 1995 survey respondents as an approxima-
tion of the latter population’s 1990 behavior. The
subsequent section applies the difference model
approach to determine the impact of highway
capacity expansion on travel behavior using seem-
ingly unrelated regression estimation models. A
summary of study results concludes the paper.

INDUCED DEMAND RESEARCH

Researchers are trying to identify the extent to
which trips are induced, shifted, and lengthened
due to capacity expansion. The literature on
induced demand suggests the overall elasticities of
vehicle-miles traveled (VMT) with respect to lane-
miles of capacity to be between 0.5 and 1.0, indi-
cating that a 1% increase in capacity will increase
the demand for VMT by between 0.5% and 1.0%. 

Dunne (1982) used a representative individual
approach to express aggregate demand but ignored
the distribution of elasticities across the sample. He

then determined point and arc elasticities and com-
pared the weighted elasticity with the elasticity of a
representative individual. 

Goodwin (1996) conducted a study to verify the
presence of induced traffic due to road capacity
expansion. Comparing the observed and forecast
traffic flows, taking into account the traffic reduc-
tion on alternative routes, he found the demand
elasticity with respect to travel time (based on short-
and long-term timeframes) to be –0.5 and –1.0,
respectively. 

McCarthy (1997) studied travelers’ responses
and attitudes toward market-based road pricing,
showing that capacity expansion attracted diverted
traffic and increased traffic growth induced by
improved travel conditions. He found demand elas-
ticity with respect to auto travel time using two dif-
ferent models for four primary modes of travel. By
using linear logit and linear captivity models, he
determined the demand elasticities to be –0.008 and
–0.002, respectively. 

Dowling and Colman (1998) studied behavioral
change—including mode switch, rescheduling, trip
chaining, destination change, and additional trips—
responding to the travel time savings as a result of
increased highway capacity for the San Francisco
and San Diego metropolitan areas. They found that
the existing travel forecasting practice probably
resulted in an underprediction of 3% to 5% in the
number of trips due to time savings that may have
been induced by highway capacity expansion. 

Hansen and Huang (1997) estimated the
induced traffic as a consequence of adding capacity
over the short or long run. At the area-wide county
and metropolitan level, they found the elasticity of
VMT with respect to lane-miles of capacity
between 0.62 and 0.94 for periods of 2 and 4 years,
respectively. Over a longer run of 10 years, they
estimated the elasticity between 0.3 and 0.4 on the
highway-segment level. 

Noland (1999) studied relationships between
lane-miles of capacity and induced VMT by spe-
cific road types and estimated long- and short-term
elasticities using four different models. The results
obtained corroborate the influence of induced
travel, at the same time establishing a significant
relationship between lane-miles of capacity and
VMT. Induced travel was found to have varying
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influence by road type (Interstates, arterials, and
collectors) and by region (urban and rural). He
found that with a 1% increase in lane-miles of
capacity, VMT grows annually from 0.79% to
1.73% over a period of five years. Using a distrib-
uted lag model, he also found that 28.7% of the
VMT resulted from an increase in capacity expan-
sion over the five-year period. The same model pre-
dicted that induced demand caused 23.7% of the
increase in VMT. Noland and Cowart (2000) stud-
ied the impact of additional lane-miles on VMT
growth using urbanized land area as the instru-
mental variable for lane-miles of capacity. They
found that the impact of lane-mile additions on
VMT growth is greater in urbanized areas that had
a larger percentage of increases in total capacity
and showed that lane-mile elasticities are smaller in
the short run (0.284) as compared with the long
run (0.904). 

Barr (2000) studied Nationwide Personal
Transportation Survey data to estimate relation-
ships between average household travel time and
VMT and found that individuals would spend
30% to 50% of the time savings from additional
capacity on travel. 

Fulton et al. (2000) studied county-level data
from Maryland, Virginia, North Carolina, and
Washington, DC, that related daily VMT to road
capacity. They found the elasticities of VMT with
respect to lane-miles of capacity to be 0.1 to 0.4 in
the short run and 0.5 to 0.8 in the long run. 

Marshall (2000), using the Texas Transpor-
tation Institute’s urban congestion study data for
70 U.S. urban areas, found the elasticities for road-
way demand relative to roadway supply as 0.85 for
highways and 0.76 for principal arterials using sim-
ple regression techniques.

DATA

The travel behavior data used in this analysis come
from the 1990/91 and 1995/96 Nationwide
Personal Transportation Surveys. These telephone
interview surveys collected data on household
demographics, income, vehicle availability, loca-
tion, and all trips made on the survey day. The
1990 NPTS survey was conducted between March
1990 and March 1991 and consisted of almost
22,000 household interviews and over 47,000 per-

sons making almost 150,000 trips. The 1995 NPTS
was conducted between May 1995 and June 1996
and consisted of 42,000 household interviews and
over 95,360 persons making almost 409,000 trips.
While the 1995 NPTS was conducted by giving the
respondents a travel diary in advance of their
scheduled interview, the 1990 NPTS was con-
ducted over the telephone, which caused some
problems. For example, identifying the origin and
destination of trips was difficult. We assumed that
all tripmakers began and ended their day at home.
Due to some improbably high shopping times, we
also excluded travelers with a daily shopping time
greater than 420 minutes. Given the methodology
adopted as a part of this paper, we have tried to
minimize the biased nature across both the
datasets. We did not drop any data on the basis of
day of week, but rather considered both weekday
and weekend trips in the analysis and use day of
week as an explanatory variable. Table 1 summa-
rizes the number of observations dropped and the
reasons for dropping specific records for the 1990
and 1995 NPTS data.

The time spent at each activity (excluding
travel), defined as that activity’s duration, was not
reported directly in the NPTS. Only the times of the
beginning and end of the travel portion of the trip
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TABLE 1 Summary of Data Analysis Adopted
for the 1990 and 1995 NPTS

Description of constraints 1990 1995

Sample size—total trips 159,832 381,388

Reasons for dropping records
Invalid destination 3,314 43
Trip in miles >200 23,372 27,455
Travel minutes >120 3,015 5,254
Age >65 years 9,210 35,399
Age <18 years 21,470 63,832
Shop duration >420 707 70

Total dropped 61,088 132,053
Subtotal at trip level 
(after records are dropped) 98,744 249,335

Subtotal at person level 15,870 52,341
Travel + duration 

minutes >1,440 7,652 656
Travel + duration 

minutes <1,440 2,643 17,119
Duration <0 654 2,237

Total dropped 10,949 20,012
Net total at person level 4,921 32,329



were reported. The activity duration data were
obtained by subtracting the destination time of a
particular trip from the origin time of the next trip
for the same individual, as shown in figure 1. All
the activity durations and travel times for an indi-
vidual add up to the daily time budget of 1,440
minutes (24 hours). The activity duration for the
final return home requires that we assume the per-
son’s first activity the next day begins at the same
time as today’s. Thus, we subtracted the time the
individual arrives home for the last time in the day
from the time of origin of the first trip and add
1,440 minutes. Only those tripmakers whose daily
time budget is equal to 1,440 minutes were consid-
ered for the study.

The highway data used in the analysis consist of
roadway and state characteristics (e.g., lane-miles
for all roadways, state’s average fuel price, and
state population) by state for 1990 and 1995. The
data for VMT and lane-miles were obtained from
Highway Statistics published by the Federal
Highway Administration for each roadway type
(Interstates, arterials, and collectors) by urban and
rural region. We also used data on the population,
per-capita income, and cost per energy unit (million
Btu) of gasoline by state for all 50 U.S. states for
1990 and 1995. The income and fuel price data are
in current year dollars.

COMPARISON OF 1990 AND 1995 
TIME-USE DATA

This research classifies activities into eight basic
categories: time spent at and traveling to the activ-
ities of home, work, shop, and other. For a prelim-
inary data comparison of activity patterns in 1990

and 1995, table 2 reports time use by gender and
work status. To illustrate, the first row shows that
the average female nonworker spent 1,172 minutes
at home, 42 minutes at shop, 166 minutes at other,
and 60 minutes of travel per day (averaged across
all 7 days of the week). In our modeling, we used
gender as an explanatory variable. Tables 3 and 4
elaborate the data for 1990 and 1995.

To determine whether these activity durations
and travel times for 1990 and 1995 differ for each
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FIGURE 1 Activity Duration Calculations

Activity
Travel Origin Destination duration

Person ID Origin Destination time time time (minutes)

1 Home Other 15 8:30 8:45 30

1 Other Work 15 9:15 9:30 360

1 Work Other 15 15:30 15:45 105

1 Other Other 10 17:30 17:40 20

1 Other Home 10 18:00 18:20 850

2 Home Work 20 8:00 8:20 340

2 Work Other 15 14:00 14:15

TABLE 2 Time-Use Comparisons for 
1990 and 1995 Data

Home Work Shop Other Travel

FEMALE
Nonworker
1995 1,172 42 166 60

(186)* (64)* (170)* (44)
1990 1,220 35 127 58

(209) (70) (172) (61
Worker
1995 944 313 25 93 65

(226)* (249)* (49)* (132)* (44)
1990 928 284 30 132 65

(357) (357) (69) (191) (64)

MALE
Nonworker
1995 1,171 30 177 62

(200)* (55) (184)* (46)
1990 1,222 29 130 59

(211) (60) (183) (65)
Worker
1995 900 365 15 90 70

(233) (262)* (37)* (136)* (48)
1990 903 338 20 110 69

(360) (367) (59) (189) (71)

* denotes significance at 95% level by difference of means test
between 1995 and 1990 results. Standard deviations are in
parenthesis.



of these categories, a difference of means (t-test) is
performed. The following null and alternate
hypotheses were tested:

Ho : E(X1) = E(X2)
Ha : E(X1) ≠ E(X2) (1)

The null hypothesis Ho tests for the population
means of activity duration and travel time as equal
whereas the alternate hypothesis Ha tests for the
population means as not equal. Based on the
hypothesis above, a t-statistic is calculated to infer
whether two data samples differ from one another.
It is defined as:

where
= the expected mean value of

X1 and X2 for first and second dataset, 
S1, S2 = the variance of the first and second sam-

ple set, and

N1, N2 = the number of observations in the first
and second sample set.

Then, the decision rule is to reject the null hypoth-
esis Ho if is greater than 1.96 (at a 95% confi-
dence interval) and accept otherwise. That rule is
applied to all the coefficients to compare the change
in time use of individuals between 1990 and 1995.

The time spent at home decreased for nonwork-
ers, remained essentially constant for male work-
ers, and rose for female workers. The time spent at
work increased for both male and female workers,
which is consistent with the 1990–1991 recession
and an expanding economy in 1995. For workers,
particularly females, time at home in 1990 substi-
tuted for time at work in 1995. The time spent
shopping decreased for male and female workers
but increased for male and female nonworkers.
Similarly, the time spent at other declined for work-
ers but increased for nonworkers. Both are consis-
tent with a strengthening economy in 1995, as
workers chose to work more and nonworkers to
spend more. The total travel time has either
remained stable or slightly increased for all cate-
gories, as people in 1995 pursued more out-of-
home activities.

t

( ) ( )E X E X1 2,
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TABLE 3 Summary of 1990 Time Use for Different Characteristics 
of Individuals

Time spent at:
Sample

Description size Travel Home Work Shop Other 

Gender
Male 1,590 68 929 319 18 107
Female 1,834 65 1,004 217 28 125

Work status
Worker 2,740 68 906 328 21 117
Nonworker 684 61 1,225 0 31 124

Day of week
Weekend 1,026 68 1,114 114 30 115
Weekday 2,398 66 907 329 21 117

Lifecycle (number of adults, age of youngest child)
1, no children 807 73 930 278 22 137
2+, no children 915 65 935 309 21 111
1, 0–5 88 53 1,068 140 25 154
2+, 0–5 524 62 975 282 26 95
1, 6–15 184 76 934 235 26 169
2+, 6–15 423 62 966 277 26 109
1, 16–21 37 66 1,020 227 25 102
2+, 16–21 122 64 980 295 15 86
1, retired, no children 55 70 1,217 27 30 96
2+, retired, no children 269 61 1,128 123 26 102



Based on t-test values, although the change in
activity durations (time spent at home, work, shop,
and other) is significant for almost all categories,
travel times are, interestingly, insignificant. This
supports the “Rational Locator” hypothesis that
people adjust their travel choices and relocate their
homes and workplaces to maintain their travel
commute over time (Levinson and Kumar 1994).
The results obtained from a difference of means test
showed that the value of t <1.96 for travel, which
means we cannot reject the null hypothesis. Thus,
the 1990 and 1995 travel times by gender and
work status are not different from one another and,
thus, this conclusion does not contradict the
Rational Locator hypothesis. The rest of the paper
aims to determine how individuals reallocate their
time due to increased capacity. 

CONCEPTUAL MODEL

Becker (1965) proposed a model to study how
households use time and market goods to produce
useful commodities under the constraints of daily
time budgets and income. He suggested that total
time could be disaggregated into work and leisure

(nonwork) time, but that while people earned
money during work time, money was not only not
earned but rather was spent in leisure time. Further,
both money and time are required to produce
household commodities (e.g., preparing dinner,
washing dishes, and watching television).
Additional time could be assigned to work to
increase income or to leisure to increase pleasure.
The value of additional income (requiring addi-
tional time) is diminishing because the amount of
time available to produce household commodities
decreases as time allocated to work increases. Jara-
Díaz (2000) synthesizes much of the subsequent
research on time allocation models, suggesting the
following utility maximization equation, subject to
separate money and time constraints:

Max U(G,TL,TW,t) (3)

subject to
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TABLE 4 Summary of 1995 Time Use for Different Characteristics 
of Individuals

Time spent at:
Sample

Description size Travel Home Work Shop Other

Gender
Male 12,687 72 917 333 15 103
Female 13,532 65 994 245 28 108

Work status
Worker 21,512 69 911 351 19 91
Nonworker 4,707 63 1,169 0 37 172

Day of week
Weekend 5,914 63 1,089 94 34 160
Weekday 20,305 70 918 344 18 89

Lifecycle (number of adults, age of youngest child)
1, no children 2,084 66 927 321 19 108
2+, no children 8,598 68 936 318 20 97
1, 0–5 260 74 997 192 31 146
2+, 0–5 5,266 68 974 277 21 100
1, 6–15 505 68 950 286 25 111
2+, 6–15 5,227 71 945 296 22 107
1, 16–21 238 68 950 277 24 121
2+, 16–21 1,994 66 936 302 18 118
1, retired, no children 157 64 1,179 0 43 154
2+, retired, no children 1,890 66 1,073 145 33 123



where
U = utility function,
G = aggregate consumption in money units,
TW = time assigned to work,
TL = time assigned to leisure,
t = exogenous travel time,
w = wage rate (work),

= total time available,
= Lagrange multiplier of time restriction,
= Lagrange multiplier of income restriction.

Such a model should be extended to separate out
leisure from necessary non-income producing
activities, such as shopping or going to school. In
addition, scheduling of activities is also a critical
factor (Small 1983). This model makes no repre-
sentation of nonworkers and their time allocation,
as nonworker revenue is independent of daily time
spent in the paid labor force, although it may be a
function of previous time in the labor force. While
the economic framework is informative, it cannot
tell us how individuals actually substitute travel
and activity time, as that depends on the empirical
valuations that people place on work, leisure,
travel, etc. Thus, the allocation of time to activities
is a complex phenomenon that does not lend itself
easily to nonempirical analysis.

Nevertheless, we accept the premise that individ-
uals balance time at and travel time to activities to
maximize their utility, acting to attain economies in
activity consumption. The relationship between
travel times and activity durations is shown in fig-
ure 2, where the allocation is constrained so that
travel times and activity durations sum to 1,440
minutes. In general, if the time/demand for travel is
inelastic (i.e., if a reduction in the time required to
travel a given distance does not increase the distance
traveled enough to produce an increase in the total
amount of time spent traveling), we would expect
that greater highway capacity would cause travel
time (TS1) to fall to TS2, leading to more time spent
at nontravel (work, leisure) activities. However, if
the additional capacity increases the range and
quality of activities that users can reach, they may
be willing to travel farther and spend more time to
reach different (and better) activities, at the cost of
less time spent at nontravel activities. While the the-
oretical possibilities depend on the distribution of
activities (an individual's accessibility field), we
expect that most travelers in metropolitan areas

would use the capacity (faster speed) in part to
increase distance and to reduce travel time, thus
increasing time spent at activities. 

Moreover, if the journey is its own reward, or
other benefits from travel alone are achieved, an
increase in speeds may lead to more time spent
traveling (just as speeds increase VMT and number
of trips). This interpretation is consistent with
Redmond and Mokhtarian’s (2001) research that
there is some positive benefit from traveling. 

The mix between work and nonwork activities is
indeterminate from the figure 2 analysis and
requires empirical estimation. Furthermore, a dis-
tinction should be made between time at work and
time spent working (presumably paid). As most
employees know, payment is usually based on
arrangements with employers to work a fixed num-
ber of hours. Time arriving early at work is not
necessarily compensated, whether or not work is
actually performed. 

For obvious reasons, we evaluate separate mod-
els for workers and nonworkers. The total travel
time to work and the time spent at work are zero
for nonworkers, while they form a significant part
of the daily time budget for workers, hence non-
workers will use this time for travel or spend it at
other activities.

The methodology determines time use sepa-
rately for workers and nonworkers with income as
one of the independent variables in the model. We
note that not all workers work full-time, but since
ours is a daily analysis, we only know how much
time a worker puts in on a given day, whether or
not that is typical. Our analysis of the empirical

λ
µ
τ
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FIGURE 2 Daily Travel and Activity Time 
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data (shown in table 2) illustrates the differences in
time spent at work between 1990 and 1995. Also,
the estimation of different models for 1990 and
1995 embeds the differences in time spent at work
in the coefficients, which is critical for our compar-
ison of the effects of roadway capacity, discussed in
subsequent sections. We conducted additional
analysis to measure differences in underemploy-
ment between 1990 and 1995.1

The lane-miles of capacity increased for all road
classes between years 1990 and 1995 (Interstates,
arterials, and collectors). The research initiative
proposed by this paper is to measure changes in
individual time use with increase in capacity over a
short-term period. We expect capacity increases are
associated with positive time savings over a short
time period.

HYPOTHESES

Workers

Our first concern is to determine the significance of
additional capacity expansion on individual travel
patterns for workers. Due to increasing highway
capacity, the cost of travel drops as drivers attain
higher speeds and reliability, which enables indi-
viduals to travel longer distances in the same
amount of time. Since work travel is something
workers would prefer to avoid (notwithstanding
Mokhtarian and Redmond, since we are looking at
short-term changes), we expect that every addi-
tional unit of highway capacity will decrease work
trip travel times. 

Time spent at work is somewhat more compli-
cated. The economic models’ suggestions are
ambiguous as to where travel time savings will be
spent. We assume that there is no concomitant

income or work productivity change. Thus, we do
not believe there will be any associated change in
time spent in paid work. However, as noted above,
paid work and time at work differ.  Our hypothesis
is thus related to scheduling and road reliability.
Road capacity increases reliability (reduces vari-
ance in travel time). With increased capacity and
faster speeds, the time spent at work will decrease
due to reduced peak spreading. It is expected that
the more reliable the roads, the more likely people
get to work at their desired arrival time. This may
lead to fewer early departures from home to avoid
potential congestion. Thus, people will naturally
spend less time early at work when they depart
from home later. 

In the evening, the desired departure time from
work is unchanged, and due to time savings from
travel (and increased reliability), workers will
arrive home a few minutes earlier. (Some travelers
may have departed earlier to avoid congestion in
the evening; others may have departed later: these
effects are thought to be offsetting). Thus, workers
will be able to arrive at their work place later in the
morning (but still on time), no longer needing to
leave early to escape the brunt of traffic congestion,
and will leave at about the same time in the
evening. In all, it is expected that with increased
capacity, there will be less variability in commuting
travel times, resulting in less time spent at work. 

Travel time to shop decreases with highway
expansion because of faster roadways. Less time is
spent shopping due to fewer shopping trips at
larger more comprehensive stores. We expect road
changes to be largely independent of income
changes. However, time spent shopping is not sim-
ply a discretionary or nondiscretionary activity,
and we have no reason to expect a priori that shop-
ping is the province of high-income individuals. For
instance, shoppers with less income should bargain
hunt at more places in order to get the most value
per dollar spent, which would increase their time
spent shopping. On the other hand, individuals
with higher income shop in part as a leisure activ-
ity. Thus, it is expected that income on average will
have a largely nullifying affect for time spent at
shopping activities among workers. 

The 1990 to 1995 period saw the emergence of
“big box” retailers that created scale economies on
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1 We used time spent at an activity (including time at
work) as an instrument to estimate travel time to an activ-
ity (and vice-versa) but the coefficient estimates using
instrumental regression were not found to be significant-
ly different. This was done by using Hausman’s specifica-
tion error test to check whether a regressor is truly exoge-
nous to the equation. (The results are detailed in Kanchi
2001). For both workers and nonworkers it is observed
that the p-value corresponding to was significantly
higher than that of the = 0.1 (90% confidence inter-
val). Thus, in order to keep our model simple we did not
use instrumented variable regression in our analysis,
because the results were not significant at the 90% confi-
dence interval.

α
χ 2



both the production and consumption side. These
retailers were enabled by large, new truck-based
just-in-time distribution systems and suburban
freeways. So instead of many small stores, there are
fewer but bigger retail stores, which sell a wider
variety of goods. Time at shopping may be more
often restricted to one big store rather than many
smaller stores, and thus should decline as shoppers
achieve economies of scale in consumption.

Travel time to other, as with travel time to work
and to shop, decreases with capacity expansion
because of time savings from faster roadways.
Capacity expansion, which is mostly in fast grow-
ing suburbs, leads to the establishment of new
activity centers. Because the nature of other activi-
ties for workers tends to be for pleasure and enter-
tainment, the time spent at these activities will
increase with highway capacity.

The flip side of travel time to work is travel time
to home, which will similarly decrease with each
unit increase in highway capacity. Workers are
expected to spend part of the travel time saved at
home. Travel is the cost associated with pursuing
activities of interest and, hence, it can be considered
the price (means) for undertaking activities (ends).
Of the four activity durations (home, work, shop,
and other), work and shop are necessary to fulfill
an individual’s daily needs and are “constrained”
activities, while home and other are pleasure-max-
imizing “unconstrained” activities. 

Nonworkers

In addition to the obvious difference in time spent
at work, the major difference between the travel
pattern of workers and nonworkers is that non-
workers spend more time at other activities
(enabled by avoiding 300 minutes a day of work).
This provides nonworkers more time and flexibil-
ity to take additional trips than workers. The qual-
itative meaning of some activities differs for
nonworkers. In contrast to workers, nonworkers’
shopping is a much more recreational or uncon-
strained activity. On the other hand, other activities
may be less discretionary for nonworkers, as that
population includes full-time students. School
would be a primary activity, which can be consid-
ered similar to work for a worker. Hence, “other”
is a more constrained activity. Time savings in
transportation may relax the peak spreading for

other activities for nonworkers as it did for work
activities for workers.

On the whole for nonworkers, the frequency of
home and shopping trips was higher than that for
other activities. Thus, as capacity increases, non-
workers are expected to pursue more shopping-
related activities. Hence, the destination travel times
for home and shop tend to rise with increasing
capacity, while the travel time to “other” decreases
due to travel time savings associated with higher
speeds. As with workers, time spent at home is a
pleasure-maximizing unconstrained activity, and
due to travel time savings from highway expansion,
the time spent at home is expected to increase. 

MODEL

Though we want to know how an individual in the
1995 survey would have behaved in 1990, unfor-
tunately, the NPTS was not conducted as a panel
survey. To compensate for this, we engaged in a
two-stage procedure whereby we first estimated a
model of 1990 individuals and then applied that
model’s coefficients to 1995 individuals.  This
enabled us to measure changes in behavior, con-
trolling for as much variability as possible in
socioeconomic, demographic, spatial, and tempo-
ral variations. The model to estimate time at each
of the eight activities for a 1990 individual is:

T90i = f (A,D,G,H,L,M,S,W) (6)

Subject to

where
T90i = time spent at activity i;
i = index of activities (travel time to and duration

at home, work, shop, and other);
A = age;
D = local population density;
G = gender;
H = household income levels;
L = family lifecycle characteristics;
M = month of year interview was conducted;
S = state-specific variables;
W = day of week interview was conducted.
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We selected these variables because of their
availability and their significance in previous analy-
ses of travel behavior by the authors (Levinson
1999; Levinson and Kumar 1995a, 1995b, 1997).
The above model analysis was performed at the
individual level rather than at the state level. This
approach was employed because aggregation at the
state level would yield 33 observations (1 for each
state, with a number of states suppressed in the
analysis because they had too few observations),
which, due to many fewer degrees of freedom,
would diminish the explanatory power of the
model. We used states as explanatory variables to
estimate the individuals’ time use in 1990 and
1995. Dummy variables (0,1) were employed for
each of the characteristics. The variables were
entered linearly into the model. 

The final model for T90i was estimated using
Zellner’s seemingly unrelated regression subjected
to the daily time budget constraint of 1,440 min-
utes. Seemingly unrelated regression estimation
(SURE) models use asymptotically efficient, feasi-
ble, generalized least squares estimation (Greene
1997). The daily time budget constraint makes the
covariance matrix of residual errors singular, which
cannot be determined directly by SURE, so we
dropped one equation and estimated the other
seven simultaneously. The final dropped equation
can then be calculated using the mathematical con-
straint equation, because the remaining coefficients
and their sums are known. The SURE model is pre-
ferred over ordinary least squares (OLS) regression,
because it overrules the assumption that error
residuals are not interrelated. SURE estimates the
whole model as a system of equations rather than
one by one as in OLS. The coefficients from this
model are shown in appendix table A1.

The equations for T90i for 1990 obtained from
the first stage were used to determine (an esti-
mate of the travel times and activity duration that
1995 individuals had in 1990) subject to the
reported socioeconomic, demographic, spatial, and
temporal characteristics of each 1995 respondent.
Simply put, we took the estimated 1990 time-use
equations and applied them to the 1995 data. 

We used to estimate a difference model of
change in travel behavior between the 1995 indi-
viduals reported (or computed) activity times and
the best estimate of their 1990 behavior. We evalu-

ated two models (one for workers and one for non-
workers) in the form given below.

Subject to

where 
= Change in time at activity i

between 1995 (reported) and 1990 (estimated), 
i = index of activities,

= difference in lane-miles for all roadway
types between 1995 and 1990,

C90 = sum of lane-miles for all roadway types in
1990,

= difference in state average fuel prices
between 1995 and 1990,

F90 = state average fuel price in 1990,
= difference in state average per capita

income between 1995 and 1990,
I90 = state-level per capita income in 1990,

= difference in state population between
1995 and 1990,

P90 = state population in 1990,
D95 = local population density estimates in

1995,
G95 = gender as noted in 1995 survey,
L95 = family lifecycle characteristics in 1995.

Since all eight activities in the 1990 and 1995
surveys are constrained by the individual daily
time budget of 1,440 minutes, their differences
sum to 0 minutes. A SURE is run on the above sys-
tem of equations considering the (for each of
eight activities (six for nonworkers)) as dependent
variables. Again, all variables are entered linearly.
Because the system of equations forms a singular
error variance matrix, one of the equations is
dropped and a SURE model is run on seven equa-
tions for workers (five equations for nonworkers)
and the final dropped equation is obtained from
the mathematical constraint. The full results are
shown in appendix table A2 for workers and
appendix table A3 for nonworkers.
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RESULTS

A summary of the final SURE results is displayed in
table 5, which shows the elasticity of travel times
and activity durations with respect to lane-miles of
capacity. The elasticity of independent variable x
with respect to its dependent variable y is given by

The elasticities described here represent the per-
centage increase in change in time use with a 1%
change in capacity. Thus, to illustrate table 5, for
every 1% increase in capacity, workers decrease
their travel time to home by 0.000317% or 0.0108
minutes, travel time to work by 0.00706% or
0.123 minutes, and so on. Hence, these represent
the change in time use with respect to capacity. 

While the numbers may appear small, a 1%
increase in capacity increases time spent at home by
over 6 minutes and reduces time at work by 5 min-
utes. As these numbers are estimated from state
capacity data, it can be expected that local effects
from a new or expanded roadway would be much
greater. The results displayed in table 5 are consis-
tent with the underlying hypotheses for both work-
ers and nonworkers. The difference between
worker and nonworker models is primarily due to
the presence of an extra 300 minutes for nonwork-
ers to pursue additional activities. 

It is found that nonworkers, when given addi-
tional capacity, prefer shopping while workers pur-
sue other activities. This is due to the qualitative
shift in behavior between shop and other for work-

ers and nonworkers, which yields such travel and
activity behavioral patterns. Thus, it is important
to model each category separately to determine its
respective effect. Also, we found that with capacity
expansion, individuals pursue more unconstrained
activities (home and other for workers, home and
shop for nonworkers), which presumably increases
their utility.  A somewhat surprising result is that
additional roadway capacity leads to a net increase
in time spent traveling by nonworkers (in contrast
with workers). This lends credence to the idea that
travel itself has a positive utility for nonworkers.

CONCLUSIONS

We observed that overall travel times have
remained statistically unchanged between 1990
and 1995, while a significant change is observed in
activity durations, both of which are in agreement
with previous analyses. Linking a panel of highway
data for the first time with time series travel behav-
ior data suggests that while VMT may increase
with capacity, the time spent traveling remains
fairly stable. Furthermore, the effects on workers
and nonworkers are different. 

Using a simultaneous equation estimation differ-
ence model approach, this research shows how
travel times and activity durations are affected by
increasing highway capacity. We found that
increases in highway capacity bring about small
but statistically significant changes in individual
daily travel behavior. Workers use the capacity
expansion to spend more time at home and other
activities, and spend less time at work. Nonworkers
choose to use the additional capacity both for activ-

η
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TABLE 5 Elasticity of Time with Respect to Capacity

Dependent variable: Workers Nonworkers
Change in: Elasticity Minutes Elasticity Minutes

Travel time to
Home –3.17E–04 –0.0108 1.48E–02 0.528*
Work –7.06E–03 –0.123* NA NA
Shop –4.71E–02 –0.190* 3.39E–02 0.235*
Other –9.80E–03 –0.160* –2.91E–02 –0.606*

Activity duration at
Home 7.27E–03 6.56* 2.19E–03 2.60*
Work –1.80E–02 –5.66* NA NA
Shop –3.44E–02 –.767* 2.54E–02 1.19*
Other 2.72E–03 0.349 –2.83E–02 –3.95*

* Denotes significance of the variable at 95% level.



ities at home and for shopping. These observations
may be somewhat surprising; however, we have
found no alternative hypothesis consistent with the
data, nor have we found (to date) any data that
contradict the hypothesis.  This analysis is the first
to measure these variables as a function of road
capacity. As such, it serves as a marker for future
research to corroborate or refute. While there is
clearly induced travel, we now have a better under-
standing of which travel and activities are induced
with capacity and which are reduced. 
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TABLE A1 Coefficients from the Estimated Model of 1990 Time-Use Behavior 

Workers Nonworkers
Independent Travel to Time at Travel to Time to
variables Home Work Shop Other Home Work Shop Other Home Shop Other Home Shop Other

States
Alabama 4.08 8.22 0.10 –1.58 7.49 –10.65 –17.26 9.59 –7.75 –0.93 1.24 –42.54 0.73 49.26
Arizona 4.64 10.25 –0.61 –2.52 –69.08 63.95 –6.98 0.35 16.00 –0.07 4.02 –89.63 37.90 31.79
Arkansas –4.45 –2.56 –0.69 –0.37 –13.45 –35.20 –11.95 68.67 –18.51 3.22 –5.88 37.64 –7.03 –9.44
California 5.79 3.78 0.53 –0.42 –28.74 –10.22 4.51 24.76 –7.19 –1.34 2.01 –5.71 2.82 9.41
Colorado 5.30 6.01 0.87 –5.15 –6.26 8.85 –3.93 –5.68 2.58 –2.96 –2.07 36.56 –11.58 –22.53
Connecticut 2.35 0.70 0.33 –0.18 –16.61 20.37 –5.23 –1.72 –6.72 –3.79 –4.30 53.85 –7.43 –31.59
Florida 0.89 2.53 –0.49 –1.97 –20.05 –3.71 –2.76 25.56 –9.10 –0.93 –4.40 15.50 –1.56 0.49
Georgia 0.24 3.63 –0.88 2.15 –62.20 59.71 –4.79 2.14 1.73 0.86 –1.21 20.93 –1.92 –20.39
Illinois 1.84 4.87 –1.73 –1.97 –52.87 49.98 –7.78 7.66 10.16 –1.49 2.50 –11.40 –5.59 5.83
Indiana 4.83 3.37 –0.85 –0.59 –52.60 22.70 –3.18 26.32 –0.14 –1.54 –2.74 31.41 –1.26 –25.73
Iowa 3.36 1.32 –0.66 –5.49 –9.14 –2.51 –13.13 26.25 –18.58 6.09 0.83 –26.06 38.96 –1.24
Kansas –8.43 –5.48 –1.63 –1.33 117.28 –125.98 13.72 11.86 13.82 3.45 –7.14 –84.28 3.32 70.83
Kentucky 7.09 3.51 –2.77 4.33 –64.75 54.95 –16.49 14.13 –11.54 –0.88 18.34 30.37 –1.80 –34.49
Louisiana –3.32 1.50 –1.20 5.07 –25.95 21.57 –12.05 14.38 –12.03 –3.46 –6.17 66.76 –4.13 –40.98
Maryland 8.23 7.90 –0.51 0.64 –74.10 14.91 –7.21 50.14 –9.23 –2.13 –4.82 41.47 –13.44 –11.84
Massachusetts 6.62 0.50 0.12 –0.98 25.53 –46.75 –8.60 23.56 –1.91 0.68 –10.04 73.53 5.18 –67.44
Michigan 11.67 0.42 0.09 –2.36 –55.63 –4.24 1.22 48.83 –9.94 –0.45 –8.35 46.06 20.95 –48.27
Minnesota 0.50 2.24 0.74 –3.68 –9.41 –12.18 1.80 20.00 8.83 –0.63 –8.08 –3.43 12.58 –9.27
Mississippi –4.26 8.99 2.64 7.87 –81.30 16.14 6.07 43.85 –1.91 0.53 5.17 –4.10 0.22 0.10
Missouri –2.06 8.29 –1.75 –4.17 –65.69 126.57 –18.81 –42.38 –2.26 6.54 –14.02 62.68 63.93 –116.87
New Jersey 8.14 10.02 –0.30 –2.09 –43.83 32.02 –11.02 7.05 –2.99 –1.45 –11.13 66.98 –12.07 –39.33
New York 8.02 6.24 2.40 –0.44 –49.95 33.45 –4.57 4.84 0.52 –2.25 –2.80 32.44 –2.72 –25.18
North Carolina –5.12 3.69 –1.32 1.60 –42.68 70.62 –10.94 –15.85 –14.83 –2.01 3.39 41.56 –2.76 –25.36
Ohio 3.18 –1.02 1.69 1.14 –8.93 –22.73 –3.32 29.99 –7.08 –0.73 –4.04 0.37 1.38 10.10
Oklahoma –5.36 0.89 –2.39 –2.00 62.88 –60.23 –14.28 20.50 1.03 0.53 –6.75 33.20 13.43 –41.44
Oregon –5.24 0.00 –1.45 –3.67 –54.69 80.52 –6.32 –9.14 –18.90 7.77 –4.72 33.24 40.54 –57.93
Pennsylvania –0.24 2.15 –1.06 –1.74 –33.18 35.11 –13.03 11.99 2.43 0.01 –4.46 28.57 9.22 –35.77
South Carolina –2.81 –0.49 0.88 –4.82 –8.06 48.09 –12.18 –20.60 –14.55 –2.64 –10.12 46.80 2.35 –21.84
Tennessee –5.19 0.52 0.44 –3.31 –26.33 41.12 –3.67 –3.58 –13.07 –0.69 –8.02 55.22 –6.33 –27.11
Texas 5.88 2.28 0.22 1.06 –16.49 –5.60 –7.20 19.86 –7.20 –1.02 –2.70 42.42 –10.12 –21.39
Virginia 2.76 1.86 –0.25 –2.52 2.10 –1.84 –1.96 –0.16 –12.43 –0.27 –9.36 37.95 –5.82 –10.08
Washington 4.94 7.82 3.79 1.12 –60.56 20.67 –7.39 29.61 0.00 –0.34 4.04 1.87 –14.80 9.22

continues
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TABLE A1 Coefficients from the Estimated Model of 1990 Time Use-Behavior (continued)

Workers Nonworkers
Independent Travel to Time at Travel to Time to
variables Home Work Shop Other Home Work Shop Other Home Shop Other Home Shop Other

Population density
0–99 6.27 1.50 0.69 –11.13 51.64 11.52 –1.56 –58.92 0.72 –3.20 –4.80 99.93 –42.69 –49.96
100–249 3.21 1.53 1.53 –12.05 45.45 14.39 4.31 –58.37 3.42 –3.04 –2.63 67.04 –36.60 –28.20
250–499 2.63 2.17 0.65 –11.81 46.23 12.74 6.19 –58.78 –8.99 –2.23 –7.62 80.54 –32.35 –29.35
500–749 4.82 1.11 0.32 –11.29 57.90 16.56 2.26 –71.68 4.48 –1.85 –0.66 55.25 –21.79 –35.42
750–999 –3.02 –0.59 2.03 –11.10 52.86 8.84 12.68 –61.70 2.15 1.89 3.94 35.78 –26.67 –17.09
1,000–1,999 0.68 1.91 0.29 –9.60 60.44 3.11 1.46 –58.29 –4.60 0.57 –1.34 54.86 –32.11 –17.38
2,000–2,999 1.28 0.09 0.91 –11.37 82.81 –26.88 6.13 –52.98 –9.63 –1.92 –2.55 78.60 –37.71 –26.78
3,000–3,999 2.66 1.27 0.26 –13.74 33.88 28.64 1.30 –54.27 1.07 –3.07 –7.54 54.27 –30.42 –14.30
4,000–4,999 0.37 2.26 1.17 –11.23 33.87 17.89 8.71 –53.04 –13.85 –1.35 –11.32 113.92 –31.33 –56.06
5,000–7,499 1.62 4.86 0.56 –10.17 56.93 –2.72 0.21 –51.29 –4.59 –1.51 –0.92 39.32 –21.93 –10.37
7,500–9,999 –1.39 2.42 1.45 –8.35 106.74 –41.52 1.81 –61.17 1.72 –1.70 –6.95 101.79 –38.47 –56.39
10,000–49,999 9.31 6.42 –0.18 –12.91 86.64 –8.91 2.29 –82.66 –5.14 0.92 –4.45 71.79 –24.54 –38.58
50,000+ 4.63 18.45 –0.58 –12.53 36.88 24.46 12.18 –83.48 –6.63 1.17 3.17 124.52 –7.43 –114.80

Household income
Less than $5,000 –1.21 –1.40 0.32 0.11 100.80 –103.15 6.70 –2.18 –7.77 0.46 –5.61 38.15 8.01 –33.25
$5,000–$9,999 –8.08 –0.65 0.29 1.74 –1.09 15.02 10.49 –17.71 –2.33 0.19 –4.55 20.55 –0.63 –13.23
$10,000–$14,999 –5.47 –0.58 0.28 1.65 18.65 –21.63 –1.09 8.19 1.33 –0.06 –1.43 22.08 2.00 –23.92
$15,000–$19,999 –5.34 0.04 0.70 0.54 25.48 –34.85 0.07 13.37 –1.81 1.31 –1.72 34.05 –0.97 –30.85
$20,000–$24,999 –3.89 –1.66 0.17 1.93 6.71 –27.35 2.27 21.82 0.09 1.49 –1.11 16.15 11.32 –27.93
$25,000–$29,999 –2.77 –1.12 0.64 5.19 –4.72 –36.87 7.87 31.78 1.42 2.66 8.55 –19.02 8.42 –2.03
$30,000–$34,999 –0.14 –2.00 1.44 4.14 –14.58 –42.35 10.77 42.72 –0.64 1.44 0.70 29.57 8.16 –39.23
$35,000–$39,999 –2.11 –0.21 1.10 4.05 –17.21 –17.94 8.11 24.19 1.57 0.38 2.28 –4.00 9.01 –9.24
$40,000–$44,999 2.50 1.98 0.22 4.30 –14.24 –22.04 –0.96 28.24 –2.42 2.19 2.53 –52.43 27.00 23.14
$45,000–$49,999 7.20 1.07 2.70 11.24 6.25 –83.07 10.01 44.59 3.26 2.19 1.43 –11.87 7.10 –2.12
$50,000–$54,999 4.36 2.83 1.43 3.62 0.70 –52.36 7.90 31.51 2.89 0.51 2.77 5.16 15.48 –26.80
$55,000–$59,999 7.30 3.82 1.14 6.85 15.51 –67.76 16.44 16.70 14.92 6.70 –0.12 –71.95 41.57 8.88
$60,000–$64,999 9.76 3.41 0.52 4.90 –21.25 –86.72 7.32 82.07 –10.14 2.45 –3.75 4.34 15.16 –8.06
$65,000–$69,999 3.87 –2.12 1.08 10.39 –32.03 –46.54 10.28 55.08 –3.01 –2.18 2.57 –20.73 24.28 –0.93
$70,000–$74,999 9.78 5.23 6.73 9.01 –49.11 –71.92 26.28 64.00 0.21 –3.20 9.88 –38.62 22.65 9.09
$75,000–$79,999 –2.96 0.35 –0.53 9.32 27.93 –83.91 –1.98 51.77 –20.04 1.91 –9.29 96.07 28.85 –97.50
$80,000+ 6.39 2.63 0.78 8.88 –1.96 –67.55 –0.92 51.76 10.31 3.01 16.78 –37.46 1.29 6.06

continues
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TABLE A1 Coefficients from the Estimated Model of 1990 Time-Use Behavior (continued)

Workers Nonworkers
Independent Travel to Time at Travel to Time to
variables Home Work Shop Other Home Work Shop Other Home Shop Other Home Shop Other

Lifecycle
(Adults, youngest child age)
1, NA –62.98 2.41 3.90 –34.23 22.65 74.38 –29.52 23.39 –10.53 –3.93 –9.25 7.20 –28.25 44.77
2+, NA –68.04 4.03 2.70 –38.88 9.27 133.11 –37.27 –4.91 –5.88 –2.32 –8.54 12.26 –27.58 32.05
1, 0–5 –65.13 0.85 3.79 –33.00 36.75 31.22 –39.53 65.05 –12.46 –5.12 –11.00 35.16 –26.74 20.15
2+, 0–5 –69.53 6.55 2.68 –39.59 39.76 105.05 –36.00 –8.93 –15.23 –3.37 –11.76 39.04 –28.63 19.96
1, 6–15 –59.88 3.43 2.74 –33.36 13.98 59.15 –33.00 46.94 –11.05 –2.05 0.34 –78.44 –21.88 113.08
2+, 6–15 –66.99 3.07 2.81 –40.53 41.95 105.62 –35.33 –10.60 –8.21 –1.68 –10.14 –15.78 –20.75 56.56
1, 16–21 –66.99 3.03 2.81 –37.59 97.23 38.36 –37.64 0.78 –4.59 –3.07 –20.35 63.81 –31.67 –4.12
2+, 16–21 –67.34 –0.64 2.04 –39.22 45.49 109.62 –40.56 –9.40 –4.06 –3.63 –9.81 –34.44 –31.49 83.43
1, retired, NA –35.88 –7.34 –0.11 –18.44 222.12 –77.56 –59.52 –23.28 –6.24 –2.62 –8.33 17.80 –26.21 25.58
2+ , retired NA –64.05 4.55 1.92 –38.51 55.79 78.88 –37.43 –1.14 –8.44 –2.21 –16.74 61.69 –25.69 –8.59

Sex
Male 2.40 3.26 –1.02 –2.04 –22.61 49.63 –10.63 –18.99 1.78 0.18 –1.04 3.78 –7.38 2.68

Month
January –0.30 –1.60 –1.43 –1.34 27.78 –15.43 –5.34 –2.34 –3.35 –0.44 –3.75 42.06 –16.66 –17.86
February 2.36 –0.29 –0.82 1.96 15.83 –34.58 –3.85 19.38 0.27 –0.45 –0.15 14.47 –13.59 –0.54
March 1.28 0.33 –0.30 2.64 –42.50 34.04 –5.88 10.41 –2.56 –1.96 4.78 –28.12 –16.65 44.50
April 3.53 1.08 –1.42 3.96 –13.38 –14.46 –7.68 28.39 2.41 –0.11 5.04 –16.04 –14.99 23.69
May 2.36 2.36 –0.41 6.00 2.09 –40.57 –4.75 32.92 –0.14 –0.16 5.11 –12.94 –16.69 24.83
June 3.16 0.14 –0.89 3.50 –13.64 –10.26 –5.48 23.49 1.31 0.17 12.74 –58.21 –17.13 61.11
July 10.68 2.91 –1.10 6.49 –21.10 –0.21 –8.28 10.61 0.78 –0.99 1.36 12.20 –8.08 –5.28
August 5.12 –0.10 –0.60 1.02 –7.21 –6.00 –7.60 15.36 –4.25 –0.17 –0.27 45.86 –13.86 –27.30
September 1.19 1.65 0.24 3.47 –20.52 1.06 –4.44 17.36 –3.20 –1.35 –1.21 53.01 –22.83 –24.42
October 0.67 0.44 –0.61 1.99 16.52 –7.91 –7.46 –3.64 2.55 –1.39 –2.73 27.57 –12.20 –13.80
November 4.12 –0.63 –0.34 1.78 15.82 –24.39 –0.62 4.25 –0.61 –0.20 1.21 –14.53 –6.24 20.37

Day of week
Sunday –0.48 –3.09 –2.10 –0.54 50.90 –40.69 –12.02 8.03 –6.11 –0.95 1.38 –1.75 –23.43 30.87
Monday –8.48 12.15 –3.59 –8.98 –200.82 234.13 –17.30 –7.11 –2.22 –2.26 5.25 3.52 –27.37 23.08
Tuesday –8.18 11.57 –3.26 –6.96 –223.99 254.35 –19.95 –3.57 –8.32 –0.51 0.48 –17.42 –16.67 42.43
Wednesday –11.29 15.46 –3.89 –7.59 –239.79 257.03 –20.48 10.54 –5.51 0.49 4.45 –52.39 –11.03 63.99
Thursday –8.82 12.22 –3.79 –7.57 –238.03 268.90 –16.65 –6.27 –12.26 0.81 –0.97 –11.81 –14.50 38.73
Friday –5.59 12.29 –2.93 –4.75 –228.55 235.15 –21.02 15.41 –12.21 0.29 1.42 –15.73 –6.47 32.71

Constant 95.33 –4.48 3.10 64.60 1,023.01 41.81 82.25 134.38 55.96 10.77 33.67 1,103.21 118.11 118.27
r–squared 0.035 0.092 0.039 0.042 0.122 0.141 0.034 Derived 0.060 0.075 0.076 0.091 0.067 Derived

Note: Derived indicates the model was derived based on constraint equations, not estimated.
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TABLE A2 Model for Change in Time Use Between 1990 and 1995: Workers

Travel to Time at
Independent Home Work Shop Other Home Work Shop Other
variables Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient

% change in
Lane-miles –1.08 –0.23 –12.34 –2.16 –18.96 –6.47 –16.05 –2.83 656.17 12.63 –566.04 –10.27 –76.65 –6.96 34.95
Population 25.37 4.40 –0.58 –0.08 19.88 5.65 21.28 3.12 –105.22 –1.69 34.92 0.53 32.40 2.45 –28.06
Income 5.64 0.89 6.22 0.83 –13.81 –3.59 –9.66 –1.30 653.33 9.57 –688.50 –9.50 –17.95 –1.24 64.72
Gas prices –44.33 –14.99 –7.53 –2.14 –20.39 –11.29 –15.38 –4.39 504.62 15.76 –354.00 –10.41 –26.57 –3.91 –36.43

Sex
Male 0.75 2.90 4.22 13.59 –0.96 –6.06 0.01 0.05 –31.83 –11.28 11.84 3.96 –0.84 –1.41 16.80

Lifecycle
(Adults, youngest child age)
1, NA –5.10 –3.36 0.57 0.35 –0.20 –0.24 –4.24 –2.64 1.30 0.08 7.79 0.45 –6.45 –2.07 6.34
2+, NA –0.39 –0.27 –0.69 –0.44 0.51 0.64 –2.35 –1.53 30.98 1.95 –46.06 –2.72 1.59 0.53 16.42
2+, 0–5 0.32 0.22 –4.61 –2.94 0.01 0.01 1.33 0.85 22.09 1.37 –38.10 –2.23 0.43 0.14 18.53
1, 6–15 –5.55 –3.25 0.90 0.48 0.10 0.10 –1.61 –0.87 12.70 0.69 6.07 0.31 –1.69 –0.47 –10.92
2+, 6–15 –1.03 –0.70 –0.88 –0.56 0.38 0.48 2.10 1.35 4.39 0.27 –33.21 –1.95 1.40 0.47 26.86
2+, 16–21 –3.34 –2.18 0.88 0.54 0.90 1.08 –0.78 –0.48 –14.16 –0.85 –28.85 –1.64 3.29 1.05 42.06
2+, retired, NA –3.22 –2.03 –3.87 –2.27 1.52 1.75 –0.90 –0.53 4.34 0.25 –31.25 –1.72 3.53 1.08 29.86

Month
January –0.28 –0.41 4.11 5.05 –2.10 –5.05 0.73 0.91 –24.83 –3.36 32.55 4.15 –5.70 –3.64 –4.48
February –2.05 –3.34 2.20 3.01 –1.18 –3.14 –0.84 –1.16 –32.95 –4.96 65.12 9.23 –8.43 –5.98 –21.89
March –0.93 –1.62 2.61 3.83 –1.41 –4.03 –2.43 –3.59 18.94 3.05 5.35 0.81 –5.60 –4.26 –16.53
April –3.96 –6.43 0.88 1.20 –0.65 –1.72 –2.96 –4.06 –9.67 –1.45 49.56 7.00 –4.44 –3.14 –28.76
May –2.33 –3.96 –1.46 –2.08 –1.06 –2.95 –5.84 –8.39 –11.04 –1.73 58.26 8.61 –4.03 –2.99 –32.50
June –2.09 –3.34 1.64 2.21 –0.39 –1.03 –1.98 –2.67 –17.08 –2.52 42.83 5.96 –2.70 –1.88 –20.24
July –9.54 –14.57 –2.34 –3.00 0.22 0.56 –3.95 –5.10 4.67 0.66 1.69 0.23 0.55 0.37 8.70
August –2.55 –3.65 1.65 1.98 0.19 0.44 0.86 1.03 –16.40 –2.17 27.15 3.38 0.73 0.46 –11.62
September 0.51 0.78 –0.02 –0.03 –2.13 –5.28 –2.40 –3.08 6.33 0.89 15.29 2.02 –6.87 –4.54 –10.71
October 0.66 1.05 2.57 3.44 –1.05 –2.75 –0.91 –1.23 –44.24 –6.52 44.26 6.14 –2.96 –2.06 1.68
November –3.42 –5.51 2.57 3.47 –0.39 –1.03 –1.98 –2.69 –35.80 –5.32 56.17 7.87 –4.68 –3.28 –12.46

continues
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TABLE A2 Model for Change in Time Use Between 1990 and 1995: Workers (continued)

Travel to Time at
Independent Home Work Shop Other Home Work Shop Other
variables Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient

Day of week
Sunday –2.86 –5.55 –1.24 –2.02 –1.64 –5.23 1.74 2.86 10.65 1.91 –21.55 –3.65 –3.60 –3.05 18.49
Monday 8.19 17.68 3.31 6.00 –2.46 –8.70 0.63 1.16 39.87 7.95 25.56 4.80 –10.93 –10.28 –64.17
Tuesday 8.39 18.19 5.85 10.65 –2.54 –9.03 –1.34 –2.46 35.40 7.09 33.43 6.31 –7.48 –7.07 –71.70
Wednesday 11.09 23.79 1.91 3.45 –2.33 –8.19 –0.30 –0.54 46.79 9.27 33.28 6.21 –7.95 –7.43 –82.50
Thursday 15.40 2.19 5.54 0.66 –3.18 –0.74 –3.41 –0.41 –217.37 –2.86 97.46 1.21 –13.11 –0.81 118.67
Friday 7.46 15.96 3.64 6.53 –2.12 –7.42 –0.99 –1.79 36.42 7.20 32.67 6.08 –1.49 –1.39 –75.59

Population density
250–499 –3.30 –6.69 –2.04 –3.46 –0.51 –1.69 11.84 20.23 –48.88 –9.14 –7.49 –1.32 –4.16 –3.67 54.55
750–999 1.33 2.34 1.17 1.72 –1.92 –5.50 10.86 16.06 –57.47 –9.29 –7.14 –1.09 –8.39 –6.40 61.55
1,000–1,999 –3.77 –7.01 –2.59 –4.05 –0.60 –1.83 8.82 13.87 –61.71 –10.61 3.11 0.50 0.94 0.77 55.79
3,000–3,999 –6.28 –12.41 –2.32 –3.85 –0.80 –2.60 12.37 20.64 –32.56 –5.94 –18.75 –3.22 1.88 1.62 46.47
5,000–7,499 –4.45 –9.28 –5.43 –9.50 –1.04 –3.54 9.21 16.22 –67.05 –12.91 18.07 3.28 3.40 3.09 47.29

Constant –13.95 –8.50 –1.62 –0.91 3.42 3.77 –8.09 –4.59 92.41 5.20 –24.44 –1.30 4.96 1.45 –52.69
r–squared 0.106 0.089 0.0385 0.068 0.0813 0.1022 0.513 Derived

Note: Derived indicates the model was derived based on constraint equations, not estimated.
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TABLE A3 Model for Change in Time Use Between 1990 and 1995: Nonworkers

Travel to Time at
Independent Home Shop Other Home Shop Other
variables Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient

% change in
Lane-miles 52.79 6.01 23.55 3.65 –60.64 –5.09 260.35 3.14 119.27 4.46 –395.32
Population 2.11 0.20 –17.46 –2.28 –5.13 –0.36 196.09 1.99 –64.83 –2.04 –110.78
Income 65.41 5.98 6.52 0.81 –20.29 –1.37 –60.35 –0.59 118.18 3.55 –109.47
Gas prices 6.06 1.25 8.06 2.26 –29.14 –4.43 41.98 0.92 55.71 3.77 –82.66

Sex
Male 0.94 1.76 –2.33 –5.91 3.81 5.25 –28.94 –5.72 –6.92 –4.23 33.42

Lifecycle
(Adults, youngest child age)
1, NA 4.40 1.52 –3.66 –2.47 –12.35 –3.15 87.62 4.60 –9.35 –1.52 –66.65
2+, NA –2.41 –0.88 –5.67 –4.28 –16.36 –4.40 80.81 4.74 –9.34 –1.70 –47.03
2+, 0–5 6.33 2.30 –5.35 –4.03 –12.54 –3.36 82.08 4.81 –13.17 –2.39 –57.34
1, 6–15 6.28 1.97 –8.07 –4.53 –16.24 –3.75 130.03 5.69 –16.19 –2.19 –95.81
2+, 6–15 0.95 0.34 –7.15 –5.27 –14.15 –3.77 117.73 6.76 –20.66 –3.67 –76.72
2+, 16–21 –3.66 –1.28 –5.12 –3.51 –13.64 –3.52 111.32 5.96 –9.37 –1.55 –79.54
2+, retired,NA 0.89 0.32 –2.97 –2.22 –9.14 –2.46 68.39 3.98 –5.38 –0.97 –51.80

Month
January 2.09 1.60 –3.10 –3.23 5.48 3.09 –38.16 –3.10 –4.55 –1.14 38.24
February 0.51 0.44 –2.45 –2.86 5.16 3.26 –31.89 –2.89 –1.18 –0.33 29.85
March 3.11 2.81 –1.06 –1.31 –0.70 –0.47 14.21 1.36 –2.00 –0.59 –13.55
April –1.66 –1.43 –2.97 –3.50 1.52 0.97 –11.80 –1.08 –4.74 –1.34 19.64
May 0.57 0.52 –2.31 –2.87 –0.93 –0.63 –0.61 –0.06 1.25 0.38 2.04
June 0.71 0.61 –3.25 –3.76 –6.34 –3.97 39.81 3.58 –0.70 –0.19 –30.24
July 0.71 0.58 –2.50 –2.77 3.65 2.19 –26.39 –2.28 –11.87 –3.17 36.39
August 5.27 4.00 –1.54 –1.59 5.35 2.99 –46.88 –3.77 0.14 0.04 37.67
September 3.94 3.16 –1.64 –1.80 5.60 3.31 –81.20 –6.90 7.61 2.00 65.70
October 0.46 0.39 –0.50 –0.57 8.38 5.22 –13.61 –1.22 –4.23 –1.17 9.49
November 1.17 0.99 –1.73 –1.99 1.91 1.19 –6.88 –0.62 –1.46 –0.41 6.99

continues
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TABLE A3 Model for Change in Time Use Between 1990 and 1995: Nonworkers (continued)

Travel to Time at
Independent Home Shop Other Home Shop Other
variables Coefficient t Coefficient t Coefficient t Coefficient t Coefficient t Coefficient

Day of week
Sunday 4.39 4.66 –3.20 –4.62 –2.54 –1.99 12.43 1.40 3.84 1.34 –14.91
Monday –0.49 –0.53 –1.14 –1.68 –5.45 –4.37 19.28 2.22 11.36 4.05 –23.57
Tuesday 7.63 8.38 –2.41 –3.60 1.17 0.95 28.65 3.33 1.48 0.53 –36.53
Wednesday 5.93 6.48 –2.44 –3.64 –3.77 –3.04 63.25 7.33 3.24 1.16 –66.20
Thursday 11.82 12.73 –2.92 –4.27 2.27 1.80 20.50 2.34 1.90 0.67 –33.58
Friday 12.88 13.89 –0.59 –0.87 0.70 0.56 15.87 1.81 0.86 0.30 –29.72

Population density
250–499 7.85 8.70 1.62 2.45 7.41 6.05 –78.93 –9.26 35.54 12.91 26.50
750–999 –5.04 –4.79 –2.10 –2.72 –7.81 –5.48 –25.28 –2.55 34.69 10.83 5.53
1,000–1,999 1.39 1.43 –1.91 –2.69 –0.71 –0.54 –50.09 –5.48 39.74 13.46 11.58
3,000–3,999 –5.20 –5.75 0.92 1.39 5.09 4.15 –60.48 –7.08 32.82 11.90 26.85
5,000–7,499 0.66 0.79 –0.23 –0.38 –0.76 –0.66 –40.22 –5.06 28.89 11.24 11.66
7,500–9,999 4.15 4.40 –2.06 –2.96 5.17 4.04 –92.32 –10.36 34.55 12.00 50.50

Constant –23.79 –7.81 14.23 8.62 13.13 3.18 –56.75 –2.68 –22.63 –3.31 75.81
r–squared 0.161 0.101 0.123 0.138 0.148 Derived

Note: Derived indicates the model was derived based on constraint equations, not estimated.





ABSTRACT

This paper proposes the use of a number of non-
parametric comparison methods for evaluating
traffic flow forecasting techniques. The advantage
to these methods is that they are free of any distri-
butional assumptions and can be legitimately used
on small datasets. To demonstrate the applicability
of these tests, a number of models for the forecast-
ing of traffic flows are developed. The one-step-
ahead forecasts produced are then assessed using
nonparametric methods. Consideration is given as
to whether a method is universally good or good at
reproducing a particular aspect of the original
series. That choice will be dictated, to a degree, by
the user’s purpose for assessing traffic flow.

INTRODUCTION

Many models attempt to predict the behavior of a
system. These models may be physical, mathemati-
cal, statistical, or simulation representations of the
system. Within the transportation field, physical
models can be scale models of the geographical
area of interest, mathematical models can be queu-
ing models, statistical models can be platoon dis-
persion models, and simulation models can be
meso- or microsimulation models. These models
may operate on cross-section data, which represent
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a snapshot of a system at a particular point in time,
or on time series data, which represent the “move-
ment” of a system through time.

If the appropriate model for the system is
known, a dataset is used to calibrate the parameters
in the model and then the model is applied. If the
model is not known, then procedures are necessary
to select from a range of models. As part of this
selection process, a commonly used procedure is to
split the dataset into two portions for training and
testing purposes. The training portion, which is
usually the larger, is used to calibrate the parame-
ters in the model, and then the testing portion is
used to assess the accuracy of the calibrated model
in reproducing observed behavior. If the perform-
ance of the model with the testing dataset is deemed
adequate, then the two datasets are pooled and the
model recalibrated. Sometimes there is either insuf-
ficient data of acceptable quality to enable this par-
tition to take place or no obvious way of dividing
the datasets. In such cases, a with-replacement sam-
pling approach may be adopted to construct the
two datasets. To accurately assess without bias a
model’s goodness-of-fit, the modeler must first
determine the values of the calibration parameters
and then assess the performance of that model.

This paper, while incorporating forecasting
models, is not concerned with a detailed study of
the relative merits of these models, but with meth-
ods of assessing their ability to produce useable
forecasts. In particular, this paper does not concern
itself with the accepted iterative procedures of
model identification, model estimation, and model
diagnosis. It is assumed that these stages have been
successfully completed and that the practitioner is
now interested in how the model performs.

ASSESSING GOODNESS-OF-FIT

In the modeling processes and for models used for
forecasting discussed in this paper, there are two
types of discrepancy between the observed and
modeled values. Within-sample discrepancies,
which are typically generated during the model-fit-
ting stages, are termed residuals in this paper. The
outside-sample discrepancies are those that arise
from applying the model to “unseen” data and are
termed forecast errors in this paper. It is this latter

form of discrepancy that is of most interest to prac-
titioners and is the one considered in this paper.

A primary requirement is that a goodness-of-fit
test be dependable. It should also be accurate and
consistent in application. The fewer the number of
assumptions that accompany the test the better the
assessment of goodness-of-fit. Such assumptions
may include the distribution of observations or
existence of a sufficiently large sample size.
Sometimes the test may be robust to departures
from these assumptions, but a doubt may still exist
over any measure that compromises any of these
assumptions.

An additional modeler task is to communicate
information to those who have the authority or
influence to use it. Unfortunately, such individuals’
expertise often differs from that of the modeler.
This places a requirement that the metrics used in
assessing goodness-of-fit are readily comprehensi-
ble and acceptable to specialists in other fields.
Much of the motivation for this paper comes from
earlier work by Dadkhah and Zahedi (1986), in
which they propose various nonparametric tests to
identify models that can predict turning points and
directions of change in a time series. They also list
a wide range of model evaluation tests in their
appendix. In practice, however, not many of these
evaluation tests outlined are actually used, because
they would prove daunting when communicating
results to a nonstatistically aware audience

The commonly used measures are those that
involve an averaging of a simple function of the dif-
ference between the observed and forecast behavior.
One such term is the root mean square error
(RMSE):

Where ft is the forecast at time t,
vt is the observation at time t, and
N is the number of observations

while another is the mean absolute percentage
error (MAPE):
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Both of these statistics have the advantage of being
easily comprehended by most practitioners. Some
disadvantages of these measures follow.

1. There is no criterion for assessing whether
one value of the statistic is acceptable or not.
Usually a range of forecasts are produced
using either different methods or different
datasets and a subjective opinion made as to
whether one result is good or not in the con-
text of the other results.

2. The RMSE or MAPE are often used in the
model calibration stage to estimate the
parameters in a model. Thus, there is the pos-
sibility that any calibrated model may be
biased in producing estimates that give good
performance on that measure but poor per-
formance on other, equally valid, measures of
goodness-of-fit.

3. While some forecasting methodologies spec-
ify several distributional requirements on the
residuals from estimated models, and these
requirements can be tested (but see 6 below),
it is not usually necessary to place distribu-
tional requirements on outside sample fore-
cast errors.

4. These statistics group all the observations
together, losing the individual point-to-point
relationship that exists. This drawback is par-
ticularly serious for time series data where the
time element is important but lost in the
aggregation.

5. The measures are not especially robust to out-
liers in the data, in particular the RMSE will
exaggerate the impact of any outliers in either
the observed or forecast series.

6. If any standard statistical tests are applied to
these data, certain assumptions on the distri-
bution of the difference between the modeled
and observed values, termed the residuals, are
required. These assumption can be (but are
seldom) tested, but even when assumptions
are found to be valid, there is still a remaining
doubt (Type II errors).

NONPARAMETRIC METHODS 
OF ASSESSMENT

Nonparametric methods provide an alternative
approach to assessing goodness-of-fit and pose cer-

tain advantages over parametric or averaging
approaches, namely:

1. they do not assume any underlying distribu-
tion for the data used in the test,

2. they are able to provide objective methods for
assessing whether a result is acceptable,

3. they are applicable with small sample sizes,
4. they can be robust to outliers, and
5. they are more readily comprehensible to spe-

cialists in other disciplines.
Three types of nonparametric tests are discussed

in this paper. The first set are tests of the location of
distributions based on signs, the second on the
equality of shape of distributions, and the third on
correspondence of distributions. These tests may be
applied to the original and forecast data points
and/or the original and forecast directions of
change in a series.

DATA AND PRACTICAL CONTEXT

The English Highways Agency collects traffic infor-
mation continuously at one-minute intervals on
traffic flow (measured in vehicles), speed (km/hour),
headway (seconds), and detector occupancy (per-
centage) on the M25 motorway (freeway). Detec-
tors are typically located 500 meters apart and there
is one in each traffic lane of the carriageway. One of
the primary purposes for this infrastructure is to
monitor traffic on the motorway with a view to acti-
vating a series of speed variable message signs as
congestion builds (Maxwell and Beck 1996;
Nuttall 1995). Currently, the Highways Agency
uses the system in a reactive mode, that is, decisions
on whether to activate the message signs are made
on the basis of the most recent traffic situation.
They are actively investigating whether an anticipa-
tory mode may be more efficient, where traffic con-
ditions are forecast for a short time horizon,
typically less than one hour, and action taken to
forestall anticipated congestion.

For the purposes of this study the 1-minute, 4-
lane traffic flows have been aggregated into 15-
minute carriageway flows (expressed as equivalent
flows in vehicles per hour) starting at 6 a.m. and
continuing until 9 p.m. The data were aggregated
to overcome (or diminish) the effect of the few out-
liers or missing observations present in the one-
minute lane measurements. Four sites were chosen
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for data sources, three are four-lane sections and

between junctions, labeled as 4757A, 4762A,

4767A and the remaining site, 4802B, is a three-

lane carriageway within a motorway junction site.

Figure 1 shows the location of the three between-

junction sites. Data were collected for all 4 sites for

between 15 and 25 days in each of the months of
August, September, and October 1997. This pro-
vided 184 days of traffic flows spread over 4 sites
and 3 months. Figure 2 gives a typical flow profile
for a day at one of the sites.

50 JOURNAL OF TRANSPORTATION AND STATISTICS V5/N1 2002

FIGURE 1 Location of Test Sites on the London Orbital Motorway (M25), England



SUMMARY OF FORECASTING 
METHODS USED

Many studies have attempted to forecast traffic
flows using a variety of techniques. Some have used
computerized models of the network that represent
the actual movement of traffic. On a simple level,
the TRANSYT program (Vincent et al. 1980) con-
tains a technique for predicting future downstream
arrivals at signalized links in a traffic network.
More complicated approaches involve the comput-
erized simulation of individual vehicles moving
through a traffic network (Morin et al. 1996;
Algers et al. 1997). 

The second group of work has attempted to
model traffic flow as a time series of observations.
Many well-recognized statistical models can be fit-
ted to historical time series data and then used to
produce short-term (usually one-step or two-steps-
ahead) forecasts. Moorthy and Ratcliffe (1988)
produced time series forecasts for an area of West
Sussex, and Smith and Demetsky (1997) demon-
strated application of a time series model (among
others) to forecast traffic volumes on a freeway in
Northern Virginia.

A third, more recent, direction is the use of arti-
ficial neural networks that can be trained to recog-
nize complex (nonlinear) patterns in historic traffic
flows and identify them in unseen data to produce
“typical” follow-on conditions. This research has
produced a large number of publications since the
late 1980s, and Dougherty (1996) contains a review
and extensive bibliography of such applications.1

In this paper the four forecasting methods used
were selected in an earlier study (Clark et al. 1999)
to encompass a range of time-series forecasting
techniques.

Naive Model

The simplest forecasting technique is to assume
that the currently observed level of flow will persist
into the next time period:

ft+1 = vt (3)

Where ft is the forecast flow at time t;
vt is the observed flow at time t;
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This technique forms a benchmark that any
competent forecasting methodology needs to
exceed. No assumptions can be made about the dis-
tribution of the residuals or forecast errors from
this model.

Long-Term Memory Model

A refinement is to forecast the future level of flow
as an average of current and previous levels of flow.
This method uses the arithmetic mean of four pre-
vious observations.

Where ft is the forecast flow at time t; and
vt is the observed flow at time t;
The structure of this model arises from the data

format used in this paper, which comprises 15-
minute observation periods, that is, a time lag of 4
provides 1 hour of data. Once again, no assump-
tions can be made about the distribution of the
residuals or forecast errors from this model.

ARIMA Model

The next level is to assume a static structure for the
period-to-period relationship in the data, but allow
the strength of this relationship to vary over time.
This may involve fitting a Box-Jenkins ARIMA-
type model (Box and Jenkins 1976) to the series.
Initial investigations indicate that in order to render
the series stationary, a differenced logarithmic
transformation is required.

Where ft is the forecast flow at time t,
vt is the observed flow at time t,

is the mean of the observed flow,

is a parameter to be estimated from data to

time period t, and
is a random residual term.

This model is a general formulation of the previ-
ous two. Unlike the other models, the procedures
used to estimate parameters in this model require
certain normality assumptions for the residuals,
but no assumptions are possible for forecast errors.

Nonlinear Model

Sometimes the assumption of an essentially linear
relationship between two quantities, as in the pre-
vious three models, is not valid. In such cases, a
nonlinear formulation of the model is required.
The structure adopted here is to formulate a back-
propagation neural network that relates previous
levels of flow to future levels. Once again, it is not
possible to explicitly derive a distribution for the
residuals or forecast errors from this model.

TESTS

The application of nonparametric tests is well
described in the statistical literature, and the reader
is directed to these texts if further explanation is
required.

Signs Test

One of the features of a series of errors from a well-
behaved forecasting model is that it should contain
a similar number of positive and negative observa-
tions. The assumption underlying this test is that
the number of, say, positive errors is shown as a
binomial distribution. The parameters of this dis-
tribution are the number of trials as (n–m), where
n is the number of observations and m is the num-
ber of ties (i.e., the original and forecast values are
the same) and the probability of success is half. The
term success is commonly used when discussing the
binomial distribution, but the term has no pejora-
tive meaning here. Once an observed number of
positive errors has been found, the two-tailed prob-
ability of obtaining this number of positive errors
may be calculated. This probability may then be
compared to some significance level to determine
whether the assumption of an equal number of pos-
itive and negative errors is valid.

For a well-behaved forecasting methodology,
one would hope to be able to accept the hypothesis
that there are a similar number of positive and neg-
ative residuals. This ensures that the method does
not tend to systematically over- or underpredict.

Wilcoxon Test on Location

When comparing the observed and forecast series,
one of these two series should not be overrepre-
sented when considering the magnitude of the val-
ues. To test for this, the two series are merged and

ε t

φ 1,t

µ v
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the observations in the merged series given ranks.
The ranks associated with observations from each
of the series (original and forecast) are identified
and summed. If the two series values are of similar
magnitudes, then these two numbers should be
similar, and tables are available to test for this. A
modified Wilcoxon procedure may also be applied
to establish whether the location of the differences
between the observed and the forecast series is zero.
Here the differences are ranked, and the sum of the
ranks of positive differences should be similar to
the sum of ranks of negative differences. The degree
to which this is the case can be tested against tabu-
lated values.

This test measures whether the location of two
distributions are the same. In this case, the two dis-
tributions could be either the observed and forecast
series or the differences between the observed and
forecast series. In both cases, one would hope that
the tests revealed that the location of the appropri-
ate series was the same, or zero in the case of the
modified Wilcoxon procedure.

Wilcoxon Test on Variance

Rather than test whether the location of two series
are similar, this test measures whether the disper-
sion of two series are similar. Consider the case
where one series occupied the lower and upper
quartile of the merged series and the other, the mid-
dle two quartiles. Using conventional rankings,
these two series would produce similar rank sum
statistics and a conclusion that the location of the
two series were similar would be made. It is clear,
however, that in this extreme case the spread of
observations is not the same. To test this, a differ-
ent ranking method is deployed that spreads the
lower ranks toward the ends of the series. The
smallest value is given a rank of 1, the largest, 2, the
second largest 3, the second lowest 4, the third low-
est 5 and this pattern is repeated, moving into the
center of the concatenated series. By adopting this
ranking scheme, it is clear that in our extreme
example the series at the extremes would have a
significantly lower rank sum than the other series.
This test should only be applied after determining
that they have similar centrality locations.

Rank Correlation

This test enables a judgment to be made as to
whether the same magnitude of observation is
made at each time period. Ideally, the largest fore-
cast is made at the same time the largest magnitude
is seen in the original series and so on to the small-
est magnitude of the two series. This statistic may
be calculated on either the observed series or the
differenced series. When applied to the differenced
series, the test is focused on whether the magnitude
of the changes in both observed and forecast series
are seen at the same time.

In an ideal situation, the correlation would be
+1. The “worst” case situation applies when there
is an opposite relationship and the correlation
would then be –1.

Direction of Change

Sometimes it is desirable to know whether a fore-
cast series is generally moving in tandem with the
original series. This is the equivalent of asking
whether the successive differences in two series are
the same. If the number of times that the direction
of change for the forecast and observed series agree
are counted, then this statistic should follow a
binomial distribution. If the yardstick is to perform
better than a random toss of a coin, then the prob-
ability of success is half. The probability of observ-
ing the number of agreements can then be
calculated on this hypothesis. Before this test is
applied, however, it is necessary to establish
whether the occurrence of continuations or changes
in direction are independent events through time
(Dadkhah and Zehedi 1986). This may be tested for
using a contingency test but, like tests on
distributional assumptions, this outcome is subject
to hypothesis errors and weakens the general utility
of this test.

A good forecasting method should pass the test
for independence and the number of times the
direction of change agrees should be greater than
what would be expected through chance.

EVALUATION OF  THE 
FORECASTING METHOD

In this section, the three strands of data, forecast-

ing method, and goodness-of-fit measure are

2 2 2× χ
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brought together. For each forecasting measure,

the performance over all 184 days is summarized

in table 1. For the root mean square error, mean

absolute percentage error, and rank correlation

statistics, the mean and standard deviation (given

in parentheses) of the statistic are presented. For

the Wilcoxon tests, the number of times a signifi-

cant difference is found at the 10% and 5% levels

are presented. For the direction of change measure,

four counts are provided and classified as to

whether or not the observed changes are inde-

pendent events 

and if prediction of direction change is better than an

even chance (p(Bin)<5% or p(Bin)<10%). For this

last measure, the best possible performance for an

individual day is and p(Bin)<5%.

The Wilcoxon location test on the differences
between successive observations failed to produce
any days with significant outcomes and has not
been reported in table 1. 

An assessment based on the root mean square
and absolute percentage error indicators suggests

that the nonlinear method performs best, followed
by the naive and ARIMA models with the long-
term memory model performing worst. This order-
ing is also preserved to some extent for the rank
correlation statistic on the original and the first dif-
ferenced series, although the rank correlation
between the observed and forecast first differences
has proved to be low across all forecasting meth-
ods. There is evidence from the test on the number
of positive residuals and both the Wilcoxon tests
that the distribution of one-step ahead forecasts for
the nonlinear model is not in accord with those of
the observed series. The naive and ARIMA models
perform well at maintaining a similar distribution
for the original and the forecast series. In the case
of the naive method, this is not surprising since the
forecast is the original series, only shifted by one
time period. The test that emphasizes the ability of
a forecast to predict correctly the direction of
change in the original series shows the long-term
memory model performs well.

( )p χ 2 10> %

( ) ( )( )p pχ χ2 210 5> >% %or
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TABLE 1 Statistical Performance of the Four Forecasting Methods

Model Naive Long-term ARIMA Nonlinear
method model memory model model model

RMSE 597.8 904.5 637.7 471.5
(154.7) (158.8) (184.7) (107.9)

MAPE 9.16 13.92 9.41 7.59
(1.96) (2.33) (2.08) (2.11)

Rank correlation of original 0.768 0.590 0.757 0.809
(0.087) (0.093) (0.090) (0.071)

Significant number 5% 4 11 0 56
of positive errors 10% 11 22 4 70

Wilcoxon location 5% 0 0 0 1
on original 10% 0 0 0 7

Wilcoxon variance 5% 0 2 0 14
on original1 10% 0 4 0 34

Rank correlation of difference 0.064 0.113 0.082 0.098
(0.138) (0.130) (0.121) (0.119)

p(Bin)<5% (much >10% 19 54 21 17

better than chance) >5% 19 51 19 15

p(Bin)<10% (better >10% 28 76 30 30

than chance) >5% 28 72 25 28
1 The number of days on which this test is valid is 184 minus the number of days on which there was a signif-
icant difference in the locations of the original and forecast series, e.g., for nonlinear at the 10% level this is
184–7=177 days.

( )p χ2

( )p χ2

( )p χ2

( )p χ2



ADDITIONAL DIAGNOSTIC TESTS

As mentioned in the first section of this paper, the
focus here is on the evaluation stage of the per-
formance of a forecasting method. It is correct to
say that this evaluation should only be conducted
once the modeler is satisfied and can demonstrate
that the model chosen is appropriate for the data.
This should not preclude, however, some form of
ongoing model suitability evaluation.

In the earlier iterative model building process,
residuals from the modeling are commonly exam-
ined to ensure that they adhere to some distribu-
tional assumptions. Of particular concern when
dealing with time series data is that the residuals
should not be autocorrelated and should have a
constant variance. These issues are commonly cov-
ered in textbooks on econometrics (Maddala 1992;
Gujarati 1995). There may be value in checking
forecast errors when forecasting techniques are
applied to ensure the errors have not acquired any
of these features.

In performing these checks, a number of non-
parametric techniques are available. As an illustra-
tion of this issue, autocorrelation may exist in the
model residuals or the forecast errors. To test for
first-order autocorrelation, one approach would be
to establish whether there were an unreasonable
number of runs of positive or negative values in the
forecast errors. If there were too few runs, this
would indicate positive autocorrelation, while too
many runs would indicate negative autocorrela-
tion. A slightly more complex but explicit non-
parametric test for serial correlation of higher
orders is given in Hoel (1984). Similarly, nonpara-
metric approaches may be adopted to test for non-
constant variance in the forecast errors.

Returning to the example models and data used
in the earlier section of this paper, the application
of a runs test on the forecast errors shows that the
number of days on which significant first-order
autocorrelation at the 95% level was detected was
low for the naive (9 days), ARIMA (7 days), and
nonlinear (13 days) models but extremely high for
the long-term memory model (179 days). The very
high number of such days for the long-term mem-
ory model does not necessarily invalidate it because
its parameter values were not estimated using a
method that relies on uncorrelated residuals, but

the reasons behind this feature would need to be
explored.

CONCLUSIONS

Nonparametric tests are rarely used to evaluate the
goodness-of-fit for a forecasting model. Given that
such tests require fewer assumptions than paramet-
ric tests and that they can be correctly used with
small samples, this appears to be a serious oversight.
Nonparametric tests also allow for tests on the per-
formance of a forecasting methodology without
regard to the performance of other methods.

There are a wide variety of forecasting methods
and tasks. It is unreasonable to assume that a fore-
casting methodology that is good at performing
one task will necessarily be the best for other tasks.
A modeler needs to make a judgment as to what is
required from a forecasting method. The task is
then to select or devise a goodness-of-fit measure
that emphasizes the desirable properties of the fore-
cast. Once the forecasts are known, the modeler is
then able to make an objective judgment as to
which method is the most appropriate. The non-
parametric tests discussed in this paper are able to
measure and compare different aspects of the per-
formance of a forecasting method.

For the example given in this paper, each of the
forecasting methods has its strengths. The nonlin-
ear and naive methods are good at predicting the
original level of the series, via low RMSE, MAPE,
and high-rank correlation statistics. This may be
important if it is necessary to predict when the level
of flow crosses some form of traffic threshold, ini-
tiating the need for outside intervention. The
ARIMA method is good at reproducing the distrib-
utional aspects of the original series. The long-term
memory model is good at predicting the direction
of change in a series—an ability that is useful for
predicting a turning movement in a series. In the
context of transportation, this has particular value
in forecasting the beginning or end of a period of
traffic volume growth.
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ABSTRACT 

A relief route is a segment of a highway that moves
traffic around the central business district of a city.
Planners perceive it as a means of enhancing mobil-
ity and often associate regional economic progress
with construction of bypasses. Though a bypass
often means safer, quieter, less-congested down-
towns, the communities receiving a bypass gener-
ally worry about potential negative impacts to the
local economy. Hence, to make well-informed deci-
sions on constructing relief routes, impact studies
are needed. This paper examines the economic
impacts of highway relief routes on small- and
medium-size communities in Texas. Per capita sales
in four different industry sectors were chosen as the
indicators of impact.

The models developed suggest that the bypassed
cities suffered a loss in per capita sales in all four
industrial sectors considered. The magnitude of the
traffic volume diverted appeared to be the greatest
determinant of the impact. The overall impacts of
the bypass were the most negative for gasoline serv-
ice stations and the least for service industries. The
impacts were less negative for cities that had high
per capita traffic volumes. In addition, city demo-
graphics, regional trends, and proximity to a large
city were estimated to have important impacts on
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the local economy. The industrial sectors consid-
ered for analysis represent only a portion of the
total economy of the city. Therefore, negative
impacts to these sectors do not necessarily mean
that the economy as a whole suffers. 

INTRODUCTION

Highway relief routes, also known as bypasses,
move traffic around central business districts of
cities. Relief-route users may experience travel
time and cost savings, as well as increased safety.
For some, rerouting through traffic is perceived as
an advantage as it makes the downtown quieter,
safer, and a more pleasant place for shopping
(Otto and Anderson 1995). These routes may also
affect the local economy negatively in terms of
employment and income and sales volume. Thus,
the overall impacts of a relief route on the city it
bypasses are not obvious and cannot be easily
generalized.

Planners view relief routes from a wider regional
and state level and see them as one way to enhance
intercity travel. On the other side, communities
receiving bypasses may be concerned about poten-
tial negative economic impacts. These concerns can
be critical for small- and medium-size cities that
greatly depend on highway traffic. The challenge is
to improve statewide mobility without hampering
the local economies. Identification and quantifica-
tion of economic impacts can inform decisionmak-
ing regarding the construction of relief routes.

LITERATURE REVIEW 

Considerable research exists on the impacts of
bypasses. Some of the earliest studies date back to
the 1950s. These and later studies examined the
impacts on sales, employment levels, income, land
use, land values, and other economic indicators. A
wide array of methodologies has been employed,
from the simplest forms involving before-and-after
studies to more complex, indepth case studies and
econometric modeling. Data at different levels of
aggregation have also been used. A critique of some
of the latest efforts to understand the economic
impacts of highway bypasses is presented here.

A Wisconsin study by Yeh et al. (1998) used case
study and survey and control-area methodology
involving a nonpaired comparison of bypasses and

control cities. An analysis of sales and employment
data, travel surveys, and focus group interviews
indicated little adverse impacts on the overall econ-
omy and little retail flight. The communities per-
ceived their bypasses to be generally beneficial.
This study shows that most of the medium and
large cities bypassed were “natural destinations”
and growth was one of the reasons these bypasses
were needed. These may be cities where urban
planners knew the impacts would not be too nega-
tive and so requested a bypass; hence, the sample
may be biased. Since all communities that get
bypassed will not fall into this category, results of
this study cannot be generalized.

A survey and control-area method was adopted
to study impacts in Iowa and Minnesota (Otto and
Anderson 1995). The impact of the bypass, deter-
mined by a “pull factor” (defined as the ratio of the
per capita sales in the bypassed community to that
in the control group), indicated there was no sig-
nificant difference in total sales reported by
bypassed and control communities. Some redistrib-
utional effects were observed when the sales were
broken down into components. This analysis, how-
ever, did not compare the sales levels before the
bypass opened. It is possible that the bypassed cities
had higher sales before the bypass, when compared
with the control cities. A survey of the local busi-
ness community helped identify perceptions, and it
found that a majority of the respondents favored
the bypass. However, results from such opinion-
based data could be subjective and biased.

A classic example of a recent application of the
before-and-after method is a study undertaken in
Yass, Australia (Parolin and Garner 1996).
Businesses were surveyed the year before the
bypass opened. When surveyed a year later, 43.8%
of the retail businesses reported a decrease in gross
annual sales, 14% of jobs were lost (mostly in
casual and part-time employment), and traffic sur-
veys showed a 50% decrease in highway-generated
trade. While these consequences appear significant,
the study could not completely isolate the impact of
the bypass on the local economy; there were other
factors (like the withdrawal of construction work-
ers and the opening of a service station near the
bypass) that could not be entirely quantified but
clearly affected the results.
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Research undertaken for the Kansas Depart-
ment of Transportation (Burress 1996) resulted in
the development of a family of regression equations
to explain a multitude of variables, such as city and
county sales and employment levels. The effort also
resulted in the calibration of a gravity model to
obtain estimates of through and local traffic. The
impact of the relief route was predominantly cap-
tured with indicator (dummy) variables, but several
other variables, unrelated to relief routes (e.g., city
demographics and regional trends in the industrial
sector) were not controlled. The results indicated
there were short-term negative impacts on some
traffic-related businesses, but all such businesses
did not suffer and effects were transitory. The study
discovered that the impact of background effects—
like the recession of 1990–91—were more signifi-
cant than the bypass-related effects. Unfortunately,
however, most of the models developed in this
study had few explanatory variables.

A study of the economic impacts of highway
bypasses on small Texas communities was done at
the University of Texas at Austin (Anderson et al.
1992). Several methods, including projected devel-
opment, multiple regression analysis, and cluster
analysis, were used. The study concluded that high-
way bypasses might reduce business in small cities
in rural settings. The models indicated a 15% drop
in gas station sales and a 10% to 15% drop in sales
at eating and drinking establishments. The study
used pooled cross-sectional and time-series data;
however, it did not use sophisticated methodologies
like random-effects models that could extract more
meaningful information from the panel data.

Work by Buffington and Burke (1991) used
regression analysis on a panel dataset to examine
the impacts of bypasses, loops, and radials on
employment and wages. The impacts of bypass
investments on manufacturing employment at the
city level were positive. At the county level, the
impacts were positive for both employment and
wages. However, all the cities included in this study
had some form of highway improvement (relief
route, radial, or loop). There were no control cities
in the dataset. This could lead to biased results,
because all cities receiving highway improvements
could have certain characteristics that are different
from those cities not receiving such improvements.

It is also possible that the general economy was
improving, so that net effects appeared positive
when in fact they were not as positive as they
would have been without the bypass.

In 1996, the National Cooperative Highway
Research Program consolidated the state of knowl-
edge in the area of relief-route impacts (NCHRP
1996). Based on a literature review and responses
to survey questionnaires sent to state departments
of transportation, no conclusive evidence was
found of a loss of sales, even in vulnerable loca-
tions, due to bypassing alone. This leaves open the
possibility that relief routes can mean a loss in cer-
tain sales conditions. 

The ability of multivariate regression analysis to
isolate the marginal influence of a relief route from
other factors that can possibly impact local
economies makes it appealing for the current work.
Studies that employed other methods failed to sat-
isfactorily isolate the bypass impacts and those
reviewed here that used regression analysis exhibit
some deficiencies (e.g., excluding possibly relevant
explanatory variables and sampling bias in the data
used). 

The work presented here takes a rigorous statis-
tical and methodological approach to model the
effects of bypasses on local economies. The impacts
on four different industry types are examined using
a panel dataset. Further, the impacts are modeled
jointly, an approach that has not been adopted
before. This research effort focuses on small- and
medium-size cities in Texas. The results are
intended to assist planners and engineers by pro-
viding reliable information on likely economic
impacts in communities for which relief routes
have been proposed.

While the strength of this study lies in the use of
a sophisticated econometric methodology to model
the impacts, its limitation lies in the fact that the
impacts are measured primarily in terms of changes
in the per capita sales in four different industrial
sectors. Since the cities modeled here are of small
and medium size, non-availability of data limited
the extension of the methodology to model other
sectors. For the same reasons, other factors charac-
terizing the local economy, like income and
employment levels, could not be modeled.
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The paper is organized as follows. Data details
are described, followed by a description of the
modeling methodology. Analytical results are then
presented and followed by a summary of conclu-
sions and identification of areas of improvement to
the current work. 

DATA 

We first created a list of cities in Texas with popu-
lations between 2,500 and 50,000, and then traffic
maps were reviewed to classify the cities into those
that are bypassed and those that are not. We fur-
ther classified the bypassed cities based on the
nature of their bypass(es), and only cities with a sin-
gle bypass were considered for the study. This is the
simplest form of bypassing, where the relief route
splits from the old route at one side of the city and
rejoins the same route on the other side. This exer-
cise resulted in the identification of 23 bypassed
cities1 for analysis; 19 other, nonbypassed cities
were chosen as “control” cities. For each of the 42
cities, 9 years of data (in years falling between 1954
to 1992) were collected. The sample, therefore, has
a total of 378 data points.

We collected sales data for four industrial sectors
from the U.S. Economic Census. These include
total retail sales (Standard Industrial Classification
(SIC) major groups 52–59), sales in gasoline service
stations (SIC 554), sales at eating and drinking
places (SIC 58), and service receipts (SIC major
groups 70 through 89). Gasoline service stations
and eating and drinking establishments are subcat-
egories within the retail trade category. The data
years are approximately five years apart. Both city-
and state-level data were collected. All sales dollars
were then adjusted for inflation and converted to
current year 2000 dollars using the Consumer Price
Index (University of Michigan 2000). 

We obtained data on city demographics (e.g.,
overall population, unemployment, and elderly
population), median household income, and aver-
age household size from the U.S. Census of
Population. The data were used to derive an esti-
mate of income per capita, as the ratio of median
household income to the average household size,
and incomes were converted to 2000 dollars.

Census of Population data covered 1950, 1960,
1970, 1980, and 1990. These data were then lin-
early interpolated for the required data years. 

The proximity of a city in this study to a large
city was seen as an influential factor. A large city is
defined here as the central city of a metropolitan
statistical area (MSA) in 1990. The nearest large
city was identified for each city sample, and dis-
tances were obtained from the Texas Mileage
Guide (Texas Comptroller of Public Accounts
1999). The populations of these large cities were
obtained from the U.S Census of Population and
linearly interpolated for the required data years.

Using district traffic maps from the Texas
Department of Transportation, we were able to
infer the year when traffic first appeared on a city’s
relief route. These maps were used to determine the
opening year of every relief route, and thus the
number of years since opening for each data year.
The traffic maps also provided data on the average
annual daily traffic (AADT) at different count loca-
tions along the highways. Counts along the bypass
were averaged to get an estimate of the traffic vol-
ume on the bypass. Counts on all state, U.S., and
Interstate highways that pass through the city were
averaged to get an estimate of the total traffic vol-
ume approaching the city. 

Distances along the old and the new routes were
obtained from county maps. The distances were
measured from the point where the relief route
branches off the old route to the point where it
rejoins the old route. The county maps also pro-
vided information on the presence of frontage
roads along the relief route.

ANALYSIS 

Variable Specification 

Per capita sales in four different industrial sectors
were identified as indicators of the local economy.
The industrial sectors are total retail (establish-
ments that primarily sell merchandise for personal
or household consumption), gasoline service sta-
tions (establishments that primarily sell gasoline
and automotive lubricants), eating and drinking
places (establishments that primarily sell prepared
food and beverages), and service industries (estab-
lishments that provide a wide variety of services—
e.g., lodging, repairs, health, amusement, legal, and
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technical—to individuals, businesses, government
establishments, and other organizations). 

We identified several variables to explain the
four types of sales investigated. The impact of city
demographics on a local economy is captured by
introducing the fraction of population that is eld-
erly (ELDERLY), the fraction of labor force that is
unemployed (UNEMP RATE), and per capita
income (INCOME PERCAP) as explanatory vari-
ables. Per capita income is expected to have a pos-
itive impact on per capita sales, while the
unemployment rate is expected to have a negative
impact. Elderly people may be more likely to shop
locally, as opposed to driving out in search of more
variety. Hence, an a priori expectation for this
explanatory variable may be for a positive effect.

It also is hypothesized that the sales levels of
small and medium cities are significantly influenced
by the proximity of a large city, and the closer and
more populated the large city is, the greater its
influence. Thus, the ratio of the population of the
nearest large city to its distance from the commu-
nity under study is introduced as an explanatory
variable (LARGECITY POP/DIST). More traffic
moving through the city indicates a larger market
for local goods and services. Since the models are
developed at per capita level, the traffic volume
approaching the city was normalized by the popu-
lation of the city and this (TOT TRAFFIC PER-
CAP) was introduced as another explanatory
variable. 

Bypassed cities are identified by introducing an
indicator variable (RELIEF ROUTE) that takes a
value of one once the relief route is opened to traf-
fic. The impact of a bypass depends on how much
traffic and how far away traffic is diverted from a
city’s downtown. An estimate of the magnitude of
the traffic diverted from the old route to the bypass
is obtained as the ratio of traffic volume on the
bypass to the total traffic volume approaching the
city (TRAFFIC SPLIT). The greater the diversion,
the greater the adverse impact on local sales is
expected to be. The length of the bypass and the old
route could be used as proxies for how far the
diverted traffic is moved away from the old route.
Variables, DISTOLD and DIST RATIO were intro-
duced to capture this effect. The farther the diver-
sion, the greater the expected negative impact. 

The impacts of a relief route can be expected to
change with time. The impacts may cease or there
might be lagged effects on the community. The
coefficient on the NUM YEARS variable captures
this effect. A NUM YEARS SQ variable is also
introduced to capture possible nonlinear time
trends. The signs on these variables can be either
positive or negative. 

The per capita sales at the state level (STATE
SALES PERCAP) for the specific industrial sector
also is introduced as an explanatory variable to
capture and control for more global trends in
industry sales over time. The data year (YEAR) is
used to capture other time-related trends. 

The 1982 economic censuses provided sales data
only for establishments with payrolls. Data for all
other economic census years were available for all
establishments. To characterize this data issue, an
indicator variable (YEAR 1982) was introduced
for observations in 1982 in all but the retail sales
model (this problem was not observed for retail
industry data). Sample means of the variables
described are presented in table 1.

Model Specification 

This section describes the econometric model struc-
ture and estimation method. A regression model
developed on panel data from N cross-sections and
T time periods can be represented as follows:

where 
Yit is the dependent variable, 
X1,it are variables that vary over both cross sec-

tion and time, 
X2,t are variables that are time specific (the X2,t

are cross-section invariant),
, and are the model parameters to be

estimated. 
The error terms uit can be broken down into

unobservable cross-section-specific (i.e., city-spe-
cific) effects and a remaining term . This is
the conventional “one-way error components
model” (see Baltagi 1995). Alternate model formu-
lations arise depending on the assumptions made
regarding the cross-sectional error term. One such
formulation is the fixed-effect model, where the
cross-sectional error term is estimated as a single

νitµ i

β2α β, 1
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constant for each city. Another is the random-
effects model, where the cross-sectional error term
is assumed to be randomly distributed with a vari-
ance of . The random-effects formulation has
several statistical and practical advantages over the
fixed-effects formulation (Maddala 1987) and
hence is more suitable for the current work. This is
the adopted error structure. 

The specification just described models each
industrial sector independently. In reality, there
could be several unobserved characteristics of the
cities that are impacting all modeled sectors of the
economy. Therefore, the error terms can be corre-
lated across equations. Estimation of the four equa-
tions separately ignores this correlation; hence, the
resulting parameter estimates would not be as effi-
cient as they could be (i.e., the standard errors of the
unbiased parameters would not be minimized). This
facet can be addressed by estimating the four regres-
sion equations as a set of “seemingly unrelated
regression” (SUR) equations (Baltagi 1995). 

In the case of SUR equations, we consider a set
of M equations:

where 
Yj is the dependent variable, 
Zj is the set of explanatory variables,

is the vector of parameters to be estimated
for equation j (of the M equations estimated
jointly). 
The error terms uj can again be broken down into
unobservable cross-section-specific (i.e., city-spe-
cific) effects and a remaining term . The error
structure, therefore takes the form

where 
IN is an identity matrix of size N, 
1T is a T*1 matrix of ones. 

Since the equations are permitted to be correlated
in their error terms, the cross-sectional error terms
are distributed with a mean of zero and a variance-
covariance matrix, , and the remainder
error terms are distributed with a mean of zero and
variance-covariance matrix, (INT is an
identity matrix of size NT). In essence, the one-way
random-effects model structure is extended to
incorporate correlations across equations. The

∑ ⊗ν INT

∑ ⊗µ IN

νjµ j

δ jσ µ
2
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TABLE 1 Sample Characteristics

Dependent variables Mean SD

Per capita sales ($ per person)
Total Retail (SIC 52 to 59) 1.226E+04 4.641E+03
Gasoline Service Stations (SIC 554) 1.113E+03 5.885E+02
Eating and Drinking Places (SIC 58) 6.469E+02 3.694E+02
Service Industries (SIC 70 to 89) 1.698E+03 1.487E+03

Independent variables specific to all cities Mean SD

State-level per capita sales ($ per person)
Total retail (SIC 52 to 59) 8.447E+03 1.202E+03
Gasoline Service Stations (SIC 554) 6.450E+02 8.894E+01
Eating and Drinking Places (SIC 58) 6.486E+02 2.317E+02
Service Industries (SIC 70 to 89) 2.695E+03 2.006E+03

ELDERLY (percent) 15.54 5.61
UNEMP RATE (percent) 5.36 2.61
INCOME PERCAP ($ per person) 8.252E+03 1.970E+03
LARGECITY POP/DIST (persons per mile) 6.743E+03 8.174E+03
TOT TRAFFIC PERCAP (AADT) 1.772 1.16

Independent variables specific to bypassed cities Mean SD

TRAFSPLIT (fraction) 0.472 0.142
DISTOLD (miles) 5.109 1.524
DISTRATIO (fraction) 0.972 0.141

Y Z u j to Mj j j j= ′ + =δ , )1 2(

u Z Z Ij j j N T= ′ + = ⊗µ µµ ν , )1 3(



variance-covariance matrix for the set of equations
takes the following form (see Baltagi 1995, p. 104):

where 
JT is a T*T matrix of ones.

Defining transformation matrices P and Q as

the covariance-matrix can be rewritten as

where

The set of regression equations can be estimated
using feasible generalized least squares (FGLS)
methods (Baltagi 1995). This requires an estimate
of the covariance matrix. A methodology to esti-
mate the variance components from the ordinary
least squares (OLS) residuals was developed by
Avery (Baltagi 1995) and can be summarized as the
following:

where 
is an NT*M matrix of distur-

bances, 
are the OLS residuals for the M

equations. 
An alternate way of estimating the model is by

using maximum likelihood estimation (MLE).
Asymptotically, MLE methods are more efficient
than FGLS methods, but they require strong error-
distribution assumptions and thus may render less
robust predictors. Furthermore, Avery’s FGLS esti-
mation is as asymptotically efficient as GLS estima-
tion (Prucha 1984). 

If correlations across equations do not actually

exist, then the independent estimation of equations

is efficient. Therefore, it is useful to test the hypoth-

esis that all the covariances are zero. This can be

accomplished by a statistical test (detailed by

Griffiths et al. 1993, p. 570). If the correlation

matrix across the set of M equations is ,

the null hypothesis that all are zero (for )

can be tested against the alternate hypothesis that at

least one is non-zero using the test statistic .

where 
uj is the vector of OLS residuals for equation j.

Under the null hypothesis, the test statistic, , is
chi-square distributed with M(M–1)/2 degrees of
freedom. The results of this hypothesis test are
described below.

RESULTS 

The estimation methods were coded in the matrix
programming language GAUSS (Aptech 1995).
Random-effects models were developed independ-
ently for per capita sales in each industrial sector,
and SUR models were developed to model the four
industrial sectors jointly. In each case, the initial
specification uses all available explanatory vari-
ables; statistically insignificant variables (t statistic
< 1.6) were removed in a stepwise manner to arrive
at the final specification. However, since the relief-
route indicator variable is of fundamental interest,
it is left in, regardless of its level of statistical
significance. 

The statistical test for the presence of correlation
in the error terms across equations was performed,
and the test statistic was estimated to be 239.4.
This is significantly greater than the critical chi-
square value; hence, the null hypothesis that all
error correlations are zero is strongly rejected. The
random-effects model was then extended to incor-
porate correlations across equations, and the sys-
tem was estimated as a set of SUR equations. The
correctness of the one-way error components struc-
ture was not tested statistically in the case of SUR.
However, the null hypothesis that the variance of
the city-specific error term is zero was rejected in
the case of random-effects models. This may be
expected to hold even for the SUR case. The SUR

λ

λσ ij
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models are presented in tables 2 through 5.
Correlations between the error terms are presented
in table 6.

The city-specific error term accounts for 40% of
the total variance in the model for per capita retail
sales. This fraction is 25% for the sales model for

gasoline service stations, 36% for sales in eating
and drinking places, and 27% for sales in service
industries. Based on the estimates of the covariance
matrix, it can be inferred that models for per capita
sales in service industries and eating and drinking
places are correlated the most in their unobserved
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TABLE 2 One-Way SUR Model for Per Capita Retail Sales

Initial specification Final specification____________________ ____________________
Coefficient t-stat Coefficient t-stat

CONSTANT 5.48E+05 8.15 5.34E+05 8.92
STATE SALES PERCAP 1.46E+00 5.18 1.52E+00 5.76
YEAR –2.85E+02 –8.05 –2.78E+02 –8.80
ELDERLY 1.58E+02 2.85 1.09E+02 2.32
UNEMP RATE 1.74E+02 2.12 1.21E+02 1.74
INCOME PERCAP 6.94E–01 5.19 6.49E–01 5.13
LARGECITY POP/DIST 1.18E–01 3.15 1.14E–01 3.26
TOT TRAFFIC PERCAP 2.77E+03 12.10 2.80E+03 12.58
RELIEF ROUTE 5.04E+03 1.85 5.35E+03 4.67
NUM YEARS 4.23E+01 0.32
NUM YEARS SQ –3.94E+00 –0.75
TRAFFIC SPLIT –1.76E+04 –6.11 –1.72E+04 –7.34
DIST OLD 2.15E+02 0.92
DIST RATIO –7.03E+02 –0.27
ACCESS CONTROL 2.55E+02 0.30

R2
adj. 0.59 0.59

3.31E+06 3.64E+06

5.58E+06 5.47E+06σ ν
2

σ µ
2

TABLE 3 One-Way SUR Model for Per Capita Sales in 
Gasoline Service Stations

Initial specification Final specification____________________ ____________________
Coefficient t-stat Coefficient t-stat

CONSTANT 4.45E+04 4.56 3.81E+04 6.05
STATE SALES PERCAP 3.04E+00 5.16 3.01E+00 7.10
YEAR –2.33E+01 –4.54 –1.99E+01 –6.04
YEAR 1982 –3.89E+02 –4.55 –3.92E+02 –4.76
ELDERLY 4.64E+00 0.55
UNEMP RATE 1.11E+01 0.76
INCOME PERCAP 2.09E–02 0.99
LARGECITY POP/DIST –1.46E–03 –0.27
TOT TRAFFIC PERCAP 2.95E+02 8.04 2.97E+02 8.72
RELIEF ROUTE –2.80E+01 –0.06 –8.83E+01 –0.46
NUM YEARS –2.18E+01 –0.92
NUM YEARS SQ 7.98E–01 0.86
TRAFFIC SPLIT –4.20E+02 –0.86 –7.57E+02 –1.91
DIST OLD 2.12E+01 0.55
DIST RATIO –1.58E+02 –0.36
ACCESS CONTROL –1.41E+02 –0.97

R2
adj. 0.30 0.31

5.31E+04 5.82E+04

1.75E+05 1.73E+05σ ν
2

σ µ
2



error terms. The models for sales in retail and eat-
ing and drinking places are almost equally corre-
lated in their unobserved error. The other
correlations are much less. 

The models developed indicate that the draw in
traffic from the old to the relief route has a signifi-

cant negative impact on the sales in the different
industrial sectors. Characteristics of the relief route
(access control, ratio of distance along the old route
to the relief route) and time trends (NUM YEARS
and NUM YEARS SQ) are not statistically signifi-
cant in most of the models.The NUM YEARS SQ
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TABLE 4 One-Way SUR Model for Per Capita Sales in 
Eating and Drinking Places

Initial specification Final specification____________________ ____________________
Coefficient t-stat Coefficient t-stat

CONSTANT 1.83E+04 2.11 1.50E+04 1.96
STATE SALES PERCAP 7.13E–01 3.30 6.97E–01 3.28
YEAR –9.55E+00 –2.12 –7.81E+00 –1.97
YEAR 1982 –1.20E+02 –3.31 –1.16E+02 –3.27
ELDERLY 4.74E+00 1.03
UNEMP RATE 7.89E+00 1.19
INCOME PERCAP 3.17E–02 2.85 2.59E–02 2.67
LARGECITY POP/DIST 1.30E–02 4.25 1.44E–02 5.38
TOT TRAFFIC PERCAP 1.69E+02 8.76 1.66E+02 8.86
RELIEF ROUTE –1.96E+02 –0.84 1.77E+02 1.79
NUM YEARS –2.41E+00 –0.20
NUM YEARS SQ –1.82E–01 –0.39
TRAFFIC SPLIT –6.40E+02 –2.56 –6.75E+02 –3.32
DIST OLD 2.83E+01 1.42
DIST RATIO 2.59E+02 1.17
ACCESS CONTROL –2.01E+01 –0.27

R2
adj. 0.58 0.59

2.04E+04 2.38E+04

4.34E+04 4.27E+04σ ν
2

σ µ
2

TABLE 5 One-Way SUR Model for Per Capita Sales in Service Industries

Initial specification Final specification____________________ ____________________
Coefficient t-stat Coefficient t-stat

CONSTANT 1.32E+05 4.71 9.36E+04 4.05
STATE SALES PERCAP 7.68E–01 9.38 6.51E–01 9.61
YEAR –6.82E+01 –4.73 –4.85E+01 –4.09
YEAR 1982 –2.12E+01 –0.16 3.18E+01 0.24
ELDERLY 2.54E+01 1.56
UNEMP RATE –3.06E+01 –1.12
INCOME PERCAP 1.56E–01 3.89 1.53E–01 4.09
LARGECITY POP/DIST 3.50E–02 3.32 3.14E–02 3.32
TOT TRAFFIC PERCAP 3.97E+02 5.66 3.97E+02 5.89
RELIEF ROUTE –1.17E+03 –1.35 6.54E+02 1.77
NUM YEARS 2.53E+01 0.57
NUM YEARS SQ –3.06E+00 –1.75 –1.52E+00 –2.96
TRAFFIC SPLIT –2.29E+03 –2.47 –1.51E+03 –1.96
DIST OLD 8.64E+01 1.18
DIST RATIO 1.63E+03 1.97
ACCESS CONTROL 1.71E+02 0.62 

R2
adj. 0.66 0.65

2.04E+05 2.29E+05

8.23E+05 6.27E+05σ ν
2

σ µ
2



variable is, however, negative and statistically signif-
icant for the service sales model. This suggests that
the longer a relief route has been in place, the lower
the per capita sales in the service industries. The
coefficient on the relief-route indicator variable,
which captures effects not picked up by other relief-
route variables, was positive and statistically signifi-
cant in all models except sales in gasoline service
stations, where it was statistically insignificant. 

Based on the coefficients estimated on the indi-
cator variable and the percentage split in traffic, it
can be inferred that the overall impact of the bypass
on each of the sectors examined is negative when
the traffic split exceeds a critical value. This critical
traffic split is 31% for retail sales, 26% for eating
and drinking places, and 43% for service indus-
tries. The impact on sales in gasoline service sta-
tions is negative irrespective of the magnitude of
split. In 1992, the average traffic split was 47%.

We also found that per capita traffic levels in the
city are major determinants of the per capita sales
levels. Many of the city demographic variables
were also estimated to be statistically significant.
The nearness to a large city seems to have a positive
impact on the sales in the different industrial sec-

tors considered, except the gasoline service stations
sector. Sales in the different industrial sectors also
seem to be positively influenced by regional trends,
as indicated by the coefficient on the state-level
sales variables.

Thus, the models developed suggest that the
marginal impact of the traffic split due to the
bypass on the per capita sales in the four industrial
sectors examined is negative. The net impact of the
relief route, however, depends on the magnitude of
all the variables considered in the model. To get a
sense of this magnitude and to compare the impacts
across the sectors, the estimated percentage differ-
ence in the per capita sales in the four industrial sec-
tors before and two years after the opening of the
relief route was calculated. 

Four hypothetical cases were considered based
on per capita traffic levels. The data for 1992 were
divided into quartiles based on per capita traffic
volumes. The mean per capita traffic volume was
determined for each quartile; these were 1.326,
1.959, 3.180, and 5.132 AADT per person. The
mean values for 1992 were used for the other
explanatory variables. The impact measures
derived are plotted as a function of per capita traf-
fic volumes (figure 1).

The impact measure derived indicates an overall
negative impact of the relief route on the per capita
sales of the four industrial sectors analyzed. The
impacts are most negative for gasoline service sta-
tions but negligible for service industries. The
graph indicate that the negative impact decreases as
the per capita traffic volumes in the city increase.
Higher traffic levels can sustain the local economy
even if a fraction of traffic is removed from the old
route. It should be noted that average values of the
explanatory variables were used to compute the
measure and hence it represents the impact on an
“average” city. For specific cases, the impact could
be more or less severe, depending on the character-
istics of the city in question. 

As discussed earlier in this work, a higher traffic
split to the bypass is estimated to have significant
negative impacts on a city’s per capita sales, after
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TABLE 6 Error Correlations Across Equations 

INITIAL SPECIFICATION
Retail Gas Eat/Drink Service

Retail 1.00 0.28 0.40 0.58
Gas 0.28 1.00 0.58 0.34
Eat/Drink 0.40 0.58 1.00 0.60
Service 0.58 0.34 0.60 1.00

Retail Gas Eat/Drink Service

Retail 1.00 0.31 0.40 0.30
Gas 0.31 1.00 0.09 0.11
Eat/Drink 0.40 0.09 1.00 0.32
Service 0.30 0.11 0.32 1.00

FINAL SPECIFICATION
Retail Gas Eat/Drink Service

Retail 1.00 0.27 0.43 0.62
Gas 0.27 1.00 0.59 0.38
Eat/Drink 0.43 0.59 1.00 0.67
Service 0.62 0.38 0.67 1.00

Retail Gas Eat/Drink Service

Retail 1.00 0.31 0.39 0.29
Gas 0.31 1.00 0.08 0.09
Eat/Drink 0.39 0.08 1.00 0.31
Service 0.29 0.09 0.31 1.00

ρν
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controlling for demographic and bypass-related
variables. Several city and bypass characteristics
were believed to influence traffic splits. Thus, an
OLS model was run using the percentage split in
traffic as the independent variable and the city and
bypass characteristics as predictors. The 87 data
points used to develop these models are those
where a bypass exists in the larger dataset. The
model results are presented in table 7. Results of
this model elucidate some second-order effects of
demographic and city variables on the economies
of bypassed cities.

The population of the city was estimated to
reduce traffic split (to the bypass). Cities that are
highly populated carry higher fractions of
approaching traffic. Larger cities were less affected
in the original models, after controlling for traffic
split, and they were also less likely to lose traffic to
the bypass. Thus, a city’s size provides a significant
buffer, both directly and indirectly. A city’s proxim-
ity to a large city, however, increases the traffic
split. Nearby, large cities provide an alternative,
and often more attractive, destination; so motorists
may rather stop there (as opposed to stopping in
the bypassed city). Therefore, proximity to a large
city offers conflicting effects: it increases sales, after

controlling for traffic split, but also increases traf-
fic split (which is estimated to reduce sales).

The longer the city has been bypassed, the
greater is the estimated traffic split. However, the
positive effect tapers off with time, as indicated by
the negative coefficient on the NUM YEARS SQ
variable. In addition, the longer the old route, the
greater the estimated traffic split. However, per-
haps to offset this, the coefficient on the distance
ratio variable was estimated to be positive (and
very statistically significant). This is not intuitive,
since one would expect many motorists to avoid
the bypass when it is longer than the old route.
However, many bypassed cities have another high-
way passing through the city, and the bypass’s loca-
tion may facilitate traffic turning onto this other
road (from the bypassed highway). The distance
ratio may indicate the presence of such situations,
and thereby be associated with a positive effect.
Finally, from the model shown in table 7, the pres-
ence of frontage roads along the bypass was also
estimated to increase the traffic split.

CONCLUSIONS

In this work, models were developed to study the
influence of relief routes on several sectors of local
economies of cities. Per capita sales in four indus-
trial sectors (retail, gasoline service stations, eating
and drinking establishments, and service indus-
tries) were considered as primary indicators of
impact. Recognizing the panel nature of the data, a
one-way random-effects error structure was cho-
sen. The models were estimated as a system of
seemingly unrelated regression equations, allowing
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TABLE 7 OLS Model for Percentage Traffic Split

Coefficient t stat

CONSTANT 1,048.192 2.709
YEAR –0.52 –2.674
POPULATION –1.93E–03 –8.481
LARGECITY POP/DIST 6.47E–04 5.023
NUM YEARS 1.677 3.509
NUM YEARS SQ –3.40E–02 –1.893
DIST OLD 1.14E+00 1.767
DIST RATIO 1.32E+01 1.782
ACCESS CONTROL 1.62E+01 7.171

R2
adj. 0.652



correlation among unobserved factors impacting
sales in the different sectors.

The models developed suggest that of the four
sectors examined, the impact of a bypass is most
negative on the per capita sales in gasoline service
stations. The impact on the per capita sales in the
other three sectors studied depended critically on
the magnitude of the traffic diverted. When about
half the approaching traffic was diverted to the
bypass, all three sectors were negatively impacted.
So, the better a relief route works from a traffic
standpoint, the greater its adverse impact on local
per capita sales. Of all the sectors studied, the serv-
ice industries were minimally impacted by the
bypass. As expected, per capita traffic volumes are
estimated to strongly influence local sales. As the
traffic levels per capita increase, the negative
impacts due to the bypass are lessened. 

The study also tried to identify the impact of city
demographics and relief-route characteristics on
the magnitude of traffic split. Larger cities lost less
traffic to the bypass. Proximity to a large city
increased the split. The magnitude of the split also
increased with time after the opening of the bypass.

Though per capita sales were chosen as key indi-
cators, random-effects models were also developed
for the number of establishments per thousand
population for each of the four industrial sectors
studied (see Srinivasan (2000) for a detailed
description of the methodology and empirical
model results). These models again suggest that
increasing traffic diversion to the new route had a
negative impact on the number of establishments in
all sectors but the gasoline service stations.
Gasoline service stations were also negatively
impacted, but this depended on the magnitude of
the traffic split.

OLS models were also developed independently
to study the impacts of the relief route on the pop-
ulation growth rates and the per capita income lev-
els in the city. Once the city was bypassed, the
population growth rate dropped 0.036% every
year after the bypass opened. The bypass was also
estimated to have a negative impact on the per
capita income levels in the city (a decrease of
approximately $50 every year after the bypass
opened).

The sectors studied in this research can be
expected to be the most vulnerable to a relief route.
Gasoline service stations and eating and drinking
places, respectively, account for only 7% and 8%
of retail sales, and retail sales represent about 50%
of the total sales (defined as the sum of retail, serv-
ice, and wholesale industries). Sales in service
industries constitute about 16% of total sales.
Therefore, any negative impacts on these industrial
sectors do not necessarily mean a significant nega-
tive impact on a bypassed city’s overall economy. 

The total traffic volumes approaching cities with
relief routes were larger than those for control
cities. This was probably an important reason for
constructing the relief routes. Reduction in traffic
volumes due to the relief route may have made the
bypassed cities more like the less trafficked control
cities. The average split in traffic to the new routes
was about 47% in 1992. If not for the relief route,
the entire traffic volume would have been carried
by the old route and the congestion levels probably
would have been high.

In light of these findings, transportation plan-
ners and cities should carefully consider proposals
for relief routes, in order to determine if a bypass is
in fact desirable and socially beneficial. Certain sec-
tors of the economy, like gasoline service stations
and eating and drinking establishments, could be
critically impacted depending on the magnitude of
traffic diverted. On the other hand, there are sev-
eral non-economic benefits that can accrue to
affected populations (e.g., safety and ease of move-
ment downtown), and these need to be given fair
weight when balancing any costs of concern. The
models developed in this research provide means
for assessing the magnitude of the impacts on cer-
tain sectors.

The current study used econometric modeling
methods to study the impact of relief routes on the
local economies at an aggregate city level. If spa-
tially disaggregate data were available, similar
methods could be extended to study the impacts
along specific corridors. It would then be possible
to examine possible relocation of businesses. A
two-way random-effects model also would be a
useful methodological extension to the current
work, recognizing systematic variation in unob-
served time-specific effects.
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In this research effort, the impacts were meas-
ured primarily by changes in per capita sales in four
different industrial sectors. Other impacts like
changes in the number of establishments, popula-
tion growth rates, and income levels were also
modeled, but these were studied independently. A
rigorous approach would be to develop a modeling
framework that recognizes the dynamic interac-
tions among the several economic indicator vari-
ables. Case studies and other investigative methods
can illuminate issues like changes to quality of life,
which are difficult to quantify and model statisti-
cally. Studies that employ a judicious mix of
methodologies can help illuminate the different
benefits and costs of bypasses. Findings from such
studies will aid the planning of future bypasses in
ways that improve service levels for through traffic
while causing minimal distress to communities
bypassed. 
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ABSTRACT

In travel surveys, most respondents apply rounding
of departure and arrival times to multiples of 5, 15,
and 30 minutes; in the annual Dutch travel survey,
about 85% to 95% of all reported times are
rounded. In this paper, we estimated rounding
models for departure and arrival times. The model
allowed us to compute the probability that a
reported arrival time m (say m = 9:15 a.m.) means
that the actual arrival time equals n (say n = 9:21
a.m.). Departure times appear to be rounded much
more frequently than arrival times. An interpreta-
tion of this result is offered by distinguishing
between scheduled and nonscheduled activities and
by addressing the role of transitory activities.

We argue that explicitly addressing rounding of
arrival and departure times will have at least three
positive effects. First, it leads to a considerably bet-
ter treatment of reported travel time variances.
Second, biases in the computation of average trans-
port times based on travel surveys can be avoided.
Third, it overcomes the problem of erratic patterns
that appear in travel survey data for the minute-by-
minute records of increases in the number of per-
sons in traffic.

INTRODUCTION

Research on travel behavior is often based on travel
times and distances reported by travelers. It is well
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known that these reported values tend to be rather
inaccurate. For distances, this is understandable,
because there are many circumstances where trav-
elers do not have instruments to measure distance.
In the case of travel time, one might expect a more
accurate measurement since most travelers wear
watches, and, in particular, must pay attention to
time in order to arrive at scheduled activities.
Nevertheless, it is clear that inaccuracies occur (see,
e.g., Rietveld et al. 1999). Some people take clock
time more seriously than others, and there are also
notable differences between cultures in the preci-
sion of timing activities (Levine 1997). In the pres-
ent paper, we address the issue of rounding travel
times—in particular, the rounding of arrival and
departure times.

Consider the example of reported departure
times of trips in the annual national transport sur-
vey in the Netherlands (CBS 1998). This survey is
based on the travel diaries of about 144,000 ran-
domly drawn Dutch citizens who reported their
travel activities during one day in 1997.
Respondents were requested to report the arrival
and departure times of all trips on a certain day.
Suppose a respondent j indicates that a trip started
at departure time [hj:mj], where hj indicates the
hour (hj = 0,1,...,23) and mj indicates the minute
(mj = 0,1,...,59). Let q(m) denote the total number

of respondents who reported their departure at
minute m. Then figure 1 contains the observed dis-
tribution of the minute of departure m of all
respondents (m = 0,1,...,59), where the hour h of
departure has been deleted. The total number of
reported departure times is 550,000 based on ques-
tionnaires filled out by 144,000 respondents. The
figure shows extreme peaks in the distribution of
reported departure times. It appears that about
22% of all travelers reported that they left at h
o’clock sharp, (h = 0,1,...,23), whereas this figure is
only 0.14% for travelers reporting that they left at
1 minute past h o’clock. Multiples of 5 and 15 min-
utes also get very high shares. The share of reported
departure times of nonmultiples of 5 minutes is
only 5%, whereas their share in multiples is about
80% (48/60). A similar pattern of reported depar-
ture times is observed in the U.S. Nationwide
Personal Transportation Survey (see, e.g., Battelle
1997).

When analyzing travel statistics, it is important
to be aware of rounding because unreliable data on
travel times can result. For example, if departure
and arrival times are normally rounded to multi-
ples of 15 minutes, travel time will thus be rounded
to multiples of 15, implying inaccurately reported
travel time. Analysis of travel behavior will then be
based on inaccurate travel time data. A similar con-
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clusion holds for the analysis of travel time budgets
(see, e.g., Zahavi 1977) and travel speeds. The
rounding problem adds another error to the usual
errors in statistical analysis (incomplete data, spec-
ification error, fundamental unpredictability of
human behavior) and thus leads to larger variances
of estimated coefficients. 

Rounding does not only affect variances, it may
even lead to a systematic bias for averages. As we
will demonstrate later in this paper, there is no
guarantee that in the case of travel times the prob-
abilities of rounding upward and rounding down-
ward are equal. Thus, rounding not only affects the
reliability of individual observations, but it may
also have an adverse effect on the reliability of
national averages. We will demonstrate that round-
ing practices provide an explanation of the result
reported by Battelle (1997) that the average of
reported travel times is higher than the average of
actual travel times.

Another example of the problem with rounding
is found when departure and arrival time data are
used to describe the development of traffic volumes
during peak periods. Travel survey data of the type
discussed here can be used to find out how many
cars are on the Dutch roads from minute to minute
(see, e.g., CBS 1996), but rounding can lead to
erratic patterns.1 The simplest way to overcome
this would be to present data for time periods of 30
or 60 minutes, but this would imply that informa-
tion is lost on how traffic volumes build up during
the shoulders of the peak. This information is
important for public and private decisionmakers
who address congestion problems.

The above examples demonstrate how rounding
departure and arrival times can affect data quality
that influences transport analysis and policymak-
ing. However, the relevance of the topic of round-
ing of departure and arrival times goes beyond data
reliability. We will demonstrate that the rounding
phenomenon sheds light on the nature of schedul-
ing of transport-inducing activities. We develop a
simple statistical model to analyze the propensity to

round departure and arrival times and estimate it in
the next section. An interpretation of differences
between rounding in departure and arrival times is
given in the discussion section in the context of
scheduled activities.

FORMULATION AND ESTIMATION OF 
THE STATISTICAL MODEL

Formulation of the Statistical Model

As figure 1 shows, rounding departure times seems
to take place toward certain anchor points such as:

� multiples of 5 minutes: 0, 5, 10, 15, 20,...,55

� multiples of 15 minutes: 0, 15, 30, 45

� multiples of 30 minutes: 0, 30

� multiples of 60 minutes: 0

Note that according to this approach the high out-
come for the [h:00] o’clock departure time in figure
1 is the joint result of rounding to all multiples of 5,
15, 30, and 60 minutes. Another possibility is that
people do not apply rounding but report the exact
minute of departure.

Consider in more detail the possibility of round-
ing to the nearest multiple of 5. Let m be the actual
minute of departure, and let dm5 be the absolute
time distance to the nearest multiple of 5 (dm5
= 1,2). For example, when m = 23, the nearest mul-
tiple of 5 is 25 so that dm5 = 2. Note also that d59,5
= 1, since [(h + 1):00] is the nearest multiple of 5 for
[h:59]. The probability pm5 that the actual depar-
ture time m will be rounded to the nearest multiple
of 5 is assumed to be:2

pm5 = a5 + b5 · dm5 dm5 = 1,2

The coefficient a5 is interpreted as a base value
for rounding to a multiple of 5 minutes, whereas b5
indicates the decrease of the probability of round-
ing as one moves away from a multiple of 5 min-
utes. We expect a5 to be positive and b5 to be
negative; there is a tendency to round to the near-
est multiple of 5 minutes, but this tendency
decreases as one moves away from the nearest mul-
tiple of 5. For example, the probability of rounding
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1 Note that if the same level of rounding is used for both
departure and arrival times, traffic volumes would be rel-
atively stable from minute to minute. However, when
rounding is greater in one of the two processes, irregular
patterns will be found in the minute-to-minute records of
traffic volume.

2 Thus pm5 can be interpreted as the conditional proba-
bility that given the actual departure time m, the reported
departure time is a multiple of 5 nearest to m.



11 to 10 is larger than the probability of rounding
12 to 10. Note also that as pm5 has to be positive,
one must ensure that a5 + 2 · b5 is positive.

In a similar way we formulate the rounding
mechanisms for the other multiples of minutes:

pm,15 = a15 + b15 · dm,15 dm,15 = 1,2,..,7
pm,30 = a30 + b30 · dm,30 dm,30 = 1,2,..,15
pm,60 = a60 + b60 · dm,60 dm,60 = 1,2,..,30

In the case of rounding to a multiple of 30 min-
utes, there are two nearest multiples when m = 15. In
this case, the probabilities of rounding to [h:00] and
[h:30] are assumed to be equal, so that the resulting
probabilities of rounding are (a30 + 15 · b30)/2. A
similar case holds for the rounding to a multiple of
60 minutes.

After having defined these rounding probabili-
ties, the probability that rounding of departure
time m does not take place (pm,0) equals:

pm,0 = 1–pm,5–pm,15–pm,30–pm,60 for all m, not being
multiples of 5

pm,0 = 1–pm,15–pm,30–pm,60 m = 5, 10, 20, 25, 35, 
40, 50, 55

pm,0 = 1–pm,30–pm,60 m = 15, 45

pm,0 = 1–pm,60 m = 30

pm,0 = 1 m = 0

Thus, there is only one case where we assume that
rounding does not take place, that is, when 
m = 0. The resulting structure of transition proba-
bilities can be found in table 1.

Example: when the actual time of departure m is
8:16, rounding can take place to 8:15 (via p16,5;
nearest multiple of 5), another time to 8:15 (via
p16,15; nearest multiple of 15), to 8:30 (via p16,30;
nearest multiple of 30), and to 8:00 (via p16,60;
nearest multiple of 60). The other possibility is that
the actual and reported time of departure coincide
(last column of table). 

Consider now the distribution of actual depar-
ture times. Let gm denote the probability that a trip
made by the respondent actually starts at minute m.
Then, given the conditional probabilities of round-
ing formulated in table 1, the joint probability of an
actual departure time m and the reported value
being its closest multiple of 5 is gm · pm,5. Thus, we

can derive the resulting probability that departures
are reported to take place at time m. For example,
the table demonstrates that the probability of a
reported time of departure of [h:45], denoted as
q45, is the sum of probabilities of actual departures
ranging from 38 to 52 minutes past h, each multi-
plied with its probability of rounding to 45
minutes:

q45 = [g38 · p38,15 + ... + g52 · p52,15] 
+ [g43 · p43,5 + ... + g47 · p47,5]. 

For the other departure times, similar formulations
can be derived. Note that for departure times m
that are not equal to multiples of 5 we have simply:

qm = gm · [1–pm,5–pm,15–pm,30–pm,60].

We still have to formulate the distribution of actual
departure times gm. We will assume that all depar-
ture times within an hour are equally probable: 

gm = 1/60.

This assumption has to be made since we have no
prior knowledge about the distribution of the exact
minute in the hour during which departures take
place.3 Another assumption we make is that round-
ing is the only source of error. Thus, we will not
consider other sources of error, such as mistakes
made when filling out the survey questionnaire,
inaccurate watches, etc. The possible implications
of these assumptions are discussed at the end of the
next section. These assumptions suffice for a speci-
fication of the likelihood qm for all reported depar-
ture times m. Let Nm denote the actual number of
times that departure minute m is reported by
respondents. Then the resulting log-likelihood of
the reported departure time m is:

lnL = N0 ln q0 + N1 ln q1 + ... + N59 ln q59
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3 Of course we have fairly accurate information about the
distribution of departure times during the 24 hours of the
day: during the night, the number of departures is much
smaller than during the day. However, very little is known
about the distribution between the minutes within the hour.
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Under the null hypothesis that reported departure
times are equal to the actual departure times, all
probabilities in table 1 are equal to zero, except the
ones in the last column. This implies that

ln L0 = N0 ln(1/60) + N1 ln(1/60) + ... + 
N59 ln(1/60) = N ln(1/60)

where N equals the total number of observations.

Estimation of the Model: Departure Times

The results of the maximum likelihood estimation
for the departure minutes are reported in table 2.
The likelihood values indicate strong support for
rejection of the null hypothesis. The test statistic 

is an asymptotically distrib-
uted chi-square with degrees of freedom equal to
the number of restrictions on the parameters (8).
The value of the test statistic corresponding to a
99% probability of rejection of the null hypothesis

is 20.1 in this case. We found overwhelming evi-
dence of the importance of rounding to multiples of
5, 15, and 30 minutes: their base values a5, a15, and
a30 are clearly significant. Only rounding to the
whole hour assumes a small value (a60 is less than
1%). The b values were very small, with the excep-
tion of b5, indicating that the probability of round-
ing 4 to 5 equals 46.4%, whereas rounding 3 to 5
equals 42.8%. For rounding to multiples of 15, 30,
and 60, the b values were positive, which was unex-
pected. Their levels were very small, however. The
reason that some of them are significant is that the
number of observations is large. Considering the
magnitudes they assume, they can be ignored.
Thus, we conclude that, with the exception of
rounding to multiples of 5 minutes the rounding
probabilities hardly depend on the distance to the
reference value.

To illustrate the meaning of the estimates, we
computed the implications for the rounding proba-

χ 2
02= −ln lnL L( )

TABLE 1 Probability of Rounding the Actual Time of Departure m by a Respondent to the 
Nearest Multiple of 5, 15, 30, or 60 Minutes (below or above m), or to m Itself

Time of departure in minutes reported by a respondent given his actual departure time m
Actual 
time of
departure: 5— 5— 15— 15— 30— 30— 60— 60— m—
m below m above m below m above m below m above m below m above m no rounding

0 0 0 0 0 0 0 0 0 1
1 p1,5 0 p1,15 0 p1,30 0 p1,60 0 1–p1,5–p1,15–p1,30–p1,60
2 p2,5 0 p2,15 0 p2,30 0 p2,60 0 1–p2,5–p2,15–p2,30–p2,60
3 0 p3,5 p3,15 0 p3,30 0 p3,60 0 1–p3,5–p3,15–p3,30–p3,60
4 0 p4,5 p4,15 0 p4,30 0 p4,60 0 1–p4,5–p4,15–p4,30–p4,60
5 0 0 p5,15 0 p5,30 0 p5,60 0 1–p5,15–p5,30–p5,60
6 p6,5 0 p6,15 0 p6,30 0 p6,60 0 1–p6,5–p6,15–p6,30–p6,60
7 p7,5 0 p7,15 0 p7,30 0 p7,60 0 1–p7,5–p7,15–p7,30–p7,60
8 0 p8,5 0 p8,15 p8,30 0 p8,60 0 1–p8,5–p8,15–p8,30–p8,60
9 0 p9,5 0 p9,15 p9,30 0 p9,60 0 1–p9,5–p9,15–p9,30–p9,60

10 0 0 0 p10,15 p10,30 0 p10,60 0 1–p10,15–p10,30–p10,60
11 p11,5 0 0 p11,15 p11,30 0 p11,60 0 1–p11,5–p11,15–p11,30–p11,60
12 p12,5 0 0 p12,15 p12,30 0 p12,60 0 1–p12,5–p12,15–p12,30–p12,60
13 0 p13,5 0 p13,15 p13,30 0 p13,60 0 1–p13,5–p13,15–p13,30–p13,60
14 0 p14,5 0 p14,15 p14,30 0 p14,60 0 1–p14,5–p14,15–p14,30–p14,60
15 0 0 0 0 ½p15,30 ½p15,30 p15,60 0 1–p15,30–p15,60
16 p16,5 0 p16,15 0 0 p16,30 p16,60 0 1–p16,5–p16,15–p16,30–p16,60

· · · · · · · · · ·
29 0 p29,5 0 p29,15 0 p29,30 p29,60 0 1–p29,5–p29,15–p29,30–p29,60
30 0 0 0 0 0 0 ½p30,60 ½p30,60 1–p30,60
31 p31,5 0 p31,15 0 p31,30 0 0 p31,60 1–p31,5–p31,15–p31,30–p31,60

· · · · · · · · · ·
59 0 p59,5 0 p59,15 0 p59,30 0 p59,60 1–p59,5–p59,15–p59,30–p59,60
60 0 0 0 0 0 0 0 0 1



bilities when the actual observation is 19 minutes
after the hour. The following rounding possibilities
and the corresponding probabilities are: 

to 0 minutes after the hour (the nearest 
multiple of 60): 2.1%
to 15 minutes after the hour (the nearest 
multiple of 15): 29.0%
to 19 minutes after the hour 
(no rounding): 4.6%
to 20 minutes after the hour (the nearest 
multiple of 5): 46.4%

to 30 minutes after the hour (the nearest 
multiple of 30): 17.9%.

The estimation result in table 2 indicates that
rounding to multiples of 5 minutes dominates
when we consider an individual observation. Note,
however, that rounding to a certain multiple of 5
(say n) only takes place for the 4 nearest neighbors
(n–2, n–1, n + 1, n + 2). With the multiples of 15,
30, and 60, the numbers of these neighbors are 14,
29, and 59, respectively. Thus, the base values for
a5 to a60 must be multiplied by factors 4 through 59
to calculate the total number of reported departure
times. In that case, the 30-minute multiple is used
most frequently, and this is confirmed by the origi-
nal data in table 1.

Estimation of Model: Arrival Times

A similar approach was applied to arrival time
data. The raw data are presented in figure 2. It
shows a pattern similar to the departure time fig-
ures, although the scores are less peaked in multi-
ples of 5. The share of unrounded departure times
is clearly higher (about 15% are rounded to a value

like 1, 2, 3, 4, 6, 7, etc., as opposed to about 5%
for arrival times). 

Estimation results are shown in table 3. The
results of the arrival time estimates are to some
extent similar to the departure time roundings: the
60-minute rounding was the least important, and
the b values were negligible, except b5. A striking
difference between departure and arrival times is
that rounding to a multiple of 5 was much more
dominant for arrival times. To illustrate, we again
computed the rounding probabilities when the
actual time of arrival was 19 minutes after the
hour:

to 0 minutes after the hour (the nearest 
multiple of 60): 0.0%
to 15 minutes after the hour (the nearest 
multiple of 15): 9.3%
to 19 minutes after the hour 
(no rounding): 10.4%
to 20 minutes after the hour (the nearest 
multiple of 5): 76.0%
to 30 minutes after the hour (the nearest 
multiple of 30): 4.3%.

Thus, rounding to multiples of 5 minutes was dom-
inant. Absence of rounding had the next highest
shares and rounding to the nearest multiple of 15
was fairly unimportant. Rounding probabilities to
multiples of 30 and 60 minutes were small.

Distribution of Actual Departure Times
Conditional on Reported Departure Times

We conclude this discussion by noting that we have
now derived the distribution of reported departure
time, conditional on the actual departure time. It
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TABLE 2 Estimation of Rounding Model for Departure Times

Coefficient Maximum likelihood estimate Standard error

a5 0.500 0.00142
b5 –0.0360 0.00075

a15 0.284 0.00142
b15 0.0016 0.00017

a30 0.177 0.00149
b30 0.00015 0.00008

a60 0.0093 0.00108
b60 0.00055 0.00004

log-likelihood –1.376.106

log-likelihood (L0) –2.252.106



may also be interesting to derive the reverse: the
distribution of the actual departure time, condi-
tional on the reported departure time. For example,
when the reported time of departure m equals 15
minutes, what is the probability that the actual time
n equals 8, 9, 10, and so forth? This can be
achieved by using Bayes’ formula (Hogg and Craig
1970). Let pm,n be the probability of the reported
time m given the actual departure time n (estimated
above), and let gn be the distribution of actual
departure times. Then the joint density f(m,n) of m
and n equals 

f(m,n) = pm,n · gn

Since we want to determine k(n|m), the distribution
of the probability of an actual arrival at n given a
reported value m, we make use of the Bayes’
formula

k(n|m) = [pm,n · gn]/[pm,0 · g0 + pm,1 · g1 +
... + pm,59 · g59].

Since we assume that the density of the actual
departure time g(n) is given as

gn = 1/60 for n = 0,...,59,

the Bayes’ formula can be simplified as

k(n|m) = pm,n / [pm,0 + pm,1 + ... + pm,59].

Application of this formula to, for example,
k(4,4) implies that k(4,4) = 1: when the reported
time of departure equals 4, one can be sure that the
actual departure time equals 4. On the other hand,
we find the following probabilities (table 4) for the
actual values underlying the reported observation
m = 15.  The table shows that a reported departure
time of m = 15 means the probability that the
actual departure time is indeed 15 is only 12.5%.
The higher probabilities for the actual departure
time are found in the range between 13 and 17 min-
utes, but the share for the remaining departure
times is still substantial (43%).

Information of this type can be used in further
statistical analyses of travel behavior data to give an
adequate representation of errors in variables (see
e.g., Johnston 1984). An important implication of
our approach is that rounded observations of travel
times have a much larger variance than unrounded
ones. For example, in our approach, the reported
duration of a trip of 32 minutes has a much smaller
variance than a trip with a reported duration of 30
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minutes.4 Such differences in variance are not well
captured in standard econometric methods.

DISCUSSION

One may wonder why the rounding rules applied
to arrival times are more accurate than those for
departure times (rounding to multiples of 15 and

30 minutes take place much less frequently).
Various explanations exist. 

The structure of the questionnaire. The question
on the times of departure and arrival are posed in
an identical way: “At what time did you depart/
arrive? .... hour .... min.” Note that these questions
invite respondents to give an exact specification of
the departure/arrival time. We conclude that the
difference in the rounding practice for arrivals and
departures cannot be explained by the way the
questions are phrased. 

Another point is that most respondents will fill
out the questionnaire at the end of the day. Many
of them will have forgotten their exact minute of
departure and arrival for trips made 3 to 15 hours
earlier. This explains the practice of rounding, but
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TABLE 3 Estimation of Rounding Model for Arrival Times

Coefficient Maximum likelihood estimate Standard error

a5 0.900 0.00201
b5 –0.1400 0.00127

a15 0.065 0.00165
b15 0.0071 0.00028

a30 0.014 0.00146
b30 0.0026 0.00014

a60 –0.00005 0.00014
b60 0.00006 0.00002

log-likelihood –1.615.106

log-likelihood L0 –2.252.106

TABLE 4 Probability (%) of Actual Departure Time (n = 8,…,22) 
Given a Reported Departure Time of m = 15

Probability of actual departure time given
Actual departure time n reported value of departure time m = 15

8 4.3
9 4.3

10 4.3
11 4.3
12 4.3
13 10.8
14 11.4
15 12.5
16 11.4
17 10.8
18 4.3
19 4.3
20 4.3
21 4.3
22 4.3

4 For example, in the most extreme case, a 2-minute trip
with a departure at 8:14 and arrival at 8:16 may be
reported as a 30-minute trip after rounding. The same
holds true for a 58-minute trip that started at 8:16 and
ended at 9:14. This illustrates the large range on which a
trip with a reported duration of 30 minutes may be based.
On the other hand, a trip starting at a reported time of
8:16 and ending at 8:48 will just have lasted 32 minutes
according to our model, implying a 0 variance (remember
that apart from rounding, all other data errors are
ignored in our analysis).



it does not explain why it occurs more often with
departures than with arrivals.

Structure of public transport timetables. A bias
of public transport timetables toward multiples of
30 minutes as frequently used departure times
might influence the reported departure times.5 Such
a timetabling practice, however, does not exist in
The Netherlands. Note also that departure times
reported here relate to the whole chain, so that the
departure time would not indicate the time of
departure of the train, but the time the respondent
leaves to make a trip. A final observation is that in
developed countries the only collective transport
mode that does not use timetables at the one-
minute level of precision is aviation (it uses multi-
ples of 5).

As opposed to public transport time tables, most
nontransport activities have a scheduled start at
multiples of 15, 30, or 60 minutes: examples are
hours at school, meetings, appointments, work,
church services, sport events, cinema performances,
etc. In some cases, both the start and end times are
exactly specified, but often the beginning is more
rigid and explicit than the end. This may create the
perception that an important share of activities start
at multiples of 15, 30, or 60 minutes and that a
smaller share end at multiples of 15, 30, or 60 min-
utes. Consequently, the expectation is that the con-
centration of reported times at multiples of 15, 30,
and 60 minutes is larger for arrivals than for depar-
tures. However, the data reveal that the opposite
takes place. On the other hand, there are many
activities that are not scheduled. For example, the
arrival at home after an activity is usually not fol-
lowed by an activity scheduled at an exact point in
time. Thus, the share of scheduled activities in
activity patterns must not be exaggerated.

Another point is that the start/end of an activity
does not necessarily coincide with the arrival/
departure of a trip. In many cases, there are transi-
tory activities (e.g., relax, wait, talk to other partic-
ipants, deposit one’s coat at the cloak room, report
at the entrance, find one’s way to the exact place of
the activity, wait for the elevator). The Dutch travel
survey (like many other travel surveys) does not

specify these transitory activities, so it is left to the
respondent whether he considers them as part of
the trip or of the activity carried out. Consider the
case of a student whose lecture is scheduled to end
at 12:45 sharp; in reality it ends at 12:47, the stu-
dent talks to his classmates until 12:49, and he then
leaves the university building at 12:53 to walk to
his car, which he starts to drive at 12:56. Then he
may answer the question  “at what time did you
leave” by filling out any of the above-mentioned
times, plus rounded times such as 12:45, 12:50,
12:55, and 13:00 o’clock. A similar story, of
course, holds true for transitory activities before a
scheduled activity. 

The question remains—why are people more
inclined to round with departure times than with
arrival times. Probably, the most important answer
is that scheduled activities force people to plan their
trips in advance, which provides them with anchor
points for their memory afterward. At the end of
the day, they will still remember whether they
arrived long before the scheduled time, or whether
they were late. Since, as mentioned above, schedul-
ing takes place more often in terms of the start of
an activity rather than the end, people will have
more precise memories about the time of arrival
and they will therefore also have a tendency to
apply rounding less frequently than with depar-
tures. This sheds some light on the literature of
scheduling. As put forward, for example, by Small
(1982; 1992) and Wilson (1989), travelers face the
challenge of arriving on time to scheduled activities
(e.g., the start of work or the start of a business
meeting). Given a high penalty for arriving late,
travelers tend to take into account transport sys-
tems that are unreliable (congestion caused by non-
recurrent events, delays or missed connections in
public transport) and thus plan their trip in such a
way that delays can be accommodated. This means
that we may expect travelers to arrive early in cases
of scheduled activities with penalties and uncer-
tainty in travel times. Because of the penalty for a
late arrival, the traveler will have a keen eye on
whether he really arrived early or late. When he
arrives early, the traveler will have an additional
type of transitory activity—waiting time, which is a
cushion to avoid being late. 
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5 Public transport maintains a 5% share of the total num-
ber of trips in the Netherlands. Its share in the total num-
ber of kilometers traveled is about 13%.



Thus, we arrive at several differences between
the start and the end of an activity. First, the start is
more often fixed in time than the end is. Second,
the element of transport system uncertainty is pres-
ent for the person who needs to meet requirements
of being on time; it does not play a role at the end
of the meeting. Third, the penalty for arriving late
may be perceived to be larger than the penalty of
leaving early.6 These three differences imply that on
average travelers will be much more concerned
about the starting time of activities than the time
they end. 

We finish this section with a discussion of the
possible implications of two assumptions on which
the above estimations are based: uniform distribu-
tion of actual departure times during an hour and
absence of measurement errors. The assumption
that departure and arrival minutes are distributed
uniformly was made since we have no prior knowl-
edge about the distribution of the exact minute in
the hour during which departures take place. One
might argue that since scheduled activities usually
end at 0, 15, 30, or 45 minutes after the hour, there
will be a tendency that the density of actual depar-
ture times is higher at those times. This would offer
an alternative interpretation for the empirical
results. With the given data, this alternative inter-
pretation cannot be falsified. However, it may be
argued that it is not a very plausible explanation for
several reasons. 

First of all, we can make use of other data
sources that include both actual and reported
departure times. From a survey done in the United
States (Battelle 1997) among car drivers in
Lexington, it appears that the distribution of actual
departure times is very close to uniform. The sec-
ond reason is that transport statistics show that a
considerable portion of human activities are not
strictly scheduled: in the Netherlands more than
half of all movement relates to activities such as
shopping, recreation, and social visits (CBS 1998).

Therefore, an outcome of 95% of actual departures
taking place at round minutes (i.e., at multiples of
5) would be implausible. Another reason is that this
explanation ignores the importance demonstrated
above of transitory activities taking place between
the end of an activity and the start of a trip.
Another argument concerns trips where scheduled
public transport services are used. The departure
times at bus stops and railway stations tend to be
distributed uniformly during the hour, so that one
would expect a uniform distribution of departure
times as described in the earlier section on formu-
lation and estimation of the statistical model.7

Also, the discussion above of the difference
between the distribution of departure and arrival
times strongly supports the view that the peaks in
the distribution of reported times are due to round-
ing and not to peaks in actual times. We noted that
if an activity is scheduled, the certainty about its
starting time is usually higher than about its end
time. Therefore, if the distribution of reported
departure and arrival times were dictated by the
actual start of these activities, one would expect
larger peaks in the distribution of arrival times
compared with departure times. In reality, however,
the opposite is true.8

We conclude that with the given data we cannot
test whether the distribution of actual departure
minutes is uniform. It is highly implausible, how-
ever, that a non-uniform distribution is the sole rea-
son for the peaks in the reported departure times.
One cannot exclude, however, the possibility that
there is a tendency for more people to arrive and
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6 We do not go into details about chaining activities with
fixed start and end times. Travelers who are able to leave
a sufficient amount of time between the end of one activ-
ity and the start of a second activity may then have spare
time for an additional type of transitory activity. When
the time is not sufficient, the traveler reveals which of the
two activities will have the higher penalty (leaving early
versus arriving late).

7 What really matters is not the official departure time of
the public transport services, but the departure time of the
traveler from his origin, thus taking into account the access
time to the public transport node. Thus, even if there is a
tendency for public transport timetables to be biased
toward departure times of the services in multiples of 5
minutes, the variance in the access times would make this
invisible when departure times of travelers are considered.
8 Another possibility with arrival times is that the distri-
bution of actual times has high probabilities at times just
before round minutes because most people try to arrive
on time. However, inspection of the reported arrival times
does not reveal such a tendency. For example, the data in
figure 2 even demonstrate a slight tendency in the oppo-
site direction: the share of respondents reporting they
arrived between 1 and 15 minutes after the hour is some-
what larger than the share reporting they arrived between
45 and 59 minutes before the hour (26% versus 22%).



depart at round minutes rather than at other min-
utes. If this were true, it would imply that we have
overestimated the rounding tendency. Given the
above arguments, the possibility of overestimation
is probably small.

The second assumption in the Formulation and
Estimation section that may need some discussion
concerns the premise that rounding is the only
source of error when reporting departure and
arrival times. In the statistical analysis, we ruled out
the possibility that people report wrong departure
times because of mistakes, inaccurate watches, or
bad memory. Of course such errors will take place
frequently in travel surveys and they will in part
express themselves in rounding. For example, if a
respondent does not remember the exact times at
the end of the day, he may use proxies. In cases
where these mechanisms do not express themselves
via rounding, they contribute to the variance of
error in observed data, but there is no reason to
expect that they will lead to systematic distortions
in the analysis of rounding.9

CONCLUDING REMARKS

Our analysis of departure and arrival times indi-
cates that rounding is a rule, rather than an excep-
tion. About 5% to 15% of all reported times
assume values that are not multiples of 5, whereas
these are 80% of the possible clock times. In the
case of scheduled activities, the reported times are
probably more precise because scheduling implies
the use of anchor points in the timeframe. With
fixed schedules, there may be a high penalty for
being late so that travelers will be more likely to
remember the exact timing of trips. Since scheduling
of start times takes place more often than for end
times, it is plausible that reported times of arrival
are more accurate than reported times of departure.

In the research on travel behavior, data on travel
times usually play an important role. These travel
times follow as the result of subtracting reported
times of arrival and departure. Given the large
rounding errors observed here, it is clear that errors

in reported travel times (and related variables such
as travel speeds) will be large. This “error in data”
phenomenon will obviously hamper the analysis of
data on individual travel behavior. In the present
paper, we developed a method, based on a Bayesian
approach to derive the probability that a reported
arrival time m means that the actual arrival time
equals n. This method can be used in “errors in
variable methods” to give an adequate representa-
tion of the measurement error. We demonstrated
that the variance of rounded travel times is much
larger than that of unrounded times. This approach
must be considered superior to the usual approach
where all measurement error is supposed to be rep-
resented by a common variance. 

Rounding has a larger impact than just affecting
the variance of travel times, however. Given the
large scale at which rounding takes place, it may
also affect averages computed on the basis of
national surveys when probabilities of rounding
upward and downward do not cancel. Consider,
for example, the distribution of reported trip dura-
tion in the Netherlands. This distribution is
skewed: the most frequently reported trip duration
(mode) is 10 minutes, the median value is 15 min-
utes, and the mean value is about 20 minutes.
Therefore, the number of trips with an actual dura-
tion of between 15 and 30 minutes will be consid-
erably larger than the number of trips with a
duration between 30 and 45 minutes. As a result,
the probability of rounding upward is considerably
higher than the probability of rounding down-
ward.10 The conclusion is that in this case round-
ing of arrival and departure times leads to
overestimates of average travel times.11

Finally, ignoring the rounding problem could
lead to erratic patterns when the travel survey data
are used to give a minute-by-minute record of the
number of travelers in the transport system.
Consider, for example, the 24-hour average num-
ber of people in transport in each minute for our
sample of 550,000 respondents. The departure and

RIETVELD 81

9 Note also that without additional data, adding an error
term with mean zero and variance to the model,
such that the reported departure time is equal to the actu-
al departure time plus , will not yield meaningful esti-
mates of .σ

εm

σ2εm

10 This implies that the figures of 20 and 15 minutes men-
tioned in the text for mean and median are biased. The
effect on the mean is probably larger than on the median.
11 In the Battelle study (1997), a comparison of reported
and actual travel times indeed revealed that reported trav-
el times based on recall generally overstate travel time. A
similar conclusion was drawn about travel distances.



arrival data indicate that during the first minute of
the hour 120,000 persons enter the transport sys-
tem, whereas only 55,000 persons leave. This
would imply a sudden net increase of 65,000 per-
sons during 1 minute, which is much higher than
the small net decreases during subsequent minutes
of about 1,500 persons per minute. This obviously
hinders a proper assessment of the development of
the number of persons in traffic in the course of
time. By using the Bayesian approach presented
earlier, this problem can be overcome.

In our discussion of rounding, we touched on
the importance of transitory activities in scheduled
activity patterns. These transitory activities are
often ignored in the analysis of travel behavior. A
main reason for these transitory activities is that
they emerge in a response to reduce the penalty of
arriving late at a scheduled activity. They also
result from infrequent public transport services.
Transitory activities are important to reduce bottle-
necks in internal and external transport systems.
An example of an internal transport system is ele-
vator capacity, which usually will not allow every-
body to arrive just in time or leave immediately
after a big event. Similarly, parking facilities do not
function well under these circumstances. An exam-
ple of external transport systems concerns the
capacity to absorb visitors for large-scale events in
stadiums, exhibition centers, etc. Transitory activi-
ties do not only keep bottleneck problems manage-
able, they may also have value per se for the
travelers. They deserve more attention in transport
behavior than they usually get. To properly analyze
their presence and size, detailed questionnaires are
needed.

A final point of attention is the possibility of
linking reported time data to archived global posi-
tional data. The combination of geographic infor-
mation systems and global positioning systems
offers great potential for improving the quality of
data on travel time and distance in passenger sur-
veys. This holds true not only for automobile trips,
but these systems may also provide useful data on
other kinds of trips (Quiraga and Bullock 1998;
Uchida et al. 2001). 
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