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Letter to the Editor

I want to challenge the conventional wisdom concerning the post-WWII
decline in urban transit ridership. It has long been held that the fall in
transit ridership from 1946 forward could be explained by residential sub-
urbanization, increased automobile commutation, low gasoline prices, as
well as the decline of the central business district, among other factors.
Suppose, however, that if account were taken of school bus “commuta-
tion,” the decline turned out to be significantly less than reported.

Consider the case of Boston. There was a school car network operating 
all across the city up to the late 1940s. These school cars would pick up
students headed to the seven central high schools from neighborhoods all
over the city, using routes developed for that purpose. My memory of how
we Latin School boys fought our way into the overcrowded cars is still
quite vivid. 

This special streetcar network operated by the Boston Elevated Railway
was gradually replaced by school buses operated by the School Committee.
I suspect that in Boston and elsewhere this change figures in the decline of
public transit ridership.

Just as much to the point, by how much would U.S. urban transit ridership
numbers increase if school bus ridership were added into the equation?

In any case, would a transit ridership statistical time series for Boston show
such a steep postwar decline if it were adjusted for the changing character
of the school-boy and school-girl commute?

CHARLES J. STOKES

Charles Anderson Dana Professor of Economics, Emeritus, 

University of Bridgeport,

quondam Senior Fellow, The Brookings Institution, and 

Director of Case Studies in Transportation 



ABSTRACT

This study investigates the relationship between
speed-limit increases and increases in the number of
fatal crashes on U.S. rural and urban interstates.
Past studies use expected historical trends to sup-
port claims that “speed kills.” Using structural
modeling, we assess the change in the average of
the time series after a known change in speed limit
occurs. The analysis is carried out separately for
urban and rural interstates for each state. The
results cast doubt on the blanket claim that higher
speed limits and higher fatalities are directly related.
After the initial speed-limit increases in 1987, the
number of fatal accidents on rural interstates
increased in some states but not in all. The 1995
round of speed-limit increases generally showed
smaller increases in fatalities on rural interstates
and slight to no increase on urban interstates. The
approach also allows identification of seasonal
effects that vary across the states.

INTRODUCTION

The relationship between the speed limit and the
number of traffic-related fatalities is a subject of
great interest to insurance companies, to the gov-
ernment at all levels, and to the general public.
Historically, the government has taken an active
role in the determination of speed limits, starting
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with the establishment of the National Maximum
Speed Limit (NMSL) by Congress in January of
1974. Prior to this legislation’s setting the maxi-
mum speed limit at 55 miles per hour (mph), many
states posted limits as high as 70 to 75 mph. In
April of 1987, Congress passed legislation allowing
states to increase speed limits to 65 mph on quali-
fying sections of interstate highways in rural areas
with populations of less than 50,000. Within a few
months, 38 states raised the speed limits on appro-
priate roads. More recently, the National Highway
System (NHS) Designation Act of 1995 was signed
into law on November 28, 1995. This act ended the
federal government’s involvement in the establish-
ment of speed limits, putting the responsibility for
speed-limit designation and compliance in the
hands of the state governments. In most cases, state
governments exercised their new rights and raised
speed limits on rural and urban interstates. 

The purpose of this study is to investigate the
relationship between speed limits and traffic-related
fatalities. Specifically, we aim to answer the ques-
tion Does an increase in the speed limit result in a
higher incidence of fatal crashes? Using a technique
known as structural modeling, we are able to deter-
mine the impact speed-limit changes in the past
have had on the number of fatal crashes on rural
and urban interstates for each state based on its
own past experiences. This method also gives infor-
mation about the seasonal patterns in the number
of fatal crashes.

The paper is organized as follows. The next sec-
tion provides a review of the literature on the
effects of speed-limit increases on the number of
traffic-related crashes and fatalities. The third sec-
tion presents the data and methodology used in this
study. The fourth section demonstrates the analysis
on a single state, and the fifth describes the results
of the study for all states. The final section gives
conclusions and perspectives for future work.

LITERATURE REVIEW

Various studies have attempted to determine the
impact of speed-limit increases on the number of
traffic-related crashes and fatalities. The following
is a representative selection of the studies that moti-
vated the study presented in this paper. 

The report to Congress entitled “Effects of the
65 mph Speed Limit Through 1990” by the U.S.
Department of Transportation (USDOT), National
Highway Traffic Safety Administration (NHTSA)
in May of 1992 looks at yearly interstate-fatality
data split by rural and urban roadways. The analy-
sis is based on “expected historical trends”
(USDOT NHTSA 1992). These projected counts
were derived from statistical models based on the
historical relationship between rural-interstate
fatalities and fatalities on other roadways. These
results do not convey the impact of the speed-limit
increase on traffic fatalities. Rather, the study
relates interstate deaths to noninterstate deaths; it
also assumes a stationary, or nonchanging, envi-
ronment by fitting a global regression model. The
authors then compare fatalities in 1986 with those
in 1990 by computing percentage changes. This
approach ignores historical trends and possible
aberrant observations. 

The paper does caution that care ought to be
taken when interpreting the data. The authors note
that results of individual states probably can not be
generalized to the entire nation. They also point out
that no statistical model is capable of controlling all
factors affecting fatalities.

A 1997 paper entitled “Effect of 1996 Speed-
Limit Changes on Motor Vehicle Occupant
Fatalities” by Farmer, Retting, and Lund analyzes
the effect speed-limit increases during and around
1996 had on interstates. This study employed linear
regression models on trend and dummy variables to
analyze the number of fatalities in states categorized
by the time of their 1996 speed-limit increase (early,
late, or none) and compares observed fatalities with
projected values based on historical trends. They
use percentage change between 1995 and 1996 to
assess the impact of the 1996 legislation. They con-
tinually note that vehicle-miles traveled (VMT) may
be able to explain the increase in fatalities but that
the appropriate data are not available. 

This study notes that while the national fatality
toll for 1996 changed very little compared with
1995, the change in the fatality toll for individual
states varied markedly between significant decreases
and increases. The study also states that total inter-
state fatalities increased for the 11 states that had
increased speed limits. The authors note that there
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has been an increase in the portion of the fatalities
occurring on roads posted at 55 mph or greater
and that some increase in fatalities on interstates is
to be expected. Overall, this study presents a very
thorough before and after comparison using per-
centage changes. A linear trend model with an
intervention variable is used to compare actual
1996 fatalities with estimated 1996 fatalities based
on historical trends. The restriction to annual data
and the use of nonadaptive trends limit the value
of the comparisons.

“The Effect of Increased Speed Limits in the Post-
NMSL Era” is the title of another National
Highway Traffic Safety Administration report to
Congress (USDOT NHTSA 1998). This 1998 study
also investigates the effect of the 1995 to 1996
speed-limit increases on rural and urban inter-
states.1 It groups states into “changers” (12 count)
and “nonchangers” (18 count) where the latter
serve as a comparison for the former. The authors
modeled the logarithms of fatality counts for each
year during 1990 to 1996 as functions of time and
type of state. Both linear and quadratic time vari-
ables were included. The impact of the speed
increase was modeled using a dummy variable
equal to one in 1996 and zero in previous years.
They also included an interaction term between
state group and the 1996 indicator to represent the
difference between pre-1996/1996 changes for the
two state types while accounting for the time trend.
The authors claim that if this interaction term is sig-
nificant, the 1996 departure from the time trend
among the states that increased limits differs from
the comparison states. The foremost problem with
this analysis is that linear and quadratic trend mod-
els are not appropriate for these series. Including a
quadratic trend may lower the residual variance for
the in-sample fit, but it will damage the predictive
ability of the model. Inspecting plots of the number
of fatalities or fatal crashes shows that the addition
of a global quadratic trend term typically does not
provide a reasonable description for the whole
length of the series.

Ledolter and Chan’s article “Evaluating the
Impact of the 65-mph Maximum Speed Limit on
Iowa Rural Interstates” (1996) examines whether a

significant change in the fatal and major-injury
accident rates can be detected following the imple-
mentation of a higher speed limit on rural inter-
states in Iowa. The authors have access to quarterly
data on traffic speed, traffic volume, and traffic
safety. To answer the posed question, they fit a
time-series intervention model relating number of
accidents to traffic volume. They also include time
trend, intervention variables for the May 1987
change, and quarterly seasonality. The authors find
that expected numbers of fatal accidents in Iowa
rose by two incidents per quarter on rural inter-
states, a statistically significant increase.

DATA AND METHODOLOGY2

The data used in the present study are the number
of fatal crashes for each month from January 1975
to December 1998 for each state separated by rural
and urban interstates. We used fatal crashes rather
than number of deaths since we regard the accident
data as a more reliable guide to road safety condi-
tions. The number of fatal crashes was determined
from the Fatality Analysis Reporting System
(FARS) and is publicly available3 and maintained
by NHTSA. FARS provides monthly data on num-
bers of fatal crashes for each state with separate
counts for rural and urban interstates. 

The database was downloaded in SAS© format.
It is possible to query the FARS database for yearly
statistics for 1994 to 1998. Since our monthly val-
ues sum up to the yearly values reported by the
online system, we are confident that we were able
to successfully extract the appropriate data. Our
yearly totals do not always exactly match the yearly
totals given in the studies mentioned previously.
These discrepancies can be attributed to the chang-
ing of the FARS database structure, to differences
in opinion on which roadways were included, or to
user error. Again, since our data set matches the
online database query totals, we are satisfied with
the quality of our data compilation.

We let yt denote the number of fatal crashes that
occur in month t and use time series models to
examine the impact of an increase in speed limit on
the number of fatal crashes. That is, we are mainly
concerned with the modeling aspect of time series

BALKIN & ORD 3

1 Specifically, only states with increases between December
8, 1995 and April 1, 1996 are considered.

2 Further information regarding the data and their collec-
tion is available from the author.
3 http://www-fars.nhtsa.dot.gov/



analysis, looking backwards in time for structural
changes in the series. Since the accident data are
collected over time in regularly spaced intervals and
the timing of speed-limit changes is known, we use
intervention analysis to examine these effects. 

Intervention analysis is a time series technique
used when a change in the environment occurs at a
known time and affects the phenomenon of inter-
est.4 In this case, the known change is the speed
limit. Since the change in speed limit is more or less
permanent, a step intervention is most appropriate.
We hypothesize that the change in speed limit
results in a permanent shift in the number of acci-
dents. To aid in the analysis and interpretation, we
employ the logarithmic transformation. The use of
logarithms allows us to consider percentage
changes rather than absolute shifts and stabilizes
the variance of the series. Since some of the months

have zero fatal crashes, it is necessary to add one to
each month prior to transforming the data. Thus, it
is important to remember when looking at the plots
of the data, as in figure 1(a), that the series is shifted
up by one unit. 

Motivated by some of the previous studies on
this topic already discussed, we chose to employ a
statistical modeling technique that could provide us
with an explanation of the main features of the
phenomena under investigation. Harvey and
Durbin (1986) used structural time-series modeling
to examine the effects of seat-belt legislation on
British road casualties. In structural time-series
modeling, models are set up explicitly in terms of
the components of interest, such as trends, season-
als, and cycles. In addition, instead of assuming
that these components remain constant over time,
this approach allows them to evolve. The approach
is intuitively appealing since environments that
generate time series often do not remain constant
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and an explicit description of how these compo-
nents change can provide valuable insights.

The starting point for the construction of struc-
tural models is to represent an observed value as the
sum of level, seasonal, and irregular components.

where yt, as previously defined, is the observation
made at time t, which in our case is after a log
transformation and 
and are the level, seasonal, and irregular com-
ponents. In this study, the level component is
allowed to change according to a random walk
process, and the seasonal component changes
according to a trigonometric model. That is,

where, with s even (equal to 12 in this case) and

and where the and the are both
and are independent of each other.

This formulation allows the seasonal effects to vary
over time. 

It is possible to include a trend component within
the level, but no such structure was found in any of
the data used for this study, so it was omitted.
Finally, in this study we are interested in testing
whether a change in the speed limit results in a per-
manent change in the level of the number of fatal
crashes for a given state on a given class of inter-
state. Thus, we can accommodate this type of analy-
sis by extending the structural model to the form

where and are mutually independent of
each other, and each has zero mean and constant

variance and is also serially independent. Formally,
we write this as

and 

We refer to zt as the intervention variable, defined
as:

Thus, zt takes on a value of zero up until time 
the month and year of the known speed limit
change. The overall fit of the model might be
improved by searching for possible interventions
rather than pre-specifying their timing. Indeed,
there may be a time lag before drivers adapted to
the new limits. We decided to retain the more con-
servative strategy of using the timing of the legal
changes and considering only pure level shifts at
those times. With regard to potential time lags, the
variables defined by equation (5) would differ for
only one or two months. If a substantial effect
exists, it would still be detected. As for the host of
other potential interventions, we preferred to focus
solely on the impact of speed-limit changes and to
avoid concerns about mining the data. When the
component parameters of the structural model are
estimated, the intervention parameter can be
used to assess the impact of the speed-limit
change. The value approxi-
mates the percentage increase in the number of
fatal crashes after the speed limit was exposed.
The exact value is more complex as a result of
using the transformation ln(xt + 1) rather than
ln(xt); the differences are slight unless the mean
level is very low when percentage changes are
rather unreliable anyway. The computer package
STAMP 5.0, developed by Harvey and his associ-
ates, was used to perform the analyses presented
in this study.

EXAMPLE: RURAL ARIZONA

As an example of this method of analysis, consider
rural interstates in Arizona. The speed limit was
changed in April 1987 and December 1995. Thus,
an intervention variable was specified for each of
these months, defined as in equation (5). The orig-
inal time series is shown in figure 1(a).

BALKIN & ORD 5



The series is decomposed into level, seasonal, and
irregular components represented graphically in fig-
ure 1, panels a, b, and c, after transformation back
to the original units. We see a significant increase in
the level around 1987 but none around 1995. This
indicates that around 1987 the average number of

fatal crashes significantly increased, but not so else-
where. This increase occurs at the same time as a
speed-limit increase. Statistically, it is estimated that
the 1987 speed-limit increase resulted in a 41%
increase in rural interstate crashes in Arizona (see
table 1). There is no statistical evidence that the

6 JOURNAL OF TRANSPORTATION AND STATISTICS APRIL 2001

TABLE 1 Significant Changes in Predicted Accident Rates Attributed to the Speed-Limit Increases 
on Rural Interstates

First Second
change, change, 1986 1987 1988 1995 1996 1997 1998

State percent percent crashes crashes crashes crashes crashes crashes crashes

Alabama 24.8 62 53 57 49 62 79 65

Arizona 41.0 96 126 116 100 103 98 140

Arkansas 32.6 26 30 34 28 38 28 46

Florida 37.2 105 96 153 102 116 166 133

Georgia 30.0 66 52 65 50 100 73 85

Illinois 21.9 48 59 73 58 68 71 74

Iowa 35.8 12 21 29 20 21 22 21

Kansas 23.1 17 22 24 27 18 23 14

Maine 18.4 13 8 20 9 8 12 14

Maryland 37.4 20 17 19 16 15 26 18

Michigan 46.7 14 34 44 34 46 40 46

Minnesota 25.7 9 19 21 15 15 12 31

Missouri 13.0 42.2 58 53 54 66 87 93 98

Nebraska 35.5 12 12 20 19 21 22 28

Nevada 27.1 22 35 32 44 53 44 62

New Hampshire 21.4 5 6 19 6 10 10 8

New Mexico 15.8 25.5 66 103 78 87 85 105 102

North Carolina 42.6 40 58 76 55 71 50 53

Ohio 46.6 34 54 47 45 46 44 39

Pennsylvania 36.4 56 68 69 52 64 54 67

Tennessee 15.5 40.4 53 70 73 74 86 70 97

Texas 18.0 164 195 236 201 220 217 200

Virginia 31.6 39 39 64 74 59 71 62

Washington 24.5 26 32 40 35 43 30 39

West Virginia 46.2 14 13 29 38 48 40 34

Wisconsin 24.3 15 13 24 16 27 25 20

U.S. totals 1,834 2,141 2,391 2,210 2,441 2,518 2,591

Percentage change 16.74 11.68 10.45 3.15 2.90



1995 speed-limit increase had any additional effect
on the number of fatal crashes. This may change as
more observations become available, better defin-
ing the impact of the policy change. 

Next, we see from the seasonal component that
there appears to be a strong monthly effect on the
number of fatal crashes. For this example, there are
considerably more crashes in June, July, and August
compared with the other months. Such seasonal
patterns exist for most states and reflect the higher
traffic levels in summer months. The irregular com-
ponent is simply what is left over after the level and
seasonal components are taken into account. 

The Structural Time Series Modeling approach
tells us that there is a strong seasonal effect on the
number of fatal crashes and that there is a signifi-
cant increase in the number of such crashes around
the time the speed limit was changed. For this par-
ticular series, the plot of the level component sug-

gests that, after the initial jolt of the speed-limit
change, the trend gradually moves back to its orig-
inal level. This phenomenon was observed for a
number of states, but not all. Such a movement
would be consistent with the slight overall decline
in fatal accidents nationally over this time period,
as shown in figure 2. This observation is made ten-
tatively, since partial adjustment effects were nei-
ther modeled nor tested. The picture is further
complicated as state laws were enacted at different
times. Nevertheless, we view this as a question wor-
thy of further exploration since several distinct
hypotheses exist, with quite different policy impli-
cations. Such hypotheses include 1) drivers
adjusted to driving at higher speeds, 2) states
increased enforcement of driving laws, and 3) auto-
mobile safety was improved. However, we stress
that our analysis was not designed to examine these

BALKIN & ORD 7
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questions; rather, they are important issues for fur-
ther investigation.

STATISTICAL ANALYSIS

Each state’s rural and urban interstates were ana-
lyzed using the structural modeling approach with
deterministic step intervention variables at the
time(s) of the speed-limit increases. Rural inter-
states are subject to 1987 and 1996 changes, while
urban interstates were only changed around 1996.
We will refer to the changes around 1987 as the

FIRST speed-limit increases and those made around
1996 as the SECOND speed-limit increases. 

Results for Individual States 

We can summarize the findings as follows:

� 19 of 40 states experienced a significant increase
in fatal crashes along with the FIRST speed-limit
increases on rural interstates (figure 3).

� 10 of 36 states experienced a significant increase
in fatal crashes along with SECOND speed-limit
increases on rural interstates (figure 4).
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FIGURE 3 Significance Levels of Responses to the First Speed-Limit Change (1987) on Rural Interstates

Note: Signficant at the 10% level

FIGURE 4 Significance Levels of Responses to the Second Speed-Limit Change (1996) on Rural Interstates

Note: Signficant at the 10% level
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� 6 of 31 states experienced a significant increase
in fatal crashes along with the speed-limit
increases on urban interstates (figure 5).

Table 1 shows the states with significant changes
on rural interstates, the estimated monthly percent-
age impact of the speed-limit change, and the num-
bers of fatal crashes in 1986 to 1988. From this
table, we can see the monthly percentage increase
in the number of fatal crashes attributable to the
speed-limit changes. The numbers of total fatal
crashes for 1986 to 1988 are included for two rea-
sons: 1) to interpret the percentages in terms of real
numbers and 2) to see if the number of fatal crashes
increases in the year after the speed-limit change.
The purpose behind the first reason is to see, with-
out minimizing the value of human life, what the
significant increase translates to in terms of actual
number of crashes. For example, suppose a state
averages 36 crashes per year, or 3 per month, and
the estimated monthly increase of fatal crashes is
about 33%. The expected increase in the number
of crashes is about one per month. Although statis-
tically significant, such an increase is small in
absolute numbers and may be attributable to other
factors. The purpose behind the second reason is to
assess whether drivers gradually adjust to new driv-
ing conditions. For example, Arizona, as graphi-
cally displayed in figure 1, had an increase in the
number of crashes the year of the speed-limit

change but a decrease from that level in subsequent
years. This suggests that drivers in Arizona may
have learned how to drive safely at the new limit.
Such patterns are not consistent across states, and
this issue requires further investigation.

Table 2 shows the same information for the
urban interstates and also includes 1998 data but
includes only states that experienced a statistically
significant increase in the number of fatal crashes.
During the 1996 set of changes, some states
encountered a negative impact, a decline in the
number of fatal crashes after the speed-limit
increase. While this effect may be real, it is difficult

BALKIN & ORD 9
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FIGURE 5 Significance Levels of Responses to the Speed-Limit Change (1996) on Urban Interstates

Note: Signficant at the 10% level

TABLE 2 Significant Changes in Predicted Accident
Rates Attributed to the Speed-Limit 
Increases on Urban Interstates

Change, 1995 1996 1997 1998
State percent crashes crashes crashes crashes

Alabama 37.8 32 49 66 49

Missouri 35.0 56 85 82 94

Nevada 31.2 14 23 15 14

Ohio 40.8 60 64 64 78

Oklahoma 39.5 36 47 46 31

Washington 32.1 24 33 34 40

U.S. totals 1,919 2,054 1,998 2,026

Percent change 7.03 –2.72 1.40



to attribute it to the increase in speed limits.
Therefore, the results are not included in table 2.

In order to get an idea of how many fatal crashes
are associated with a particular speed-limit
increase, we first remove from the fitted model the
term relating to the increase for those states that
had a significant increase in fatal crashes. We then

analyze the difference between the modified
expected and actual numbers. We approximate the
predicted number of fatal crashes had the speed
limit not increased by dividing the observed num-
ber of fatal crashes by one plus the percent change.
Tables 3 and 4 show this information separated by
rural and urban interstates. We see that the
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TABLE 3 Predicted Number of Fatal Crashes Attributed to the Speed-Limit Increase on Rural Interstates

First, Second, Predicted Predicted Predicted Predicted
State percent percent 1988 1996 1997 1998

Alabama 0.0 24.8 57.0 49.7 63.3 52.1

Arizona 41.0 0.0 82.3 103.0 98.0 140.0

Arkansas 32.6 0.0 25.6 38.0 28.0 46.0

Florida 0.0 37.2 153.0 84.5 121.0 96.9

Georgia 0.0 30.0 65.0 76.9 56.2 65.4

Illinois 21.9 0.0 59.9 68.0 71.0 74.0

Iowa 35.8 0.0 21.4 21.0 22.0 21.0

Kansas 23.1 0.0 19.5 18.0 23.0 14.0

Maine 18.4 0.0 16.9 8.0 12.0 14.0

Maryland 0.0 37.4 19.0 10.9 18.9 13.1

Michigan 46.7 0.0 30.0 46.0 40.0 46.0

Minnesota 25.7 0.0 16.7 15.0 12.0 31.0

Missouri 13.0 42.2 47.8 61.2 65.4 68.9

Nebraska 35.5 0.0 14.8 21.0 22.0 28.0

Nevada 0.0 27.1 32.0 41.7 34.6 48.8

New Hampshire 21.4 0.0 15.7 10.0 10.0 8.0

New Mexico 15.8 25.5 67.4 67.7 83.7 81.3

North Carolina 42.6 0.0 53.3 71.0 50.0 53.0

Ohio 46.6 0.0 32.1 46.0 44.0 39.0

Pennsylvania 0.0 36.4 69.0 46.9 39.6 49.1

Tennessee 15.5 40.4 63.2 61.3 49.9 69.1

Texas 0.0 18.0 236.0 186.4 183.9 169.5

Virginia 31.6 0.0 48.6 59.0 71.0 62.0

Washington 24.5 0.0 32.1 43.0 30.0 39.0

West Virginia 46.2 0.0 19.8 48.0 40.0 34.0

Wisconsin 24.3 0.0 19.3 27.0 25.0 20.0

Predicted total 1,317.3 1,329.3 1,314.4 1,383.2

Actual total 1,516.0 1,530.0 1,525.0 1,596.0

Approximate increase 198.7 200.7 210.6 212.8

Percentage increase 15.09 15.10 16.02 15.39



estimated overall percentage increases are of the
same order as the individual increases, resulting in
approximately an additional 200 rural and 80
urban fatal crashes per year. It is important to note
that these numbers only represent a crude approx-
imation of the effect of the speed-limit increase.

Seasonality

One of the powerful benefits of using structural
modeling is that instead of removing seasonality,
the effect of a specific month is directly modeled.
The strength of the seasonal pattern was one of the
most surprising aspects of this analysis. Figures 6
and 7 show the following:

� 29 states exhibited seasonality at the 0.05 level
of significance on rural interstates (figure 6)

� 18 states exhibited seasonality at the 0.05 level
of significance on urban interstates (figure 7).

The extent of seasonality varies by state. Most
states typically have a higher number of fatal
crashes in August. Some states have different pat-
terns with interpretations unique to that state. For
instance, Florida tends to have more fatal crashes in
March on its urban interstates. One possible inter-
pretation of this could be the increase of traffic
from college students traveling to Florida on spring
break. In general, seasonal peaks appear to coin-
cide with peak holiday seasons. Most states do not

produce monthly data on vehicle-miles traveled, so
we cannot adjust the data in a consistent manner
for such effects. 

Aggregate Analysis 

Though the analysis is by state, it is of interest to
generalize the effect of speed limit increases to the
nation as a whole. To answer this question, we use
a “Super t-Test.” We first record the t-values of the
intervention variables for all states. Positive t-val-
ues indicate a positive impact (increase) of the num-
ber of fatal crashes. Of fatal crashes, they
determine the significance of the individual impact
of the policy change. To answer the question
whether or not fatal crashes increase along with
speed-limit increases, we then perform a one-sided
t-test to determine whether the mean of the t-values
of all of the intervention variables is significantly
greater than zero. If we reject the null hypothesis,
we can conclude that there is indeed an increase in
the number of fatal crashes. It does not tell us, how-
ever, how large this increase is, only if, on average,
an effect exists. 

The Super t-Test for Rural Interstates resulted in
a t-statistic of 10.6 with 39 degrees of freedom
(one-tailed p-value � 0.000) for the FIRST set of
speed-limit changes and a t-statistic of 4.0 with 36
degrees of freedom (one-tailed p-value = 0.0002)
for the SECOND set of speed-limit changes. For
urban interstates, the Super t-test gave a t-statistic
of 1.373 with 30 degrees of freedom (one-tailed p-
value = 0.090). We see from the Super t-Tests that
rural interstates appear to be affected by speed-limit
increases, while the effect for urban interstates is
weak.

CONCLUSION AND FUTURE WORK

The purpose of the study is to investigate the rela-
tionship between speed limits and traffic-related
fatalities. Specifically, we sought to discover if an
increase in the speed limit results in a higher inci-
dence of fatal crashes.

We carried out the data analysis using a time-
series technique known as structural modeling.
This approach enables us to partition a series into
its level, trend, seasonal, and irregular (or residual)
components and to evaluate the impact of major
interventions such as speed-limit changes. Based on
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TABLE 4 Predicted Number of Fatal Crashes 
Attributed to the Speed-Limit Increase 
on Urban Interstates

Change, Predicted Predicted Predicted
State percent 1996 1997 1998

Alabama 37.8 35.6 47.9 35.6

Missouri 35.0 63.0 60.7 69.6

Nevada 31.2 17.5 11.4 10.7

Ohio 40.8 45.5 45.5 55.4

Oklahoma 39.5 33.7 33.0 22.2

Washington 32.1 25.0 25.7 30.3

Predicted total 220.2 224.2 223.8

Actual total 301.0 307.0 306.0

Approximate increase 80.8 82.8 82.2

Percentage increase 36.71 36.91 36.75



a review of the past literature, we formulated the
impact of a speed-limit change as a one-time per-
centage increase in the number of accidents, after
which the seasonal and trend patterns in the series
would be expected to remain similar to those of
past years. The analysis was performed for each
state, separately for urban and rural interstates.
Although the results are statistically significant as
noted above, the numbers in some states may be
small. The seasonal patterns probably reflect
changes in the number of vehicle-miles traveled
(VMT), with peaks occurring during holiday sea-
sons. Seasonal analysis is critical to understanding

any changes in pattern since unadjusted compar-
isons for a few months immediately before and
after a change could be seriously in error. Our
analysis allows comparisons to be made after
proper adjustment for seasonal effects. Overall,
increases were seen in some states following speed-
limit changes. These increases were predominantly
on rural rather than urban interstates. 
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FIGURE 6 Significance Levels of Seasonal Components for Fatal Accidents on Rural Interstates

FIGURE 7 Significance Levels of Seasonal Components for Fatal Accidents on Urban Interstates
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I congratulate the authors for a very careful, statis-
tically sophisticated, and impartial study on the
impact of recent speed-limit changes on fatal inter-
state crashes. The findings have important policy
implications as states face considerable pressure to
increase maximum speed limits.

Any assessment of the impact of maximum
speed-limit changes on traffic safety is difficult, and
many reports have been written on this subject. The
Balkin/Ord paper is an important contribution to
this literature since it is comprehensive and current,
covering all 50 states through 1998. Its findings are
1) the 1987 speed-limit change increased fatal acci-
dents on rural interstates by about 200 crashes each
year and the 1996 change added another 200 fatal
crashes annually, for a combined total of 400 fatal
crashes per year and 2) the impact of the 1996

change on the number of fatal accidents on urban
interstates was not as strong, amounting to about
80 fatal crashes per year. The benefits of accel-
erated interstate travel come at the expense of
safety though not all states are affected equally. 

My comments on this paper have two purposes.
First, the structural time series models which
Balkin/Ord uses for characterizing the serial corre-
lation among successive observations may not be
familiar to readers of this journal. My comments
address the relationship between these models and
the more familiar Box-Jenkins ARIMA time series
intervention models. Second, the Balkin/Ord study
deals with a nationwide analysis of data from all 50
states. It is understandable that such an analysis
can not be as detailed as studies that focus on spe-
cific states. My comments offer recommendations
for model improvements, in particular suggestions
for incorporating traffic volume and for using actual
travel speeds instead of speed-change indicators.

Balkin/Ord uses structural time series interven-
tion models for assessing the impact of maximum-
speed-limit changes. This differs from other studies
that use the ARIMA time series intervention mod-
els proposed by Box and Tiao (1975). The follow-
ing discussion illustrates that these two model
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families (structural time series intervention models
and ARIMA time series intervention models) are
closely related. Let us ignore, without loss of gen-
erality, the seasonal component in the structural
model in equation (4),

After taking successive differences, 
where B is the backshift operator

we obtain

The noise follows
a first order moving average process.1 The solution
of the above difference equation is

This is like a regression of the number of fatali-
ties on the indicator variable zt with one important
difference. The errors are no
longer independent and follow an integrated first
order moving average [ARIMA(0,1,1)] model, a
very common, nonstationary time series model. Box
and Tiao (1975) studies the estimate of the inter-
vention effect under this particular model and
show that it is a contrast between two weighted
averages, one of observations before the intervening
event and the other of observations afterwards. The
weights are symmetric and decay exponentially
according to the time distance of the observations
from the intervening event. The rate of decay
depends on the moving average parameter or, in
terms of the parameters in the structural model, on
the ratio of the variances of and . Note that
this estimate differs from the ordinary regression
estimate in the model with independent errors,
which is the difference of two (unweighted) aver-
ages; the observations before and after the interven-
ing event are weighted equally. The equal weighting
is inappropriate if observations are autocorrelated,
and the analysis must be adjusted for the serial cor-

relation in the observations. This adjustment can be
achieved through ARIMA models as proposed by
Box/Tiao or through the structural time series
approach adopted by Balkin/Ord. Both approaches
should lead to similar conclusions.

Balkin/Ord analyzes the number of traffic fatal-
ities but fails to incorporate in its model a measure
of risk exposure. Risk exposure can be measured
through vehicle-miles traveled (VMT). Most states
do have reliable estimates of traffic volume, typi-
cally obtained by sampling traffic flow at various
continuous measurement stations spread through-
out the state. An analysis of the ratio, the number of
fatal accidents divided by VMT, is more meaningful
since it adjusts accident numbers for traffic volume.
The decreasing time trend in these ratios expresses
the safety improvements of cars and roads.

The 1987 maximum-speed-limit increase was
uniform across states. About one fifth of the states,
mostly in the East, decided not to raise the maxi-
mum speed limit on rural interstates. The other
states increased the maximum speed limit on rural
interstates by 10 miles per hour (mph), from 55
mph to 65 mph. The response to the National
Highway System Designation Act in 1995 was
more varied. Appendix A of the National Highway
Traffic Safety Administration Report to Congress
(USDOT NHTSA 1998) gives a good overview of
how states responded. About one fifth of the states
did not increase the speed limit on rural interstates
beyond the prior 65 mph limit. Most states raised
the speed limits on rural interstates by 5 mph, to 70
mph. However, several other, mostly western,
states raised it by 10 mph, to 75 mph. The fact that
not all speed-limit changes were of the same mag-
nitude was not incorporated in the analysis. The
use of a single intervention dummy variable
appears to be an oversimplification; it may have
been better to incorporate the magnitude of the
change.

Balkin/Ord models the speed-limit changes
through 0/1 indicator variables. The model could
be improved by including the actually traveled
speeds. Admittedly, it would be difficult to obtain
reliable traffic-speed data, certainly more difficult
than obtaining reliable VMT data. However, many
states do collect data on traffic speed. Iowa, for
example, takes 24-hour measurements on 1 day
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each quarter at 4 rural interstate and 2 urban inter-
state stations. In earlier papers, Ledolter and Chan
(1994; 1996) analyzed average traffic speeds, as
well as the proportion of cars exceeding 55, 60, and
65 mph. Iowa had increased the maximum speed
limit on its rural interstates from 55 mph to 65 mph
in May of 1987. The average traffic speed on rural
interstates did not change abruptly but increased
gradually from about 59 mph in 1985/1986 to
about 66 mph in 1990/1991. Our study shows that
traffic speed does not change abruptly with the
passing of a new rule but adapts gradually over a
period of several quarters. The average actual
travel speed (or a certain percentile of the distribu-
tion) is more indicative of driver behavior than the
posted change in the maximum speed limit, making
models that incorporate the actually traveled
speeds preferable. 

Several states also raised the maximum speed
limit on rural primary roads. The safety impact of
this speed-limit change is not reflected in the
Balkin/Ord study since their analysis focuses solely
on interstates. Its impact is found among the num-
bers of fatal accidents on the rural primary system.
The impact may be substantial since most fatal
accidents occur on rural noninterstates.2 An inves-
tigation of the number of fatal accidents on rural
primary roads, especially for those states that
raised the speed limits on these road systems, is
needed. Furthermore, speed increases may carry
over to road systems not subject to the increased
speed-limits. In our earlier analyses of the 1987
Iowa speed limit change on rural interstates,
Ledolter and Chan (1994) and Ledolter and Chan
(1996), we found small increases in the average
actual travel speed on road systems that remained
subject to the 55 mph limit. Hence, studies on the
number of noninterstate fatal crashes for states that
raised maximum speed limits on rural interstates
but not on rural primary roads are also needed.

A brief comment on seasonality: for purposes of
impact assessment, seasonality is a nuisance vari-
able that needs to be excluded; seasonality by itself
is of little interest. The number of fatal accidents is

seasonal because traffic volume is seasonal. In addi-
tion, the number of fatal accidents per (million)
VMT is seasonal because the risk of getting into an
accident depends on seasonal weather and road
conditions. Many studies model seasonality by
including seasonal indicator variables or trigono-
metric functions (harmonics) of the seasonal fre-
quency. The structural noise model in the
Balkin/Ord paper goes one step further and allows
for slowly changing seasonal components. This
could have also been achieved by incorporating
seasonal ARIMA components into a time series
intervention model. Balkin/Ord’s figure 1 shows
that the seasonal fluctuations for Arizona are rea-
sonably stable over time, indicating that a model
with constant seasonal indicators would have been
equally appropriate. 

The Balkin/Ord paper analyzes aggregate data
on the number of fatal interstate accidents. It does
not use information to address if speed-related cir-
cumstances contributed to the accident, nor does it
use such factors such as gender and age of the
driver, road and weather conditions at the time of
the accident, type of vehicle involved, and evidence
of alcohol involvement. Aggregate analyses are
always subject to the criticism that important fac-
tors have been overlooked. A follow-up analysis of
individual fatal accidents would be worthwhile.
Microdata on each fatal accident, with detailed
information on various contributing factors, includ-
ing whether speed was a contributing factor, is
available for each accident. Admittedly, such analy-
sis for 50 states would be an almost impossible task,
and this comment is not a criticism of the
Balkin/Ord study. Instead, it is offered as a recom-
mendation that additional studies confirm the find-
ings at the aggregate level with detailed analyses at
the micro-level, at least for a few selected states.

REFERENCES

Abraham, B. and J. Ledolter. 1983. Statistical Methods for
Forecasting. New York: Wiley.

Box, G.E.P., G.M. Jenkins, and G.C. Reinsel. 1994. Time
Series Analysis Forecasting and Control. Upper Saddle
River, NJ: Prentice-Hall.

Box, G.E.P. and G.C. Tiao. 1975. Intervention Analysis with
Applications to Economic and Environmental Problems.
Journal of the American Statistical Association 70:70–9.

BALKIN & ORD 15

2 Rural and urban interstates are by far the safest road
systems; only 5 to 10% of all fatal accidents occur on
interstates.



Ledolter, J. and K. Chan. 1994. Safety Impact of the
Increased 65 mph Speed Limit on Iowa Rural Interstates.
Final Report. Midwest Transportation Center, University
of Iowa.

_____. 1996. Evaluating the Impact of the 65 mph Maximum
Speed Limit on Iowa Rural Interstates. The American
Statistician 50:79–95. 

U.S. Department of Transportation (USDOT), National
Highway Traffic Safety Administration (NHTSA). 1998.
Report to Congress: The Effect of Increased Speed Limits
in the Post-NMSL Era. Washington, DC.

16 JOURNAL OF TRANSPORTATION AND STATISTICS APRIL 2001

Discussion 

MICHAEL D. FONTAINE
TONGBIN TERESA QU
Texas Transportation Institute

KARL ZIMMERMAN
CLIFFORD H. SPIEGELMAN
Texas A&M University 

The Balkin/Ord paper has addressed the timely and
controversial topic of whether speed-limit increases
raise the frequency of fatal crashes. Earlier studies
did not have sufficient data to determine the true
relationship between speed-limit increases and fatal
crashes. Enough time has now elapsed since the
repeal of the national maximum speed limit
(NMSL) in late 1995 to determine if there was a sig-
nificant increase in fatal crashes. The structural
model chosen by the authors certainly appears to be
an improvement over models used in earlier studies. 

One of the most important parts of scientific and
engineering studies is the formulation of hypothe-
ses. Studies of the safety effects of increased high-
way speed limits could focus on the total number of
injuries, fatalities, injury crashes, fatal crashes, or
many other measures. This study focuses on the
number of fatal crashes. The authors fit the crash
data to a structural model and do not attempt to
explain the parameters estimated. Here we will try
to extend the discussion begun by the Balkin/Ord
paper in many important respects, such as giving
alternative factors that might be modeled. We also
provide a general discussion of study validity. 

The study authors seem be looking for an effect
independent of confounding factors and covariates.
Confounding factors are common in field studies
even when the study focuses on effects known to be
practically important. For example, smoking is
known to affect health, but there are several other
factors such as diet, family health history, and exer-
cise that should be taken into account when study-
ing the effect of smoking. See, for example, Yano et
al. (1977) as an example of a smoking-effect study
that uses covariates. Including potentially impor-
tant factors in an explicit manner was beyond the
intended scope of the Balkin/Ord study. 

It is unclear how the current study implicitly
handles vehicle-miles of travel (VMT), increased
availability of and different forms of airbags, or
many of the other possible covariates we list in our
discussion. The study authors appear to assume
that changes in fatal crashes occur independently of
all factors except the speed-limit increase. To some
extent, they have shown that an increase in fatal
crashes happening independently of other impor-
tant factors may be a small, sporadic effect. This
study, much like many studies of health effects,
may not show as strong or convincing an effect
because other important factors were not explicitly
modeled. Clifford H. Spiegelman, Department of Statistics, Room

A447 Blocker Bldg., Texas A&M University, College
Station, TX 77843-3143. Email: cliff@stat.tamu.edu.



STUDY VALIDITY

The purpose of the Balkin/Ord study was to deter-
mine whether an increase in the speed limit resulted
in a higher incidence of fatal crashes. The authors
hypothesized that the change in speed limit results
in a permanent shift in the number of fatal acci-
dents. The general approach used was first to
explore trends in the data, then identify the discon-
tinuity of the trend at the time of speed- limit
increases, and finally draw conclusions on whether
the speed-limit change resulted in higher numbers
of fatal crashes. Two questions need to be answered
for the purpose of this study. First, can a trend
interruption be observed at the times of speed-limit
increases? Second, was the interruption caused by
the increases in speed limits? The authors
attempted to answer the first question by applying
their structural model. No attempt was made to
determine if the increase in speed limit was solely
responsible for any change in fatal crash frequency.
The authors simply indicate whether the speed-
limit increase resulted in a discontinuity. Their con-
clusions were made without considering possible
effects from external factors such as weather, traf-
fic, road user demographics, composition of the
vehicle fleet and so on.

This study can be best described as a time-series
quasi-experiment study. Compared to a true exper-
iment, a quasi-experiment lacks full control over
the events and subjects being studied, in terms of
random assignment of treatments to subjects
(Cook and Campbell 1979). In this study, the
researchers could not control the population
group, location, timing, or manner in which the
speed limit was increased. The monthly data from
January 1975 to December 1998 on fatal crashes
both before and after the speed-limit increase forms
the time-series quasi-experiment problem. 

The concepts of internal and external validity
are essential to obtaining meaningful results from
any experimental design. “Internal validity is the
basic minimum without which any experiment is
uninterpretable,” while “external validity asks the
question of generalizability” (Campbell and
Stanley 1966). In other words, any experimental
design must be internally valid to yield reliable
results and be externally valid to provide useful
predictions about the effect of that treatment (in

our case a speed-limit increase) to other popula-
tions and times. 

The time-series design is generally internally
valid with only one major limitation, namely, rival
events (called “potential interventions” by the
authors). Rival events occurring at the same times
as speed-limit increases are the most serious threat
to the internal validity of the authors’ findings.
These rival events could be responsible for any
observed change in crash frequency or for masking
changes in the fatal crash data. Rival events also
provide potential alternative explanations for these
findings. This problem can be overcome when the
likelihood of rival events can be discounted. The
authors did acknowledge the existence of potential
interventions besides the speed-limit increase. The
authors, however, did not give any explanation
why potential interventions were not the causes for
the observed effect or did not mask an effect that
might have occurred. 

In fact, rival events could plausibly cause the
shift in fatal accident counts. For example, in the
case of rural Arizona where increases in fatal
crashes were found to be significant at the first
speed-limit change, several issues can be raised: 1)
Was there also an unusually high increase in VMT,
which might be the cause of the increase in crashes?
2) Were there any severe weather events possibly
causing bad road conditions, in turn causing more
crashes? Winter weather could have played a role
in short-term increases in the number of fatal
crashes following the speed-limit increase in 1995
since raising speed limits was permitted as early as
December. To ensure internal validity, these rival
factors and combinations thereof must be ruled out
as the causes for the significant increases in fatal
crashes. The list of rival factors could be different
for different states. However, such lists could possi-
bly be extensive for all states. Considerable infor-
mation about local conditions for each state is
required to isolate the effect of the speed-limit
increase from other rival factors.

The strength of the time-series approach is that
fatal crash data before and after the speed-limit
increases provide the possibility of exploring the
existing trends and patterns in the data so that a
discontinuity of the existing trend can be detected.
As the authors pointed out, a simple before/after
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study would not be appropriate in this case. Simply
comparing the count of fatal accidents immediately
before to the count of accidents immediately after
and then attributing the difference to the speed-
limit increase would be misleading.

The external validity of the time-series design
has serious problems. It is clear that the effect of the
speed-limit increase is specific to the individual
states. As shown in this study, some states have sig-
nificant increases in fatal crashes, while some states
have insignificant increases, and some essentially
do not change. The legitimacy of the authors’ con-
clusions generalized across states in this study is
therefore uncertain. 

The time-series approach is appropriate for this
study. However, more study is needed to isolate the
effect of speed-limit increase from the effects of
other potential interventions. The authors’ analysis
does not sufficiently isolate the impact of the speed-
limit increase from rival explanations. 

DATA LIMITATIONS AND EXAMPLES OF
A FEW CONFOUNDING FACTORS

Fatal crashes represent a serious safety concern and
are an important measure to examine. However,
fatal crashes are relatively rare events and their
counts may show quite a bit of instability from year
to year and from month to month. For example, fig-
ure 1 in the paper shows that between 0 and 20 fatal
crashes occurred each month on Arizona rural
interstates. There is quite a bit of fluctuation from
month to month in this figure, and it may be diffi-
cult to determine a significant trend based on fatal
crashes alone. An examination of injury crashes
would probably provide a more stable data set for
this analysis. This paper provides a valuable indica-
tion of the possible impact of speed-limit changes on
fatal crashes. However, there are some areas where
this paper is unclear about the data used to perform
this analysis. There are also potential opportunities
to take this analysis in new directions that could
provide, in our opinion, a more accurate examina-
tion of the impact of the speed-limit changes.

First, it is not clear from the paper whether the
authors assumed that all states changed their speed
limits in April 1987 and then again in December
1995. An assumption of uniform intervention dates
across all states creates issues with their analysis.

While many states did change their speed limits as
soon as they were legally able, many other states
did not enact a higher speed limit until much later.
For example, Virginia did not choose to raise its
speed limit to 65 miles per hour (mph) on rural
interstates until July 1988 (Jernigan et al. 1994).
Louisiana did not increase its interstate speed limit
to 70 mph until August 1997 (USDOT NHTSA
1998). If these time periods were not correctly cat-
egorized in the analysis, the results could be inac-
curate. It is not clear whether the authors changed
the intervention dates on a state-by-state basis or
used a uniform intervention date for all states.

In 1987, states were permitted to increase speed
limits on rural interstates to 65 mph. This created a
uniform speed-limit change in those states that
chose to increase speed limits. In 1995, the NMSL
was repealed, allowing states to set their own speed
limits. Unlike the 1987 speed-limit change, this
resulted in some variation in the interstate speed
limits established across the nation. Some states
raised speed limits to 70 mph, while others raised
the limit to 75 mph. Some states, such as Texas,
enacted differential speed limits for cars and trucks.
Studies have shown that both the absolute speed of
vehicles and large differences in speeds among vehi-
cles in the traffic stream can be significant causal
factors of crashes (Cirillo 1968; Beatty 1973).
Given these studies, it appears that the impact of
the both magnitude and type (differential or uni-
form) of speed-limit change should be considered
when assessing the impact of the repeal of the
NMSL. This could explain some of the differences
in results observed by the authors.

In addition to differences in the magnitude of the
speed-limit change, drivers also reacted differently
to the speed-limit increases from state to state.
Some states were experiencing a very high degree of
motorist noncompliance with speed limits prior to
the repeal of the NMSL. In these cases, actual
speeds may not have changed very much following
the repeal of the NMSL. Studies have shown that
drivers in different states reacted very differently to
the same speed-limit increases. For example, stud-
ies performed in Michigan and California showed
relatively small increases in mean speed of only 1
and 2 mph, respectively, after the speed limit was
increased 5 mph to 70 mph (Retting and Green
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1997; Nolf et al. 1998). In Texas, mean speeds
were observed to increase by 5 mph when the speed
limit was increased 5 mph to 70 mph (IIHS 1996).
If all changes in crash frequency could be attributed
to increased travel speed, it would be expected that
states that experienced smaller increases in travel
speed would exhibit smaller increases in crash fre-
quency. The relationship between the magnitude of
actual observed travel speeds and crash frequency
bears further investigation.

Analysis of urban crashes also presents a num-
ber of additional concerns. Speed-limit changes
were not always uniform in urban areas. It is a rea-
sonable assumption that rural interstates would be
posted at the maximum speed allowable by law.
However, in urban areas road geometry, safety con-
siderations, congestion, and high volumes of traffic
may preclude posting the speed limit at the legal
maximum. In many urban areas, a 55-mph speed
limit was retained on some roads even though a
higher speed limit was legally possible. Given that
speed limits were not always increased on urban

interstates, it may be difficult to determine if an
increase in the speed limit was responsible for any
observed increase in crash frequency in urban
areas. In fact, roads where the speed limit was
increased may actually represent a minority of the
roads, which may dilute potential impacts of the
increased speed limit in this paper’s analysis.
Factors such as increasing congestion and greater
prevalence of work zones should be examined as
possible alternative explanations for any observed
crash increases in urban areas.

ADDITIONAL COVARIATES

Crashes occur for a wide variety of reasons, includ-
ing driver error, vehicle breakdown or failure, poor
roadway conditions, poor operating conditions,
and all combinations of these factors.

For the sake of example, consider rollover
crashes, one of the most severe types of crashes.
The frequency of fatal rollover crashes is affected
by any or all of the following:
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� driver characteristics (age, gender, personality,
experience, alcohol and drug use, fatigue)

� vehicle characteristics (type, loading, mainte-
nance level)

� roadway characteristics (functional classifica-
tion/design standard, curvature, delineation,
illumination)

� environmental characteristics (time of day, visi-
bility, precipitation, traffic volume)

The above list is not all-inclusive. Some of these
factors may not be very important and some diffi-
cult to quantify, but all of them can play a role in
fatal crashes. 

A few possible covariates are of particular con-
cern because of their obvious effect on several of
the factors shown above. These may include:

� effects of winter precipitation

� percentage of trucks on a particular roadway

� differences in the amount of speed-limit increase
from state to state

� “spillover effects” in states that did not increase
speed limits

� uneven changes within a state

� the general population’s learning curve in adjust-
ing to higher speed limits 

The effects of winter precipitation, particularly
sleet or snow remaining on the roadway for an
extended period, may be very important. In Texas,
there were three months with unusually high num-
bers for injuries and fatal crashes after the last
speed-limit increase. These were February 1996,
January 1997, and December 1998 (see figure 1).
Each of these occurrences corresponded to a major
winter storm, which tends to be a rare event in
Texas (see figure 2). Two of these events early in the
“after” period could skew the results and may have
in at least one analysis (Griffin et al. 1998). How-
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ever, this effect will vary by location within the
United States. A winter storm considered severe in
Texas may be fairly normal winter weather in
Minnesota, for instance.

Another environmental consideration is the per-
centage of trucks in the traffic stream. Not all inter-
state routes are equal in terms of truck traffic, with
trucks composing over 50% of traffic on some
routes in Texas and Nebraska. This has an effect on
other traffic and means that trucks are more likely
to be involved in a collision. Because trucks have a
much larger mass than passenger cars, the risk to
the occupants of the passenger vehicle is very high.
Also, trucks are tall with high centers of gravity and
are less stable under virtually all conditions than a
passenger vehicle is. In Texas, the number of
crashes involving a truck generally followed the
total number of crashes, but this may not necessar-
ily be true elsewhere in the country.

Another effect might be the spillover speed effect
caused when one state changes its speed limits and
another one retains the old ones. An example of this
is Nebraska, with interstate speed limits increased
from 65/55 to 75/65, and Iowa, with the older 65/55
speed limits retained. It is possible that crashes in
Iowa, for instance, may be affected more by the
changes in neighboring states because of greater
variations in speed. The spillover effect could be a
source of some significant results in states that did
not increase their speed limits in 1996, such as
Maryland, Pennsylvania, and Tennessee. The idea of
a learning curve deserves mention. In one section of
the paper, the authors claim that the effects of such a
change in driver behavior would be relatively short-
term in nature and could safely be ignored. Later, the
authors use it to explain the decrease in fatal crashes
in Arizona after the initial increase in 1996. The
same type of reduction occurs in Texas (rural),
Oklahoma (urban), and Nevada (urban). The reduc-
tion might indeed be due to drivers becoming more
accustomed to higher speeds. It could also be due to
different weather patterns, changes in law enforce-
ment (speed and otherwise), road construction, or
any one or more other possible factors. Also, the
effect is a year or two after the speed limit change,
not a few months as the authors earlier claimed. If
the learning curve is indeed short-term, then the later
effects must be something else entirely.

SUMMARY

We thank Balkin and Ord for providing a means of
discussing the impact of the 1995–1996 speed-limit
increase. Their study represents an improvement in
the series of studies of the effect of speed-limit
increases. The study, however, is far from the final
word on the impact of the speed-limit increase. In
our opinion, their study did not pay enough atten-
tion to its conclusions’ validity. We feel that a more
comprehensive study that takes into account addi-
tional explanatory factors needs to be done if the
public is to know the true effects of the speed-limit
increase.
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The paper by Balkin and Ord uses stochastic rather
than deterministic trends to model the series on
crashes. This is important since deterministic
trends are rarely appropriate for economic and
social time series, and their use can result in mis-
leading inferences on the effects of interventions.
One of the attractions of the structural time series
modeling approach is that a deterministic trend
emerges as a special case of a stochastic trend; this
happens in equation (2) in Balkin and Ord when

is zero. The hypothesis that is zero can be
tested formally using the procedure of Kwiatkow-
ski, Phillips, Schmidt, and Shin (1992). The amend-
ments needed to allow for the effects of
intervention variables are discussed in Busetti and
Harvey (2001). This test has not yet been imple-
mented in the STAMP package of Koopman et al.
(2000), which Balkin and Ord uses to carry out cal-
culations. However, evidence for the suitability of a
random walk is provided by the Box-Ljung Q-sta-
tistic obtained when is set to zero; for rural
Arizona this results in Q(15,13) jumping from a
statistically insignificant 12.85 to a highly signifi-
cant 40.66. If the random walk is replaced by a
first-order autoregressive process, the coefficient is
estimated to be 0.98. Thus, for Arizona at least, the
random walk level seems to be a reasonable model.

There are two ways in which the analysis could
be improved. The first is by taking account of the
fact that the data are in the form of counts, some of
which are quite small. Rather than using the
log(y+1) transformation, a count data structural
time series model could be used. Harvey and
Fernandes (1989) gives a procedure that can be used
when only the level is stochastic, while Durbin and
Koopman (2000) shows how simulation methods
enable a general count data model to be estimated.

The second suggestion is to make use of control
groups. For example, the urban Arizona series can
serve as a control for rural Arizona. If the series are
correlated, one can go some way toward resolving
the issue raised by Balkin and Ord when they say
“…Arizona... had an increase in the number of
crashes the year of the speed-limit change but a
decrease from that level in subsequent years. This
suggests that drivers in Arizona may have learned
how to drive safely at the new limit. Such patterns
are not consistent across states, and this issue
requires further investigation.” The structural time
series framework for using control groups is dis-
cussed in some detail in Harvey (1996). In the pres-
ent context, it simply involves setting up a bivariate
time series model consisting of equations (1) and
(4) of the Balkin/Ord paper and estimating them
jointly with allowance made for correlations across
the level, seasonal, and irregular disturbances.
Thus

where the intervention variable, zt, is defined as in
(5), and

Such a model can be estimated in STAMP. Using
data up to November 1995 to exclude the later
change, the correlation between the level distur-
bances, is 0.81, while the correlation
between the irregulars, is –0.07. This
translates into a reduction in the root mean squared
error (RMSE) of the level intervention in the rural
series located at April 1987. The t-statistic corre-
spondingly increases from 2.21 to 2.41. The gain is
not dramatic, possibly because the number of
crashes in the urban series is so small. However, fig-
ure 1 here clearly shows the connection between
the series with the urban series and also shows the
slight decrease noted by Balkin and Ord after 1987.
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The ideal model for control group analysis
would be a bivariate, count data model as in
Fernandes, Ord, and Harvey (1993). A simpler
option would be to aggregate the data to a quar-
terly level, thereby removing zeroes in nearly all the
series and yielding a better Gaussian approxima-
tion in logarithms.

Balkin and Ord suggests the use of a “Super 
t-Test” to determine the significance of interven-
tions for all states together. There may be a problem
here insofar as the individual t-statistics are not
independent of each other. An alternative approach,
which also solves the small counts problem, is to
aggregate all the crashes in states where there was a
change in speed limit and then test the significance

of the intervention variable. Taking the logarithm of
the total number of crashes in the states where the
speed limit was raised in April, May, or June of
1987 gives a t-statistic of 3.21 for a level interven-
tion in May of 1987. Again, only observations up to
November 1995 were used. The t-statistic increases
when a control group series is formed from the
urban series and the rural series where the limit was
not raised in 1987. The bivariate model shows a
correlation of 0.90 between the level disturbances
and the intervention, is estimated as 0.167 with
a t-statistic of 4.35. The increase is clearly signifi-
cant and translates into an 18% increase in crashes
on roads where the speed limit was raised.
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First, we would like to thank Johannes Ledolter,
Andrew Harvey, and the team of Michael Fontaine,
Tongbin Qu, Clifford Speigelman, and Karl
Zimmerman (FQSZ) for their constructive and
valuable comments. Without doubt, the issue at
hand is a complex one, and the discussants have
both carefully evaluated our study and suggested a
number of directions for further research.

CHOICE OF DATABASE

With the benefit of hindsight, we recognize that the
discussants raised some commentary in response to
some decisions and implicit assumptions not clearly
stated in the paper. We begin with our choice of
data. We agree that fatal crashes (fortunately) rep-
resent a small proportion of the accidents on our
highways, but we chose to restrict attention to this
set of statistics because the reporting of such events
is more uniform. State-by-state requirements vary
considerably for lesser incidents, and we hoped to
use data that were reasonably comparable across
states. However, we accept that “injury crashes”
might have produced more stable results, at least
within a particular state. A similar discussion is
appropriate for the choice of interstates or primary

roads. We felt that the classifications of urban and
rural interstates were more uniform across the
country than the definitions of primary roads.
Nevertheless, a study for primary roads would also
provide valuable insights, particularly on the ques-
tion of differential responses by state.

Vehicle-miles traveled (VMT) was indeed a vari-
able that we would have liked to use to produce an
accident rate rather than a pure count. However, an
assessment of the availability and quality of
monthly VMT figures at the state level led us to the
conclusion that such an analysis was not feasible
for all states. Thus, we reluctantly decided to work
with pure counts. An analysis of those states for
which good data are available, building on the ear-
lier work of Ledolter and Chan (1996), would cer-
tainly be worthwhile.

There were several comments concerning our
definition of the intervention variables. First, we
would like to make clear that we set the indicator
as a step function; that is, it was scored as zero in
the months prior to that state changing the speed
limit and as one for the month when the change
took place in that state and for all succeeding
months. We recognize that there may well have
been different levels of preparation and compliance



to the new limits in the states, but we did not have
such information available. The references pro-
vided by FQSZ are helpful in exploring this ques-
tion further. The precise coding of the interventions
is difficult. Even when all increases are the same
numerically, as in 1987, the proportions of inter-
state mileage affected vary by state, as do questions
of enforcement. For example, in Pennsylvania dur-
ing the era of the 55-miles per hour (mph) speed
limit conventional wisdom held that one would not
normally be ticketed for speeding when traveling at
64 mph or less but that during the era of the 65-
mph limit, the “threshold” was raised only to 69
mph. Whether or not such folklore is true, it clearly
has an impact on driving behavior. 

Ledolter mentions their earlier study, which took
into account changes in average traffic speed. Again,
we were not able to find reliable monthly data on
this variable for all states and so did not include it in
the analysis. However, the Ledolter and Chan (1994,
1996) results suggest a gradual shift over time,
whereas we hypothesized a sudden impact on acci-
dent rates. Thus, even if the data were available, we
would expect the effects to be distinct. Of course, the
statistical analysis would be more efficient if the
average speed were taken into account.

When speed limit increases vary, should the
intervention be scaled across states to match the
amount of the increase? We note that such a scaling
does not affect the statistical analysis for an indi-
vidual state, provided separate indicators are used
for each increase. As Ledolter notes, a case could
certainly be made for using a single scaled indicator
to cover the two increases, but the benefits of con-
solidating the “speed effect” need to be set against
some of the “rival events” mentioned by FQSZ.

METHODOLOGY

We are grateful to Ledolter for summarizing the link-
ages between ARIMA and structural models.
Hopefully, this description will make the paper and
ensuing discussion accessible to a wider audience.
We agree that similar results would be expected,
whichever paradigm is adopted. Likewise, we con-
cur that the seasonal patterns were usually quite sta-
ble; indeed, for a number of states the analysis did
indicate fixed seasonals, but we did not report those
details. Our reason for using structural models

rather than the more widely used ARIMA frame-
work was that we feel the direct specification of
level, slope, and seasonal components is more intu-
itively appealing and allows the investigator to
incorporate prior knowledge into the model selec-
tion process more readily. Granted, the ARIMA
models can be decomposed into components, but
this analysis is not provided in most software
packages.

Harvey makes a number of valuable comments.
The testing procedures developed by him and his
co-authors over the years have brought the struc-
tural modeling approach to the point where it pro-
vides a completely viable alternative to ARIMA
modeling. Indeed, as noted above, we feel that
structural modeling is superior because of the intu-
itive understanding provided. As a theoretical aside,
we note that the alternate approach to structural
modeling developed by Ord, Koehler, and Snyder
(1997) provides a system with the same parameter
space as the ARIMA class, whereas the original sys-
tem has a more restrictive parameter space. Thus,
the methodological objections to using the struc-
tural modeling approach are gradually disappear-
ing. We look forward to using these new
developments in the next version of STAMP.

Harvey’s comments about the use of a proper
count-based model are well taken. We admit to
using more accessible software in preference to the
more correct but less computationally convenient
count models. When the counts are small, this may
lead to erroneous conclusions for a few of the
smaller states, a point noted in our paper. Also, the
idea of using control groups is an excellent one and
would help to neutralize many of the “rival events”
cited by FQSZ. 

On the Super t-Test, we agree that the assump-
tion of independence was not explored and that
other approaches should also be considered.
However, we feel that the general conclusions
would remain valid.

FQSZ’s comment that the study is “quasi-exper-
imental” is perhaps too kind, and we would place
it more on the “observational” end of the spec-
trum. The extent to which general conclusions can
be drawn really rest on the precise definition of
times in each state at which the interventions took
place followed by a check for measurable effects at
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those times. In this sense, the study is quasi-experi-
mental since it is highly unlikely that any of the
rival events would match up with more than a few
of the specified interventions.

ANALYSIS OF THE DATA

The commentaries suggest a variety of additional
factors to be taken into account, and we are
reminded of the old story about the statistician and
the economist who jointly examined the results of
a regression analysis. The statistician asked, “Why
did you use so many variables?” to which the econ-
omist replied, “Why did you use so few?”

Our objective was to account for the broad
trends and seasonal patterns in the data and, that
done, to identify the effects of the changes in speed
limits. Without doubt, incorporating some of these
factors would serve to improve models for individ-
ual states. Further, key variables such as VMT
would have been valuable had they been uniformly
available. On balance, we believe that the “keep it
simple” approach was appropriate for an initial
study and that one of the objectives was, indeed, to
stimulate thinking about more sophisticated analy-
ses in the future.

The point about learning curves, raised by
FQSZ, is an interesting one. We began with the
simple intervention variable described earlier and
did not hypothesize learning effects. These appear
to exist in some states but by no means in all. We
debated whether to modify the intervention vari-
ables to describe this more complex behavior but
eventually decided to stay with our original formu-
lation in order to avoid any charges of “data dredg-
ing.” Again, this is an important question that
deserves a properly designed study.

FQSZ observes “It is clear that the effect of the
speed-limit increase is specific to the individual
states” and later that “The generalization ability of
the authors’ conclusion across states in this study is
therefore uncertain.” Our tabulated results show
that the effects were not uniform across states; the
penultimate sentence of our conclusions states that
“Overall, increases were seen in some [italics

added] states following speed limit changes.” Our
conclusions might have been more forcibly stated,
but the results surely point to some increase for
rural interstates, even though the effects vary by
state. A key question for further research is why
states had different levels of response and how this
information might be used to improve safety.

DIRECTIONS FOR FURTHER RESEARCH

We have already mentioned several possible direc-
tions for further research in conjunction with the
comments made above. Of these, the most impor-
tant ones would seem to be the study of differential
responses by the states, the examination of learning
effects, and the use of control groups. In addition,
more focused studies that use more complete data
from those states for which they are available
would provide additional insights. Conversely,
those states that do not provide key indicators such
as VMT should give careful consideration to
expanding their data collection efforts.

The other major point, made explicitly in some
places and implicitly in others, is that the current
analysis uses only aggregate data. The Fatality
Analysis Reporting System (FARS) database pro-
vides detailed information on each fatal accident and
could be used for micro-level studies to explore the
impact of covariates such as those listed by FQSZ.

In conclusion, we would like to thank the com-
mentators once again for their thoughtful and con-
structive suggestions, and we hope that our
collective contributions will serve to advance
understanding in this important area.
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ABSTRACT

Predicted or estimated totals of traffic volume over
one or more years are required in both highway
pavement and safety engineering. While current
recommended practices contain guidance on how
to generate such estimates, they are less clear on
how to quantify the uncertainty attached to the
estimates. This paper describes an initial solution to
this problem. Empirical Bayes methods are used to
compute quantiles of the predictive probability dis-
tribution of the traffic total at a highway site, given
a sample of daily traffic volumes from that site.
Probable ranges and their associated probability
values are readily found, and a point prediction of
the total traffic can be obtained as the median, or
50th percentile, of the predictive distribution. The
method of derivation can also be used to find the
predictive density and the moments of the predic-
tive distribution if needed. No data other than
those routinely collected by statewide traffic moni-
toring programs are needed. A test comparing com-
puted 90% credible intervals for annual traffic
volume with the corresponding actual volume at 48
automatic traffic recorder sites showed that the
actual coverage percentage was not significantly
different from the nominal 90% value.
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INTRODUCTION

In engineering design, it is sometimes necessary to
work with variables whose values are not known
with certainty. In such cases, a rational compromise
between over- and under-design requires first the
determination of a probable range for a variable’s
outcome and then a design to accommodate values
in this range. Implementation hinges on an accept-
ably accurate assessment of this probable range
because if the assessed range is too narrow, the like-
lihood of a failure will be unacceptably high, but if
the assessed range is too broad, resources will be
expended in anticipation of improbable events. In
addition, the users of scientific and engineering
measurements often expect an assessment of the
uncertainty attached to those measurements. The
need for an assessment of uncertainty is revealed in
the reporting of error bounds associated with
opinion survey estimates, in the U.S. Supreme
Court’s recommendation that judges consider
“known or potential rate of error” when deter-
mining the admissibility of expert scientific testi-
mony (Foster and Huber 1999), and in the
recommendation by the American Association of
State Highway and Transportation Officials
(AASHTO) that the “precision and bias” attached
to traffic volume measurements be assessed and
reported (AASHTO 1992).

The ability to justify an uncertainty assessment
becomes especially important when either particu-
lar values of an estimate or the uncertainty range
itself could be used by partisans to justify or oppose
a controversial policy (Sarewitz and Pielke 2000).
In a discussion of scientific predictions and social
policy, Stewart (2000) found it useful to distinguish
between two sources of uncertainty, which he
called aleatory and epistemic uncertainties.
Aleatory uncertainty arises when the outcomes of
interest are governed by physically random
processes that are at least in principle capable of
generating stable long-run relative frequencies.
Epistemic uncertainty, on the other hand, arises
when our knowledge of underlying states of nature
is incomplete. This duality in the notion of uncer-
tainty appears to date back to the origin of modern
ideas concerning probability (Hacking 1975) and is
arguably the source of the current debate between

Bayesian and frequentist views on the foundations
of statistics (Howson and Urbach 1993).

Estimates or forecasts of the total traffic volume
on a section of road for one or more years are used
in both pavement design and traffic safety analysis
and are also used to generate state- and nationwide
estimates of total distance traveled. These are most
often computed by multiplying an estimate of the
road’s mean daily traffic (MDT) volume by the
number of days in the desired time horizon. For
example, in pavement design (AASHTO 1993)
estimates of MDT for each vehicle class are multi-
plied by 365 to obtain estimated yearly traffic
totals, which are in turn used to predict the traffic
loading over a pavement’s design life. In traffic
safety, the traffic exposure at a road site is com-
puted by multiplying an estimate of MDT by the
total number of days over which traffic accidents
have been counted. For an intersection, these traf-
fic totals are then summed over the intersection’s
approaches to give the total entering vehicles. For a
highway section, the traffic total is multiplied by
the section’s length, producing an estimate of total
vehicle kilometers of travel. Clearly, aleatory uncer-
tainty is attached to an estimate of total traffic
because, even if we knew a site’s MDT exactly, the
estimated traffic total and the actual total would
likely differ, due to the unpredictable decisions of
individual travelers. Epistemic uncertainty is pres-
ent when the true MDT is not known exactly but
has been estimated from a sample of daily traffic
counts. AASHTO’s (1993) recommended pave-
ment design method explicitly allows for aleatory
uncertainty as one of the components making up
the overall variation term in the pavement design
equation; however, epistemic uncertainty is not
addressed. In traffic safety, current practices
address the uncertainty in estimated accident rates
due to the random nature of accident counts but do
not appear to consider the contributions of either
aleatory or epistemic uncertainty when estimating
exposure (see Parker 1991).

Draper (1995) has illustrated how an accounting
of multiple sources of uncertainty can be accom-
plished using Bayesian statistical methods, and in
this paper we will consider the problem of assessing
the uncertainty attached to estimates or forecasts of
the total traffic volume. The second section will
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illustrate, using a simple example, how a Bayesian
approach can be used to combine the contributions
of aleatory and epistemic uncertainties into one
assessment. The reasoning illustrated in that sec-
tion will then be applied in the next section to
develop an expression for the predictive distribu-
tion of a traffic total, which can be used to compute
both point and interval estimates. The fourth sec-
tion will then describe an initial empirical evalua-
tion of this estimation method, and the final section
will present conclusions. The development
described in the third section draws heavily on past
research into statistical models for time series of
daily traffic counts (Davis and Guan 1996) and on
weak convergence results for sums of lognormal
random variables (Marlow 1967).

ILLUSTRATING THE SOURCES OF
UNCERTAINTY IN TOTAL TRAFFIC
ESTIMATION

Consider the problem of estimating the total traffic
volume over a period of N days, using a short count
collected with a portable traffic counter. Let

zt = traffic volume on day t, t=1,...,N,

the total traffic volume over days
t=1,...,N,

zl = traffic count on the lth sample day, l=1,…,n,

the sample average,

n-dimensional vector contain-

ing the sample counts.
The ultimate objective is to estimate the total traf-
fic volume zN from the traffic count sample z. For
this example, we will assume that the daily traffic
counts are independent and identically distributed
normal, random variables with common mean 
and common variance . The mean value is the
site’s MDT, and we will assume that it is unknown.
However, to avoid technical sidetracks, we will
assume the variance of the daily volumes, , is
known. We will also assume, for simplicity, that the
sampled days are not part of the time period over
which the total traffic is desired. Aleatory uncer-
tainty will be present even when the MDT is
known exactly. It is straightforward to show that
given and , the probability distribution of the
total traffic count zN is normal with mean equal to

and variance equal to . But, as noted ear-

lier, we do not generally know but must estimate
its value from the count sample, leading to epistemic
uncertainty. If we assume that, prior to collecting
our sample z, our uncertainty concerning the MDT
parameter is characterized by a prior probability
density Bayes Theorem can be used to find
the probability density characterizing this uncer-
tainty after collecting the sample z. That is

In particular, if is noninformative in the
sense of being uniformly distributed on the real
line, it can be shown that the posterior uncertainty
concerning is characterized by a normal distribu-
tion with mean equal to the sample average and
variance equal to (Box and Tiao 1973). The
joint effect of aleatory and epistemic uncertainty
can then be determined by treating as a nuisance
parameter and integrating it out of the joint density
for zN and 

(Draper 1995). Here denotes the
predictive probability density of the total traffic
given the count sample, while 
denotes the predictive probability density of the
total traffic when the MDT is known. For this
example, closed form evaluation of (2) is possible
(Box and Tiao 1973), leading to the conclusion that
the predictive probability density is
normal with mean equal to the and variance
given by

In this case, the contributions to the total vari-

ance attributable to aleatory and epistemic uncer-

tainty can be separated, with as variance due

to aleatory uncertainty and as vari-

ance due to uncertainty concerning the MDT.

Interestingly, while the variance due to aleatory

uncertainty increases linearly with the number of

days in the traffic total, the variance due to epis-

temic uncertainty increases quadratically. To see
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the relative contributions of these sources, sup-

pose that we seek to predict one year’s total traf-

fic volume using a 10-day sample count and that

the daily traffic volume has an MDT of 1,000

vehicles per day and a coefficient of variation

equal to 0.1. The day-to-day variance would be

so the standard

deviation due to aleatory uncertainty would be

which equals 1,910 vehicles.

The standard deviation due to epistemic uncer-

tainty would be equal to

11,540 vehicles. This example illustrates how

epistemic uncertainty can be the dominant source

of error and that neglecting its contribution can

lead to a serious overstatement of a prediction’s

precision.
Because the main objective of this paper is to

show how a more complete accounting of uncer-
tainty can be added to current traffic monitoring
practices, we describe these practices next. The
chief purpose of a traffic monitoring program is to
generate estimates of MDT on each of a jurisdic-
tion’s road segments. Ideally, this is done with year-
round counting on each segment, but the cost of
installing and maintaining such a comprehensive
traffic monitoring system is prohibitive. Therefore,
MDT estimates on the majority of road segments
are obtained from samples gathered using portable
traffic counters. Since traffic volumes vary system-
atically throughout the course of the year as well as
across the days of the week, averages computed
from short count samples are generally biased esti-
mates of full year averages. However, if the magni-
tude of the bias is known, adjustments can be
made. To determine these adjustments, most states
employ a small number of permanent automatic
traffic recorders (ATRs) placed on a representative
sample of road segments. The daily traffic counts
from the ATRs are used to cluster the ATRs into
factor groups such that daily traffic volumes at sites
in a factor group show similar seasonal and day-of-
week variation patterns. The ATR counts are also
used to estimate the seasonal and day-of-week fac-
tors characterizing each group. Each non-ATR
road section is then assigned to one of these factor
groups, and the variation factors characterizing the
assigned group are used to adjust the short-count

sample, providing a better estimate of the section’s
MDT. It is currently recommended that a suitably
adjusted short count of 48 hours produces an esti-
mate of MDT with acceptable precision (AASHTO
1992; USDOT FHWA 1995).

At least two sources of potential error can cause
an estimated MDT to differ from a section’s true
(but unknown) MDT: sampling error, arising any-
time the estimate is based on less than a complete
census of the section’s traffic volumes, and adjust-
ment error, arising if the factors used to adjust the
short-count sample differ from those which actually
describe the sampled section’s variation pattern. In
a recent review of MDT estimation, Davis (1997b)
pointed out that much of the earlier research used to
justify the use of short counts for estimating MDT
tended to underestimate the potential effect of
adjustment error, and an analysis of the potential
contributions from the two error sources indicated
that adjustment error can plausibly be two to three
times larger than sampling error. This analysis was
consistent with recent empirical work by Sharma et
al. (1996), which investigated the effect of adjust-
ment errors in estimating MDT, as well as with
work which highlighted the error caused by apply-
ing adjustment factors developed for traffic domi-
nated by passenger cars to estimate the MDT of
heavy trucks (Hallenbeck and Kim 1994;
Cambridge Systematics 1994). The review also
pointed out that both sampling and adjustment
error can be explicitly accounted for within a hier-
archical statistical model of the process generating
the daily traffic counts and that this model can be
used to develop an empirical Bayes (EB) estimator
of MDT, which does not require that each roadway
section be assigned a priori to a factor group (Davis
and Guan 1996; Davis 1997a). Rather, a structure
similar to that shown in equations (1) and (2) is
used, in which the sample data are used to assess the
posterior probabilities the sample site belongs to
each factor group. The MDT is then estimated as a
weighted average, with the factor group probabili-
ties providing the weights. The next section
describes how this hierarchical modeling approach
can be extended to develop a method for computing
the predictive distribution of a site’s total traffic vol-
ume, rather than its MDT, given a traffic count sam-
ple at the site.
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DERIVING THE PREDICTIVE DISTRIBUTION
FOR TOTAL TRAFFIC VOLUME

Using Bayes Theorem to assess the information
provided by a sample and then integrating out nui-
sance parameters, the two steps exemplified in
equations (1) and (2) provide the basic framework
for deriving the predictive distribution of traffic
totals from more realistic assumptions. In the
above example, we derived a predictive probability
density but here we will focus on the
corresponding predictive distribution function

The distribution func-
tion is more useful from a practical standpoint
since it leads immediately to a method for finding
the quantiles of the predictive distribution by solv-
ing equations of the form Since the
expression for the cumulative distribution function
turns out to have the form of a weighted average,
an argument similar to that employed below could
also be used to find the predictive probability den-
sity or the moments of the predictive distribution.

Aleatory Uncertainty

We will develop an explicit expression for
in several steps. As in the example, the

total traffic count zN is determined as the sum of
the daily counts zt, so that the statistical properties
of the daily traffic volumes will determine the form
of the conditional distribution The first
step is to characterize the statistical properties of
the daily traffic volumes zt. In order to develop
plausible statistical models for the day-to-day fluc-
tuations in traffic volumes at a particular site, a
detailed analysis of daily traffic counts from 50
ATRs in Minnesota was undertaken, as described
in Davis (1997a) and Davis and Guan (1996). This
work indicated that variations in daily traffic vol-
umes could be described using a lognormal regres-
sion model of the form

where
the natural logarithm of a daily

count,
u = expected log traffic count on a typical day,

if the count zt was made during month
i, i=1,...,12, (0 otherwise)

mk,i = correction term for month i, characteristic
of factor group k,

= 1, if the count zt was made on day-of-week
j, j=1,…,7, (0 otherwise)

wk,j = correction term for day-of-week j, charac-
teristic of factor group k,

et = random error.

If we let 
denote a column vector containing the monthly
and day-of-week adjustment terms for factor group
k, and equa-
tion (4) can be written in a slightly simpler form:

In the above model, the mean value of the loga-
rithm of the daily count varies according to month
and day-of-week, and the magnitude of these vari-
ations depends on the factor group to which the site
of interest belongs. Analysis of the regression resid-
uals obtained after estimating the adjustment terms
indicated that the error terms et were not inde-
pendent but showed day-to-day dependencies,
which could be described by a multiplicative
autoregressive (AR) model of the form

Here the at are independent, identically distributed,
normal, random variables with zero mean and
common variance, and and are site-specific
autoregressive coefficients. 

The above model is parameterized by u, a mean-
value parameter, the monthly and day-of-week
adjustment terms, the variance of the et terms,
which we will denote by and the autoregres-
sive coefficients In the next step, we will
assume we know the values of these parameters but
nothing else about the site. Properties of lognormal
random variables (Shimizu and Crow 1988) can be
used to show that the expected value of the total
traffic volume is
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and the variance of the total traffic volume is

Here denotes the correlation between et and es,
which can be computed from (see Brockwell
and Davis 1991). Since zN is a sum of lognormal
random variables, characterizing its probability
distribution turns out to be very difficult even for
the case N=2, and no result for general N is known
(Johnson, Kotz, and Balakrishnan 1994). In most
situations of practical interest, however, N will be
equal to the number of days in one or more years,
so an asymptotic approximation might prove use-
ful. In the Appendix, a result due to Marlow (1967)
is adapted to show that the cumulative distribution
function of the random variable

converges to that of a standard normal random

variable, implying that for large N, loge(z
N) can be

approximated by a normal random variable with

mean equal to and variance equal to 

This, in turn, supports using a log-

normal approximation for zN,

where denotes the standard normal distribu-
tion function.

Epistemic Uncertainty

The sample z contains two types of information con-
cerning zN. On the one hand, it provides information
concerning the model parameters. In principle, this
information could be summarized by the posterior

distribution function On the
other hand, the correlated noise in equation (6)
implies that any given daily count zt is correlated
with its neighbors, so knowing zt allows us to more
accurately predict neighboring values. If the noise
equation (6) is stationary, and if the sample counts
are sufficiently separated in time from the counts
comprising zN (such as might occur when trying to
predict the total volume for 1999 using a sample
taken in 1997) we can take the sample and the total
count to be independent of each other. Then the
sample provides information on the total only by
providing information on the model parameters.
The predictive distribution could then be
found using a generalization of equation (2):

When the sample counts are correlated with counts
comprising the total zN, the expression (11) will
only be approximate, with the approximation dete-
riorating with increasing overlap between the sam-
ple counts and the counts entering into the total. In
principle, smoothing algorithms could be used to
include dependency on z in (7) and (8), so that a z-
dependent asymptotic approximation could be
developed, but the necessary computational labor
appears to be substantial. For the situations com-
monly encountered in highway and safety engi-
neering, the number of counts entering into the
total will be large compared to the size of the sam-
ple (for example, one or more years for N, com-
pared to a 48-hour or two one-week counts for n),
so that most of the aggregating counts will be sep-
arated from the sample counts by at least one
month. For these cases, we conjecture that equa-
tion (11) will provide a suitably accurate approxi-
mation. Some empirical evidence supporting this
conjecture will be presented in the fourth section.

The final steps involve characterizing the dis-
tribution and then finding a
computationally feasible way to evaluate the
(multidimensional) integral in (11). It turns out,
however, that this problem is very similar to the
problem of computing Bayes estimates of mean
daily traffic described in Davis (1997a) and
Davis and Guan (1996), and a similar solution
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can be employed here. The essence of this ap-
proach is to assess the prior uncertainty con-
cerning the model parameters, and then use
Bayes Theorem to account for information pro-
vided by the data sample.

As in Davis (1997a), we will assume that the
highway agency has divided its road segments into
a set of m factor groups and that estimates of the
adjustments factors for each group, k=1,...,m,
are available. We will further assume that the
agency maintains a total of M ATRs and that for
each ATR estimates of the covariance parameters

are also available.
Straightforward procedures for computing these
estimates from ATR data, using commonly avail-
able software packages, are described in Davis
(1997a). Prior to collecting any data for a site, we
will assume that our uncertainty concerning that
site’s parameters is captured by the prior probabil-
ity distribution

where Ib(x) denotes the indicator function
Ib(x) = 1, if x=b, (0 otherwise).

Basically, this prior assumes that before collecting
data we are completely uncertain of the value of u
in the sense that our prior probability is uniformly
distributed on the real line. For the adjustment
term we are certain it takes on one of the val-
ues characterizing our factor groups,
but we are equally uncertain which of these is cor-
rect. Similarly, for we are certain one
of the sets of values estimated from our ATR sites
is correct, but prior to collecting data we are
equally uncertain which one. Completing the spec-
ification of this prior by generating estimates of
the from ATR data results
in an empirical Bayes (EB) method, in the sense of
Padgett and Robinson (1978). That is, empirical
distributions from samples are used to form the
priors.

Because the logarithms of the traffic counts are
normal random variables, the likelihood function of
the sample is easy to specify. Letting y denote the

vector containing the logarithms of the sample
counts and V denote the correlation matrix of y
(which can be computed once the value of the AR
parameters is known), then if we knew
the site-specific values for the parameters

the likelihood of the sample
could be computed using the appropriate multi-
variate normal density.

Here X is a matrix, of dimension N×19, each row
having elements equal to 0 or 1, according to the
month and day-of-week of the corresponding sam-
ple count, while 1n is an n-dimensional column vec-
tor with each element equal to 1.0. 

Predictive Distribution of Total Traffic

Applying Bayes Theorem to the prior and likeli-
hood to obtain the posterior distribution for the
parameters, substituting this into (11), and per-
forming the indicated integrations produces, after
some tedious algebra,

where yN=loge(z
N), Vp denotes the sample correla-

tion matrix computed using and

where are as defined in (7) and (8)
but evaluated using The
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distribution given in (14) is a finite mixture of nor-
mal distributions where the weights given to the
mixture components are the posterior probabilities
that the sampled site has adjustment factors and
covariance parameters characteristic of each the m
factor groups and each of the M ATR sites.
Although the expressions in (14) and (15) appear
rather forbidding, the implied computations are
readily carried out on a personal computer.

A CALIBRATION TEST

As noted above, the distribution (14) approximates
the predictive distribution of a total traffic count,
the approximation being appropriate when predict-
ing the total of a large number of days (for example,
a year or more) from a small sample (for example,
two weeks or less). In an earlier study, Davis
(1997a) used traffic counts from the year 1992 from
50 ATRs in outstate Minnesota to estimate monthly
and day-of-week adjustment terms for the
Minnesota Department of Transportation’s
(Mn/DOT) 3 outstate factor groups, as well as
covariance parameters for each of the 50 ATRs.
These estimates were then used to construct the
discrete prior distributions for
giving m=3 and M=50. In addition, daily counts
from the year 1991 were available for 48 ATRs, and
for each of these ATRs a sample consisting of a one-
week count from the month of March and a one-
week count from the month of July was drawn. The
1992 data were used for estimation, and 1991 data
were used for validation because more ATRs had
good data in 1992. A MATLAB (Mathworks 1992)
program for evaluating (14) was written, and then
for each of the 48 ATRs, the 5th and 95th percentile
points of the predictive distribution of the logarithm
of the 1991 total traffic volume were computed by
embedding this routine inside MATLAB’s root-find-
ing algorithm. Finally, the logarithm of the total
1991 actual traffic volume was also computed for
each ATR. The results of these computations are
displayed in tables 1 through 3.

Note that the 5th and 95th percentile points
describe the bounds of a 90% credible interval,
and, clearly, if a large number of actual traffic
counts fell outside the bounds of our intervals, we
would have evidence for inaccurate prediction. On

the other hand we would still expect a few actual
counts to fall outside our bounds. If the intervals
caught all actual volumes, we would be inclined to
believe that the computed credible intervals were
too large. If the approximation is acceptably accu-
rate, we would expect the actual count to fall out-
side the bounds 10% of the time, and a test of the
adequacy of the estimated credible bounds can be
made by treating the number of missed totals as the
outcome of a binomial random variable with 48
trials and a hypothesized miss probability of p=0.1.
Inspection of the tables shows that for 8 of the
ATRs (2, 8, 12, 204, 208, 217, 218, and 226) the
actual count fell outside the estimated bounds, for
a total of 8 binomial “successes.” Since the proba-
bility of obtaining 8 or more successes by chance is
0.102, this result is not inconsistent with the
hypothesis that equation (14) provides a reason-
able approximation of the predictive distribution.

CONCLUSIONS

Predicted or estimated traffic totals are required in
both highway pavement and safety engineering and
are used to produce statewide and nationwide esti-
mates of total distance traveled. Although recom-
mended practices exist for estimating traffic totals
as part of a traffic monitoring program, it is less
clear how we should characterize the uncertainty
associated with these estimates. This paper
describes an initial solution to this problem, in
which empirical Bayes methods are used to com-
pute the quantiles of a traffic total’s predictive dis-
tribution, given a sample of daily traffic volumes.
Probable ranges and their associated probability
values are readily found, and, if desired, a point
prediction of the total traffic can be obtained as the
median, or 50th percentile, of the predictive distri-
bution. The method of derivation can also be used
to find the predictive density and the moments of
the predictive distribution. No data are required
beyond that routinely collected by statewide traffic
monitoring programs, and the estimates of the fac-
tor group adjustment parameters can be computed
using standard linear regression methods. All other
computations have been successfully implemented
as MATLAB macros.

In conclusion, almost all engineering decisions
must be made in the face of uncertainty, and the art
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of successful engineering requires cost-effective
hedging against this uncertainty. It was argued ear-
lier that standard methods for predicting total traf-
fic ignore potentially important sources of error,

and, hence, understate the resulting uncertainty
characterizing estimates and predictions. Many of
the statistical procedures used in highway engineer-
ing date to the middle part of the 20th century and
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TABLE 1 Evaluation of 90% Prediction Intervals: First Factor Group

Mn/DOT Fifth percentile of 95th percentile of 
ATR number predictive distribution Log total count predictive distribution

2 12.2954 12.5539 12.5531

3 13.9783 14.1189 14.2267

7 12.2483 12.3857 12.4690

8 10.9598 11.3207 11.2912

9 11.8849 11.9756 12.1124

10 12.8934 13.0059 13.0748

12 13.1947 13.1813 13.4464

14 12.9814 13.0870 13.2310

50 13.4775 13.5663 13.6500

54 10.2983 10.5153 10.5339

56 11.4603 11.5531 11.6512

100 15.2954 15.4013 15.5066

102 16.4250 16.4932 16.6343

103 16.0997 16.1653 16.2748

104 15.2014 15.2137 15.2945

110 15.6586 15.7102 15.8464

164 13.8722 13.9628 14.0880

166 13.8270 13.8729 13.9741

170 13.8047 13.8419 13.9555

172 14.9882 15.1130 15.1175

179 13.0413 13.1812 13.2469

197 13.7666 13.8906 13.9826

199 12.4498 12.6153 12.6332

211 13.4673 13.5737 13.6714

213 14.0399 14.0975 14.1949

216 12.4219 12.5007 12.6338

217 11.9371 12.1674 12.1390

219 13.2525 13.2984 13.4746

225 12.0633 12.2808 12.3005

226 11.5859 11.7921 11.7918
NOTE: Bolding indicates ATRs that have counts falling outside the credible bounds.



are based on simplified statistical models adapted
to the computational constraints of those times.
Statistical science has advanced considerably since
then, and these advances can support and encour-
age the use of more realistic models in highway
engineering. This paper proposes a modest step in
this direction by providing a computationally prac-
tical method which accounts for uncertainty in traf-
fic volume predictions. Of course, the importance
of hedging against uncertainty depends on the con-
sequences of error, and, fortunately, so far the con-
sequences attached to using mistakenly precise
traffic forecasts have not been too severe. Whether

or not this state of affairs continues is of course
another uncertain prediction about the future.
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TABLE 2 Evaluation of 90% Prediction Intervals: Second Factor Group

Mn/DOT Fifth percentile 95th percentile of
ATR number of predictive distribution Log total count predictive distribution

52 11.4197 11.5725 11.6027

175 15.2607 15.3471 15.4842

187 14.9642 15.0832 15.2037

200 15.7115 15.8787 15.9226

204 14.0265 14.2724 14.2705

207 12.8435 12.9302 13.0395

208 14.8488 14.9436 14.9377

215 11.7087 11.8455 11.9711

218 11.5948 11.9728 11.8361

224 13.1007 13.2427 13.3437
NOTE: Bolding indicates ATRs that have counts falling outside the credible bounds.

TABLE 3 Evaluation of 90% Prediction Intervals: Third Factor Group

Mn/DOT Fifth percentile of 95th percentile of
ATR number predictive distribution Log total count predictive distribution

1 12.9936 13.0798 13.2428

51 11.4256 11.5018 11.6581

55 12.0286 12.1631 12.1852

57 12.4938 12.7573 12.7840

214 11.5181 11.6925 11.7181

220 13.2472 13.3545 13.4526

221 13.4560 13.4819 13.6290

223 12.8283 12.9375 12.9596
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APPENDIX

Weak Convergence of Sums For a Class
of Correlated Lognormal Random
Variables

As above, let zt, t=1,…,N denote a sequence of log-
normal random variables with denot-
ing their sum. denotes the standard normal
distribution function. As before, we will assume
that the zt follow the model

and the error terms {et} follow a stationary p-order
autoregressive (AR(p)) process. Marlow (1967)
showed that if there exists sequences of positive
real number such that 

then
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To verify conditions (a) and (b), we will impose
the restriction that the monthly and day-of-week
factors for any given day are bounded from above
and also bounded away from zero. That is, there
exist constants such that

for all t and k. It is then possible to show that

where

whenever the are the autocorrelations for a sta-
tionary AR(p) process. Similarly,

so that

and condition (a) is satisfied.
If the daily counts zt were independent, we could

use either the Lyaponuv or Lindbergh central limit
theorems to verify condition (b), as was done by
Marlow (1967). A more general central limit theo-

rem, allowing for dependence of the sort generated
by the AR(p) model for the errors et , is stated in
Theorem 5.3 of Gallant and White (1988, 76). In
particular, if we can show that

then condition (b) will be satisfied, and we are
done. 

1) Let , and since zt is lognormal,
its fourth central moment is known, so that

2) This condition is satisfied trivially since

implies

3) This condition is also satisfied trivially since
the fact that the noise process {et} is a stationary
AR(p) process implies that it is of all
orders.

4) This follows from the fact, demonstrated
above, that 
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ABSTRACT

This study explores how cluster analysis can be
used to categorize a large number of planning dis-
tricts in a region into a smaller, manageable num-
ber of land-use scenarios consisting of planning
districts of similar land-use patterns whose mean
land-use distributions can be used as future land-
use alternatives for those planning districts. We
used Utah’s Wasatch Front region for the analysis.
After applying a family of cluster analysis methods,
we were able to group the 343 planning districts in
the region into 35 land-use planning scenarios. A
combination of the Ward’s linkage method, the
Squared Euclidean distance measure, and the 
Z-score standardization of variables produced the
most logical clustering of planning districts for the
region. 

INTRODUCTION

A recent survey on transportation planning issues
and needs for planning research conducted by the
Transportation Research Board indicated that one
quarter of respondents identified research relating
to land-use planning as a top-priority topic area
(TRB 2000). Land-use and transportation systems
interact to form an urban landscape, and the two
components must be considered together in trans-
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portation planning to create a livable urban area
(Vuchic 1999). For many metropolitan planning
organizations (MPOs), this ideal has been difficult,
if not impossible, to carry out because local gov-
ernments have jurisdiction over land-use planning,
whereas regional transportation planning is often
done by state agencies. Often, land-use and trans-
portation planning done separately have resulted in
undesirable urban sprawl and traffic congestion in
urbanized areas. The development of urban plan-
ning procedures that integrate land-use and trans-
portation planning while allowing all participants
access to the decisionmaking process is needed for
transportation planning in the new century.

In a study funded by the National Science
Foundation, Balling and others developed a multi-
objective genetic algorithm model to simultane-
ously optimize a land-use and transportation
network within a city (Balling et al. 1999; Taber et
al. 1999). This procedure quickly examines an
extremely large search set of feasible plans and nar-
rows the number of alternatives to be considered.
The model optimizes land-use and transportation
network plans with the objective of minimizing
travel time on the street network, cost to the city,
and change from the current status, typically polit-
ically infeasible. Other objective functions dealing
with more current trends in land-use and trans-
portation planning are currently being considered
as additions to the model. The model was first
applied to Provo, Utah, and then to the twin cities
of Provo and Orem. See figure 1 (after page 42) for
their locations in Utah. 

This is a new paradigm in urban planning. The
model produces a set of optimized land-use and
transportation infrastructure plans, and the plans
are presented to those involved in the planning
effort, such as city council members, planners, and
citizen groups. Each plan in the Pareto set is opti-
mal for a different weighting of the competing
objectives, allowing participants the opportunity to
explore compromise solutions rather than being
forced to choose from only a few plans. 

The second phase of the model development
expands this genetic algorithm model to regional
urban planning. The proposed model aims to pro-
duce macro-level Pareto plans for a multi-city met-
ropolitan region and optimize land-use and

transportation corridors between the cities. These
plans will not restrict micro-planning done at the
city level. The proposed model will produce optimal
land-use plans that give target scenarios for land-use
distribution for each planning unit. In this study, the
planning units were named “districts.” The model
might find, for example, that a district in a particu-
lar city would best benefit regional objectives if it
had a mix of 40% low-density residential land use,
20% medium- and high-density residential use, and
10% each of commercial, industrial, and open-
space uses. A city cooperating with the regional
planning organization would try to meet such target
scenarios but would be free to plan any conceivable
layout of land use within the city’s planning districts
in order to optimize local objectives within the
framework of the regional objectives. 

SCOPE AND OBJECTIVES OF THE STUDY 

The very nature of the genetic algorithm requires
potential scenarios of land-use distribution to be
discrete rather than continuous variables.
Therefore, the objective of this study was to deter-
mine the suitability of cluster analysis for the cre-
ation of just such a scenario set. The Wasatch Front
region of Utah, consisting of Weber, Davis, Salt
Lake, and Utah counties, was selected as the study
area (see figure 1). Geographic Information
Systems (GIS) data defining suitable districts did
not exist. Therefore, we gathered and manipulated
land-use and other necessary data to create approx-
imately 300 planning districts (modeler’s discre-
tion), each with an approximately known land-use
distribution. Once the percentage of distribution of
land use for each district was found, districts were
grouped, or categorized, by cluster analysis to cre-
ate a set of 20 or 30 land-use distribution scenarios.
The cluster means for each scenario will be used by
the aforementioned planning model as the discrete
values for possible future land-use scenarios. 

PREPARATION OF PLANNING DISTRICTS

Data necessary for accomplishing the objective of
this study were collected from various sources: the
Wasatch Front Regional Council, Mountain Land
Association of Governments, State of Utah
Automated Geographic Resource Center, Salt Lake
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County, Utah Country, and various city planners
and engineers.

Most of the information needed for this study is
in GIS format. The GIS files contain map shapes
representing parcels (individually owned plots of
land), city boundaries, and boundaries for districts
created for analysis. Associated with the parcel
shapes are codes for various types of land use (for
example: residential–low density, residential–high
density, industrial, commercial, agricultural), from
which percentages for each type of land use in each
district were derived. Of particular advantage was
the fact that the bulk of the land-use data was
based not on zoning but rather on information col-
lected for individual parcels from county recorders’
offices. Only where gaps in the land-use data
existed was zoning used as a rough approximation.

Land-use data for the Wasatch Front region exist
in a variety of formats and data structures. While
all the cities and counties maintain some type of
data, the systems of classifications used vary in
scope, detail, and accuracy. Making these different
land-use classification systems congruent for the
entire region would be a tremendous task. In order
to get the best overall picture of land-use scenarios
existing along the Wasatch Front, it was decided to
use one source, the State of Utah Automated
Geographic Resource Center (AGRC 1997), for all

land-use data wherever possible. To draw appro-
priate district boundaries and find the land-use sce-
narios that exist in those districts, these data from
AGRC needed to be combined with city boundary
and parcel information available from the cities,
counties, and MPOs.

In order to accomplish the first objective of the
study, we followed a 14-step procedure. This pro-
cedure is briefly outlined in table 1, and detailed
discussions of it can be found in Smith (2000). The
GeoProcessing Wizard of ArcView (ESRI 1999)
and user-written Avenue scripts were used as aids in
constructing district boundaries. District bound-
aries were constructed using a combination of city
boundaries, traffic analysis zone boundaries, and
city-provided neighborhood boundaries.

An attempt was made to exclude from the dis-
tricts most lands not considered candidates for
future development. Undevelopable lands were
defined as those lands covered by water or wet-
lands, with gradient slopes over 25%, or owned by
certain public agencies such as the Forest Service or
the Division of Wildlife Resources and not avail-
able for future development.

Figure 1 shows the result of the geoprocessing
work; in total we created 343 planning districts.
Figure 2 (after page 42) shows parcel-level land-use
data for the area covered by the 343 planning dis-
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Step 1 Create shapefiles that describe lands that are
not developable.

Step 2 Intersect the undevelopable shapefile for each 
county (from Step 1) with shapefiles describ-
ing county and city boundaries.

Step 3 Create shapefiles for each county that
describe the distribution of land use by
parcel.

Step 4 Use Avenue script to split parcel/land-use
shapefiles into separate files for each city.

Step 5 Intersect parcel/land-use shapefiles with unde-
velopable shapefiles for each city.

Step 6 Use Avenue script to re-code undevelopable
lands with an appropriate land-use code.

Step 7 Estimate areas of “unknown” parcel land use
by substituting zoning data.

Step 8 Intersect the new land-use shapefiles from
step 7 with shapefiles describing boundaries
within each city to be used in constructing
district boundaries.

Step 9 Use Avenue script to write a new shapefile for
each of the districts incorporated in step 8.

Step 10 Where necessary, aggregate districts together
to form districts of approximately equal size.

Step 11 Clip the aggregated district shapefiles using
the city boundaries.

Step 12 Dissolve shapefiles based on land use.

Step 13 Determine land-use statistics for each district.

Step 14 Create shapefiles that contain only informa-
tion on district boundaries.

TABLE 1 GeoProcessing® Steps Used in Preparing Land-Use Data for Cluster Analysis



tricts, along with their land-use codes. The land-use
categories shown in figure 2 are the ones used by
the AGRC and form the basis for this study. 

CLUSTERING PLANNING DISTRICTS TO
CREATE SCENARIOS

Cluster analysis was chosen to categorize the dis-
tricts due to the difficulty of creating intuitive
groupings for the large number of land uses. If only
two variables, such as percentages of residential
and commercial uses, were to be considered, it
would be a simple enough matter to make a plot of
percentage residential versus percentage commer-
cial, showing points for each of the 343 districts.
Boundaries could then be drawn around groups of
points to separate them into the desired number of
categories for different scenarios. With the 13 vari-
ables involved in this study, however, such an exer-
cise is impossible.

Cluster analysis is a family of methods that seeks
to explore the structure of a data set by defining the
relationships between individual observations in
the set, such as planning districts in this study. Such
analysis is particularly useful when no precon-
ceived idea of the proper manner of data classifica-
tion exists. The MINITAB software package
(MINITAB 1999) was used to perform cluster
analysis on the land-use data. 

Criteria Used

The objective of the cluster analysis was to obtain
land-use scenarios categorized by a reasonable
system of classification that would include the
following:

� unique and concise bounds on percentages for
each of the land-use variables for each scenario

� mean values for each of the land-use variables in
each scenario that could be used as values repre-
sentative of the entire grouping 

� scenarios that cover most of the full range of per-
centages found for each type of land use

Clustering Issues

The usual agglomerative clustering procedure was
used for this study. This means that for a given data
set, each step in the analysis agglomerates, or groups
together, two clusters, which may each be either indi-
vidual observations or sets of observations grouped

together in a previous step. Thus, analysis of a data
set with 100 observations would begin by treating
each observation as its own cluster. The first step
would reduce the number of clusters to 99 by group-
ing the two clusters closest together into a new clus-
ter. Each step would then group two more clusters
together until, after 99 steps, only one cluster of 100
observations remained. The analyst would then look
at the various cluster groupings at different steps in
the process to decide when the observations are most
appropriately categorized. We acknowledge that the
subjective nature of this step is a widely held criti-
cism of cluster analysis as a technique. Nonetheless,
we feel that the cluster analysis is a useful explo-
ration tool for land-use data since this level of sub-
jectivity is much lower than that usually employed
by planners in classifying land-use scenarios.

The manner in which closeness of observations
is measured is called the distance measure. While
the distance between clusters is relatively straight-
forward if each cluster contains only a single obser-
vation, the matter of measuring distances between
clusters of many observations becomes more com-
plex. Consequently, various linkage methods exist
to determine distances between clusters containing
multiple observations. When calculating distances
between clusters, each variable is assumed to be on
the same scale unless some standardization tech-
nique is employed.

The Distance Measure

In two-dimensional space, the distance measure
may be visualized by connecting two points repre-
senting two observations, i and j. The most widely
used distance measure, the Euclidean distance, is
the straight-line distance between the two points,
calculated in N-space as

The Euclidean distance may be squared in order
to further reduce the likelihood of very dissimilar
observations being clustered together. The Pearson
distance, which may also be squared, is similar to
the Euclidean distance, but incorporates the vari-
ances of each variable (x1, x2,..., xN) in order to
reduce the portion of the distance contributed by
variables with high variance (MINITAB 1999).
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Another accepted measure of distance is the
Manhattan distance, measured by summing the
absolute values of the distances along axes between
observations in N-space. 

The Linkage Method

Seven different linkage methods available in the
MINITAB software (MINITAB 1999) were used,
including the single linkage, complete linkage,
average linkage, centroid linkage, median linkage,
McQuitty’s linkage, and Ward’s linkage. Detailed
discussions of the linkage methods can be found in
standard statistics textbooks and software user’s
manuals. Raising some issues relating to selecting a
proper linkage method, this paper discusses two
methods: single linkage and Ward’s linkage.

The single linkage method defines the distance
between any two clusters as the shortest distance
between any observation in the first cluster and any
observation in the second cluster. It was found that
the chaining of observations tends to produce one
very large cluster and other very small clusters.
Consequently, the variable space within the large
cluster is not very well explored.

In Ward’s linkage, chosen as the final cluster
method for this study, the distance between any two
clusters is the sum of the squared deviations between
the centroid and the points of the new cluster that
would be formed by joining the two clusters.
MINITAB uses an approximation to this distance.
The objective of this method is to produce clusters
with a minimal amount of within-cluster variance.
Ward’s linkage tends to produce clusters of similar
numbers of observations since a disproportionately
high number of observations in a cluster would
result in a higher number of squared deviations to be
summed, thus tending to increase the distance across
which the cluster must be formed.

Standardization

Because the variables in this clustering problem
have varying distributions, Z-score standardization
was employed before calculating the distance
matrix. Standardization of variables in a clustering
problem can have both advantages and disadvan-
tages. Consider the following simplification of the
land-use scenario classification problem for two

imaginary districts (refer to figure 2 for the land use
codes shown here):

District R1 R2 R3 R4 C1 C2 C3 AG

1 68% 1% 1% 0% 3% 2% 2% 23%

2 60% 2% 2% 9% 4% 2% 1% 20%

At first glance, these two districts may seem to
be very similar in terms of their distribution of land
use. Without any standardization of variables,
these two districts would likely be clustered
together in the same scenario type due to the low
distance between them. Suppose, however, that the
total range of percentages for R4, mobile homes, is
only 0 to 10% for all of the districts being clus-
tered. Also, suppose the average value for R4 is
0.5%, that its standard deviation is 1.5%, and that
all of the other variables are very near their mean
values. The 9% value for mobile homes is now
clearly an extreme value for that variable. If such
scenarios were always clustered together at rela-
tively early stages, no diversity in mobile home land
use would be apparent from the final cluster group-
ing. All of the cluster means for the different sce-
nario types would reflect mobile home land use of
about 0.5%. Transforming these percentages into
Z-scores remedies this problem. The Z-score for
R4 for district 2 would be (9 – 0.5) / 1.5 = 5.67, a
relatively high value. Since all other variables are
near their means, their Z-scores would all be near
zero. The above comparison, now standardized,
would look approximately like this:

District R1 R2 R3 R4 C1 C2 C3 AG

1 0 0 0 0 0 0 0 0

2 0 0 2 5.67 0 0 0 0

Remembering that a standardized value of even
one (one standard deviation) is a significant depar-
ture from the average, we can see that these dis-
tricts would now be judged different enough based
on the distance between them to remain in separate
clusters until much later in the clustering process.

Consider, though, what might happen with these
two hypothetical districts:

District R1 R2 R3 R4 C1 C2 C3 AG

1 10% 2% 2% 9% 4% 2% 1% 70%

2 70% 2% 2% 9% 4% 2% 1% 10%
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Both would have standardized R4 values of 5.76
and identical, near-zero values for R2, R3, C1, C2,
and C3. Standardized values for R1 and AG would
be non-zero but not nearly as extreme as 5.67 due
to the approximately normal distribution for R1
and AG. These characteristics would likely cause
these two districts to cluster together as districts
with similarly high percentages of mobile-home use.
In many ways, though, this categorization doesn’t
make much sense because single-family residential
and agricultural uses, together accounting for 80%
of the land use in the districts, are in opposite pro-
portion to each other. The wide distribution of these
variables compared to the narrow distribution for
R4 is what makes these districts seem similar when
standardization is applied. A primary objective in
applying cluster analysis to the 343 districts was to
balance these 2 effects of standardization.

RESULTS OF CLUSTER ANALYSIS

Thirty-eight cluster analyses were applied to the
previously mentioned 343 districts using MINITAB
statistical software in order to determine the best
distance measure, linkage method, and standardi-
zation strategy for the data set in question. A table
with cluster group assignments for each of the 38
analyses and 343 districts was created and joined to
the district coverage’s attribute table in ArcView so
that results from the 38 analyses could be quickly
viewed and compared. Table 2 summarizes the
input parameters for the 38 analyses with com-
ments on the results. 

In the first 13 cases, different linkage methods
and numbers of clusters were tried with the
Euclidean distance measure with Ward’s method
giving the most appropriate distribution of land-
use scenarios. Other methods generally sorted the
districts into land-use scenario categories of mostly
residential, mostly agricultural, mostly industrial,
and so forth, without differentiating the distribu-
tions of the minor land uses in a district. Ward’s
method succeeded in partitioning many of these

groups into separate scenario categories, particu-
larly among the residential scenarios. The single
linkage method was eliminated from consideration
due to its tendency toward grouping the majority of
the districts in one mega-cluster. With this method,
most of the districts are grouped in one land-use
scenario (scenario 1) as shown in figure 3 (after
page 42). The median and centroid linkages were
also judged to give poor enough results to eliminate
the need for any further consideration of their use.

For cases 14 to 29, different distance measures
were tried with the average, complete, McQuitty,
and Ward linkage methods. For some reason, the
Pearson and Squared Pearson measures produced a
chaining effect similar to that of the single linkage
for all but the Ward’s linkage. For this reason, a
standardization method other than the Pearson dis-
tance measure became necessary. The Manhattan
and Squared Euclidean measures produced results
comparable to the Euclidean.

For cases 30 to 33, Z-score standardization was
applied to the variables before clustering for a few
of the best combinations of linkage method and
distance measure found thus far. With the complete
and average linkages, the Z-score standardization
also produced a chaining of observations. With
Ward’s method, the Z-score standardization
proved adept in singling out extreme values of
oddly distributed variables like mobile homes,
apartments, and warehouses. However, doing this
broadened the range of the more normally distrib-
uted variables like single-family residential and
agricultural that could be included in the same sce-
nario. Cases 34 and 35 were created with 30 clus-
ters instead of 20 in an attempt to break up some
of the more dissimilar clusters. Still, a few clusters
exhibited odd groupings. As an example, the three
districts Provo 3, Orem 2, and Utah County 3, were
all grouped into the same cluster in case 34, largely
based on their similarly high percentages of ware-
house use (C3) (see table below).
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District R1 R2 R3 R4 R5 C1 C2 C3 C4 C5 AG OS VA

Provo 3 4.6 1.6 7.7 1.8 0.0 16.4 22.1 4.8 1.3 16.2 0.4 9.3 13.9

Orem 2 70.1 0.0 0.0 0.0 0.0 9.0 1.8 4.2 1.4 0.0 13.5 0.0 0.0

Utah Co. 3 8.8 0.0 0.0 0.6 0.0 0.0 0.0 4.1 0.0 0.0 86.5 0.0 0.0
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TABLE 2 Input Parameters for 38 Trial Cluster Analyses on Land-Use Distress

No. of
Case Distance Linage Standardization clusters Comments

1 Euclidean Single None 20 Produced single large clusters of over 300 districts 
2 Euclidean Single None 15 with no cluster larger than 5 districts; chaining 
3 Euclidean Single None 25 effect took place

4 Euclidean Average None 20 Smaller main clusters and larger minor clusters 
5 Euclidean Average None 30 but not much diversity in residential scenarios
6 Euclidean Average None 18

7 Euclidean Centroid None 20 Relatively poor distribution of cluster sizes and 
8 Euclidean Centroid None 30 poor diversity in residential scenarios

9 Euclidean Complete None 20 Somewhat more diversity in residential scenarios
10 Euclidean Complete None 17

11 Euclidean McQuitty None 20 Little diversity in residential scenarios

12 Euclidean Median None 20 Large mega-cluster, like with single linkage

13 Euclidean Ward None 20 Relatively equal cluster sizes; good diversity

14 Pearson Average None 20 Pearson and Squared Pearson linkages created 
15 Manhattan Average None 20 mega-clusters; Manhattan seemed almost as good as 
16 Sq. Euclidean Average None 20 Euclidean; Squared Euclidean was nearly identical 
17 Sq. Pearson Average None 20 to Euclidean

18 Pearson Complete None 20 Pearson and Squared Pearson linkages created 
19 Manhattan Complete None 20 identical mega-clusters; Manhattan created slightly 
20 Sq. Euclidean Complete None 20 more diversity than Euclidean; Squared Euclidean 
21 Sq. Pearson Complete None 20 identical with Euclidean

22 Pearson McQuitty None 20 Changing the distance measure has similar effects 
23 Manhattan McQuitty None 20 as with average and complete linkages
24 Sq. Euclidean McQuitty None 20
25 Sq. Pearson McQuitty None 20

26 Pearson Ward None 20 Pearson and Squared Pearson produced slightly less 
27 Manhattan Ward None 20 diversity in residential and agricultural scenarios; 
28 Sq. Euclidean Ward None 20 Squared Euclidean lumped agricultural scenarios 
29 Sq. Pearson Ward None 20 together; Manhattan similar to Euclidean

30 Sq. Euclidian Ward Z-scores 20 Similar diversity to case without standardization 
(case 28) but oddly distributed variables better 
represented

31 Euclidean Complete Z-scores 20 Much poorer diversity than in case 9

32 Euclidean Average Z-scores 20 Forms mega-cluster; worse than case 4

33 Euclidean Ward Z-scores 20 More diverse in some areas than with case 13

34 Sq. Euclidean Ward Z-scores 30 Improved diversity over case 30

35 Euclidean Ward Z-scores 30 More diverse than case 33

36 Euclidean Ward None 30 Similar diversity to case 35 but oddly distributed 
variables like R3, R4 not as well represented

37 Euclidean Ward Scaled 30 Oddly distributed variables well-represented but 
percentages not enough of an improvement in variable bounds

38 Sq. Euclidean Ward Z-scores 35 Number of clusters increase to 35 to separate a 
few odd groupings



Clearly, Provo 3 is made up of largely commercial
uses; Orem 2 is primarily single-family residential,
and Utah County 3 is mostly agricultural. Ideally,
the classification scheme chosen would allow for
three different scenarios, distinct from those sce-
narios for residential, commercial, and agricultural
that do not include warehouses, to represent these
districts.

Case 36 used 30 clusters with no standardiza-
tion applied to see if the increased number of clus-
ters alone would provide for more distinct
groupings without sacrificing representation of the
more minor uses like mobile homes, apartments,
and warehouses. The range of variables about the
means decreased significantly, but most representa-
tion of extreme values for the minor variables was
lost. For case 37, a compromise standardization
procedure was tried before clustering. Instead of
using Z-scores to standardize the variables, all vari-
ables were scaled such that the minimum value for
the variable was 0.0% and the maximum value was
100%. Hence, a value of 5.8% for mobile homes
(minimum 0% and maximum 12.1%) in West
Valley City was scaled to 48.3% (5.8% / 12.1% �
100%). This method of standardization worked
nearly as well as the Z-score method, but the
improvement in within-cluster dissimilarity was
small enough to make the effort unfruitful.

Consequently, the parameters chosen as best for
cluster analysis on the land-use data were Ward’s
linkage method, the Squared Euclidean distance
measure, and Z-score standardization of variables
(case 38). Increasing the number of clusters to 35
broke up a few additional odd groupings. The clus-
ter that included the three districts mentioned pre-
viously, for example, was broken into two clusters.
It was decided that an additional reduction of dis-
similarities would have required a greater number
of clusters in the final analysis than was desirable;
the final number of scenarios became 35. 

Table 3 (on pages 10 and 11) lists the final 35
scenarios with cluster means. Since adding the
mean percentages for each scenario did not always
result in a total of 100% (sums varied from 92 to
100%), the mean values in table 3 represent the
cluster means scaled such that their sums total
100% for each scenario. Figure 4 (after page 42)
shows the district map coded for the results of the

final cluster analysis with 35 scenarios. This figure
shows which planning districts have similar land-
use patterns. Table 3 and figure 4 show that the
clustering by the Ward’s linkage method performed
well for the given data set.

CONCLUSIONS

This paper showed cluster analysis to be a viable
tool for grouping planning districts into a smaller
number of planning scenarios for regional land-use
and transportation sketch planning. A comparison
of figures 2 and 4 shows that cluster analysis
reduces the amount of detail required to represent
a wide variety of land-use scenarios but does so
without significantly altering the big picture on a
regional level. This finding is potentially significant
to future land-use and transportation planning
projects. Alternative land-use scenarios used in
planning models need not be limited to a few hypo-
thetical land-use cases. Rather, multiple scenarios
can be generated as warranted to represent accu-
rately all patterns of land use found in a given
regional area. Scenarios currently not found in the
study region, such as those taken from another
region, may then be added to represent a fuller
spectrum of possibilities. 

Certain challenges must be met in order to apply
cluster analysis to land-use data successfully. Chief
among these is the proper selection of a distance
measure, linkage method, and standardization pro-
cedure. The findings of this study do not eliminate
the need to reiterate this process for data gathered
from areas outside the Wasatch Front region of
Utah. Additionally, measures must be taken to
ensure that the input land-use data is current and
accurate or the investigator risks magnifying the
inaccuracies in the final set of derived scenarios.
Uniformity among agencies in the categorized
description of land use is indispensable in the gath-
ering of timely and accurate data on regional land-
use scenarios. Lastly, a good method for drawing
district boundaries is needed to ensure that subjec-
tive concerns do not influence the process. 
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TABLE 3 Land-Use Distribution in Percent of the Clustered Land-Use Scenarios for 343 Wasatch Front Region Planning Districts

No. of Mean land-use distributions, percent

Scenario districts R1 R2 R3 R4 R5 C1 C2 C3 C4 C5 AG OS VA Name of scenario

1 42 13.1 0.1 0.1 0.1 0.0 1.1 1.2 0.0 0.0 2.5 78.3 0.7 2.8 Agriculture with some SF residential

2 35 43.2 0.1 0.2 0.4 0.0 3.7 3.9 0.1 0.1 4.5 37.8 0.3 5.7 SF residential and agriculture

3 34 89.7 0.8 0.5 0.1 0.0 3.6 0.5 0.0 0.0 0.5 2.5 0.1 1.6 SF residential

4 23 68.8 7.5 0.8 0.1 0.0 4.3 1.0 0.1 0.3 6.2 6.3 0.9 3.6 SF residential with 2-4 unit residential

5 16 69.5 0.3 0.9 0.0 0.0 18.5 2.4 0.3 1.0 2.6 2.0 0.1 2.3 SF residential with retail

6 14 67.0 1.4 5.3 0.1 0.1 8.0 0.2 0.0 0.3 9.0 3.9 0.5 4.3 SF residential with apartments and 
special purpose

7 20 62.9 0.5 0.6 0.1 0.0 4.7 1.5 0.0 0.1 8.6 6.5 8.9 5.6 SF residential with open space, 
special purpose, and agriculture

8 11 25.1 1.3 2.8 0.0 0.1 4.5 8.9 0.1 0.1 27.1 3.6 5.3 21.0 Special purpose and SF residential 
with vacant land and apartments

9 28 70.6 0.3 0.4 0.1 0.1 2.4 0.6 0.0 0.0 14.3 6.4 0.3 4.6 SF residential with special purpose

10 14 52.9 1.4 0.8 0.0 0.0 4.6 1.2 0.0 0.1 7.5 3.2 22.9 5.4 SF residential with open space

11 7 2.5 0.0 0.0 0.0 0.0 0.1 82.3 0.0 0.0 0.4 14.5 0.0 0.1 Industrial

12 11 69.2 1.7 0.6 2.4 0.0 2.1 0.4 0.0 0.5 5.1 13.7 0.2 4.2 SF residential with agriculture and 
mobile homes

13 10 19.4 1.9 1.4 0.2 0.0 25.2 25.2 0.0 0.0 4.3 0.6 3.1 18.7 Industrial, retail, SF residential, and 
vacant land

14 9 42.0 6.1 9.2 0.1 0.1 18.6 1.0 0.1 0.4 15.3 0.0 0.7 6.5 SF, 2-4 unit and apartment residential
with retail and special purpose

15 7 5.4 0.7 0.4 0.2 0.0 7.7 28.1 0.4 0.1 4.7 5.9 1.0 45.6 Vacant land with industrial

16 4 8.2 0.3 0.9 0.3 0.0 2.4 0.5 0.0 0.0 79.5 1.7 1.8 4.3 Special purpose with some SF residential

17 2 0.0 0.0 0.0 0.0 0.0 5.9 10.3 0.0 0.0 3.5 4.0 37.0 39.3 Vacant land and open space with 
industrial

18 6 4.9 0.0 0.0 0.0 0.0 0.9 2.6 0.1 0.0 1.0 14.3 1.8 74.5 Vacant land with some agriculture

19 1 1.2 0.2 2.9 0.0 0.0 0.2 0.0 0.0 29.8 55.8 0.0 9.9 0.1 Special purpose and office

20 1 34.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 64.6 0.9 Open space with residential
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TABLE 3 Land-Use Distribution in Percent of the Clustered Land-Use Scenarios for 343 Wasatch Front Region Planning Districts (continued)

No. of Mean land-use distributions, percent

Scenario districts R1 R2 R3 R4 R5 C1 C2 C3 C4 C5 AG OS VA Name of scenario

21 3 10.8 0.0 1.1 0.6 0.0 65.6 5.0 0.0 0.0 2.9 4.9 0.0 9.1 Retail with some SF residential and 
vacant land

22 3 20.4 0.3 0.2 1.2 0.0 21.4 5.0 0.0 2.7 6.0 2.9 1.1 38.7 Vacant land with retail and SF 
residential

23 5 38.7 1.9 28.5 0.5 0.1 18.1 1.9 0.4 0.1 0.0 1.4 0.1 8.1 Apartments with SF residential and 
retail

24 7 40.8 0.8 4.0 4.0 0.0 16.5 8.9 0.8 0.4 9.2 8.3 1.4 4.9 SF residential with retail, industrial, 
special purpose, and agriculture

25 2 13.2 0.0 0.0 0.0 0.0 1.5 3.2 12.7 0.1 6.0 35.3 0.0 28.0 Agriculture and vacant land with 
warehouses

26 4 35.4 3.3 3.0 10.5 0.0 4.6 4.0 0.1 0.9 20.1 10.9 0.6 6.5 SF residential and mobile homes with 
special purpose

27 6 56.7 1.8 0.0 0.9 0.0 3.5 4.8 4.2 0.5 0.6 26.2 0.0 0.8 SF residential with agriculture and 
some warehouses

28 3 37.7 1.4 1.6 4.0 0.3 1.8 0.2 0.1 0.0 11.4 5.2 1.0 35.3 SF residential and vacant land with 
special purpose and mobile homes

29 2 16.6 1.8 0.2 0.0 0.0 33.8 21.2 10.3 2.6 6.2 1.0 2.5 3.7 Retail, industrial, and warehouses 
with some SF residential

30 2 41.7 4.5 1.7 0.0 0.1 6.6 0.2 0.4 8.1 14.0 2.5 14.2 5.9 SF residential with office and some 
special purpose and open space

31 5 16.2 2.6 1.7 0.9 0.0 17.3 29.5 3.8 0.7 9.8 9.5 3.4 4.6 Industrial with retail, SF residential, 
and some warehouse

32 3 39.1 18.8 9.5 1.7 0.0 14.5 3.2 0.5 0.6 3.0 4.0 1.2 4.0 SF and 2-4 unit residential and 
apartments with some retail

33 1 47.3 0.7 0.0 0.0 13.9 0.0 0.0 0.0 0.0 0.0 36.2 0.0 1.9 SF residential and group quarters 
with agriculture

34 1 13.9 2.2 21.8 0.0 0.0 0.7 0.1 0.0 0.0 53.9 0.4 3.8 3.2 Special purpose and apartments with 
some SF residential

35 1 41.7 46.4 0.0 0.0 0.0 2.8 0.0 0.3 0.2 0.1 8.6 0.0 0.0 2-4 unit residential and SF residential
SF = Single family



ABSTRACT

The political acceptability (A) of public policy
measures correlates positively with program effec-
tiveness (E) and negatively with program cost (C)
and other obstacles to implementation (I) under
normal circumstances. Ferguson (1991) observed
that the political acceptability of many demand
management strategies seemed to correlate nega-
tively with implied program effectiveness.
Engineers, economists, and planners each have
their own unique professional standards. Increased
effectiveness is the primary goal of engineering.
Improved efficiency is the generally accepted stan-
dard in economics. Process issues are of vital con-
cern in planning. A review of the literature
indicates few studies that rate demand manage-
ment strategies in terms of all four variables of
interest (A, E, C, and I) simultaneously. Three rele-
vant studies were identified: one each by an engi-
neer, an economist and a planner. Raw data,
regression results, bivariate correlations, and
model output reveal that two of the three studies
support the Ferguson hypothesis. The other sup-
ports a more traditional public policy model. E is
the most influential variable in the engineer’s data.
C is the most influential variable in the economist’s
data, while I is the most influential variable in the
planner’s data. These revealing results suggest the
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subtle manner in which professional training and
experience may alter perceptions of transportation
policies and programs in professional practice.

INTRODUCTION

Transportation planning is a capital-intensive
process. The Federal-Aid Highway Act of 1956
removed gasoline tax revenues from the federal
budget and set up a dedicated Highway Trust
Fund. The Act further specified that all local return
monies from this source must be allocated to the
construction of new highway facilities (Weiner
1999). Project evaluation of highway capital
investments was relatively simple in those days.
Capital costs were fixed and low, at least by later
standards. Operating costs were negligible from the
government’s perspective. Benefits included
reduced out-of-pocket travel costs and time.
Reduced costs were sufficient to justify most pro-
posed projects, making concerns about the imputed
value of travel time irrelevant. In the 1960s, rising
land acquisition, highway construction costs, and a
diminished potential to shorten travel distances
made saving time more important in justifying new
highway investments (Walters 1961).

In the 1970s, transportation system management
(TSM) came into vogue. Even with savings in travel
time properly accounted for, new highway con-
struction became more expensive and difficult to
justify, particularly in the face of local citizen oppo-
sition. The purpose of TSM is to soften the blow of
transportation planning by making it more short-
range, user-friendly, and demand-oriented. TSM
actions include improved vehicular flow, preferen-
tial treatments for high occupancy vehicles, reduced
peak period travel, parking management, promo-
tion of alternative modes of transportation, and
transit and paratransit service improvements
(UMTA 1977). TSM’s most ardent admirers pre-
dicted its possible demise from political opposition,
the projected outcome of institutional inertia, and
professional apathy (Gakenheimer and Meyer
1979). However, many TSM strategies have done
much better than expected.

In the 1980s, travel demand management
(TDM) became the watchword of the day. TDM is
the demand side of TSM, making it more suitable
for private sector participation. TDM operates

even closer to end users such as individuals, house-
holds, and firms. TDM strategies include alterna-
tive modes and hours of travel, alternative
locations for specific activities, as well as economic
incentives and institutional arrangements that may
be required (Orski 1987).

Due to the wide range of strategies available to
deal with traffic problems, the complexity of deci-
sions associated with congestion management has
increased in recent years. Sorting through the
bewildering array of alternative policies, programs,
and projects can be a daunting task. Word of
mouth, hearsay evidence, and the occasional case
study can only go so far. The more comprehensive
the evaluative outlook, the better the implied
advisement should be. Comprehensive compara-
tive assessments of traditional planning, TSM, and
TDM techniques, however, remain relatively few
and far between (Ferguson 2000).

PREVIOUS STUDIES

One study by the Urban Mass Transit Association
(UMTA) (1977) categorizes TSM measures with-
out identifying any of the potential impacts.
Wagner and Gilbert (1978) evaluates TSM meas-
ures in terms of effectiveness and cost but omits any
discussion of implementation issues. Misch and
Margolin (1981) categorizes the “feasibility or
prospects” of TSM actions taken in support of
ridesharing in a limited fashion. Schonfeld and
Chadda (1985) focuses on the effectiveness of
travel reduction options with particular emphasis
on parking management strategies. Levinson et al.
(1987) evaluates the effectiveness of TSM strategies
in terms of connected “impact chains.” Bhatt and
Higgins (1989) focuses mainly on results, measured
in terms of mode split (table 1).

Two studies by the Institute of Transportation
Engineers (ITE) (1989 and 1997) present informa-
tion on impacts, costs, and obstacles to implemen-
tation associated with a wide range of congestion
control and mobility enhancement tools but discuss
political acceptability only tangentially. Ferguson
(1991) observes that the public acceptability of
many TDM strategies correlates negatively with
their implied effectiveness. Road and parking pric-
ing are more effective but less popular strategies.
However, voluntary efforts to promote alternative
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TABLE 1 Performance Measures
Measure(s) of 

Study Effectiveness Cost Implementation Acceptability Strategies

Wagner and Gilbert (1978) 7 applications + 2 (capital + 13 TSM strategies
2 impacts operating)

Misch and Margolin (1981) 2 (effect + compatibility) 1 (cost per VMT or 1 (feasibility or prospects) 20 TSM actions
VHT reduced)

Schonfeld and Chadda (1985) 4 effects + 1 application 2 (user + general) 1 (problems and requirements) 50 travel reduction options

Levinson et al. (1987) 17 (goals or impacts) 10 TSM strategies

Bhatt and Higgins (1989) 1 (results) 25 TSM programs

ITE (1989) 1 (impacts) 1 (costs) 1 (implementation) 55 congestion management tools

Ferguson (1991) 0 (implied) 1 (public) 4 TDM strategy groups

Downs (1992) 2 (extent + impact) 2 (commuter + 2 (institution + 1 (political) 23 congestion-reducing policies
social) administration)

Zupan (1992) 1 application + 4 impacts 3 (employee + 1 (index) 4 (employee + employer + 22 TDM solutions
employer + public) municipal + public)

Arnold (1993) 1 (scalar) 1 (scalar) 1 (scalar) 1 (number of agencies) 53 congestion-reducing measures

Comsis (1993) 1 (vehicle trip 22 TDM programs
reduction)

OECD (1994) 8 applications + 35 congestion control strategies
8 impacts

McBryan et al. (1996) 2 applications + 2 (incremental 4 (enabling + implementing 33 TDM strategies
2 impacts cost + who pays) authority + time + difficulties)

ITE (1997) 1 (benefits/costs) 1 (implementation) 82 mobility enhancement tools

Dueker et al. (1998) 3 applications + 1 (administration) 1 (political feasibility) 10 parking management strategies
2 impacts

Booz-Allen & Hamilton 9 direct + 12 indirect 1 (practical feasibility) 1 (political) 32 TDM strategies
(2000) effects

Totals 91 15 14 11 489

TDM = travel demand management
TSM = transportation system management
VHT = vehicle hours of travel
VMT = vehicle-miles traveled



modes and hours of travel are more popular but
less effective.

Downs (1992), Zupan (1992), and Arnold
(1993) evaluate various mixes of congestion con-
trol and demand management strategies in terms of
four generalized performance measures: effective-
ness, cost, ease (or difficulty) of implementation,
and political acceptability. Dueker et al. (1998) per-
form a similar analysis on a smaller number of
parking management strategies. Comsis (1993)
and the Organisation for Economic Cooperation
and Development (OECD) (1994) revert to an ear-
lier emphasis on program effectiveness. McBryan et
al. (1996) balances effectiveness, cost, and imple-
mentation issues but deliberately excludes political
acceptability as “too arbitrary” (Shadoff 1997).

The remainder of this paper focuses on an analy-
sis and evaluation of data derived from Arnold
(1993), Downs (1992), and Zupan (1992), here-
inafter referenced to as such.

HYPOTHESES

There are two major hypotheses tested here, one
rather precise in nature, the other far less so.

1. Do Arnold, Downs, and Zupan confirm or deny
Ferguson’s (1991) assertion that TDM program
effectiveness and political acceptability are neg-
atively rather than positively correlated? An
objective comparison of the signs and signifi-
cance of relevant parameters determines the out-
come of this test.

2. Are there any other differences in data or results
among the three studies examined? How do
such differences relate to the professional out-
look of the respective authors? This is a much
more subjective test but intriguing nonetheless.

AUTHORS

In order to evaluate the possible contribution of
professional perspectives to the understanding of
complex policy issues such as congestion control or
demand management, it is important to know with
whom one is dealing. The three studies in question
were each authored by a single individual (table 2).

Eugene Arnold is a Senior Research Scientist at
the Virginia Transportation Research Council,
Virginia Department of Transportation (VDOT) in
Charlottesville, Virginia. The Commonwealth of
Virginia is one of the most conservative states in the
Union. VDOT ranks among the more innovative
state transportation agencies, thanks in no small
part to its proximity to the nation’s capital. Arnold
is an active member and national leader in the
Institute of Transportation Engineers (ITE). For
example, he chaired the committee that prepared
the most recent update of Trip Generation (ITE
1997). It should come as no surprise to find that
Arnold’s structure of the research problem closely
parallels that identified in ITE (1989).

Anthony Downs is a Senior Fellow in Economic
Studies at the Brookings Institution in Washington,
DC. His expertise extends to topics as diverse as
democracy, demographics, housing, metropolitan
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TABLE 2 Authors and Data

Author

Attribute Arnold Downs Zupan

Professional orientation Engineering Economics Planning

Institutional affiliation Virginia DOT Brookings Institution Regional Plan Association

Expertise Vehicle trip generation The costs of sprawl Public transit and land use

Variable components 4 7 12

Latent variables 4 4 4

Observations 53 23 22

Data type Quantitative Qualitative Mixed

Data source Mail survey Author Author



policy, real estate, real estate finance, smart growth,
suburban sprawl, and urban policy. This is his first
foray into transportation planning in more than a
quarter of a century. Downs (1992) expands on the
ideas originally set forth in Downs (1962).

Jeffrey Zupan is Senior Fellow for Trans-
portation at the Regional Plan Association in New
York City. His research on the relationship between
land use and public transportation is well known
and respected. Pushkarev and Zupan (1977)
showed 1) what type of transit works best, 2)
where it works best, 3) which support policies are
most effective, and 4) how to estimate transit
demand and costs (see Lee 1978). The connection
between Zupan (1992) and Pushkarev and Zupan
(1977) is clear.

DATA 

The data used in this analysis are widely available
and based on previously published research results.
They are reproduced here mainly for the reader’s
convenience (see tables A-1 to A-3). However,
Arnold’s original survey data were obtained
directly from Arnold for this study. Table A-1
includes more information than was published in
the original paper.

Arnold

Arnold surveyed 85 local, regional, and state trans-
portation agencies in Virginia regarding 53 conges-
tion-reducing measures. The ratings and rankings
shown in table A-1 reflect the collective judgment of
traffic engineers and transportation planners in
Virginia, not necessarily Arnold’s personal opinions.

Arnold treats the ordinal scales he uses to meas-
ure effectiveness, cost, and implementation as inter-
val scales in his analysis: a testable proposition.
Arnold’s data are purely quantitative in presenta-
tion but largely qualitative in nature. This may
reflect a preference among engineers for data and
methods that are more objective. Arnold’s data
include 53 observations and only 4 variables, a case
of problem overidentification. This is positive, of
course. Engineers prefer larger margins of error.

Arnold’s principal research findings include the
following.

1. TSM measures have almost caught up with
supply-side measures in terms of actual use.

Supply-side measures are more effective but
extremely costly and face many obstacles to
implementation.

2. TDM measures are much less effective and
slightly more costly than TSM measures. With
obstacles to implementation about the same, it is
no surprise that TSM is much more popular
than TDM in the Commonwealth of Virginia.

Downs

Downs evaluates 23 congestion-reducing policies
using 7 items corresponding to 4 variables (table A-
2). Whereas the Arnold data appear purely quanti-
tative, the Downs data appear purely qualitative in
nature. Downs uses different semantic scales to
describe most of his items. The two cost items share
an identical scale.

All of the scales constructed by Downs are ordi-
nal in nature, with the possible exception of the
institution required for implementation, which
may be categorical. The Downs data are overiden-
tified but not nearly as much as the Arnold data.
Downs assigns a non-ambiguous descriptive adjec-
tive to each attribute for every policy he considers. 

Downs’ principal research findings include the
following.

1. Supply-side policies are more expensive but
require less institutional change than demand-
side policies.

2. Demand-side policies have broader effects but
are less politically acceptable than supply-side
policies.

Zupan

Zupan evaluates 22 TDM solutions using 12 items
corresponding to 4 variables (table A-3). Zupan is
the everyman of performance measurement. He
incorporates a little bit of everything in his evalua-
tion matrix, including both words and numbers,
scales both absolute and relative, as well as suitable
descriptors of measurement variability, non-appli-
cability, and the unknown. 

Zupan’s 12 items are just barely identified by the
22 observations in his matrix, providing another
indication of his tolerance for uncertainty. There is
not one item in Zupan’s matrix that is ranked con-
sistently using a single semantic scale. The only
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possible exception is ease of implementation,
which still includes two “unknowns” and one “not
applicable” rating. Planners may be less technical
than engineers and less consistent than economists,
but one thing stands clear: they are much more
comfortable with uncertainty.

Zupan’s principal research findings include the
following.

1. Strategies that reduce traffic congestion, have no
negative effect on transit, and are politically
popular should be pursued.

2. Strategies that have little effect on traffic conges-
tion, negative effects on transit, or are politically
unpopular should be avoided.

3. Strategies for which too little is currently known
should be studied more carefully.

Comparing the methodological results of these
three studies would be intriguing but difficult to
accomplish. Observed differences between the
three databases seem much greater on the surface
than any prospective similarities might be. The
problem of compatibility must be resolved in order
to make any more meaningful comparisons
between these studies and their results.

Semantic Scales

The next objective is to evaluate a model of the fol-
lowing general form:

A= f (E, C, I)

where

A = (political) acceptability
E = (program) effectiveness
C = (program) costs
I = (obstacles to) implementation

It is hypothesized that (political) acceptability
should be

1. Either positively or negatively correlated with
program effectiveness, depending on whether a
traditional public policy model applies, or
Ferguson’s 1991 conjecture is correct.

2. Negatively correlated with program costs and
obstacles to implementation.

In order to test these hypotheses, it is necessary
to convert the data found in tables A-1 to A-3 to

standard form. Certain assumptions are required;
the most important ones follow.

1. Observed semantic scales correspond to unob-
served, logically consistent, and mathematically
comparable probability surfaces that can be
mapped.

2. Observed variable components correspond to
unobserved or latent variables that may be
combined.

Given these assumptions, composite variables
representing A, E, C, and I may be computed and
subsequently analyzed using regression. The initial
assignment of values to each semantic scale in the
data is straightforward (table 3). 

1. Arnold’s use of semantics requires little com-
ment. He assigned values of 0, 1, and 2 to his 3
ordinal scales. This has been changed to 1, 2,
and 3 for consistency with the Downs and
Zupan data but otherwise should have no effect.

2. Downs employs a wide variety of different
labels. By inspection, all of his labels correspond
to a single four-point scale of zero to three, with
relatively minor variations as noted.

3. Zupan employs a bewildering array of positive
and difference scales, often simultaneously. He
occasionally uses different labels that mean the
same thing (for example, he uses “same” and
“none” on a difference scale). He uses three dif-
ferent labels to represent aspects of uncertainty
(“varies,” “unknown,” and “not applicable”).
Despite these obstacles, it remains possible to
assign plausible initial values to all of his label-
ing conventions.

REGRESSION RESULTS

With an initial assignment of semantic values in
hand, it is possible to calculate regression equations
for each dataset. This does not imply that the
results will maximize the potential of any available
information, of course. For that to happen, several
more questions must be answered.

1. Semantic values: the initial assignment of seman-
tic values is unambiguous in the case of Arnold
and Downs. The accuracy of the semantic values
assigned to Zupan’s mixed scales and uncer-
tainty measures is open to question.
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TABLE 3 Semantic Scales

Numeric values (initial assignment)

Author Variable Component –2 –1 0 1 2 3 4 5

Arnold
Effectiveness Minimal Average Maximum

Cost Inexpensive Average Expensive

Implementation Easy Average Difficult

Acceptability No Yes

Effectiveness Extent Narrow Variable Broad
Impact Little Moderate Great

Cost Direct to commuters   } None Minor Moderate GreatDowns To all of society

Implementation Required institution None Cooperative Regional
Ease of administration Easy Moderate Hard

Acceptability Poor Moderate Good

Effectiveness SOV reduction None / varies / Low Medium High
Peak trip reduction     } unknown
VMT reduction Highly Negative Positive
Transit impact negative

Cost Employee                   } Lower Same / none /
Employer varies / unknown / Higher

Zupan Public capital not applicable

Implementation Unknown / 
not applicable Difficult <_______________________________________> Easy

Acceptability Employee Varies / unknown / Low Medium High
Employer                   } not applicable
Municipal           Negative Positive
Public

SOV = single-occupancy vehicle
VMT = vehicle-miles traveled



2. Semantic differences: Arnold and Downs
employ a series of ordinal scales. Semantic dif-
ferences between values on an ordinal scale may
be linear or non-linear: a testable proposition. It
is difficult, if not impossible, to evaluate seman-
tic differences where the semantic values them-
selves are open to question, leaving Zupan out of
this discussion.

3. Component weights: where more than one item
describes a variable, these must be combined to
provide a unitary performance measure. For
simplicity, it is assumed here that each item bears
the same weight: a testable proposition.

4. Variable transformations: none of the variables
used in this analysis, with the possible exception
of Arnold’s measure of political acceptability, is
anything more or less than a dimensionless per-
formance indicator. All variables were standard-
ized under an assumption of normality in
recognition of this fact and to facilitate compar-
isons. The limited sample sizes involved do not
allow for any other assumption.

Arnold

The Arnold data generally support the traditional
public policy model (table B-1):

1. Arnold’s measure of political acceptability is
positively correlated with program effectiveness
and negatively correlated with program cost and
obstacles to implementation. The cost variable is
not statistically significant in any of the equa-
tions although it does approach significance as
the model’s assumptions are relaxed.

2. Supply-side measures are most politically
acceptable, followed by TSM and growth con-
trol, with TDM last. The only statistically signif-
icant difference is between supply-side and
TDM measures.

3. Semantic differences between values on Arnold’s
ordinal scales are clearly nonlinear.

4. The extent of nonlinearity varies. Implemen-
tation is least, and cost is most nonlinear. Low
and medium costs are not semantically distin-
guishable in Arnold’s data.

Downs

The Downs data generally support the Ferguson
hypothesis (table B-2).

1. Political acceptability is negatively correlated
with program effectiveness, cost, and obstacles
to implementation. There is a statistically signif-
icant bias toward supply-side policies.

2. Most of the semantic differences in the Downs
data are highly correlated with their respective
component weights. Given the limited sample
size, it is not possible to test simultaneously for
both semantic differences and component
weights under these conditions. The sole excep-
tion to this rule is the difference between no cost
and minor costs, which seems to operate some-
what more independently.

3. Component weights are of somewhat greater
interest than semantic differences, at least from
a public policy perspective. Component weights
that maximize overall model goodness-of-fit
include the following:

a. Effectiveness: impact is more important
than extent, but the difference is fairly slight.
b. Cost: social costs are twice as important as
commuting costs.
c. Implementation: required institution
(which operates efficiently as a linear vari-
able) weighs in at an order of magnitude
greater than ease of administration.

4. Simultaneous estimation of low-cost semantic
differences and variable component weights pro-
duce results roughly equivalent to those found
separately, indicating a stable solution to the
model.

Zupan

The Zupan data generally support the Ferguson
hypothesis (table B-3).

1. Political acceptability is negatively correlated
with program effectiveness and obstacles to
implementation and is, paradoxically, positively
correlated with program cost.

2. “Varies” is an unknown quantity, normally
assigned to the midpoint of any given range of
values. Zupan uses two distinct scales to
describe key elements of program effectiveness
and political acceptability, making it unclear
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where “varies” belongs on a uniform or com-
bined scale. The regression results clearly sup-
port the notion that “varies” refers to a positive
(low-medium-high) rather than a difference
(negative-none-positive) scale in this analysis.

3. Two other semantic-value assumptions bear
additional scrutiny.

a. “Unknown” and “not applicable” belong
at the midpoint of their respective ranges,
rather than at one or the other of the two
extremes; this is true in all cases.
b. The difference and positive scales are sepa-
rate and distinct for program effectiveness but
are semantically indistinguishable in the case
of political acceptability. This is an unusual
finding to say the least.

4. Best fitting component weights include the
following:

a. Transit impact is the most important com-
ponent of program effectiveness, followed by
vehicle-miles traveled (VMT) reduction and
peak trip reduction. Single-occupancy-vehicle
(SOV) reduction has no weight.
b. Employer cost is the most important com-
ponent of program cost, followed by public
capital cost. Employee cost has no weight.
c. Municipal acceptance is the most impor-
tant component of political acceptability, fol-
lowed by public acceptance and employee
acceptance. Employer acceptance has no
weight.
d. The unexpected positive correlation
between program cost and political accept-
ability may be explained largely as a function
of component weights. The relationship is sig-
nificant only in the last equation, where
employer costs dominate the cost variable,
while employer acceptance is omitted from
the political acceptability variable.
Economists refer to this as a transfer payment
(Small 1999). Others might call it a tax or
even an unfunded mandate.

Dueker et al. (1998) evaluate 10 parking man-
agement strategies in terms of 3 scopes or applica-
tions (temporal, functional, and spatial), 2 benefits
or impacts (effectiveness and efficiency), ease of
administration and political feasibility. A simple
regression reveals that political feasibility is nega-

tively correlated with effectiveness, lending support
to the Ferguson hypothesis. No measure of cost was
provided, and ease of administration was not corre-
lated with political feasibility among these data.

Booz-Allen & Hamilton (2000) evaluate 32
TDM strategies loosely based on OECD (1994) in
terms of 9 direct travel effects, 12 indirect policy
effects or implications, practical feasibility (imple-
mentation), and political acceptability. A simple
regression reveals that obstacles to implementation
are strongly negatively associated, direct travel
effects marginally negatively associated, and indi-
rect effects not associated with political acceptabil-
ity, lending support to the Ferguson hypothesis.

It would seem that the Ferguson hypothesis
holds sway over congestion control and demand
management strategies in many instances. Program
effectiveness is negatively associated with political
acceptability according to data derived from four
out of five independent studies (table 4). This is a
most unfortunate result, at least from a public pol-
icy perspective.

VARIABLE CORRELATIONS

For those who prefer simpler explanations, bivari-
ate correlations based on naïve assumptions are
shown in table 5.

These correlations illustrate that

1. Arnold’s independent variables are highly corre-
lated. This is an unanticipated response to the
original survey design. Although not very desir-
able, these associations do not seem to have
affected model estimation in any negative way.
In fact, the estimated equations in table B-1 are,
if anything, superior to the direct correlations
shown in table 5. Program effectiveness exhibits
the highest direct correlation with political
acceptability in Arnold’s data.

2. Downs’ independent variables are largely inde-
pendent of one another. Program effectiveness
and cost are marginally correlated with each
other, in a positive direction. Program cost
exhibits the highest direct correlation with polit-
ical acceptability in Downs’ data.

3. Zupan’s variables are more like Downs’ than
Arnold’s. Program effectiveness and cost are
marginally correlated, in a negative direction.
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This is yet another odd finding. Obstacles to
implementation exhibit the highest direct corre-
lation with political acceptability in Zupan’s
data.

Engineers seek technical solutions to the prob-
lems they face. Economists search for low-cost
solutions. Planners search for institutional answers
(Mandelbaum 1996; Marshall 1997). The inde-
pendent variable most highly correlated with polit-
ical acceptability (A) in this analysis is

1. Program effectiveness (E)—Arnold, the engineer

2. Program cost (C)—Downs, the economist

3. Obstacles to implementation (I)—Zupan, the
planner

These simple bivariate correlations would seem
to support the idea that political acceptability is in
fact defined to some limited extent with particular
professional perspectives kept in mind.

OUTLIERS

One advantage of the equations shown in tables B-1
to B-3 is that values can be calculated for each of
the four variables (A, E, C, and I) and compared
across each data set.
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TABLE 4 Regression Results
Independent variables

Author Effectiveness Cost Implementation d.f. R2 (percent)

Arnold +0.51* –0.28*** –0.57* 49 39.3

Downs –0.32** –0.62* –0.35** 19 75.4

Zupan –0.45* +0.39* –0.56* 18 78.3

Dueker et al –0.84* NA –0.04 9 67.8

Booz-Allen Hamilton –0.22*** NA –0.70* 28 52.2
* significant at 0.01 level 
** significant at 0.05 level 
*** 1.00 < t < 2.00

d.f. = degrees of freedom
NA = not applicable
U = data are unavailable

TABLE 5 Variable Correlations

Variable
Author Variable Cost Implementation Acceptability

Effectiveness 4.46 4.37 2.56

Arnold Cost 6.12 –0.28

Implementation –1.54

Effectiveness 1.42 –0.13 –2.2

Downs Cost 0.68 –4.02

Implementation –2.27

Effectiveness –1.54 0.18 –2.08

Zupan Cost 0.49 1.72

Implementation –2.59
Note: All correlations are expressed as bivariate regression tests of "t" to facilitate comparison.



Arnold

Arnold’s model output (table C-1) does not vary
much from the original data (table A-1). The values
in table C-1 are directly comparable with those in
tables C-2 and C-3, however, while those in table
A-1 are not. Residuals are calculated using the fol-
lowing formula:

where

SRSD = studentized residual
AP = political acceptability (predicted)
AO = political acceptability (observed)

= standard error of AP

A negative SRSD implies a positive bias in favor
of that measure. In Arnold’s case, survey respon-
dents reported more examples of new and recon-
structed highways in Virginia than the model
predicts. Toll roads and high-occupancy vehicles
(HOV) lanes produced fewer examples than the
model predicts, serving as a confirmation of the
model.

TSM measures show greater variability in
Arnold’s data.

1. Intersection improvements, restricted on-street
parking, and five other traffic flow enhance-
ments are favored.

2. Intelligent transportation system improvements
(still relatively new in 1992) are not favored.
This may have been a short-term effect, since
remedied during the intervening time period.

Paratransit services and growth management
round out the list of strategies that apparently
receive a limited form of preferential treatment in
Virginia (Cervero 1997).

Downs

Downs finds that demand-side policies are slightly
more effective than supply-side policies but more
difficult to implement (table C-2). This opposes
Arnold’s findings.

Downs’ data show the following supply-side
biases.

1. For: incident management and HOV construction

2. Against: new roads and transit service
improvements

Down’s data show the following demand-side
biases.

1. For: growth management

2. Against: commuting allowances, staggered
hours, and automobile license fees

Downs is the principal author of a widely read
Real Estate Research Corporation report on the
costs of sprawl (Altshuler 1977). Downs presum-
ably should favor growth management beyond any
limited ability it might have to deal with traffic con-
gestion as an urban problem, based on this previ-
ous work.

Zupan

Zupan’s data exhibit the following model biases
(table C-3).

1. For: tax deductible transit vouchers, transit-
friendly design, carpools, staggered shifts, and
preferential parking

2. Against: trip reduction ordinances, employer
subsidized transit, parking pricing, and growth
management

None of the biases reported here are particularly
consistent, other than that growth management
shows up as an outlier in all three models. This
identifies growth management as an issue of
greater than average political controversy. Few of
these biases are statistically significant, and none is
influential enough to bias parameter estimates.

In summary (table 6):

1. Arnold reveals a slight bias in favor of certain
types of highway projects.

2. Zupan reveals a slight bias in favor of certain
types of transit projects.

3. Most of the residuals in Downs are random arti-
facts of model construction.

Other comparisons are best left to readers to
explore on their own. Consider the relatively
straightforward issue of parking pricing.

1. Arnold has something he calls differential park-
ing rates, a limited variation on the general
theme of parking pricing.

2. Downs provides two examples, a parking tax on
peak-hour arrivals and the elimination of incen-
tives to provide free employee parking. Both of
these are indirect forms of parking pricing.
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3. Zupan lists two aspects of parking pricing,

including parking pricing and parking ratios.

Parking ratios affect parking pricing indirectly,

similar to federal tax incentives.

These three authors do not necessarily agree on

the individual ratings of parking-pricing

approaches any more than they do on how parking

pricing should be labeled as a congestion control or

demand management strategy.

CONCLUSIONS

How are program effectiveness, cost, obstacles to
implementation, and political acceptability
defined?

1. Effectiveness: effectiveness may be defined in
terms of applications or impacts and is usually
represented as some combination of both. The
overwhelming emphasis in the literature on
effectiveness may be overdone, however,
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TABLE 6 Outliers

Author Strategies Tactics Studentized residual

Major intersection improvements –2.02
Removing/restricting on–street parking –1.86
Traffic management during reconstruction –1.49
Turn prohibitions –1.1
Minor intersection improvements –1.09

TSM (11 of 20) One–way streets –1.05
Integrated freeway/arterial surveillance/control system 1.03
Reversible traffic lanes on arterials 1.29

Arnold Traffic surveillance/control system 1.44
Traffic management team 1.66
Motorist information system 1.67

Reconstructing highways with improved design –1.64

Supply (4 of 7)
Constructing new highways –1.14
Constructing HOV lanes 1.35
Toll–based financing to expedite new facilities 1.40

TDM (1 of 21) Implementing/improving paratransit services –1.34

Growth (1 of 5) Growth management –1.85

Rapidly removing accidents –1.55

Supply (4 of 8)
Building added HOV lanes –1.41
Building new roads without HOV lanes 1.11

Downs
Improved transit service, amenities 1.19

Adopting local growth limits –1.61

Demand (4 of 15)
Increasing automobile license fees 1.04
Staggered working hours 1.29
Tax-deductable commuting allowances 1.92

Transitchek (tax-deductable vouchers) –1.81
Transit–friendly design –1.26
Carpools –1.22

Zupan TDM (7 of 22) Staggered shifts –1.22
Preferential parking –1.06
Employer-subsidized transit 1.06
Trip reduction ordinances 1.88

HOV = high-occupancy vechicle
TDM = travel demand management
TSM = transportation system management

Note: studentized residuals may be interpreted as tests of "t."



especially if effectiveness is negatively correlated
with political acceptability.

2. Cost: cost seems to be a somewhat neglected
issue, at least in relation to effectiveness. Given
that TSM and TDM programs often are
intended to serve as low-cost solutions, this may
be less of an impediment than it seems. Equity
impacts may be more important than efficiency
concerns in political terms and deserve greater
scrutiny as a result.

3. Implementation: obstacles to implementation
remain nebulous, at least in terms of definition.
More work certainly could be done to identify
the nature of and means to overcome those
obstacles to existing implementation.

4. Acceptability: political acceptability is, if any-
thing, the least understood aspect of the conges-
tion control, demand management, and mobility
enhancement problem. 

How do professional perspectives influence
these definitions?

1. Engineers: the dominance of engineering in the
debate over congestion control, demand man-
agement, and mobility enhancement is clear in
the definition of the problem to be solved. The
emphasis on effectiveness to the practical exclu-
sion of all else is a good indication of the engi-
neering mindset at work. Transportation
engineers must look beyond their own interests
to see other aspects of the problem.

2. Economists: low-cost solutions to traffic conges-
tion and air pollution may reduce the urgent
necessity to think in economic terms, except for
the considerable efficiency and equity impacts
that might otherwise accrue (Garrett and Wachs
1996; Howitt and Altshuler 1999). Cost estima-
tion seems undervalued in the current literature,
with the identification of distributional effects
even less in evidence. There is clearly work to be
done by transportation economists in this area.

3. Planners: implementation issues are discussed
slightly more often than cost issues in the litera-
ture, but the emphasis remains more anecdotal
than evidentiary in terms of presentation. A
practical definition of implementation issues and
how these may be categorized from a strictly
analytical point of view remains to be done.

How well is the decisionmaking process actually
understood?

1. Policymakers: most of the transportation deci-
sions are made by bureaucrats or politicians—
hence the frequent confusion between
“bureaucratic” implementation issues and
“political” acceptability. A clearer separation of
roles and responsibilities might help eliminate
this problem, at least partially.

2. Stakeholders: policymakers are influenced by a
variety of considerations in addition to their
own personal opinions and moral judgments.
Developers, employers, neighborhood associa-
tions, environmentalists, and a wide variety of
other advocacy groups are involved in decisions
that affect local communities. The perspectives
of each of these groups may color perceptions of
political acceptability and ultimately influence
the outcome of transportation policy decisions.

Arnold (1993) is an excellent example of how
to go about evaluating the political acceptability
of transportation policies, programs, or projects.
Downs (1992), Zupan (1992), and McBryan et al.
(1996) provide useful guidance on additional
aspects of program cost, obstacles to implementa-
tion, and political acceptability. Many others have
contributed to the identification of congestion
management strategies and measures of their
effectiveness.

Confirmation of the Ferguson (1991) hypothesis
leaves one important question unanswered. If the
traditional public policy model holds true under
most normal circumstances, either the model itself
or one of its variable components must be in error
in the present case. The model itself is too straight-
forward to be associated with any kind of specifi-
cation error. The acceptability variable operates
much as expected in relationship to the other vari-
ables in the model, and is therefore free from fur-
ther suspicion as well. The cost variable is
moderately suspect, due to its omission in some
cases and its unusual performance in yet another.

Effectiveness behaves more like a cost than a
benefit in most of the models tested here. One must
conclude that the beneficial effects thus measured
are associated with some additional indirect costs.
Such hidden costs must supercede and override the
direct benefits included in the measure’s original,

FERGUSON 63



more limited definition. Further research should
confirm or deny the validity of this conjecture.
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TABLE A-1 Arnold Data
Effectiveness Cost Implementation

Congestion-reducing measures Number of agencies Number of agencies Number of agencies

Increasing supply/adding capacity
Reconstructing highways with improved design 3 18 37 58 1.59 2 16 39 57 1.65 4 26 26 56 1.39 64

Constructing new highways 2 11 39 52 1.71 1 5 45 51 1.86 4 23 23 50 1.38 56
Widening by adding general purpose lanes 2 18 25 45 1.51 1 20 24 45 1.51 4 24 17 45 1.29 51

Providing highway grade separations 0 6 20 26 1.77 0 3 23 26 1.88 2 8 16 26 1.54 27
Providing railroad grade separations 1 10 14 25 1.52 0 3 21 24 1.88 3 11 10 24 1.29 26

Toll-based financing to expedite new facility construction 0 5 11 16 1.69 2 6 8 16 1.38 1 5 10 16 1.56 13
Constructing HOV lanes 1 1 7 9 1.67 1 3 6 10 1.50 0 3 7 10 1.70 9

Managing existing supply/using existing capacity more efficiently
Intersection improvements (channelization, turn lanes, signing,

bus stop relocation) 2 40 26 68 1.35 10 47 8 65 0.97 23 36 5 64 0.72 75
Other signal improvements, including hardware, upgrades, retiming, removal 4 37 24 65 1.31 17 45 3 65 0.78 44 20 0 64 0.31 71

Coordinated signal systems (arterial, grid, closed loop) 0 27 35 62 1.56 11 46 2 59 0.85 32 21 5 58 0.53 66
Removing/restricting on-street parking 9 29 21 59 1.20 46 11 0 57 0.19 20 23 16 59 0.93 64

Traffic management during reconstruction or other major improvements 10 34 12 56 1.04 14 33 7 54 0.87 27 20 5 52 0.58 60
Turn prohibitions 9 33 11 53 1.04 46 7 0 53 0.13 31 17 4 52 0.48 59

Improving other traffic control devices 8 31 11 50 1.06 20 26 3 49 0.65 30 19 1 50 0.42 54
One-way streets 4 26 15 45 1.24 22 21 0 43 0.49 13 21 9 43 0.91 52

Prohibiting maintenance/repairs on major routesduring peak traffic hours 2 13 35 50 1.66 27 22 1 50 0.48 31 17 1 49 0.39 52
Providing additional lanes w/o widening (shoulders, narrower lanes) 2 16 16 34 1.41 15 14 6 35 0.74 15 15 4 34 0.68 34

Arterial access management 6 5 7 18 1.06 12 4 1 17 0.35 3 10 4 17 1.06 19
Incident detection/management system/program 0 13 1 14 1.07 4 8 1 13 0.77 4 8 1 13 0.77 14

Traffic surveillance/control system 0 4 5 9 1.56 1 6 2 9 1.11 2 4 2 8 1.00 12
Traffic management team 2 7 3 12 1.08 8 3 2 13 0.54 8 4 1 13 0.46 11

Converting existing facilities to HOV facilities 1 6 4 11 1.27 5 1 5 11 1.00 2 2 7 11 1.45 8
Goods' movement management 3 6 0 9 0.67 4 4 0 8 0.50 1 5 3 9 1.22 8

Motorist information system 1 5 2 8 1.13 2 5 2 9 1.00 5 3 1 9 0.56 7
Ramp metering 1 6 0 7 0.86 1 5 2 8 1.13 1 5 1 7 1.00 6

Reversible traffic lanes on arterials 1 6 3 10 1.20 3 6 1 10 0.80 3 4 3 10 1.00 5
Integrated freeway and arterial surveillance/control system 0 5 3 8 1.38 0 4 3 7 1.43 1 4 2 7 1.14 3
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TABLE A-1 Arnold Data (continued)
Effectiveness Cost Implementation

Congestion-reducing measures Number of agencies Number of agencies Number of agencies

Managing/reducing existing demand
Providing public information on rideshare/transit 14 18 5 37 0.76 22 15 0 37 0.41 30 5 1 36 0.19 40

Park and ride lots 6 20 10 36 1.11 6 25 4 35 0.94 9 22 4 35 0.86 40
Implementing/improving transit fixed-route services 9 19 3 31 0.81 7 17 7 31 1.00 16 12 3 31 0.58 34

Daily flexible work hours (staggered/flextime) 4 18 9 31 1.16 25 6 0 31 0.19 18 10 3 31 0.52 33
Implementing/improving paratransit services 13 13 2 28 0.61 3 17 8 28 1.18 10 14 4 28 0.79 32

Commuter matching services 7 14 8 29 1.03 12 17 0 29 0.59 17 9 2 28 0.46 31
Subsidizing transit usage 8 16 4 28 0.86 3 16 10 29 1.24 14 12 3 29 0.62 28

Promoting nonvehicular alternatives to auto usage 11 13 3 27 0.70 8 15 3 26 0.81 10 13 4 27 0.78 26
Alternative work hours (compressed workweek) 4 17 1 22 0.86 19 3 0 22 0.14 13 5 3 21 0.52 23

Implementing express bus services 3 12 7 22 1.18 2 12 7 21 1.24 6 11 4 21 0.90 22
Implementing transportation management associations 5 11 1 17 0.76 6 12 0 18 0.67 5 13 0 18 0.72 19

Car/vanpool preferential parking 3 12 4 19 1.05 13 4 1 18 0.33 10 6 1 17 0.47 19
Communication in lieu of travel (teleconferencing) 6 10 2 18 0.78 10 8 0 18 0.44 10 6 2 18 0.56 17

Reducing or not increasing transit fares 3 9 1 13 0.85 3 6 5 14 1.14 6 6 2 14 0.71 13
Tax incentives for vanpools 3 7 1 11 0.82 3 8 0 11 0.73 4 5 2 11 0.82 12

Guaranteed ride home program 10 2 1 13 0.31 9 4 0 13 0.31 9 4 0 13 0.31 11
Communication in lieu of travel (telecommuting) 2 10 0 12 0.83 5 6 1 12 0.67 4 6 2 12 0.83 11

Government control of parking supply and location 4 5 0 9 0.56 5 2 2 9 0.67 3 5 1 9 0.78 11
Implementing/improving rail transit services 1 5 4 10 1.30 0 5 6 11 1.55 2 4 5 11 1.27 10

Reduced tolls for ridesharers 4 7 1 12 0.75 5 7 0 12 0.58 6 4 2 12 0.67 7
Differential parking rates 3 5 0 8 0.63 5 2 1 8 0.50 4 4 0 8 0.50 7

Avoiding/controlling demand growth
Growth management by public policy/ordinance/planning 5 29 8 42 1.07 17 21 4 42 0.69 3 18 20 41 1.41 41

Auto-restricted zones 1 1 2 4 1.25 0 4 0 4 1.00 0 3 1 4 1.25 25
Designing multiuse sites to minimize traffic 3 13 2 18 0.94 5 12 1 18 0.78 5 12 1 18 0.78 18

Mandatory trip reduction for new developments 2 6 4 12 1.17 6 4 1 11 0.55 1 5 6 12 1.42 11
Road/congestion pricing 0 2 0 2 1.00 0 1 1 2 1.50 0 2 0 2 1.00 1

Averages
Add supply 1.3 9.9 21.9 33.0 1.62 1.0 8.0 23.7 32.7 1.69 2.6 14.3 15.6 32.4 1.40 35.1

TSM 3.3 17.5 11.7 32.4 1.26 13.4 15.9 2.5 31.8 0.66 14.8 12.9 3.8 31.5 0.65 34.0
TDM 5.9 11.6 3.2 20.6 0.87 8.1 9.9 2.6 20.6 0.73 9.8 8.4 2.3 20.5 0.63 21.2

Growth control 2.2 10.2 3.2 15.6 1.06 5.6 8.4 1.4 15.4 0.73 1.8 8.0 5.6 15.4 1.25 19.2
All 4.3 13.8 6.7 24.9 1.10 10.0 12.2 2.4 24.6 0.69 10.9 10.2 3.3 24.4 0.69 26.3

HOV = high-occupancy vehicle
TDM = travel demand management
TSM = transportation system management
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TABLE A-2 Downs Data

Effectiveness Cost Implementation

Direct to To all Required Ease of Political
Congestion reducing policies Extent Impact commuters society institution administration acceptability

Supply-side
Coordinating signals, TV monitoring, ramp signals,

electronic signs, converting streets to one-way Narrow Minor None Minor None Moderate Good
Rapidly removing accidents Variable Great None Minor None Easy Good

Improving highway maintenance Broad Moderate None Moderate None Moderate Moderate
Upgrading city streets Variable Moderate None Moderate None Easy Moderate

Increasing public transit usage by improving service, amenities Narrow Minor None Moderate None Hard Moderate
Building added HOV lanes Variable Moderate None Great Cooperative Hard Moderate

Building new and expanding existing off-road transit systems Narrow Moderate Minor Great Cooperative Hard Poor
Building new roads without HOV lanes Variable Moderate None Great Cooperative Moderate Poor

Demand-side
Adopting local growth limits Narrow Minor None Minor None Easy Good

Encouraging people to work at home Broad Minor None None None Moderate Good
Changing federal work laws that discourage working at home Broad Minor None Minor None Moderate Moderate

Clustering high-density housing near transit station stops Narrow Minor None Minor Cooperative Hard Moderate
Encouraging formation of TMAs, promoting ride sharing Narrow Moderate None Minor Cooperative Hard Moderate

Staggered work hours Variable Minor None None Cooperative Moderate Moderate
Providing income tax deductability for commuting allowances Variable Great None Minor None Easy Poor

Increasing gasoline taxes Broad Moderate Great Moderate None Easy Poor
Increasing automobile license fees Broad Minor Moderate Minor None Easy Poor

Eliminating income tax deductabilitiy of free employee parking Broad Great Great None Cooperative Moderate Poor
Instituting peak-hour tolls on main roads Broad Great Great None Regional Moderate Poor

Keeping densities in new growth areas above minimal levels Broad Moderate None Minor Regional Hard Poor
Improving the job-housing balance Broad Minor None Moderate Regional Hard Poor

Concentrating jobs in big clusters in areas of new growth Narrow Minor None Great Regional Hard Poor
Parking tax on peak-hour arrivals Broad Great Great None Regional Hard Poor

HOV = high-occupancy vehicle
TMA = transportation management association
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TABLE A-3 Zupan Data

Effectiveness Cost Acceptance
Ease of

SOV Peak trip VMT Transit Public implementation
TDM Solutions reduction reduction reduction impact Employee Employer capital Employee Employer Municipal Political index

Alternative work schedules
Staggered None High None None Same Higher Same High Low High High 3
Flex-time Negative High Negative Negative Same Higher Same High Low High High 4

Telecommuting Positive Positive Positive Highly neg. Lower Unknown Same Unknown Unknown High Medium Unknown
Four-day week Medium Medium High Highly neg. Lower Unknown Same Medium Low High Medium 3

Alternative modes
Carpools High Medium Medium Negative Lower Varies Same Low Medium High High 3
Vanpools Medium Low Low Negative Lower Higher Same Low Low High High 2

Subscription buses Low Low Low Positive Lower Higher Same Low Low High Medium 2

Parking management
Preferential parking Low Low Low None Same Higher Same Low Low High High 2

Parking pricing Medium Medium Medium Low Higher Same Same Negative Low Negative Negative 1
Parking ratios Medium Medium Medium Positive Same Lower Same Negative Unknown Negative Negative 2
Park and rides Medium Medium Medium Positive Varies NA Higher Medium Medium Varies High 4

Road pricing
Preferential HOV lanes Medium Medium Medium Positive Same NA Higher Varies Varies High Varies 4

Congestion pricing Medium High Medium Positive Varies NA Lower Low Low Unknown Negative Unknown

Transit
Transitchek Medium Medium Medium Medium Lower Same Same High Medium High High 5

Employer sponsored Low Low Low Low Varies Higher Same Medium Low High High 4
Employer subsidized Low Low Low Low Varies Higher Same Medium Low High High 5

Land use—zoning
Higher densities Medium Medium High High NA Varies Lower NA NA Negative Negative 2

Transit-friendly design Medium Medium Medium Medium Same Same Lower Medium Low Varies Positive 4
Mixed-use development Unknown Unknown Medium Unknown Lower Unknown Lower Unknown Unknown Varies Positive 4

Growth management Unknown Unknown Unknown Unknown Same Unknown Lower Unknown Unknown Varies Varies 3

Institutional
Trip reduction ordinances High High High Low/medium Varies Higher NA Low Negative Varies Varies 4

Transportation management associations Varies Varies Varies Unknown Same Higher NA NA Varies NA Positive NA

HOV = high-occupancy vehicle
NA = not applicable
SOV = single-occupancy vehicle
TDM = travel demand management
VMT = vehicle-miles traveled



FERGUSON 69

TABLE B–1 Arnold Model

Equation
Assumptions 1 2 3 4

Semantic differences

Effectiveness
Minimum–average 1 1 1.0 1.0
Average–maximum 1 1 3.2 2.7

Cost
Inexpensive–average 1 1 1.0 0.0
Average–expensive 1 1 3.2 1.0

Implementation
Easy–average 1 1 1.0 1.0
Average–difficult 1 1 3.2 1.7

Component weights Not applicable

Results

Estimated coefficients

Add supply
Coefficient 0.29 0.31 0.35
Standard error 0.19 0.21 0.21
t-score 1.54 1.49 1.63

TDM
Coefficient –0.16 –0.14 –0.15
Standard error 0.17 0.15 0.15
t-score –0.96 –0.93 –1

Growth control
Coefficient 0.04 0.00 0.01
Standard error 0.14 0.13 0.13
t-score 0.28 –0.04 0.05

Effectiveness
Coefficient 0.64* 0.46* 0.54* 0.51*
Standard error 0.14 0.19 0.19 0.19
t-score 4.49 2.42 2.88 2.73

Cost
Coefficient –0.09 –0.15 –0.25 –0.28
Standard error 0.16 0.17 0.18 0.20
t-score –0.55 –0.85 –1.37 –1.38

Implementation
Coefficient –0.48* –0.61* –0.58* –0.57*
Standard error 0.16 0.18 0.18 0.18
t-score –3.06 –3.35 –3.28 –3.19

Goodness-of-fit

Standard error of Y 0.85 0.84 0.83 0.83
R-squared 32.4% 36.7% 38.6% 39.3%
Number of observations 53 53 53 53
Degrees of freedom 50 47 47 47

* Significant at 95% confidence interval.

TDM = travel demand management
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TABLE B–2 Downs Model

Equation
Assumptions 1 2 3 4

Semantic differences

Cost
None–minor 1 2.6 1 1.8
Minor–moderate 1 1.0 1 1.0
Moderate–great 1 1.0 1 1.0

Component weights
Effectiveness
Extent 1 1 1.0 1.0
Impact 1 1 1.3 1.1

Cost
Direct to commuters 1 1 1.0 1.0
To all of society 1 1 2.2 1.9

Implementation
Required institution 1 1 13.0 11.0
Ease of administration 1 1 1.0 1.0

Results

Estimated coefficients

Supply-side
Coefficient 0.29* 0.27* 0.43* 0.37*
Standard error 0.14 0.13 0.14 0.13
t-score 2.16 2.11 3.05 2.80

Effectiveness
Coefficient –0.22 –0.26* –0.33* –0.32*
Standard error 0.14 0.13 0.12 0.12
t-score –1.58 –2.01 –2.77 –2.79

Cost
Coefficient –0.59* –0.58* –0.64* –0.62*
Standard error 0.14 0.13 0.13 0.13
t-score –4.23 –4.5 –4.79 –4.95

Implementation
Coefficient –0.3* –0.36* –0.28* –0.35*
Standard error 0.13 0.13 0.13 0.20
t-score –2.3 –2.89 –2.2 –2.81

Goodness-of-fit

Standard error of Y 0.61 0.59 0.56 0.55
R-squared 69.3% 71.1% 74.5% 75.4%
Number of observations 23 23 23 23
Degrees of freedom 19 19 19 19

* Significant at 95% confidence interval.
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TABLE B–3 Zupan Model

Equation
Assumptions 1 2 3 4

Semantic values

Effectiveness
Varies 0 2 2 2

Implementation
Unknown/not applicable 0 0 3 3

Acceptability
Varies 0 2 2 2
Negative –1 –1 1 1
Unknown/not applicable 0 0 2 2
Positive 1 1 3 3

Component weights
Effectiveness
SOV reduction 1 1 1 0.0
Peak trip reduction 1 1 1 1.0
VMT reduction 1 1 1 1.7
Transit impact 1 1 1 2.5

Cost
Employee 1 1 1 0.0
Employer 1 1 1 2.2
Public capital 1 1 1 1.0

Acceptability
Employee 1 1 1 1.0
Employer 1 1 1 0.0
Municipal 1 1 1 2.7
Public 1 1 1 1.9

Results

Estimated coefficients

Effectiveness
Coefficient –0.27 –0.34* –0.46* –0.45*
Standard error 0.19 0.16 0.14 0.11
t-score –1.39 –2.12 –3.31 –4.05

Cost
Coefficient 0.19 0.24 0.05 0.39*
Standard error 0.19 0.16 0.14 0.11
t-score 0.98 1.49 0.38 3.50

Implementation
Coefficient –0.41* –0.56* –0.66* –0.56*
Standard error 0.19 0.16 0.14 0.11
t-score –2.14 –3.46 –4.78 –5.09

Goodness-of-fit

Standard error of Y 0.91 0.76 0.65 0.50
R-squared 29.0% 49.9% 63.9% 78.3%
Number of observations 22 22 22 22
Degrees of freedom 19 19 19 19

* Significant at 95% confidence interval.

SOV = single-occupancy vehicle
VMT = vehicle-miles traveled
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TABLE C–1 Arnold Output

Congestion-reducing measures Effectiveness Cost Implementation Acceptability SRSD

Add supply 1.70 2.03 1.65 0.36 0.00

Reconstructing highways with improved design 1.53 1.93 1.45 1.78 –1.64
Constructing new highways 1.98 2.74 1.42 1.39 –1.14
Widening by adding general purpose lanes 1.23 1.32 1.12 1.14 –0.62
Providing highway grade separations 2.11 2.75 1.96 –0.03 0.28
Providing railroad grade separations 1.25 2.71 1.18 –0.08 0.37
Constructing HOV lanes 1.98 1.59 2.41 –0.92 1.35
Toll–based financing to expedite new facilities 1.80 1.18 2.02 –0.72 1.40

TSM 0.22 –0.33 –0.21 0.31 0.00

Major intersection improvements 0.58 –0.35 –0.46 2.32 –2.02
Removing/restricting on-street parking 0.31 –0.85 0.24 1.78 –1.86
Traffic management during reconstruction –0.27 –0.32 –0.73 1.58 –1.49
Turn prohibitions –0.29 –0.85 –0.95 1.53 –1.1
Minor intersection improvements 0.49 –0.66 –1.4 2.12 –1.09
One-way streets 0.31 –0.85 0.10 1.19 –1.05
Improving other traffic control devices –0.23 –0.6 –1.15 1.29 –0.71
Coordinated signal systems (arterial, grid, closed loop) 1.32 –0.71 –0.83 1.88 –0.66
Converting existing facilities to HOV facilities 0.42 1.00 1.82 –0.96 –0.18
Goods-movement management –1.32 –0.85 0.92 –0.96 0.00
Ramp metering –1.05 0.17 0.20 –1.06 0.44
Arterial access management 0.18 –0.61 0.45 –0.43 0.50
Providing additional lanes without widening 0.88 –0.15 –0.49 0.31 0.54
Prohibiting repairs on major routes during peak traffic 1.79 –0.77 –1.22 1.19 0.74
Incident detection/management system/program –0.57 –0.54 –0.36 –0.67 0.88
Integrated freeway/arterial surveillance/control system 0.60 0.89 0.69 –1.21 1.03
Reversible traffic lanes on arterials 0.17 –0.44 0.42 –1.11 1.29
Traffic surveillance/control system 1.29 0.05 0.35 –0.77 1.44
Traffic management team –0.12 –0.22 –0.99 –0.82 1.66
Motorist information system –0.06 0.05 –0.75 –1.01 1.67

TDM –0.74 –0.31 –0.52 –0.32 0.00

Implementing/improving paratransit services –1.23 0.31 –0.24 0.21 –1.34
Park and ride lots –0.01 –0.38 –0.13 0.60 –0.91
Implementing/improving transit fixed-route services –0.88 0.07 –0.72 0.31 –0.84
Promoting nonvehicular alternatives to auto usage –1 –0.38 –0.25 –0.08 –0.61
Subsidizing transit usage –0.7 0.55 –0.63 0.01 –0.6
Implementing/improving rail services 0.55 1.37 1.19 –0.87 –0.3
Providing public information on rideshare/transit –0.86 –0.85 –1.6 0.60 –0.26
Implementing express bus services 0.18 0.51 0.07 –0.28 –0.17
Government control of parking supply and location –1.48 0.05 –0.3 –0.82 –0.12
Reducing or not increasing transit fares –0.88 0.60 –0.38 –0.72 0.00
Alternative work hours (compressed workweek) –0.93 –0.85 –0.77 –0.23 0.13
Implementing transportation management associations –1.04 –0.85 –0.57 –0.43 0.16
Communication in lieu of travel (telecommuting) –1.08 –0.51 –0.11 –0.82 0.18
Daily flexible work hours (staggered/flextime) 0.09 –0.85 –0.85 0.26 0.21
Commuter matching services –0.13 –0.85 –0.99 0.16 0.30
Tax incentives for vanpools –0.88 –0.85 –0.12 –0.77 0.36
Communication in lieu of travel (teleconferencing) –0.89 –0.85 –0.75 –0.52 0.49
Differential parking rates –1.38 –0.34 –1.02 –1.01 0.80
Reduced tolls for ridesharers –1 –0.85 –0.44 –1.01 0.81
Car/vanpool preferential parking –0.26 –0.62 –0.99 –0.43 0.85
Guaranteed ride home program –1.64 –0.85 –1.41 –0.82 0.85

Growth control –0.17 –0.25 0.71 –0.42 0.00

Growth management –0.28 –0.46 1.53 0.65 –1.85
Trip reduction/transit requirements for new developments 0.20 –0.48 1.55 –0.82 0.21
Auto-restricted zones 0.72 –0.85 0.86 –0.13 0.30
Designing multiuse sites to minimize traffic –0.65 –0.62 –0.38 –0.47 0.65
Road/congestion pricing –0.84 1.18 0.00 –1.31 0.68

HOV = high-occupancy vehicle
SRSD = studentized residual
TDM = travel demand management
TSM = transportation system management
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TABLE C–2 Downs Output

Congestion reducing policies Effectiveness Cost Implementation Acceptability SRSD

Supply–side –0.2 0.51 –0.43 0.41 0.00

Rapidly removing accidents 0.88 –0.52 –1 1.74 –1.55
Building added HOV lanes 0.08 1.14 0.40 0.41 –1.41
Coordinating signals and signs, one-way streets –1.45 –0.52 –0.89 1.74 –0.25
Improving highway maintenance 0.80 0.31 –0.89 0.41 –0.07
Upgrading city streets 0.08 0.31 –1 0.41 0.42
New or expanded off-road transit systems –0.65 1.93 0.40 –0.93 0.57
Building new roads without HOV lanes 0.08 1.14 0.30 –0.93 1.11
Improved transit service, amenities –1.45 0.31 –0.78 0.41 1.19

Demand–side 0.11 –0.27 0.23 –0.22 0.00

Adopting local growth limits –1.45 –0.52 –1 1.74 –1.61
Increasing gasoline taxes 0.80 1.97 –1 –0.93 –0.88
Encouraging people to work at home 0.01 –2.01 –0.89 1.74 –0.84
Encouraging formation of TMAs, ridesharing –0.65 –0.52 0.40 0.41 –0.52
Parking tax on peak-hour arrivals 1.60 –0.35 1.59 –0.93 –0.35
Instituting peak-hour tolls on main roads 1.60 –0.35 1.48 –0.93 –0.28
Concentrating jobs in areas of new growth –1.45 1.14 1.59 –0.93 –0.25
Improving the jobs-housing balance 0.01 0.31 1.59 –0.93 –0.16
Changing laws that discourage working at home 0.01 –0.52 –0.89 0.41 –0.09
Clustering high-density housing near transit –1.45 –0.52 0.40 0.41 –0.05
Keeping densities above minimal levels 0.80 –0.52 1.59 –0.93 0.31
Eliminating incentives for free employee parking 1.60 –0.35 0.30 –0.93 0.47
Increasing automobile license fees 0.01 0.70 –1 –0.93 1.04
Staggered working hours –0.72 –2.01 0.30 0.41 1.29
Tax deductable commuting allowances 0.88 –0.52 –1 –0.93 1.92

HOV = high-occupancy vehicles
SRSD = studentized residual
TMA = transportation management association

TABLE C-3 Zupan Output

TDM solutions Effectiveness Cost Implementation Acceptability SRSD

Transitchek (tax deductable vouchers) 1.15 –0.46 –1.77 1.19 –1.81
Transit-friendly design 1.15 –1.15 –0.8 0.10 –1.26
Carpools –0.59 –0.46 0.18 0.60 –1.22
Staggered shifts –0.57 1.07 0.18 1.19 –1.22
Preferential parking –0.64 1.07 1.15 0.60 –1.06
Vanpools –1.22 1.07 1.15 0.60 –0.53
Four-day workweek –0.78 –0.46 0.18 0.33 –0.52
Higher density development 2.13 –1.15 1.15 –1.82 –0.48
Subscription buses –0.05 1.07 1.15 0.04 –0.46
Preferential HOV lanes 0.57 0.23 –0.8 0.33 –0.12
Employer sponsored transit –0.05 1.07 –0.8 0.89 –0.01
Mixed use development –0.47 –1.15 –0.8 0.10 0.21
Park and rides 0.57 0.23 –0.8 0.10 0.35
Telecommuting –1.8 –0.46 0.18 0.33 0.40
Transportation management associations –0.01 1.07 0.18 0.10 0.45
Flex-time –1.54 1.07 –0.8 1.19 0.74
Congestion pricing 0.81 –1.15 0.18 –1.32 0.80
Parking ratios 0.57 –1.99 1.15 –2.11 0.86
Growth management –1.26 –1.15 0.18 –0.46 0.96
Parking pricing 0.57 –0.46 2.12 –2.11 0.98
Employer subsidized transit –0.05 1.07 –1.77 0.89 1.06
Trip reduction ordinances 1.49 1.07 –0.8 –0.76 1.88
HOV = high-occupancy vehicle
SRSD = studentized residual
TDM = travel demand management



ABSTRACT

Counts of carloads of train shipments are effec-
tively described with loglinear models. This paper
presents models of counts by origin, destination,
and commodity type. Such models can highlight
structures in the data and give useful predictions. In
particular, there are definite interactions between
origin and destination and between origin and
commodity, and these models can capture these
relationships. Model selection depends on the
choice of goodness-of-fit statistic; this paper
addresses several issues relating to this choice.

INTRODUCTION

Roughly 1.7 billion tons of cargo is moved by train
every year within the United States. In this paper,
we explore a statistical method for modeling data
from train waybills. In particular, we focus on the
counts of carloads of cargo by commodity type and
by origin and destination. This information can be
arranged into a large three-dimensional table and is
thus suitable for analysis via loglinear models. In
addition to describing the data, such models allow
us to compare flows of freight between different
areas, search the data for unusual flows, and make
predictions of future flows. Choosing a good model
requires the selection of a goodness-of-fit statistic,
and we discuss issues involved in this process. We
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also note several challenges that this data set pres-
ents, including a lack of symmetry and a large
number of zero counts.

DATA

The data we analyze are from the Carload Waybill
Sample issued by the Interstate Commerce
Commission for the years 1988 through 1992 (ICC
1992). The data are a stratified sample from all
waybills for railroads with over 4,500 cars per year
of traffic or 5 percent or more of a state’s traffic.
There are over 1.9 million total records, each of
which has 62 fields of information. Here we focus
on three fields: the origin of the shipment, the des-
tination, and the type of commodity. Both the ori-
gin and destination are classified into 1 of 181
regions (for the continental United States) as
defined by the Bureau of Economic Analysis (BEA)
although some are missing or unknown. The com-
modities are classified by Standard Transportation
Commodity Codes (STCC), as per the Association
of American Railroads. Using the two-digit aggre-
gate codes gives us 37 categories of commodities in
this data set (for example, farm products, coal,
printed matter, etc.). Each record in the file is a
sample shipment, which may consist of multiple
carloads of freight. The sample is stratified, and
strata were sampled with different frequencies.
Thus, to get an estimate of the total count of car-
loads of commodity with a particular origin and
destination, we first multiply the number of car-
loads in a record by the inverse sampling frequency
and then sum these products over all such com-
modity shipments from the same origin to the same
destination. For example, a record of 7 carloads in
a stratum that was sampled with frequency 1 in 40
would get a weighted product of 280 carloads.
These sums are entered into a large three-dimen-
sional table, which is then ready for analysis.

As an example of the heterogeneity in the data,
we spotlight Chicago, Illinois, and Huntington,
West Virginia. Chicago is both the origin of the
most traffic, as well as the most frequent destina-
tion. Over eight million carloads originate from the
Chicago region, and these shipments are spread
over many different categories of commodities and
are well distributed across the country. In contrast,
Huntington is in the top 5 regions by origin of total

freight (over 3.5 million carloads), but this freight
is nearly all coal. It goes to a smaller number of des-
tinations, and much less freight is sent to
Huntington in return. In modeling this data set, we
need a model flexible enough to work for both gen-
eral-freight cities like Chicago and for commodity-
specific cities such as Huntington.

Unlike many tables, there is no symmetry in the
data since commodities (such as coal) are generally
shipped along particular routes, with cities either
being origins or destinations but not both. Another
potential problem is the large number of zero
counts. For example, few things besides coal origi-
nate from the Huntington area. However, we do
note that these zeroes are not structural zeroes.
While many of the zeroes are easily predictable,
there is no inherent reason any entry is zero. For
example, much freight now moves via intermodal
transport, meaning that it could go by truck part-
way and then be transferred to a train at an inter-
mediate location. Thus, the intermediate location
would show as the origin with respect to the train
shipment even though it is not the true origin of the
commodity.

LOGLINEAR MODELS

Data consisting of counts, such as the waybills, are
naturally modeled by the Poisson distribution,
which takes values on the nonnegative integers.
Instead of a standard regression model with an
assumption of Gaussian error, we use a Poisson
regression model. Such models are often called log-
linear because they are a linear model for the mean
after logarithms are taken. Here we model the
mean of the distribution of counts from origin i to
destination j of commodity k by mijk. The full log-
linear model in this context is 

where ai is a main effect for origin i (and bj and ck
are analogous), dij is an interaction effect for when
origin i and destination j have cargo flows not pro-
portional to the product of the main effects ai and
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bj (e and f are analogous), and gijk is a three-way
interaction between origin i, destination j, and
commodity k. The actual counts nijk of commodity
k from i to j thus follow a Poisson distribution with
mean mijk:

In practice, not all interaction terms may be nec-
essary, and some may be dropped from the model.
Also note that the model in (1) is overspecified
(there are more free parameters than degrees of
freedom), so some sort of restriction is needed. For
example, b1 = c1 = di1 = d1j = ei1 = e1k = fj1 = f1k =
gi11 = g1j1 = g11k = 1 for all i, j, k. While loglinear
models with only a few interaction terms can be fit
directly, most complex models require iterative
solutions, the most popular method being iterative
proportional fitting (Deming and Stephan 1940).
For more background on loglinear models, the
reader is referred to one of the many good refer-
ences on the topic (Agresti 1990; McCullagh and
Nelder 1989; Bishop et al. 1975).

Loglinear models are part of the same family of
models as gravity models (such as Sen and Smith
1995). Gravity models also contain a term relating
the distance between the origin and destination to
the rate of flow and so would have a term depend-
ing on this distance in equation (1). We have found
that train cargo flow is not related to distance, and
thus the additional term in the gravity model is
unhelpful for our data. In contrast to focusing on
modeling the effect of distance, we focus on the
complex interaction effects of the covariates.

In this paper, we take the Bayesian approach.
The gamma distribution serves as a conjugate prior
for all parameters, and the posterior can be easily
estimated via Markov chain Monte Carlo. With the
full posterior, one can easily get estimates of uncer-
tainty, in addition to simple point estimate. Either
an informative prior or a noninformative
(improper) prior can be used. Using a noninforma-
tive prior leads to posterior mode estimates equal
to the maximum likelihood estimates. We use an
essentially noninformative prior. More details on
Bayesian loglinear models can be found in Gelman

et al. (1995), and West (1994) discusses Bayesian
loglinear models in the context of gravity models.

ASSESSING GOODNESS-OF-FIT

To compare how well different models fit, we
employed cross-validation (see Stone 1974). For
this data set, annual counts seemed a natural unit of
validation. Thus for each year s =1,…,5, we fit each
model under consideration using the other 4 years
of data and used the fitted model to predict the
counts for year s. These fitted counts were then used
to compute a goodness-of-fit statistic qr,s for model
r for year s. To get the overall cross-validation score,
the goodness-of-fit statistics are summed across all
years giving The rest of this section
discusses choices of goodness-of-fit statistics.

Mean square error is an appropriate goodness-
of-fit statistic when the variance of observations is
the same for all observations (not true for Poisson
data) or when one is not interested in adjusting for
differing variances, such as when one is most inter-
ested in predicting the largest table entries correctly,
that is, when nominal error is more important than
relative error. This may be the case for train data in
that predicting 100 carloads when the truth was
200 (a nominal error of 100, relative error of
100%) is much less of a concern than predicting
100,000 carloads when the truth is 150,000 (nom-
inal error of 50,000, relative error of 50%). Those
50,000 extra carloads could represent a much
larger logistical problem than the 100 extra car-
loads, in which case mean square error would be a
useful summary. Equivalent to mean square error is
its square root, root mean square error (RMSE),
which has the advantage of being on the scale of the
data and thus being more interpretable.

Alternatively, one may be more interested in rel-
ative error. Statistical theory says that one should
adjust for the variance in computing goodness-of-
fit. The Pearson chi-squared statistic is 

where nijk is the actual count and is the pre-
dicted count. When the model holds, X2 is asymp-
totically distributed as a chi-squared distribution
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(see for example, Agresti 1990). The denominator
in (3) is the estimated variance of the prediction,
and thus X2 is a measure of relative error.
However, for an application such as cargo, it does
not make much sense to inflate the error when the
prediction is smaller than one. For example, if the
model predicts 0.1 carloads in a year, and in truth
2 carloads were observed, the contribution to X2

would be (2 – .1)2/.1 = 36.1, larger than the nomi-
nal error. When routes have hundreds of thousands
of cases, a nominal error of 2 carloads is rather
insignificant, and its contribution to the total error
does not seem like it should be inflated. As a further
complication, when this goodness-of-fit statistic is
used for predictions, the model might predict a
count of zero when the actual count could be
nonzero. In that case, X2 is infinite, and it is impos-
sible to compare models. If a small number were
added to each cell of the table, the comparison of
models can depend on the size of the value added.
To avoid these problems, we modify X2 so that the
denominator is no smaller than one: 

The Cressie-Read power-divergence family of
goodness-of-fit statistics (Read and Cressie 1988),
indexed by a single power parameter , is a gen-
eral family that includes many common measures
as special cases, including the Pearson chi-square
and the loglikelihood ratio statistic. Most of the
members of this family have the common problem
of being undefined for prediction either when some
entries predicted to be zero are nonzero or
when there are zero entries that were predicted to
be nonzero One standard goodness-of-
fit measure is in the intermediate power range and
thus is directly applicable to prediction with zero
entries: the Freeman-Tukey statistic, given here as
parameterized in Fienberg (1979): 

F2, employing the variance-stabilizing transforma-
tion for a Poisson distribution, represents a com-
promise between the mean square error and the

Pearson chi-square statistic. Note that while all
members of the Cressie-Read family have the same
asymptotic chi-square distribution, their distribu-
tions may be different for finite samples. In partic-
ular, when the data table is sparse (with many
zeroes, as with the waybill data), there can be prob-
lems with the chi-square approximation for all of
the statistics (for example, Koehler 1986).  

DATA ANALYSIS

The models under serious consideration were the
full model (equation 1), the model without a three-
way interaction (g of equation 1) but including all
two-way interactions, and the three models with no
three-way interaction and only two two-way inter-
actions (that is, no g and only two of d, e, and f in
equation 1). Models with fewer terms were unable
to capture the complexity of the data. Table 1 com-
pares goodness-of-fit statistics for all models with
at least two two-way interaction terms. We note
that we can not use the unmodified X2 statistic
because during cross-validation, some entries pre-
dicted to be zero are instead nonzero, leading to
infinite values of X2. 

From the table, we see that the choice of best
model does depend on the choice of measure of
goodness-of-fit. The full model seems best for
reducing absolute error since it has the lowest
RMSE (and does fairly consistently for each year of
the cross-validation). If relative error is more
important, the model using only two-way interac-
tions for origin versus destination and for origin
versus commodity performs best. Also of note is the
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TABLE 1 Cross Validation Goodness-of-Fit Statistics
for the Top Models 

Model RMSE F2

Full model 2029.2 6.59e+7 3.71e+9 

All 2-way interactions 2118.2 9.28e+7 3.34e+9

No origin-destination
interaction 4052.0 2.61e+8 3.81e+9

No origin-commodity 
interaction 4418.4 3.04e+8 4.03e+9

No destination-commodity 
interaction 2606.5 1.51e+8 2.86e+9

Note: RMSE is the root mean squared error of prediction, F2 is the
Freeman-Tukey statistic, and is the modified Pearson statistic.



model with all two-way interactions. It is a reason-
able compromise model having an RMSE close to
that of the full model yet also having the second
lowest F2 and X2. Thus, this model might be cho-
sen for its robust performance with respect to mul-
tiple goodness-of-fit statistics.

Substantively, it is interesting that the other mod-
els with only two two-way interactions do not per-
form as well. It seems clear that any reasonable
model must include both an interaction term for
origin versus destination and a term for origin ver-
sus commodity. An instructive example is that of
Huntington. As mentioned earlier, Huntington pri-
marily exports coal and only to a specific set of des-
tinations. Yet Huntington is one of the largest areas
in terms of total number of carloads. Thus, any
model must be able to account for both the fact that
Huntington exports a very large amount of coal but
little else as well as the fact that it exports large
amounts to a relatively small number of destina-
tions, unlike general shipping hubs like Chicago. In
contrast, there are no obvious examples of cities
that are destinations for large amounts of particular
commodities out of balance with their imports of
other commodities, so the removal of the interac-
tion term for destination versus commodity has
much less impact on the fit of the model. 

CONCLUSIONS

The train waybills data set is interesting both for its
information on commodity flows as well as for its
statistical challenges. Loglinear models provide an
effective method for describing the relationship
between cargo volume and origin, destination, and
commodity type. The size of the data set1 is much
larger than in a standard statistical problem. While
this size is beyond the capabilities of many standard
statistical software packages, loglinear models can
be programed directly. 

Model selection raised a number of statistical
issues. In contrast to many data sets used with log-
linear regression, the waybills are sorted by year,
providing a natural breakdown for cross validation.
The choice of goodness-of-fit measures has been dis-
cussed. Dealing with the large number of zero counts

during cross-validation appears to be a topic not
fully addressed in the statistical literature. The analy-
ses of this paper should be seen as a starting point for
further work, both methodological and relating to
the interpretations of the indicated models. 
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ABSTRACT

In this study, we present a methodology for estimat-
ing full marginal transportation costs of highway
transportation in New Jersey. This methodology is
specifically applied to the northern New Jersey
highway network. We review the existing studies
and identify the highway transportation cost cate-
gories. Cost functions are developed using New
Jersey-specific data for each cost category. Along
with the total cost functions, marginal costs func-
tions are derived. These marginal cost functions are
used in the application of our full marginal cost
estimation methodology. Finally, the resulting mar-
ginal cost values for northern New Jersey are
analyzed according to various trips distances, urban-
ization degrees, and highway functional types.

INTRODUCTION

There is a growing interest among transportation
agencies in determining the full cost of transporta-
tion services for both short- and long-term plan-
ning purposes. The main objective behind this
interest is to ensure prices paid by transportation
users correctly reflect the true costs of providing
transportation services. Economists argue that
“getting prices right might not be the end of eco-
nomic development, but getting prices wrong
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frequently is” (Meier 1983, 1 and 231; Timmer
1987, 39). In the case of transportation, optimal
user charges should be equal to the value of the
resources consumed through the use of transporta-
tion facilities. For example, for road users prices
charged should consist of the damage done to the
road surface (variable road maintenance costs) and
the additional costs (mainly congestion costs) each
user imposes on other users and the rest of society
(Walters 1968; Churchill 1972). Thus, it is
extremely important to accurately estimate the full
cost of various modes of transportation for a given
study area in order to develop effective long-term
transportation pricing schemes. 

This paper is mainly concerned with the estima-
tion of the full marginal costs of highway trans-
portation in New Jersey and the analysis of these
cost models through their application to a northern
New Jersey network. By “full marginal costs” we
mean the full social costs of transporting an addi-
tional trip-maker over the highway network sys-
tem. This information is mandatory for the
development of an efficient transportation pricing
scheme. 

This paper has two major objectives.

1. To develop a general cost model to estimate the
full costs of highway passenger transportation
using New Jersey-specific data.

2. To apply this cost model to the northern New
Jersey highway network to estimate the factors
that affect the full cost of highway transporta-
tion in the study area. The results of this second
step are amenable to policy interpretation aimed
at developing efficient policies to improve the
performance of the New Jersey transportation
system. In the final section, we present a com-
parison of the costs we estimate and the user rev-
enue collected by the government, reflecting the
efficiency of the roadway pricing in New Jersey.

The full measure of highway transportation
costs are usually categorized as “direct” and “indi-
rect” costs. Direct costs, sometimes called “pri-
vate” or “internal costs,” include the costs auto
users directly consider monetary losses, such as
vehicle operating cost, car depreciation, time lost in
traffic, infrastructure cost (through taxes), and so
forth. Indirect costs, also called “social” or “exter-
nal costs,” refer to the costs auto users are not held

accountable for, including those every user imposes
on the rest of traffic, such as the costs of conges-
tion, accidents, air pollution, and noise. An exten-
sive literature review yielded the cost categories and
data sources shown in table 1.

Most of the previous studies dealing with the
estimation of transportation costs focus on the
average cost of highway transportation (Tellis and
Khisty 1995; Churchill 1972; Cipriani et al. 1998;
PMSK 1993; TRB 1996). On the other hand, only
a few studies deal with the estimation of marginal
costs (Levinson et al. 1996, Levinson and Gillen
1998; Mayeres et al. 1996). Levinson et al. (1996)
deals with both marginal and full costs of supply-
ing transportation services. Mayeres et al. (1996)
deals with the estimation of marginal external costs
only. The “British Columbia Lower Mainland”
study (PMSK 1993) uses societal costs such as that
of roadway land value, of air and water pollution,
of accidents, and of the loss of open space. 

The importance of focusing on the marginal
costs of service provision in a given area stems from
the fact that marginal costs measure the actual
increase in costs from an additional mile (or trip)
traveled. Thus, marginal costs represent the addi-
tional costs the state should consider when encour-
aging efficient transportation use. Although
traditional government cost allocation studies have
gradually incorporated concepts similar to mar-
ginal costing, non-governmental costs are still
largely ignored. However, the costs of congestion,
pollution, and accidents are real costs to the gov-
ernment as well as to society. In brief, a marginal
cost approach that includes practically measurable
external costs tends to be more realistic. 

PROPOSED MARGINAL COST ESTIMATION
METHODOLOGY

In this paper we consider a common situation: the
marginal cost of highway travel is higher than the
average cost, reflecting the fact that an additional
vehicle in traffic imposes a definite cost on all users
(Mohring 1976). Figure 1 demonstrates this spe-
cific case. Due to the lack of a pricing policy that
sets the price to users equal to full marginal costs
(FMC), highway transportation infrastructures are
over utilized, auto and truck users do not pay for
what they consume, and the cost to society of serv-
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ing an additional trip is higher than the average
cost at that demand level1 (see point A in figure 1). 

The formulation of the FMC involves the cost of
making a trip between origin-destination (O-D)
pairs in a network, which is a function of several
variables, here denoted by Vj. The average cost, Crs,
of one trip between a specific O-D pair (r, s) follows:

where, q denotes the demand between the O-D
pair. We assume that there are q homogeneous
users who make the same trip over a given time
period.2 The full total cost (FTC) of providing a
transportation service between any O-D pair for q
trips is defined as follows:

From (3), we obtain FMC for each O-D pair (r, s)
over a given time period as follows:

This function gives the cost of adding an extra trip
to the system. The first term represents the average
cost, and the second term represents the additional
cost of a trip. Thus, if we add one more user mak-
ing an extra trip, the cost imposed by an additional
trip to the rest of the traffic is 
This cost amount is an externality, and we refer to
this term as “congestion-related costs.” In figure 1,
the difference C*–C1, is equal to this term.

Thus, we define FMC of an additional trip as

FMC ($) = private average cost ($) + congestion-related costs ($)

In terms of figure 1, computation of FMC is at the
point of social equilibrium (E*), where C* is the
optimal price. If the optimal cost is determined by
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1 Here we assume that highway prices are most likely
equal to average cost after political considerations.
2 The term “user” here connotes a vehicle-trip.

TABLE 1 Major Cost Categories and Data Sources

Cost categories Payer Data sources

Vehicle operating cost Private NJDOT, 
� Auto ownership Internet resources 
� Auto operations (gasoline + (Kelley Blue Book online), 

maintenance + insurance) American Automobile 
� Tolls Manufacturers Association (AAMA)
� Insurance 

Infrastructure costs Public NJDOT
� Capital
� Maintenance and improvements
� Right-of-way

Environmental costs Public Existing studies and 
� Air pollution and NJDOT, U.S. Environmental 
� Noise private Protection Agency (USEPA)

Congestion costs Private NJDOT
� Travel time

Accident and safety costs Public NJDOT
� Bodily and property damage and
� Productivity private
� Emergency and medical services

(police + ambulance + rescue)



setting the tolls equal to FMC evaluted at
then the total revenue of tolls

(TR) will be (Small 1992)

where FTC is full total cost, q is the demand and s
is the degree of economies of scale. Equation (4)
implies the known rule that total cost will be cov-
ered if s � 1 (where s = AC/MC and AC is average
cost and MC is marginal cost). As mentioned
before, since marginal cost is usually higher than
average cost for highly congested highways, the toll
revenue compensates the full total cost of highway
transportation even when no fuel tax is charged. 

Estimation and Analysis of 
Network-Wide Full Marginal Costs 

As discussed, full marginal costs is defined as the
total costs accrued to society from an additional
unit of travel, that is, an additional user. Although
highway transportation might seem to be the pro-
duction of a single output in a highway network,
the reality is more complicated, in part because
users make decisions within the network to mini-
mize their own costs. They change their routes and
times of travel constantly, based on network attrib-

utes, such as travel demand, number of routes
between O-D pairs, capacity of each link, and so
forth. Hence, if we introduce an additional demand
between a selected O-D pair, not only do the travel
patterns on each route connecting that O-D pair
change, but the travel patterns on every route in the
network will also change. 

In multiple origin-destination and multiple-
route networks, the practical and operation calcu-
lation of the network-wide marginal cost is
complicated by the following issues.

� Do we add an extra demand unit between every
O-D pair or do we pick one O-D pair and add
the extra unit of demand to this pair? If so,
which O-D pair do we select?

� What is the effect of this extra unit of demand on
the overall network equilibrium? Does the addi-
tion of one extra unit flow (a vehicle) to a large
network affect the overall equilibrium condition?

To address these issues in our proposed network-
wide full marginal cost estimation methodology,
we assume that the additional flow in the system
does not disturb the existing flow patterns in the
network.3 We then propose adding this additional
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FIGURE 1 Hypothetical Marginal and Average Costs of Highway Transportation

q* = Number of trips at social equilibrium
C* = Cost per trip at social equilibrium
C1 = Private cost per trip at social equilibrium
C2 = Private cost per trip at private equilibrium
q2 = Number of trips at private equilibrium

3 Jara-Diaz et al. (1992) has introduced the idea of net-
work-wide marginal costs in the context of a freight net-
work in Chile.



trip between a selected O-D pair onto the shortest
route between this specific O-D pair and calculat-
ing the marginal cost for this trip. We call this mar-
ginal cost one-route marginal cost (ORMC). We
are aware of the fact that the resulting value will
not be the same as the true system-wide marginal
cost. This value can only be obtained by perform-
ing a new traffic equilibrium assignment, which
will reflect the change in flow patterns due to the
addition of an extra unit of demand. However,
compared to the overall demand, because the addi-
tional demand is relatively small (a single trip
between a given O-D pair, we can assume that the
resulting costs will be reasonable approximations
of actual costs. A detailed explanation of the theo-
retical implications of this marginal cost estimation
procedure is given in Ozbay et al. (2000).

To estimate network-wide marginal costs in the
northern New Jersey network, we first determine
marginal costs along the shortest routes for each
individual O-D pair in the network. We then group
the O-D pairs according to several quantitative and
qualitative factors similar to the ones listed in Jara-
Diaz et al. (1992). For each O-D pair, these factors
include 1) level and variance of demand flow, 2)
traffic conditions, and 3) factors induced by move-
ments between other O-D pairs. Additionally, some
physical factors relate to the O-D pair: 1) topogra-
phy, 2) climate, and 3) characteristics of the corre-
sponding right-of-way. For practical reasons,
Jara-Diaz et al. (1992) does not include all of these
factors in the marginal cost function. Instead the
authors group the observations based on the quali-
tative factors. They also develop separate marginal
cost functions for each category. In this analysis, we
follow a similar approach. Given data availability,
the factors considered in this study are

� Distance between O-D pairs 

� Functional type (percentage of highway func-
tional types on the shortest routes between O-D
pairs, such as interstate, freeway, arterial, and so
forth)

� Residential density of the areas where the short-
est routes are located (central business district,
urban, suburban, or rural) 

� Time of the day (peak hours or off-peak hours). 

Figure 2 depicts the process of calculating ORMC
for several O-D pairs, grouping them according to

the factors listed above for the northern New Jersey
highway network link volumes provided by the
New Jersey Department of Transportation
(NJDOT). 

The northern New Jersey network used in this
process consists of 5,418 nodes, 1,451 of which are
zonal,4 and a total of 15,387 links. Shortest routes
between zones are determined using a computer
program developed in Avenue,5 based on Pape and
Moore’s shortest path algorithm (Pape 1974).
Every time the shortest route between an O-D pair
is determined, desired link properties (such as dis-
tance, functional type of the highway, residential
density, travel time, county name, and traffic vol-
ume) are extracted by the program. As for the time
of the day, we use peak and off-peak loaded net-
works and perform the analysis for these two time
intervals. Figure 2 shows the ORMC procedure.
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4 A zonal node means to origin-destination zones where
trips originate and end.
5 Avenue is an object-oriented programming language
used to create user interface for ArcView GIS. 

Select the origin nodes in
each county in New Jersey

Choose time of day
(peak or off-peak)

Group the ORMC values
based on distance

Run the Shortest Path
Program for each selected

origin node

Observe the difference in
OMRC values in each 

group for peak and 
off-peak hours

Observe the difference in
ORMC values within each 

group based on 
urbanization level and highway

functional type

FIGURE 2 ORMC Calculation Process



DEFINITION AND FORMULATION OF
COST FUNCTIONS 

In this study, we have reclassified highway trans-
portation costs into three major categories: user
costs, infrastructure costs, and environmental costs.
We develop the total and marginal cost functions
for each category using New Jersey-specific data.

User Costs

User costs are put into two major groups: 1) self-
vehicle operating costs, that is, car ownership, fuel
and oil consumption, regular or unexpected main-
tenance, and so forth and 2) user interaction costs,
that is, accident- and congestion-related costs. 

User interaction costs are difficult to calculate
for the following reasons: 

� The key unit values, value of time (VOT) and
value of life-injury, are mostly based on the judg-
ment of highway users 

� Accident- and congestion-related costs are inter-
related and affect all auto users. For instance, at
first glance an accident seems to incur costs only
for the parties involved. However, the resulting
delay causes congestion, making for low-speed
operating conditions and time loss for other
users. Figure 3 shows the various categories of
user costs. 

The following two subsections present the formu-
lation of marginal user-cost functions, self-vehicle
operating costs and user interaction costs.

Self-Vehicle Operating Costs

Self-vehicle operating costs include vehicle depreci-
ation, fuel, oil, tire-wear, insurance, parking fees,
tolls, and regular and unexpected maintenance.
The general form of an operating cost function
follows.

where
Copr is vehicle operating cost over many years (dol-
lars/vehicle)
Cd is depreciation cost for a vehicle over many
years
Cg is gas cost (dollars/mile)

Co is oil cost (dollars/mile)

Ct is tire cost (dollars/mile)

Cm is maintenance cost (dollars/mile)

CI is insurance cost (dollars/year)

Cpt is parking fees and tolls (dollars/mile). 

Depreciation is caused by wear and tear on the
vehicle over time and by the change in demand and
taste of users. Hence, depreciation cost is assumed
to be related to the vehicle’s mileage and age.
Maintenance, fuel, oil, and tire-wear costs and
parking fees and tolls depend mainly on the dis-
tance traveled.6 We used Kelley Blue Book (2000)
to estimate our vehicle depreciation cost function.
The Honda Civic is taken as the representative car
model since it has been the best-selling economy car
in the United States for several consecutive years
(LTA 1998). The statistical results of this analysis
are given in table 2. 

Data on insurance costs, parking fees, and tolls
are from Cost of Owning and Operating Auto-
mobiles, Vans, and Light Trucks (USDOT FHWA
1991). Maintenance, oil, and fuel and tire-wear
costs are taken from American Automobile Manu-
facturers Association (AAMA) (1996), in which the
cost values are given as national averages and
defined on a per mile basis. Table 3 provides a sum-
mary of these unit costs. 
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6 Here we disregard the effects of traffic, volume, temper-
ature, and altitude on fuel and maintenance costs.
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Costs due to users interaction
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Car value depreciation
   Fuel consumption 
   Oil consumption 
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   Tire wear 
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   Parking and tolls

FIGURE 3 User Cost Categories



The vehicle operating cost function is developed
by combining the values given in tables 2 and 3.

where Copr is vehicle operating cost (dollars/vehicle
over many years)
m is the vehicle mileage (miles) 
a is the vehicle age (years).

The regression analysis results given in table 2
indicate a depreciation cost possibly higher than
would be expected. However, since our deprecia-
tion cost function uses the trade in values, the result-
ing depreciation cost reflects real world values.

Marginal vehicle operating cost is estimated in
terms of distance traveled, and this assumption
cancels out insurance cost in the marginal cost for-
mula since these are usually defined in terms of
vehicle age. Marginal vehicle operating cost
(MCopr) per mile is estimated as

It is clear from equation (6) that marginal vehicle
operating cost per distance decreases as the vehicle
gets older. Intuitively, the longer the vehicle is

utilized, the lower the marginal cost of running it
becomes. This is mostly due to decreasing marginal
deprecation cost over time (see table 4). In our
analysis, we used an average vehicle age of 8.5
years, reflecting the national average in the United
States, as reported in AAMA (1996).

User Interaction Costs: Congestion and
Accident Costs

Congestion costs are defined as time loss and
discomfort for drivers. The magnitude of these
costs is directly related to the time lost and to user
characteristics.

� Time loss is determined through the use of a
travel time function and trip characteristics, such
as distance between O-D pairs, traffic volume,
and highway capacity. Once the trip characteris-
tics are known, the travel time function is used
to calculate the time lost in the traffic between
each O-D pair. 

� User characteristics, on the other hand, are
expressed through the dollar value each user
places on a specific unit of his or her time.
However, user characteristics are not homoge-
neous and not easy to identify. Thus, in this
study we use an average “Value of Time”
(VOT). Small (1992) suggests that VOT should
be taken as 50% of the gross wage rate. This
value can vary among different states and cities.
Thus, we decided to use a range of 40 to 170%
of the pre-tax hourly wage rate as the VOT in
our analyses. The New Jersey Department of
Labor reports the hourly wage rate in 2000 as
$19 per hour (NJDOL 2000). Thus, our VOT
ranges from $7.6 to $32.3.

In this study, we employed the commonly
accepted travel time function, the Bureau of Public
Road’s (BPR) volume-capacity function. Using the
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TABLE 2 Results of Regression of Depreciation Cost

Sample size: 217 Coefficients Value Standard error t-value Pr(>|t|)

Intercept 6,240.3569859 115.0817835 54.2254108 0.00

m/a 0.1035028 0.0034358 30.1247472 0.00

a 677.7279739 11.9850174 56.5479340 0.00 R2=0.94

TABLE 3 Operating Costs 

Operating expenses Costs*

Gas and oil 0.061 (dollars/mile)

Maintenance 0.029 (dollars/mile)

Tires 0.0145 (dollars/mile)

Insurance 1,350 (dollars/year)

Parking and tolls 0.0182 (dollars/mile)
* 2000 dollars (without tax)

Sources: AAMA (1996), USDOT (1991)



BPR function, total congestion costs on link a to b,
with a traffic volume of Q, is calculated as follows.

The marginal congestion cost function is then the
first order derivative in terms of traffic volume, Q.

where
MCcong is the marginal cost of congestion (dol-
lars/hour)
VOT is the average value of time (dollars/hour)
T0 is free-flow travel time between points a and b
(hours)
Tab is the travel time required to travel between
points a and b (hours)
Q is the average volume on the link connecting
points a and b (vehicles/hour)
C is highway capacity (vehicles/hour).

The first term in the right-hand side of equation (8)
represents the time cost experienced by one user,
and the second term stands for the cost imposed on
the rest of the users on that link.

The second type of user interaction costs, acci-
dent costs, can be classified into two major groups: 

� Foregone production or consumption by individ-
uals or both, easily converted into monetary units

� Life-injury damages by users, not easily con-
verted into monetary units.

The available New Jersey data contain a detailed
accident summary for 1995, including the pedestri-
ans affected, grouped by incident types and by
county in New Jersey.

In order to estimate the cost of accidents over a
given period of time, we need to know the accident
occurrence rate (number of accidents over time)
and the unit cost of an accident. If we develop a
function to estimate the number of accidents occur-
ring over a period of time, accident costs can also
be measured by multiplying the number of acci-
dents by their unit cost values. Clearly, costs vary,
accident by accident. However, similar accidents
have costs that fall more or less in the same range.
Thus, we classified accidents as 1) fatal, 2) injury,
or 3) property damage.7

There are also various geometric design features
of a roadway that affect the possibility of an acci-
dent, such as the number of lanes, horizontal and
vertical alignment, superelevation, sight obstruc-
tions, and so forth. However, it is not an easy task
to include every variable in the accident occurrence
rate function. Thus, the accident occurrence rate is
assumed to be correlated only with highway func-
tional type, average traffic volume, and the length
of the highway. For this purpose, highways are
grouped into three categories according to their
functional properties. These are interstate, free-
way-expressway, and arterial-collector-local.8

The generalized form of the total accident cost
function is given as follows:
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7 Vehicle fire and cargo spills are disregarded since their
occurrence rates are relatively negligible.
8 The classification of highways is based on the available
accident data.

TABLE 4 Contribution Percentages of 
Operating Cost Categories

Fuel, gas, oil, 
Depreciation tires, parking, and Insurance 

Year (percent) tolls (percent) (percent)

1 74 14 12

2 60 22 18

3 52 26 22

4 47 29 24

5 43 31 26

6 40 33 28

7 37 34 29

8 36 35 30

9 34 36 30

10 33 36 31

11 32 37 31

12 31 37 32

13 30 38 32
Note: An annual mileage of 13,000 miles is assumed.



where
Cacc is the total accident cost per year (dollars/year)
Cf is the unit cost of a fatal accident per crash (dol-
lars)
Cd is the unit cost of a property damage accident
per crash (dollars)
Ch is the unit cost of an injury accident per crash
(dollars) 
pfi is the number of fatal accidents per year for
highway type i
phi is the number of personal injury accidents per
year for highway type i
pdi is the number of property damage accidents per
year for highway type i.
It should be noted that accident cost as given in
equation (9) does not include the costs of conges-
tion caused by accidents. In order to utilize the
equation (9), we have to develop pfi, phi, and pdi
functions using the available accident data. As
mentioned above, the number of accidents is
assumed to be correlated with roadway length (M),
as a measure of network properties, and average

traffic volume (Q), as an output measure. The gen-
eral form of the accident occurrence rate (the num-
ber of accidents over a given time period) function
is given as follows:

where are the estimated coefficients of
equation (10). 

Nine regression analyses were run to estimate
accident occurence rate as a function of average
traffic volume and the roadway length for each
highway category. Hence, we obtained 9 different
functions. The results of the regression analyses are
given in table 5. We have decided to exclude fatal-
ity accident occurrence rate functions for freeway-
expressway and interstate highway functional
types from our analyses since the coefficents in
these functions are not statistically significant (see
table 5). We suggest that when more data on acci-
dents become available, these occurrence rate func-
tions be reestimated. 
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TABLE 5 Accident Occurrence Rate Regression Analyses Results

Property damage Fatality Injury

Arterial-Local-
Collector Coefficient t-value Coefficient t-value Coefficient t-value

Intercept 4.7E-7 –3.9189995 4.15E-5 –2.8057275 5.95E-9 6.1740294

Q 2.1937 5.1888142 0.7357 1.7986337 2.5084 7.1900767

M 0.4592 1.3204427 0.8945 2.6580631 0.7366 2.5664179

R2 0.65 0.42 0.80

Freeway and
Expressway Coefficient t-value Coefficient t-value Coefficient t-value

Intercept 0.0139 –1.7571000 7.7523 0.7731267 0.1851 0.9552417

Q 0.9508 3.9950085 –0.1435 –0.5537863 0.6837 3.9563777

M 0.2317 1.2375911 0.6553 3.2139405 0.501 3.6822804

R2 0.63 0.43 0.76

Interstate Coefficient t-value Coefficient t-value Coefficient t-value

Intercept 3.23E-5 –1.5835942 7.79E-5 –0.9158328 3.114E-10 0.9158328

Q 1.0924 1.8072909 0.8066 0.8808309 2.0963 0.8808309

M 0.9043 4.7104977 0.3316 0.6027988 0.9766 0.6027988

R2 0.72 0.11 0.81



Cf, Ch, and Cd values cover both direct and indi-
rect costs caused by an incident, and their values
are taken from Miller and Moffet (1993). These
values are given in table 6.9

The total accident cost function is developed for
each highway type, based on the results obtained
from the regression analysis and the unit cost values
for each accident type, as shown in table 6. The mar-
ginal accident cost functions are determined simply
by taking the first order derivative of the total acci-
dent cost function with respect to volume, Q.

arterial-local-collector

freeway-expressway

interstate 

where
M is roadway length (miles) and
Q is average traffic volume (vehicles/day).

It is reasonable to think that high volumes of
traffic reduce vehicle-flow speed and, thus, fatal
accidents. However, Vickrey (1968) argues that the
rate of total accidents increases with increasing
average daily traffic. As seen in table 5, our esti-
mated accident occurance rate functions support
Vickrey’s (1968) hypothesis. 

Infrastructure Costs

Infrastructure costs include all long-term expendi-
tures, such as facility construction, material, labor,
administration, and right of way costs. Also
included are interest over the lifetime of the facility,

regular maintenance expenditures for keeping the
facility in a state of good repair, and occasional
capital expenditures for traffic-flow improvement. 

Highway investment and its costs can be best
described by defining input prices, output, and net-
work properties (Levinson et al. 1996). Input
includes the cost of all phases of construction, such
as roadway design, land acquisition, labor, con-
struction material, and equipment. Network prop-
erties represents the physical capabilities of the
constructed highway facility, which includes the
number of lanes, lane width, pavement durability,
the number of intersections, ramps, overpasses,
and so forth. In addition, environmental factors are
important elements in highway construction.
Highway location, demographics of the district,
soil properties, geometry of land, weather condi-
tions, and other factors have an effect.

In computing marginal infrastructure cost, new
construction and land-acquisition costs cancel out
since these costs are not a function of traffic vol-
ume, Q. Thus, maintenance and improvement are
the only cost category that remains in our marginal
infrastructure cost function. We attempt to express
the maintenance cost in terms of input and output.
Input in this context includes all components of
maintenance work, such as equipment usage,
earthwork, grading, material, labor, and so forth.
Output implies the traffic volume on the roadway.
The data employed include all types of mainte-
nance and improvement works completed between
1991 and 1998 in New Jersey. Given the database,
we decided to divide the maintenance and improve-
ment works into three categories:

1. Major reconstruction with/without roadway
widening 
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9 Property damage cost is assumed to comprise only the
damage to the vehicle. Any type of injury falls in the per-
sonal injury category.

TABLE 6 Accident Costs by Type 

Accident type Value per crash (dollars)

Fatality 4,113,956

Injury 144,291

Property damage 6,783
Note: The unit cost values are converted to year 2000 dol-
lars, assuming an average 3.5% per year inflation rate.

Source: Miller and Moffet (1993)



2. Roadway widening with/without resurfacing

3. Resurfacing with/without minor roadway
widening

The estimated cost function for each category
follows.

where
s is total volume of surface course used, ft3

tm is total material used, ft3 (surface course, base
course, and sub-base)
ns is number of overhead signs installed, 
tev is total earthwork, ft3 (excavated soil or
removed material, embankment, and so forth)
Q is traffic volume (vehicles/day). 

Functions (14), (15), and (16) provide close esti-
mates of the cost of each type of roadway mainte-
nance project. However, the functions are to be
used on a “per project” basis. In other words, to
utilize these cost functions we need to know how
often each type of maintenance work is under-
taken, given the traffic conditions and pavement
characteristics. There are valid methods of estimat-
ing resurfacing cycles (Small et al. 1989); however,
we know of no practical methods for estimating the
cycle of rest of the maintenance work categories.
The first two maintenance work categories are
required when the roadway is not capable of carry-
ing the increased traffic. Its analysis requires a
transportation demand model, which is out of the
scope of this paper. Therefore, we have decided to
exclude the first two cost categories from our mar-
ginal cost analysis. 

Thus, the marginal cost function for resurfacing
is calculated as follows: 

where
MCinf is marginal maintenance cost in year 2000
(dollars/trip)

Q is traffic volume (vehicles/day)
T is number of resurfacing cycles throughout the
lifetime of a pavement (25 years assumed)
ni is time interval between each resurfacing dates
and the year 2000 (years)
r is interest rate. 
It should be noted that equation (17) considers all
the resurfacing works done over the lifetime of the
roadway. Ozbay et al. (2000) explains the method
used to estimate the number of resurfacing cycles
over the lifetime of a highway. 

Environmental Costs

The environment costs caused by highway trans-
portation regarded here include air pollution costs
and noise costs. Development of specific cost
functions for these environmental cost categories
is beyond the scope of this study. Hence, we have
adopted these cost functions from the germane
literature.

Air Pollution Costs

Air pollution is defined as the change in ambient gas
percentages and particulates resulting from human
activities. Highway transportation accounts for a
large portion of all air polluting activities through
motor vehicle emissions. The contribution of high-
way transportation results either from the direct
emission of these pollutants or from chemical reac-
tions of these emitted pollutants with each other or
with materials already existing in the atmosphere,
such as PM10 (particulate matter 10 microns or
smaller).

We consider the major pollutants emitted from
motor vehicles to be volatile organic compounds
(VOC), carbon monoxide (CO), and nitrogen
oxides (NOx). These pollutants have several
adverse health effects on living organisms, land,
crops, water, and air, among others. For a detailed
description of these health effects, see Lynam and
Pfeifer 1991. 

In this study, we adopt an emission function to
estimate the quantity of pollutant generated by
motor vehicles. We put some factors aside, such as
topographical and climatic conditions of the
region, vehicle properties, vehicle speed, accelera-
tion and deceleration, and fuel type. Next, unit cost
values of each pollutant are calculated based on the
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methods presented in the literature. Unit cost cal-
culations will be based on pollutant emission
amounts in New Jersey, as reported by the
Environmental Protection Agency (USEPA 1995).

Basically, we need to find the emission rate
(grams/mile) for the pollutants VOC, CO, NOx,
and PM10. Multiplying the emission rate with the
total miles traveled in the considered network
would give us the total amount emitted for each
pollutant in New Jersey. The marginal cost func-
tion is developed simply by multiplying the unit
cost values of each pollutant (dollars/gram) by the
increase in the amount of pollutant emitted due to
a unit increase in the traffic volume. 

The proposed emission function is based on fuel
consumption. It is assumed that the amount of pol-
lutant released during motor vehicle operation is
proportional with the amount of fuel consumed.
The fuel-consumption function depends on the
vehicle and is in quadratic form as follows
(Ardekani et al. 1992).

where
F is fuel consumption at cruising speed
(gallons/mile) and
V is average speed (miles/hour).
The emission rates of each pollutant (grams/gallon)
are 69.9 grams for CO, 13.6 grams per NOx, and
16.2 grams for VOC (SYNCHRO). Since we do
not have a direct PM10 emission function, we uti-
lize an emission rate specific to New Jersey (0.0825
grams/mile). See Ozbay et al. 2000 for the specific
reasons why the unit grams/mile is chosen. 

The unit cost of each pollutant is given in table
7. The fuel-consumption function given in equation
(18) is a function of speed, V, and thus a function
of traffic volume, Q. Total air pollution cost for a
link of one mile, with a traffic volume Q (vehi-
cles/hour) is calculated as follows.

where
Cair and MCair are measured in dollars per mile per
hour, and F is calculated by equation (18).

Noise Costs10

There are several methods used to define noise in a
numerical range so that any noise source can be
examined as it is heard by the human ear. In general,
it is accepted that a sound becomes annoying after
50 dB(A) (A-weighted decibles). Any sound level
above this limit definitely imposes a cost on society.

Social costs of noise are generally estimated by
calculating the depreciation in the value of residen-
tial units alongside highways. The closer a house is
to a highway, the higher these costs are. In this
study, we use the Noise Depreciation Sensitivity
Index (NDSI) as given in Nelson (1982). NDSI is
defined as the ratio of the percentage reduction in
the house value and the change in the noise level.
Nelson (1982) suggests a value of 0.40% for the
NDSI. 

The house value depreciation function is defined
as follows:
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TABLE 7 Cost of Each Pollutant Type

VOC NOx CO PM10

Unit morbidity
cost per ton $1,676 $3,039 N/A $6,542

Unit mortality 
cost per ton $2,779 $7,320 $15.21 $126,074

Total unit 
cost per ton $4,455 $10,349 $15.21 $132,616

VOC = volatile organic compounds
NOx = nitrogen oxides
CO = carbon monoxide
PM10 = particulate matter 10 microns or smaller
N/A = not applicable

Sources: Morbidity costs are directly taken from Small and
Kazimi (1995). However, mortality costs are calculated
specifically for New Jersey by following the same method
used in Small and Kazimi (1995). See Ozbay et al. (2000) sec-
tion 3.4.1 for a detailed explanation.

10 “The same factors, which have brought us air pollution
in crisis proportions, namely increasing population,
urbanization, industrialization, technological change, and
the usual relegation of environmental considerations to a
position of secondary importance relative to economic
ones, have also brought us the noise phenomenon”
(Anthrop 1973). 



where 
ND is depreciation due to noise (dollars)
Leq is defined as the Equivalent Sound Level
(dB(A)). See Galloway et al. (1969)11

Q is traffic flow (vehicles/hour)
r is distance to the highway (feet)12

V is average speed of the traffic (miles per hour)
Nh is number of houses affected (number of houses
per mile2), calculated by multiplying the average
residential density (RD, number of houses per
mile2) around a highway by the distance to that
highway in feet (r) and the length of the relevant
highway section in miles (d).13

Lmax is maximum acceptable noise level (50 dB(A)
in this study)
D is percentage discount in value per an increase in
the ambient noise level (0.4%)
Wavg is average house value (dollars), given in table
8. 

Based on equations (21), (22), and (23), the
noise cost function is developed as follows.

where Cnoise is the noise cost around a one-mile
long roadway segment over so many years.
Marginal cost is the first order derivative of equa-
tion (24) with respect to Q.

In this formulation, the total noise generated
around a road segment is taken into account.
Representing the maximum distance to highway, r2

can be calculated by equating Leq (equation (22)) to
50 dB(A), where the traffic noise is above dB(A). 

RESULTS 

For one-route marginal cost (ORMC) estimations,
we selected one origin in each county in northern
New Jersey. ORMC values are calculated for the
shortest routes between these selected origin-desti-
nation (O-D) pairs. In this process, we employed
the marginal cost functions developed for each cost
category presented. The generalized cost formula
used in ORMC calculations follows.14

where
FMC is full marginal cost (dollars/mile)
MCopr is marginal vehicle operating cost
(dollars/trip)
MCcong is marginal congestion cost (dollars/trip)
MCacc is marginal accident cost (dollars/trip)
MCinf is marginal infrastructure cost (dollars/trip)
MCair is marginal air pollution cost (dollars/trip)
MCnoise is marginal noise cost (dollars/trip)
(r, s) is O-D pair
k is number of links between O-D pairs on the
shortest route
d is trip distance (miles).
In total, we have 18,850 ORMC values with their
corresponding attributes. As mentioned, ORMC
values have a cost range based on the value of time
(VOT) assumptions. We assumed a VOT range of
40 to 170% of the average hourly wage in New
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11 This function is only valid for the vehicle flows above
1,000 vehicles/hour.
12 Minimum distance to a highway is assumed to be 50
feet.
13 The multiplication by 2 in equation (23) is used to cal-
culate the number of housing units on each side of the
roadway.

14 The units of noise and air pollution costs are given as
dollars/trip here. However, it should be noted that in our
analyses for each O-D pair in the network, respective
units have been utilized according to trip characteristics.

TABLE 8 Housing Value in New Jersey

Value range Dollars

Lower value quartile 158,410

Median value 228,940

Upper value quartile 317,385



Jersey. This enables us to better estimate full mar-
ginal cost under various time values. The analysis is
also repeated for off-peak periods to observe the
difference in the marginal cost values. 

In figure 4, ORMC values are plotted with
respect to trip distance for both peak and off-peak
hours, assuming a VOT of $7.6/hour. As expected,
peak-hour values are greater than off-peak-hour
values, and the difference becomes significant as
trip distance increases. Thus, the addition of longer
trips due to urban sprawl can be expected to have
increasingly higher impacts in terms of full mar-
ginal costs. 

Figure 5 shows ORMC distribution with respect
to trip distance when VOT is equal to $32.3, an
assumed upper bound. It is clear that the difference
in ORMC values for peak and off-peak hours are
greater than those of figure 4. This result can be
supported by the fact that congestion cost is more
sensitive to VOT assumptions during peak hours
than to VOT values at off-peak hours. Moreover,
congestion costs appear to be the major driving
component of overall costs. Thus, it is important to
emphasize the effects of congestion-reduction
measures in terms of overall costs. 

Table 9 gives the ORMC functions with respect
to trip distance (d) and time period for each VOT

assumptions, estimated using the data points
shown in figures 4 and 5. These functions can be
used as a quick reference to the magnitude of
ORMC values for given trip distances. 

In order to observe the effect of highway func-
tional type and the degree of urbanization on
ORMC values, we need to hold trip distances as
constant. We assume that for the same trip dis-
tance, the difference in ORMC values is attributed
solely to highway functional type (interstate-free-
way-expressway, principal arterial, minor arterial,
and local-collector) and the degree of urbanization.

First, we analyze the effect of highway func-
tional type on the ORMC value for a given trip dis-
tance. The analysis shows that the change in
ORMC values with respect to highway functional
type does not have a general pattern, irrespective of
trip distances. Thus, we examine this relationship
for different trip distance ranges. For relatively
short distances (that is, 0 to 10 miles) the routes
with a higher percentage of local-collector high-
ways tend to have smaller ORMC values. 

Figures 6 and 7 depict the effect of the percent-
age of local-collector highways of the shortest
routes on ORMC values during peak and off-peak
hours for a trip distance of two miles. During peak
and off-peak hours, as the local-collector highway
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type percentage increases, the ORMC value
decreases. The same patterns obtained in figures 6
and 7 hold for trip distances up to 10 miles. 

Figures 8 and 9 depict the variation of ORMC
with respect to the percentage of minor arterial
highway functional type for a trip distance of two
miles. Unlike with local-collector highways, as the
percentage of minor arterial highway of a route
increases, the ORMC value increases as well.
However, ORMC distribution with respect to the
percentage of minor arterial road, as shown in fig-
ures 8 and 9, holds for trip distances up to three
miles. For trip lengths between 3 and 10 miles,

ORMC values tend to decrease as minor arterial
percentage increases. 

Since short trips do not generally use interstate-
freeways-expressways, the effects of this highway
functional category on ORMC distribution cannot
be accurately analyzed for short-trip distances. As for
principal arterials, sufficient information can be gath-
ered for trip distances longer than three miles. Figure
10 shows that within the same trip distance range (3
to 10 miles), ORMC value increases with increasing
principal arterial percentage for a given route. 

ORMC distribution patterns change within the
0 to10 mile range because as trip distance increases,
the percentages of each highway functional type
changes as well. Up to three miles, the road types
used are mainly local-collectors and minor arteri-
als. It is obvious that local roads are more conven-
ient than minor arterials for shorter trips. Above
three miles, the utilization of principal arterials
becomes significant, and ORMC value increases
due to the increased congestion along these routes.
Finally, beyond 10 miles, minor arterial and local-
collector type of highways are not utilized as sig-
nificantly as are interstate-freeways-expressways
and principal arterials. 
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TABLE 9 Data Fitting for ORMC Values Given 
for Peak and Off-Peak Hours with 
Different VOT Values

VOT = $7.6 VOT = $32.3

Equation R2 Equation R2

Peak y = 0.7568d 0.857 y = 1.846d 0.923

Off-peak y = 0.6404d 0.855 y = 1.5421d 0.907 
Note: y is ORMC value (dollars/trip) 
d is trip distance (miles)
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Next, we analyze ORMC distribution with
respect to the percentage of highway functional
type for longer trips distances. In this section, we
only present the analysis performed for a trip dis-
tance of 25 miles. However, it should be noted that
similar patterns are observed for all trip distances
longer than 10 miles. 

Figure 11 depicts the ORMC distribution with
respect to interstate-freeway-expressway percent-
ages for peak periods. ORMC values tend to
decrease as interstate-freeway-expressway percent-
age increases. The same pattern holds during off-
peak periods as well. Figure 12 depicts ORMC
distribution with respect to percentage of the prin-
cipal arterial type. It is seen that the pattern in fig-
ure 10 is valid for the 25-mile trip range. As the trip
distance exceeds approximately 50 miles, the inter-
state-freeway-expressway functional type com-
prises most of the route distance. This fact restricts
the analyses of ORMC distribution with respect to
principal arterial as well as to the percentage of
interstate-freeway-expressway. 

Finally, we attempt to correlate the variation in
ORMC values and degree of urbanization using the
data generated. Figure 13 shows the ORMC varia-
tion with respect to percentage of urbanization

over a given trip distance. Similar analyses are done
for all the trip distance ranges both for peak and
off-peak periods. However, ORMC variations with
respect to degree of urbanization do not follow a
typical pattern. Thus, we can conclude that the
degree of urbanization around highways does not
necessarily imply an increased congestion level. 

EVALUATION OF THE CURRENT PRICING
POLICY

In the ongoing efforts to reduce congestion through
the use of congestion tolls, knowing the full mar-
ginal cost of highway transportation can be vitally
important. Leaving aside the practical difficulties
and political complexities of this concept, we eval-
uate the efficiency of the current practice of collect-
ing highway user fees in New Jersey relative to the
results obtained above. 

As stated in section 2, highway marginal cost
pricing requires that every user be held responsible
for the cost he or she imposes on the rest of the traf-
fic with his or her additional trips. Hence, in theory,
user fee per trip should be equal to the external cost
of a trip (Small 1992). Therefore, if we compare the
value of the actual user fees per trip currently
imposed in New Jersey with our estimate external-
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ities through the FMC methodology, we can meas-
ure the effectiveness of highway pricing policies in
New Jersey. 

Although average congestion cost and vehicle
operating costs are fully experienced by the users,
infrastructure and maintenance costs are paid
through fuel and vehicle registration and other
taxes. Hence, we need to determine if the user fees
collected by the government are sufficient to cover
the “external” costs of highway transportation,
such as increased travel time, pollution, and acci-
dents. It is known that a certain portion of conges-
tion and accident costs are external, meaning that
that portion is directly imposed on the rest of the
traffic by an additional trip. In our analysis, we
have calculated congestion externalities. As for
accident externalities, we have adopted a ratio of
marginal to average accident cost of 1.52 in our
analyses (Newberry 1988). Finally, we consider air
pollution and noise costs as external costs to the
rest of the traffic and society.

However, the detailed analysis of this task is not
straightforward because trips have several quanti-
tative and qualitative measures that cannot be
grouped together easily. Consider, for example, the
difference between a 50-mile trip and a 3-mile trip,

or 2 trips with the same distance but on different
highway types. Due to these differences, there is not
a unique value for FMC per trip. For our analysis
here, we have used the average of all ORMC values
within a trip distance ranging from 10 to 15 miles15

and then weighted the averages for peak and off-
peak hours. The average FMC values by each cost
category are presented in table 10. It should be
noted that the contributions of each cost category
to FMC as shown in table 10 are not unique for all
trip distance ranges; however, we believe that table
10 provides a good idea of each cost category’s
contributions. 

Using the air pollution, noise costs, congestion
externalities, and a ratio of marginal to average
accident cost of 1.52 for accident externalities, we
calculate the external cost of making a trip within
a distance range of 10 to 15 miles as $1.252.

We now need to find out if the cost imposed by
the government is equal to our FMC estimates.
FHWA reports that an amount of $2,703,741,000
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FIGURE 13 ORMC Distribution with Respect to Degree of Urbanization During Peak Hours for a Trip 
Distance of 40 Miles (VOT = $7.6): Marginal Cost vs. Degree of Urbanization

15 The “Summary of Travel Trends” (USDOT FHWA
1997) reports an annual national average vehicle trip
length of 9.06 miles. A value specific to New Jersey is not
available. Thus, we have chosen a range of 9 to 15 mile
trip length.



for New Jersey was collected through federal and
state fuel and vehicle tax, state and local tolls in
1998 as highway user revenues (USDOT FHWA
1999). Dividing this amount by the annual total
number of trips taken in New Jersey in 1998 (6.31
billion), we get an estimate of the cost of a trip in
New Jersey as $0.428 (NJDOT 2000).16 This is the
average amount that the government charges each
user per trip. Comparing this amount with our
FMC, we observe that it is less than what we regard
as necessary to compensate for the full marginal
cost per trip. 

What, then, should be the correct amount of
increase in user fees imposed on users to compensate
for the marginal roadway pricing in New Jersey? Let
us assume that $1.252 is the user fee per trip that the
state government targets. Let us also assume that the
state government decides to collect the deficit in user
fees only through a state fuel tax. The annual user
revenue that should be collected becomes $1.252 �
6.4386 billion trips (see footnote 16), equal to
$8,061,127,200. Assuming the federal vehicle and
fuel tax revenues ($962,433,000) and state and local
tolls revenues ($619,862,000) remain the same, the
dollar amount the state needs to collect is now
$8,061,127,200�($962,433,000 + $619,862,000),
or $6,478,832,200. This is the amount that needs to
be raised by state vehicle and fuel taxes. FHWA
reported that vehicle tax collected in 1999 was
$631,506,000. Hence, $6,317,609,656 minus
$631,506,000 equal to $5,847,326,200 would be
the total amount that the state government needs to
collect by state fuel tax only (USDOT FHWA 1999).
Dividing this amount by the taxable amount of fuel
consumed in New Jersey in 1999 (4,688,147,000
gallons) would be equivalent to the new additional
state fuel tax, which comes out to $1.247 per gallon

(USDOT FHWA 1999). This additional amount is
far more than the current state fuel tax of $0.1038
per gallon.17

Kulash (2001) states, “There are valid social and
economic reasons why road users should pay for
the full range of costs that they impose on the pub-
lic, but they pose a social and economic shock as
well.” Thus, although the collection of this revenue
through the gas tax is not an impossible task, given
the fact that compared to European countries this
amount in the United States is considerably less, it
does not appear to be an easy policy to sell to the
American people, given the historical realities of
this country. Table 11 presents the fuel tax charged
in different countries in Europe as a percentage of
the fuel price. As seen, the current fuel tax in the
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16 The number of trips reported in 2000 is reduced to
1998 values, assuming a 2% increase per year in the total
number of trips. 

TABLE 10 Full Marginal Cost by Categories for a Trip Distance Range of 9 to 15 Miles

Operating cost Congestion cost Congestion Accident* cost Infrastructure Air pollution Noise cost 
(dollars) (dollars) externality (dollars) cost (dollars) cost (dollars) (dollars)

1.389 3.786 0.635 1.009 0.062 0.114 0.158
* Accident externality = marginal accident cost. Average accident cost = 1.009 – (1.009/1.52) = 0.345

TABLE 11 Fuel Prices and Percent Taxes in 
European Countries

Percent Price per
Country taxesa Tax gallonb

United Kingdom 76.8 3.295 $4.29

Netherlands 68.4 2.708 $3.96

France 72.7 2.661 $3.66

Italy 67.7 2.464 $3.64

Germany 70.7 2.418 $3.42

USA 24.1 0.419 $1.74

USA 
(Recommended) 47.3 1.563c $3.303

aGas tax as a percentage of retail price of gallon of gas
bRetail price per gallon of premium leaded as of September
2000
cTax amount includes federal tax plus our recommended state
fuel tax, $1.247, instead of the current state fuel tax of
$0.1038 per gallon 

Source: International Energy Source, National Energy
Information Center, Quoted in The Detroit News 9/20/2000.

17 This value is the weighted average of all fuel tax rates
based on the taxable amount in 1999.



United States is far less than in European countries.
Even our estimated fuel tax percentage is less than
the values in effect in European countries. 

As we mentioned, the objective of marginal
roadway pricing is to reduce congestion by charg-
ing users the additional amount that they impose
on others. The concept has valid economical rea-
sons on how to achieve optimal pricing. However,
from our results it is clear that the concept presents
serious practical difficulties regarding its political
consequences. Though our calculation methodol-
ogy is straightforward and based on averages, it
demonstrates the extent of the difficulty of this
problem. Here, our first scenario was to increase
only the fuel tax. There are other means to collect
the same of amount of revenue to compensate for
the full marginal cost per trip, such as tolls. The
introduction of advanced technology such as auto-
matic vehicle identification systems can serve well
for this specific purpose of imposing trip-based
charges. On the other hand, it is clear that
increased gas taxes and tolls will reduce the
demand for highways, which will reduce the exter-
nal costs such as congestion, pollution, and others.
This will reduce the FMC per trip and the amount
of taxes and tolls needed to a more acceptable level.
However, this kind of dynamic analysis of the
change of demand as a result of pricing is beyond
the scope of this paper. 

CONCLUSIONS

In this study, a new methodology for estimating
network-wide full marginal costs is presented. This
methodology is applied to determine the full mar-
ginal cost of highway transportation in northern
New Jersey. The variation in marginal cost value
due to trip distance, degree of urbanization, and
highway functional type are analyzed. Each set of
observations is made for different VOT assump-
tions and time periods (peak and off-peak hours).
Our main conclusions follow. 

1. The difference in the marginal cost value for
peak and off-peak hours becomes more signifi-
cant with longer trip distances due to the
increase in congestion costs.

2. It is estimated that marginal costs decline as a
percentage of trip distance performed on free-
way and expressway-type facilities increased.

3. It is observed that along the routes that have a
higher percentage of principal arterials, mar-
ginal costs tend to increase.

4. Urbanization around the highways has no sig-
nificant effect on marginal costs.

5. We also used our full marginal cost findings to
evaluate the current pricing policy. It is observed
that the government’s highway user revenue is
far below the amount required to meet the mar-
ginal roadway-pricing criterion. 

These results can be used by policymakers to
assess the effectiveness of the overall transportation
system. For example, the finding that longer trips
have considerably higher costs, mainly due to con-
gestion, can be used to develop proper congestion
toll schemes. In general, the evaluation of a deci-
sion of whether or not to invest in a new facility can
be facilitated by comparing marginal social benefits
with the germane marginal social costs, given a spe-
cific location.

It should be noted, however, that the results pre-
sented in this study are specific to a New Jersey
area. Furthermore, the marginal cost values
reported here are sensitive to other assumptions
not included in this study. For example, the travel
time function used to calculate congestion costs
could affect marginal cost values significantly. In
this study, the Bureau of Public Road’s (BPR) travel
time function is utilized. The variation in the cost
values can be observed using different travel time
functions. 
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