

Laboratoire d'études sur les risques naturels (LERN)

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT Projet R729.2

Ariane Locat, Jérémie Ferland et Kevin Hébert Laboratoire d'étude sur les risques naturels Département de génie civil et de génie des eaux Université Laval

Réalisé pour le compte du ministère des Transports et de la Mobilité durable du Québec

La présente étude a été réalisée à la demande du ministère des Transports et de la Mobilité durable et a été financée par le Ministère.

Les opinions exprimées dans le présent rapport n'engagent que la responsabilité de leurs auteurs et ne reflètent pas nécessairement les positions du ministère des Transports et de la Mobilité durable.

Collaborateurs

Jérémie Ferland, étudiant à la maîtrise, Laboratoire d'études sur les risques naturels, Département de génie civil et de génie des eaux, Université Laval

Kevin Hébert, professionnel de recherche, Laboratoire d'études sur les risques naturels, Département de génie civil et de génie des eaux, Université Laval

Serge Leroueil, professeur émérite, Laboratoire d'études sur les risques naturels, Département de génie civil et de génie des eaux, Université Laval

Jacques Locat, professeur émérite, Laboratoire d'études sur les risques naturels, Département de géologie et de génie géologique, Université Laval

REMERCIEMENTS

Nous remercions l'équipe du ministère des Transports et de la Mobilité durable, Mme Marie-Christine Delisle, M. Antony Gagné, M. Pierre-Alain Konrad et Mme Catherine Ledoux, d'avoir donné à l'équipe du Laboratoire d'études sur les risques naturels de l'Université Laval l'opportunité et les moyens de travailler sur ce projet unique. Nous tenons aussi à remercier Mme Andrée-Anne Fortin-Rhéaume et M. Mustapha Abdellaziz pour leur appui, leur disponibilité et leur participation aux travaux de laboratoire. Nous tenons aussi à souligner la grande contribution de M. Jérémie Ferland qui a réalisé son projet de maîtrise dans le cadre de ce projet de recherche. Nous sommes aussi reconnaissants de l'implication inestimable de M. Serge Leroueil et M. Jacques Locat. Leurs conseils nous ont aidés à approfondir nos analyses et à économiser beaucoup de temps.

SOMMAIRE

Les argiles de la région du Bas-Saint-Laurent présentent une unité stratigraphique difficile à caractériser, dont les propriétés géotechniques sont peu connues. À la suite d'une première phase d'investigation, réalisée par le ministère des Transports et de la Mobilité durable (MTMD) et l'Université Laval, où les sites de l'Isle-Verte et de Notre-Dame-des-Neiges ont été étudiés (Hébert et coll., 2016; Hébert, 2016), les sites de Saint-Anaclet-de-Lessard, Trois-Pistoles, Price et Saint-Ulric-de-Matane ont été investigués dans cette deuxième phase du projet. Ces sites sont composés d'une couche de sol argileux très raide (unité supérieure) reposant sur une couche argileuse ferme à raide (unité inférieure). Sur les images de tomodensitométrie, l'unité supérieure présente une matrice massive, tandis que l'unité inférieure présente des stratifications subhorizontales. Les indices de liquidité se situent entre -0,1 et 0,72 dans l'unité supérieure. Des sondages au piézocône, des essais de pénétration standards, des scissomètres de chantier, la mesure de la vitesse des ondes de cisaillement, les essais géotechniques de base, des essais triaxiaux et des essais œdométriques dans l'unité supérieure ont permis d'établir des corrélations. Malgré une certaine variabilité, celles-ci permettent de indiqueraient que les relations de Leroueil et coll. (1983) à l'état remanié semblent bien corrèler avec les argiles des sites du Bas-Saint-Laurent et que la composition minéralogique des sols de la région à l'étude serait possiblement similaire. Les valeurs de N_{kT} obtenues dans l'unité supérieure sont supérieures à celles des argiles de l'est du Canada et trop variables pour que l'utilisation du N_{kT} à lui seul puisse être utilisé pour définir la résistance au cisaillement non drainé de cette unité. La corrélation entre l'indice N₆₀ obtenu du SPT surestime la résistance non drainée mesurée au triaxial dans l'unité supérieure. La relation entre la vitesse de propagation des ondes sismigues de cisaillement (ou le G_0) et la résistance au cisaillement non drainée au triaxial a une forme similaire à celle de L'Heureux et Long (2017), développée pour les argiles sensibles de Norvège et semble intéressante à préciser. La relation entre le module œdométrique (M_{oed}) et le module de cisaillement à petite déformation (G_o) semble se situer entre des intervalles définis par Mayne (2007) pour les argiles et les silts, malgré une grande variation des données. En comparaison au module œdométrique et au module élastique non drainé, les modules pressiométriques E_m sont faibles dans l'unité supérieure. La contrainte de préconsolidation élevée, la forte résistance au cisaillement non drainée déduite du piézocône et du SPT et le comportement dilatant de l'argile indiquent que le sol de l'unité supérieure est raide et a

un comportement surconsolidé. La résistance mesurée des essais triaxiaux, les résultats des modules pressiométriques, les valeurs de vitesse des ondes de cisaillement, et donc le module G₀, et les modules de déformation déterminés à partir des essais triaxiaux et œdométriques sont cependant plus faibles que ce à quoi on peut s'attendre d'après les résultats au piézocône et au SPT. Cette différence reste difficile à expliquer, mais comme elle est observée aux six sites d'études, elle ne semble pas venir d'une anomalie. L'utilisation des paramètres qt et Bq, de l'indice de liquidité et des images Ct-Scan est recommandée afin de distinguer ces unités. Des essais triaxiaux ont été utilisés afin de la mesurer la résistance au cisaillement non drainé dans l'unité supérieure. Dans le cadre de ce projet de recherche, la résistance est déterminée arbitrairement à 5 % de déformation axiale, mais cette définition de la résistance n'est pas adéquate pour tous les projets. L'unité supérieure aurait possiblement hérité ses propriétés mécaniques de l'action des glaciers (surcharge et faibles températures) préalablement à sa déposition sur la couche moins raide. Le principe de contrainte de préconsolidation pour les sols de l'unité supérieure diffère donc de celui d'un sol formé par un processus de sédimentation. Cette étude a permis de : fournir les caractéristiques générales des deux unités rencontrées permettant leur caractérisation; de démontrer que l'origine de la couche supérieure fait en sorte que les corrélations développées pour l'unité supérieure sont très variables et que celles-ci pourraient varier beaucoup d'un site à l'autre; accroître la banque de données actuellement disponible ainsi que la caractérisation géotechnique des argiles du Bas-Saint-Laurent; et vérifier si les corrélations propres aux argiles de la mer de Champlain s'appliquent à ces argiles. Il est recommandé : d'établir un programme de reconnaissance pour déterminer l'étendue de la couche raide et préciser son mode de formation; de se pencher sur la méthodologie de l'essai pressiométrique dans ces sols pour qu'il soit utilisé plus efficacement; de préciser la résistance et les modules de déformation; et d'ajouter des données, de valider et de mieux comprendre les corrélations par l'étude d'un autre site. En somme, bien que ces travaux aient permis de brosser un portrait géotechnique global de certains dépôts en place dans la région, il demeure néanmoins beaucoup d'interrogations qui nécessiteront davantage de travaux et d'analyse afin de les comprendre.

TABLE DES MATIÈRES

SOMMAIRE	iv
TABLE DES MATIÈRES	vi
INTRODUCTION	1
CHAPITRE 1 : PROBLÉMATIQUE	4
1.1 Contexte géologique au Bas-Saint-Laurent	4
1.2 Propriétés géotechniques des argiles du Bas-Saint-Laurent	6
CHAPITRE 2 : MÉTHODOLOGIES	15
2.1 Sites investigués	15
2.2 Méthodologie des travaux de terrain	17
2.2.1 Piézocône	17
2.2.2 Essai de pénétration standard	18
2.2.3 Piézométrie	18
2.2.4 Échantillonnage	19
2.2.5 Essais sismiques de type « downhole » et « crosshole »	20
2.2.6 Scissomètre	22
2.2.7 Pressiomètre	22
2.2.8 Tomodensitométrie (Ct-Scan)	23
2.3 Méthodologie des travaux en laboratoire	23
2.3.1 Extraction et mise en scellé	23
2.3.2 Essais de caractérisation géotechnique de base	23
2.4 Essais de caractérisation mécanique	24
2.4.1 Essai œdométrique	24
2.4.2 Essais triaxiaux	25
2.4.3 Essais de perméabilité à charge constante (cellule triaxiale)	26
CHAPITRE 3 : SAINT-ANACLET-DE-LESSARD	28
3.1 Piézocône	28
3.2 Stratigraphie	29
3.3 Propriétés géotechniques	31
3.3.1 Caractéristiques physicochimiques	34
3.3.2 Propriétés mécaniques	35

3.3.3 Propriétés hydrauliques4	17
3.4 Sommaire du site de Saint-Anaclet-de-Lessard4	17
CHAPITRE 4 : TROIS-PISTOLES4	19
4.1 Piézocône4	19
4.2 Stratigraphie5	50
4.3 Profil géotechnique5	51
4.3.1 Caractéristiques physicochimiques5	54
4.3.2 Propriétés mécaniques5	54
4.3.3 Propriétés hydrauliques6	35
4.4 Sommaire du site de Trois-Pistoles6	6
CHAPITRE 5 : PRICE6	38
5.1 Piézocône6	38
5.2 Stratigraphie6	39
5.3 Propriétés géotechniques7	'0
5.3.1 Caractéristiques physicochimiques7	'3
5.3.2 Propriétés mécaniques7	'3
5.3.3 Propriétés hydrauliques8	34
5.4 Sommaire du site de Price8	35
CHAPITRE 6 : SAINT-ULRIC-DE-MATANE	37
6.1 Piézocône8	37
6.2 Stratigraphie8	38
6.3 Propriétés géotechniques9	90
6.3.1 Caractéristiques physicochimiques9	90
6.3.2 Propriétés mécaniques9	90
6.3.3 Propriétés hydrauliques10)3
6.4 Sommaire du site de Saint-Ulric-de-Matane10)4
CHAPITRE 7 : DISCUSSION SUR LES PROPRIÉTÉS GÉOTECHNIQUES DE ARGILES ÉTUDIÉES	S)6
7.1 Identification des unités stratigraphiques10)6
7.2 Hypothèse sur la formation des dépôts10)8
7.3 Corrélations entre les propriétés géotechniques11	0
7.3.1 Propriétés des sols à l'état remanié11	0
7.3.2 Propriétés des sols à l'état intact11	4

7.3.3 Propriétés caractéristiques au passage de l'état intact à déstructuré	134
7.4 Synthèse des corrélations entre les propriétés géotechniques	136
CHAPITRE 8 : PORTÉE DE L'ÉTUDE	141
CONCLUSIONS ET RECOMMANDATIONS	143
RÉFÉRENCES	147
ANNEXES	153
Annexe A : Saint-Anaclet-de-Lessard	154
Annexe A1 : Rapport de sondage	154
Annexe A2 : Terrain	164
Annexe A3 : Essais triaxiaux	169
Annexe A4 : Essais œdométriques	177
Annexe B : Trois-Pistoles	196
Annexe B1 : Rapport de sondage	196
Annexe B2 : Terrain	208
Annexe B3 : Essais triaxiaux	213
Annexe B4 : Essais œdométriques	222
Annexe C : Price	244
Annexe C1 : Sondages	244
Annexe C2 : Terrain	253
Annexe C3 : Essais triaxiaux	258
Annexe C4 : Essais œdométriques	266
Annexe D : Saint-Ulric-de-Matane	282
Annexe D1 : Sondages	282
Annexe D2 : Terrain	289
Annexe D3 : Essais triaxiaux	294
Annexe D4 : Essais œdométriques	302
Annexe E : Estimation de la vitesse de propagation des ondes sismiques de cisail	lement
	315

LISTE DES FIGURES

Figure 0-1 : Carte de localisation de l'extension maximale des mers postglaciaire au	L
Québec et de la localisation générale (encadré rouge) des sites étudiés dans ce proje	t
(Source : Gouvernement du Québec, 2017)	2
Figure 2-1 : Sondages réalisés au Bas-Saint-Laurent16	3
Figure 2-2 : Schéma de l'essai sismique de type downhole. Tiré de la norme ASTM	Λ
D7400/D7400M-192	1
Figure 3-1 : Profil au piézocône à Saint-Anaclet-de-Lessard	9
Figure 3-2 : Présentation des Ct-Scan dans le profil de qtà Saint-Anaclet-de-Lessard3'	1
Figure 3-3 : Profil géotechnique à Saint-Anaclet-de-Lessard	2
Figure 3-4 : Profil des modules du sol du site de Saint-Anaclet-de-Lessard	3
Figure 3-5 : Sommaire des 8 essais triaxiaux à Saint-Anaclet-de-Lessard	3
Figure 3-6 : Angles de frottement et cohésion effective de 2 horizons à Saint-Anaclet-de	;-
Lessard	9
Figure 3-7 : Courbes œdométriques à Saint-Anaclet-de-Lessard43	3
Figure 3-8 : Modules œdométriques à Saint-Anaclet-de-Lessard	4
Figure 3-9 : Modules œdométriques à Saint-Anaclet-de-Lessard (semi-log)48	5
Figure 4-1 : Profil au piézocône à Trois-Pistoles)
Figure 4-2 : Présentation des Ct-Scan dans le profil de qt à Trois-Pistoles5	1
Figure 4-3 : Profil géotechnique à Trois-Pistoles	2
Figure 4-4 : Profil des modules du sol du site de Trois-Pistoles	3
Figure 4-5 : Sommaire des 10 essais triaxiaux à Trois-Pistoles	3
Figure 4-6 : Angles de frottement et cohésion effective de 2 horizons à Trois-Pistoles59	9
Figure 4-7 : Courbes œdométriques à Trois-Pistoles	2
Figure 4-8 : Modules œdométriques à Trois-Pistoles63	3
Figure 4-9 : Modules œdométriques à Trois-Pistoles (semi-log)64	1
Figure 5-1 : Profil au piézocône à Price69	9
Figure 5-2 : Présentation des Ct-Scan dans le profil de qt à Price)
Figure 5-3 : Profil géotechnique à Price	1
Figure 5-4 : Profil des modules du sol du site de Price72	2
Figure 5-5 : Sommaire des 8 essais triaxiaux à Price77	7
Figure 5-6 : Angles de frottement et cohésion effective de 2 horizons à Price78	3
Figure 5-7 : Courbes œdométriques à Price87	1
Figure 5-8 : Modules œdométriques à Price82	2
Figure 5-9 : Modules œdométriques à Price (semi-log)83	3
Figure 6-1 : Profil au piézocône à Saint-Ulric-de-Matane88	3
Figure 6-2 : Présentation des Ct-Scan dans le profil de qt à Saint-Ulric-de-Matane89	9
Figure 6-3 : Profil géotechnique à Saint-Ulric-de-Matane94	1
Figure 6-4 : Profil des modules du sol du site de Saint-Ulric-de-Matane92	2
Figure 6-5 : Sommaire des 9 essais triaxiaux à Saint-Ulric-de-Matane96	3
Figure 6-6 : Plage de valeurs pour les paramètres effectifs de résistance pour 2 horizons	s
différents à Saint-Ulric-de-Matane (environ 7,20 et 13,80 m de profondeur)97	7
Figure 6-7 : Courbes œdométriques à Saint-Ulric-de-Matane)
Figure 6-8 : Modules œdométriques à Saint-Ulric-de-Matane	1
Figure 6-9 : Modules œdométriques à Saint-Ulric-de-Matane (semi-log)102	2
Figure 7-1 : Activité (Ac) des argiles des sites du Bas-Saint-Laurent	1

Figure 7-2 : Relation entre la limite de liguidité et la limite de plasticité des sites au Bas-Saint-Laurent avec les limites de Leroueil et coll. (1983) et la moyenne de Garneau et Le Bihan (1977)......112 Figure 7-3 : Résistance au cisaillement non drainé remanié de l'unité inférieure des sites au Bas-Saint-Laurent en relation avec l'indice de liquidité et l'équation de Leroueil et coll. Figure 7-4 : Relation entre l'angle de frottement et l'indice de plasticité des argiles. Modifiée de Leroueil et coll. (1983).....114 Figure 7-6 : Relation entre q_t - σ_{v0} et a) la résistance au cisaillement non drainé au triaxial à 5 % de déformation de l'unité supérieure; b) la résistance au cisaillement non drainé au scissomètre de l'unité inférieure (l'unité supérieure de Saint-Ulric-de-Matane est Figure 7-7 : Rapport de N_{kT} déterminé sur l'argile intacte et de N_{kT*} déterminé sous un Figure 7-8: Frottement latéral (fs) au piézocône en fonction de la résistance au cisaillement non drainé obtenu aux essais triaxiaux déterminée à une valeur de déformation axiale de 5 % (a) et de la résistance au cisaillement non drainé obtenu de Figure 7-9 : Relation entre l'indice N₆₀ et la résistance au cisaillement non drainé au triaxial Figure 7-10 : Corrélation entre l'indice de plasticité et le rapport S_{uUU}/N₆₀ (Stroud, 1974). Figure 7-11 : Corrélation entre P₁- σ_{v0} et s_{uv} pour l'unité inférieures des sites du Bas-Saint-Figure 7-12 : Relation entre la vitesse de cisaillement et a) la résistance au cisaillement non drainé à 5% de déformation obtenue au triaxial pour l'unité supérieure; b) la résistance Figure 7-13 : Relation entre le module de cisaillement à petite déformation et a) la résistance au cisaillement non drainé à 5 % de déformation axiale obtenue au triaxial pour l'unité supérieure (incluant Saint-Ulric-de-Matane): b) la résistance au cisaillement non Figure 7-14 : Relation entre la vitesse de propagation des ondes de cisaillement et la contrainte de préconsolidation pour l'unité inférieure des sites du Bas-Saint-Laurent. 128 Figure 7-15 : Relation entre le module de cisaillement à petite déformation et la contrainte Figure 7-16 : Variation du rapport s_{uv}/σ_{p}^{2} avec l'indice de plasticité pour l'unité inférieure Figure 7-17 : Module E_{μ} mis en relation avec le module élastique maximum (3G₀) pour les argiles du Bas-Saint-Laurent......131 Figure 7-18 : Rapport entre le module œdométrique et le module de cisaillement à petite déformation : a) pour les sites au Bas-Saint-Laurent; b) pour plusieurs types de sol (tirée Figure 7-19 : Corrélation entre l'indice des vides initial (e_0) et l'indice de compression (C_c). Figure 7-20 : Corrélation entre l'indice des vides naturel, l'indice de compression et la sensibilité des argiles......136

LISTE DES TABLEAUX

Tableau 2-1 : Répartition des tubes et des cuillères fendues récupérés dans le cadre de
la phase 2
Tableau 3-1 : Sommaire des essais triaxiaux à Saint-Anaclet-de-Lessard. 37
Tableau 3-2 : Sommaire des essais œdométriques à Saint-Anaclet-de-Lessard41
Tableau 3-3 : Essais pressiométriques à Saint-Anaclet-de-Lessard46
Tableau 3-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité
supérieure de Saint-Anaclet-de-Lessard47
Tableau 4-1 : Sommaire des essais triaxiaux à Trois-Pistoles57
Tableau 4-2 : Sommaire des essais œdométriques à Trois-Pistoles61
Tableau 4-3 : Essais pressiométriques à Trois-Pistoles65
Tableau 4-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité
supérieure de Trois-Pistoles66
Tableau 5-1 : Sommaire des essais triaxiaux à Price
Tableau 5-2 : Sommaire des essais œdométriques à Price80
Tableau 5-3 : Essais pressiométriques à Price84
Tableau 5-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité
supérieure de Price
Tableau 6-1 : Sommaire des essais triaxiaux à Saint-Ulric-de-Matane
Tableau 6-2 : Résistance au cisaillement non drainé à 5 % de déformation à Saint-Ulric-
de-Matane96
Tableau 6-3 : Sommaire des essais œdométriques à Saint-Ulric-de-Matane
Tableau 6-4 : Essais pressiométriques à Saint-Ulric-de-Matane
Tableau 6-5 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité
supérieure de Saint-Ulric-de-Matane104
Tableau 7-1 : Résumé des essais de perméabilité réalisés sur les sites de Saint-Anaclet-
de-Lessard et de Trois-Pistoles134

GLOSSAIRE

A : aire normale à l'écoulement de l'échantillon de sol

a : aire du tube de mesure pour l'essai de perméabilité

A_c : activité

 B_q : rapport de l'excédent de pression interstitielle (u-u0) sur la résistance en pointe nette (qt- σ_{v0})

- C-0X : essai au piézocône
- CM-0X : essai au piézocône sismique
- C_B : facteur de correction pour le diamètre du trou de forage
- C_c : indice de compression
- C_E : facteur de correction pour l'énergie transmise
- CPTu : essai au piézocône
- C_R : facteur de correction pour la longueur du train de tiges
- C_S : facteur de correction pour le type d'échantillonneur
- C_s : indice de recompression
- Cs d-r : indice de recompression en déchargement-rechargement
- c' : cohésion effective
- e : indice des vides
- E_M : module pressiométrique
- E_{max} : module élastique maximal (3 * G₀)
- E_u: module élastique non drainé
- eo: indice des vides naturel
- fs : frottement développé lors de l'essai au piézocône
- Fr : rapport de frottement normalisé
- Go: module de cisaillement à petite déformation
- I_L : indice de liquidité
- I_p : indice de plasticité
- K_o : Coefficient de pression des terres au repos
- L : Hauteur de l'échantillon

Moed : module œdométrique

N : indice N mesuré lors de l'essai de pénétration standard (SPT)

N₆₀: indice N corrigé pour différents facteurs

 $N_{\mbox{\tiny kT}}$: paramètre permettant de déduire la résistance au cisaillement non drainé de l'essai au piézocône

 $N_{\mbox{\tiny \sigmaT}}$: paramètre permettant de déduire la résistance au cisaillement non drainé de l'essai au piézocône

- OCR : rapport de surconsolidation
- pa : pression atmosphérique
- P_L : pression limite
- Q : Quantité totale d'eau durant un intervalle de temps
- qc: résistance en pointe
- qt : résistance en pointe corrigée
- qt-ovo : résistance en pointe nette
- Sr : degré de saturation
- su : résistance au cisaillement non drainé
- su (triax ε=5 %) : résistance au cisaillement non drainé au triaxial à 5 % de déformation
- su (triax ε=10 %) : résistance au cisaillement non drainé au triaxial à 10 % de déformation
- suv: résistance au cisaillement non drainé mesurée au scissomètre de chantier
- suuu : résistance au cisaillement non drainé non confiné
- t:temps
- u : pression interstitielle
- u₂: pression interstitielle générée à l'arrière du cône (u2) lors de l'essai au piézocône
- u₀ : pression interstitielle
- V_p : vitesse de propagation des ondes de compression dans le sol
- Vs : vitesse de propagation des ondes de cisaillement dans le sol
- w : teneur en eau
- w_L : limite de liquidité
- w_{moy} : teneur en eau moyenne du tube

- w_p : limite de plasticité
- α : angle du plan de rupture par cisaillement de l'essai triaxial
- β' : coefficient théorique pour la détermination de Su au pressiomètre
- Δh : charge hydraulique
- ϕ ' : angle de frottement
- ρ: masse volumique
- σ_{h0} : contrainte horizontale totale en place
- σ_v : contrainte verticale totale
- σ_{v0} : contrainte verticale totale en place
- σ'_{p} : pression de préconsolidation
- σ'_{ν} : contrainte verticale effective
- σ'_{v0} : contrainte verticale effective en place

INTRODUCTION

Contexte

Au Québec, la vaste majorité des fondations routières se trouve sur les argiles de la mer Champlain et de la mer Laflamme. Les corrélations développées sur ces argiles sont fréquemment utilisées dans la pratique par les ingénieurs (Leroueil et coll., 1983; Lefebvre, 1981; Locat et coll., 1984; Leroueil, 1997; Demers et Leroueil, 2002; Locat et coll., 2003), et elles sont un outil important lors de travaux géotechniques.

Toutefois, les argiles de l'ancienne mer Goldthwait, dans la région du Bas-Saint-Laurent, présentent par endroits une unité stratigraphique difficile à échantillonner, dont les propriétés géotechniques sont moins connues que celles des autres argiles du Québec. Il s'agit d'une couche très raide en surface qui surmonte une unité argileuse stratifiée beaucoup plus « classique ». La consistance très raide de l'unité en surface rend laborieuses les investigations géotechniques dans les argiles de la région du Bas-Saint-Laurent. La première phase de ce projet (Hébert et coll., 2016) et le travail de maîtrise d'Hébert (2016) réalisé dans le cadre de ce projet ont permis de confirmer les propriétés singulières de ces sols argileux et la nécessité de poursuivre les recherches afin d'améliorer les connaissances à ce sujet.

Objectifs

Dans ce contexte, le ministère des Transports et de la Mobilité durable (MTMD) et l'Université Laval se sont entendus pour étudier conjointement les dépôts de la région dans le cadre de ce projet de recherche « R729.2 Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent – Phase 2 ». Les travaux de recherche ont été effectués par M. Jérémie Ferland dans le cadre de sa maîtrise supervisée par Mme Ariane Locat, chercheuse principale du projet, ainsi que par Kevin Hébert, professionnel de recherche à l'Université Laval. M. Serge Leroueil et M. Jacques Locat ont aussi participé à ce projet comme collaborateurs.

Les objectifs généraux de ce projet sont :

• Enrichir la banque de données actuellement disponible au Ministère ainsi que faire la caractérisation de base des argiles du Bas-du-Fleuve pour améliorer le niveau de connaissance que celle que l'on a des argiles de la mer de Champlain.

1

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT

• Vérifier si les corrélations propres aux argiles de la mer de Champlain s'appliquent à celles des argiles du Bas-St-Laurent ou s'il faut déterminer des corrélations qui leur sont propres.

Les objectifs spécifiques du projet de recherche sont :

• La caractérisation géotechnique des différentes unités géologiques de 4 sites supplémentaires dans la région d'étude, de façon à pouvoir identifier rapidement les unités présentes dans un rapport de sondage.

 L'établissement de relations, facteurs de corrélations et/ou abaques permettant un meilleur contrôle de la qualité des données obtenues dans les essais in situ et en laboratoire lors d'étude sur les argiles du Bas-St-Laurent, donc une plus grande efficacité et des économies dans les campagnes de sondages.

Pour réaliser ce travail, quatre sites localisés au Bas-Saint-Laurent ont été étudiés (voir Figure 0-1 ici-bas). Les résultats de ces investigations de même que ceux étudiés dans la phase I du projet par Hébert et coll. (2016) dans cette même région, et l'analyse des corrélations entre les diverses propriétés géotechniques des argiles étudiées sont présentés dans ce rapport.

Figure 0-1 : Carte de localisation de l'extension maximale des mers postglaciaire au Québec et de la localisation générale (encadré rouge) des sites étudiés dans ce projet (Source : Gouvernement du Québec, 2017).

Structure du rapport

Ce rapport donne suite au rapport d'étape 01, transmis dans sa version finale le 15 juillet 2021 (Hébert & Locat, 2021), ainsi que le rapport d'étape 02, transmis dans sa version finale le 29 septembre 2022 (Hébert et coll., 2022). Ce rapport est divisé en 8 chapitres. Le contexte géologique et les travaux géotechniques réalisés préalablement à cette étude sont présentés au Chapitre 1. Le Chapitre 2 présente la méthodologie appliquée pour ce projet. La caractérisation détaillée de chacun des sites est présentée aux Chapitres 3 à 6. L'analyse des résultats et la discussion sur les propriétés géotechniques des argiles étudiées se trouvent au Chapitre 7. Dans cette section, les outils permettant une détermination rapide de la stratigraphie sont présentés aux relations pouvant être utilisées dans la région sont discutées et comparées aux relations connues des autres argiles de l'est du Canada et d'autres régions. Le Chapitre 8 présente la portée de l'étude et des résultats découlant du projet. Le tout est suivi par la conclusion de la phase II du projet de recherche et les principales recommandations qui en découlent. Une annexe présente certains résultats plus en détail.

Utilisation de ce rapport

Ce rapport a été préparé par l'Université Laval pour l'utilisation exclusive du ministère des Transports et de la Mobilité durable (MTMD), dans le cadre du contrat de recherche R729.2 entre le MTMD et l'Université Laval. Il a été rédigé avec les données fournies par le MTMD dont disposait l'Université Laval au moment de sa préparation. Ce document, de même que les données qu'il contient ne doivent pas être utilisés à d'autres fins que celles mentionnées dans le contrat. Toute utilisation qu'un tiers fait de ce document ou toute confiance dans des décisions fondées sur celui-ci relève de la responsabilité de ces tiers. L'Université Laval n'accepte aucune responsabilité pour les dommages, le cas échéant, subis par un tiers à la suite de décisions prises ou d'actions basées sur ce document. Aucun changement ne peut être apporté à ce document sans le consentement des auteurs.

CHAPITRE 1 : PROBLÉMATIQUE

1.1 Contexte géologique au Bas-Saint-Laurent

L'invasion marine de la mer de Goldthwait dans la région du Bas-Saint-Laurent fut très rapide. Locat (1977) et Hétu (1998) parlent d'une invasion quasi synchrone entre Gaspé et Trois-Pistoles. L'histoire géologique du secteur Baie-des-Sables – Trois-Pistoles est documentée en détail dans les travaux de Locat (1976). Celui-ci sépare l'histoire géologique de cette région en quatre phases : préglaciaire (> 100 000 AA), glaciaire (100 000 – 14 000 AA), glaciomarine (14 000 – 12 000) et marine (< 12 000 AA). Dionne (1977), quant à lui, subdivise la chronologie de la région en 3 grandes phases : Goldthwaitien II (13 500 à 12 000 ans), Goldthwaitien II (12 000 à 9 000 ans) et Goldthwaitien III (9 000 ans à aujourd'hui).

Selon Lebuis (1973) et Gauthier (1975a, 1975b), vers 14 000 ans, la calotte glaciaire laurentidienne se scinde en calottes laurentidienne et appalachienne. La phase glaciomarine débute au moment où la mer Goldthwait s'étend entre les fronts des calottes laurentidienne et appalachienne. La marge glaciaire bloque alors l'avancée de la mer Goldthwait vers l'amont. De Trois-Pistoles à l'extrémité nord-est de la péninsule Gaspésienne, une mince bande côtière est submergée par la mer Goldthwait entre 13 500 et 12 500 ans (Dionne, 1977). La moraine de Saint-Antonin indique que l'inlandsis est talonné par la mer. Ceci a permis la mise en place d'une argile glaciomarine reposant majoritairement sur le till de Petite-Matane. Locat (1978) présente les principales unités stratigraphiques de la région, telles qu'illustrées à la Figure 1-1. L'argile glaciomarine correspond à la partie inférieure de l'unité 7 à la Figure 1-1 se situant sur la côte. Selon cet auteur, cette argile est grise et caillouteuse, stratifiée, et elle est constituée en grande partie de sédiments d'origine appalachiens et s'apparente localement à un diamicton (mélange). L'unité d'argile glaciomarine pourrait correspondre aux argiles raides étudiées dans le cadre du projet, mais ne semblent pas avoir la même relation stratigraphique, i.e. qu'elles n'ont pas été observées par Locat (1978) au-dessus d'argiles normalement consolidées. Il est plus probable que celle-ci ne soit rencontrée que localement, à la base de la colonne stratigraphique, et possiblement directement en contact avec le socle rocheux. Elle ne semble pas être rencontrée dans les sites étudiés lors de ce projet. Locat (1978) indique que l'argile la plus répandue dans la région est une argile massive gris pâle à gris foncée datant du Goldthwaitien II, souvent impliquée dans les glissements de terrain. L'argile massive est également représentée par l'unité 7 dans la Figure 1-1, et elle est séparée de l'argile glaciomarine par la ligne en tirets. Locat (1978) note que l'argile massive devient brunâtre à certains endroits à cause de l'altération et qu'elle contient des lentilles de sable allant jusqu'à 3 m d'épaisseur. Cette argile massive est composée entre 40 à 70 % de silt, 23 à 60 % d'argile et jusqu'à 23 % de sable (Locat, 1978). Elle repose sur le roc, le till de Petite-Matane ou bien directement sur l'argile glaciomarine (Locat, 1978) et celle-ci ne présente pas de stratifications nettes visibles à l'œil nu. Pour faire le pont avec cette étude, cette argile massive correspond à l'unité inférieure. La nomenclature « massive » correspond au fait que les stratifications ne sont pas visibles à l'œil nu, comparativement aux dépôts d'argile de la rive nord du fleuve Saint-Laurent, où celles-ci sont visibles.

Figure 1-1 : Corrélations entre les unités stratigraphiques de la région, schéma perpendiculaire au fleuve Saint-Laurent. Tirée de Locat (1978).

Prichonnet (1995) et Hétu (1998) présentent des évidences d'une réavancée glaciaire et de pauses dans la région entre 12 400 et 12 000 B.P., et ce pour les calottes laurentidienne et appalachienne. Ce phénomène serait de causes climatiques (Hétu, 1998). La réavancée de la calotte appalachienne a dû être influencée par la topographie de la région et elle est probablement survenue sous forme de lobes glaciaires avançant en milieu marin.

De telles réavancées glaciaires en direction nord-ouest auraient ainsi pu permettre la reprise de sédiments marins déjà en place (l'argile massive, selon la définition de Locat (1978)) et leur re-déposition sous la forme de till d'écoulement (e.g. coulée de débris). Ainsi la couche raide, aux propriétés héritées de sa prise en charge sous-glaciaire, aurait été mise en place comme tel sur les sédiments marins existants, lesquels s'y seraient ajustés en termes de contraintes de consolidation pour devenir ainsi normalement consolidées par rapport à cette nouvelle surcharge sédimentaire rapide. À cet effet, il faut donc retenir que les propriétés géotechniques de cette couche raide auraient été héritées de leur passage sous le glacier.

1.2 Propriétés géotechniques des argiles du Bas-Saint-Laurent

Avant les travaux de Leroueil et coll. (1983) et Locat et coll. (2003), Dionne (1977) avait complété des travaux sur les propriétés géotechniques des dépôts meubles entre Rivièredu-Loup et Saint-Joachim-de-Tourelle. Les résultats des essais en laboratoire témoignent que l'argile a une teneur en eau faible entre 17,5 et 35,5 %. La sensibilité des échantillons récoltés varie de 2 à 20. Les résultats au triaxial permettent d'obtenir un angle de frottement ¢' de 34° et une cohésion effective c' de 0,06 kg/cm² (approximativement 5,9 kPa). Selon les résultats œdométriques, l'argile est normalement consolidée et sa perméabilité est très faible. Le manque de connaissance sur les unités échantillonnées rend difficile de déterminer si les essais réalisés dans ces études impliquent l'argile raide (unité supérieure) ou l'argile sous-jacente (unité inférieure).

En plus des travaux de 1977, Dion et Maranda (1978) ont effectué un levé géotechnique dans la région de Rimouski présentant des résultats sur de multiples paramètres géotechniques. Les auteurs parlent d'argiles et de limons massifs gris, gris foncé à brun qui s'apparentent à l'argile massive dénotée par Locat (1978). Les résultats des essais de base sur l'argile sont les suivants : teneur en eau de 30 %, limite de plasticité de 23 %, limite de liquidité de 38 % et une activité de 0,22. Les valeurs des indices de pénétration

standard permettent aux auteurs de diviser la colonne stratigraphique en deux zones soient une avec des indices N supérieurs 25 et une zone avec des indices N inférieurs à 10.

Hébert et coll. (2016), en collaboration avec le ministère des Transports et de la Mobilité durable, présente l'investigation de deux sites de la région du Bas-Saint-Laurent localisés à l'Isle-Verte et à Notre-Dame-des-Neiges. Ces travaux se sont faits dans le cadre du projet de recherche R729.1 Caractérisation des argiles du Bas-Saint-Laurent (Hébert et coll., 2016). Trois unités argileuses/silteuses sont identifiées à ces sites : une unité très raide en surface, une unité intermédiaire raide et une unité inférieure ferme. L'unité inférieure correspondrait à l'argile massive datant du Goldthwaitien II décrite par Locat (1978) (Figure 1-1).

Isle-Verte

La Figure 1-2 présente la séparation des unités identifiées en fonction du profil de résistance en pointe au CPTu et des images de tomodensitométrie. Pour ce site, les stratifications sont légèrement visibles sur le tube de 27,33 à 27,93 m, qui correspond au début de l'unité inférieure. Le profil géotechnique du site de l'Isle-Verte, étudié par Hébert et coll. (2016), est présenté à la Figure 1-3. L'unité supérieure a une épaisseur de 12 m et elle est composée d'un silt argileux brun-gris à gris. La consistance de cette unité est très raide (Hébert et coll., 2016). En tomodensitométrie, le sol constitue un mélange contenant divers débris disséminés dans une matrice argileuse et il ne présente pas de laminations ou de strates. Les teneurs en eau sont autour de 20 % et les indices de liquidité sont d'environ 0. Les essais triaxiaux montrent un sol dont le comportement est dilatant. Pour l'unité supérieure, la résistance s_u est définie à grande déformation (10 %) et varie entre 80 et 130 kPa. Les auteurs indiquent une difficulté à analyser les courbes œdométriques, ce qui témoigne de la variabilité des valeurs définies de contraintes de préconsolidation. Hébert et coll. (2016) indiquent que l'unité supérieure est fortement surconsolidée lorsque la contrainte de préconsolidation est déduite des essais au piézocône. Si l'origine de ces sédiments est glaciaire, le concept de la surconsolidation sédimentaire ne s'applique pas, car les propriétés seraient héritées d'un contexte très différent.

L'unité intermédiaire est composée d'un silt argileux et elle se situe à une élévation entre 9 et 0 m (Hébert et coll., 2016). La consistance de cette couche serait très raide à raide

et la matrice du sol est homogène et non stratifiée. Les teneurs en eau sont supérieures à celles de l'unité précédente et elles varient entre 25 et 30 %. La résistance au cisaillement non drainé à grande déformation est de 145 kPa selon l'essai triaxial. L'unité intermédiaire est légèrement surconsolidée avec des OCR se situant entre 1,7 et 2,3.

Le profil de la Figure 1-3 est complété par l'unité inférieure ferme d'une épaisseur de 18 m. L'épaisseur de l'unité inférieure est dépendante de la topographie du socle rocheux sous-jacent (Hébert et coll., 2016) et cette unité est composée d'un silt argileux à silt et argile. Les images Ct-Scan montrent des strates assez fines dans l'unité inférieure (Hébert et coll., 2016) telles que notées par Locat (1978) dans l'argile massive. L'unité inférieure montre un profil des teneurs en eau qui oscille entre 30 et 40 % et les indices de liquidité se situent entre 0,5 et 0,8. Un essai triaxial est réalisé dans cette unité et sa résistance au cisaillement à grande déformation est de 106 kPa. Au piézocône, le profil de contrainte de préconsolidation indique que le sol est légèrement surconsolidé, ce qui pourrait différer des attentes, puisque l'unité inférieure se situe sous l'unité supérieure très surconsolidée. Cette observation vient aussi renforcer le fait que les propriétés de l'argile raide sont héritées et que la couche sous-jacente n'a fait que s'adapter au poids ajouté par la couche déposée rapidement (till d'écoulement ou coulée de débris?).

Notre-Dame-des-Neiges

La Figure 1-4 présente la séparation des unités identifiées en fonction du profil de résistance en pointe au CPTu et des images de tomodensitométrie. Pour ce site, les stratifications sont légèrement visibles sur le tube de 27,33 à 27,94 m, ce qui correspond à l'unité inférieure. Les stratifications sont obliques dans ce tube. Les propriétés géotechniques du site de Notre-Dame-des-Neiges sont présentées sur le profil à la Figure 1-5. L'unité supérieure a une épaisseur de 11 m et est composée d'un silt argileux gris. Au Ct-Scan, l'unité supérieure présente un sol massif avec une matrice homogène. La teneur en eau varie entre 20 et 24 % et les indices de liquidité se situent entre 0 et 0,3.

Les essais triaxiaux présentent un comportement dilatant pour tous les échantillons. La résistance au cisaillement non drainée est déterminée à une déformation de 10 % et varie entre 130 et 330 kPa. La contrainte de préconsolidation varie grandement dans cette unité due à la forme « arrondie » des courbes et à la difficulté à les analyser. Tout de même, l'auteur indique que l'unité supérieure est très surconsolidée et les OCR varient entre 2,5 et 9.

Isle-Verte - C-03 & F-03

L'unité intermédiaire à Notre-Dame-des-Neiges possède une épaisseur de 3 m et elle est composée d'un silt argileux. Les indices de liquidité varient également entre 0 et 0,3 et la teneur en eau est d'environ 20 %. Au triaxial, le sol montre un comportement dilatant et la résistance au cisaillement non drainé à 10 % de déformation est de 410 kPa. Selon les essais œdométriques, le sol est toutefois légèrement surconsolidé.

Le profil géotechnique (Figure 1-5) à Notre-Dame-des-Neiges est conclu par l'unité inférieure, dont l'épaisseur est de 21 m et la consistance du sol est ferme à raide (Hébert et coll., 2016). L'analyse granulométrique indique que l'unité inférieure à Notre-Dame-des-Neiges est composée d'un silt argileux à silt et argile gris et des images Ct-Scan permettent de visualiser des strates subhorizontales.

Figure 1-3 : Profil géotechnique pour le site de l'Isle-Verte.

Selon Hébert et coll. (2016), les teneurs en eau sont d'environ 20 %. Les indices de liquidité varient entre 0,5 et 0,9, ce qui est nettement supérieur aux deux autres unités du site. Les deux profils aux scissomètres montrent une valeur constante de s_{uv} de 120 kPa. Hébert et coll. (2016) ont également réalisé des essais triaxiaux et les résistances au cisaillement non drainé à grande déformation sont de 230 et 375 kPa et les échantillons présentent des comportements dilatants. L'auteur indique que l'unité inférieure est normalement consolidée et les courbes œdométriques sont difficiles à analyser.

Figure 1-4 : Présentation des Ct-Scan dans le profil de qt à **Notre-Dame-des-Neiges.** L'analyse des deux profils géotechniques a donc permis de présenter des différences majeures entre les propriétés géotechniques des unités argileuses de la région côtière du Bas-Saint-Laurent.

Hébert et coll. (2016) présentent également plusieurs corrélations entre la littérature et ces sites à l'étude. Ces corrélations indiquent une similitude entre les propriétés du sol à l'état remanié des sites de l'Isle-Verte et de Notre-Dame-des-Neiges avec les argiles de l'est du Canada (Leroueil et coll., 1983), ce qui indiquerait une composition minéralogique similaire. L'essai de diffraction des rayons X, réalisé dans le cadre du projet d'Hébert et coll. (2016), présente les mêmes minéraux que pour les argiles de la mer Champlain (Locat et coll., 1984; et Locat et St-Gelais, 2013), ce qui concorde avec les conclusions des propriétés à l'état remanié. Les résultats des essais de porosimétrie au mercure et des analyses d'échantillons au microscope à balayage électronique donnent quelques indications supplémentaires sur la structure interne de ces sols. Une analyse préliminaire des résultats indiquerait que les échantillons prélevés dans les unités supérieures des deux sites de la phase I ne possèderaient qu'une seule famille de micropores, d'un diamètre de 0,1 µm (Isle-Verte) et de 0,2 µm (Notre-Dame-des-Neiges). L'analyse des échantillons provenant de l'unité inférieure au site de l'Isle-Verte indiquerait la présence de macro-pores d'environ 0,6 µm de diamètre, en plus des micropores, ce qui signifie un sol un peu plus compressible. La structure interne semblerait également un peu plus ouverte que pour tous les autres échantillons analysés. Ceci n'est pas observé au site de Notre-Dame-des-Neiges, où la structure interne est très compacte et fermée. D'autres essais sont nécessaires pour caractériser plus en détail la microstructure et la minéralogie des deux unités et valider ces observations.

Hébert et coll. (2016) font également l'analyse de corrélations pour les propriétés intactes. L'auteur détermine que le s_u pourrait être estimé dans l'unité supérieure selon un rapport s_u/N₆₀ de 5. Un paramètre N_{kT} de 18 pourrait également être utilisé pour réaliser un profil de la résistance au cisaillement non drainé, ce qui correspond à la limite supérieure des valeurs trouvées pour argiles de l'est du Canada (Leroueil, 1997). Hébert et coll. (2016) déterminent également une valeur β ' entre 10 et 12,5, afin d'estimer la résistance au cisaillement non drainé déduite du piézocône (pour un N_{kT} = 18) avec les pressions nettes au pressiomètre. Un N_{σT} de 3,4 peut être utilisé pour estimer le profil des contraintes de préconsolidation des sites à l'étude (Hébert et coll., 2016). Le rapport s_{uV}/ σ'_{v0} est de 0,21 en moyenne pour les 2 sites étudiés par Hébert et coll. (2016), ce qui est inférieur à la moyenne de 0,25 des argiles de l'est du Canada (Leroueil et coll., 1983). Les corrélations sont généralement bonnes, mais la quantité de données était trop faible pour en arriver à des conclusions satisfaisantes pour la région à l'étude.

Figure 1-5 : Profil géotechnique pour le site de Notre-Dame-des-Neiges.

Cette deuxième phase du projet propose donc la caractérisation géotechnique approfondie de 4 nouveaux sites localisés dans le Bas-Saint-Laurent et la vérification des corrélations entre les argiles du Bas-Saint-Laurent et les argiles de l'est du Canada dans le but d'atteindre les objectifs mentionnés en introduction. Le projet permet également d'analyser des corrélations étudiées dans des travaux à l'international (Stroud, 1974; Andrus, 2007; Mayne, 2007; Robertson, 2012; L'Heureux et Long, 2017; et Paniagua et coll., 2019) afin d'aider le développement de relations régionales.

CHAPITRE 2 : MÉTHODOLOGIES

Le chapitre suivant est une synthèse de la méthodologie adoptée pour la réalisation de ce projet. Préalablement, le procédé ayant permis le choix des 4 sites investigués est brièvement présenté. Les détails quant au choix des 4 sites du projet se trouvent dans les rapports d'étape 01 (Hébert et Locat, 2021) et 02 (Hébert et coll., 2022). Par la suite, ce chapitre discute de la méthodologie des essais de terrain et de laboratoire réalisés pour ce projet.

2.1 Sites investigués

Préalablement au choix des sites, sept sondages au piézocône ont été effectués par le ministère des Transports et de la Mobilité durable (MTMD) dans la région du Bas-Saint-Laurent. Dans le cadre de ce projet, cette région englobe la MRC de Rivière-du-Loup au sud jusqu'à la MRC de La Mitis au Nord. Le choix des sites a été fait sur la base de la présence de cette particularité stratigraphique dénotée par le MTMD et décrite par Hébert et coll. (2016). Cette anomalie stratigraphique est caractérisée par une forte résistance en pointe près de la surface qui diminue avec la profondeur, telle qu'expliqué dans l'introduction. La localisation des sites à l'étude est montrée sur la Figure 0-1. Les sites de l'Isle-verte et de Notre-Dame-des-Neiges ont été étudiés par Hébert et coll. (2016) dans la première phase du projet (R729.1), et les sites de Saint-Anaclet-de-Lessard, de Trois-Pistoles, de Price et de Saint-Ulric-de-Matane sont ceux investigués et caractérisés dans le cadre de cette deuxième phase du projet de recherche (R729.2).

Figure 0-1 : Sondages réalisés au Bas-Saint-Laurent.

2.2 Méthodologie des travaux de terrain

Les travaux de terrain ont été réalisés par le MTMD et différents sous-traitants, notamment pour les essais sismiques. M. Jérémie Ferland était présent afin d'assister le MTMD dans ces travaux.

2.2.1 Piézocône

Les essais au piézocône ont été effectués par l'équipe de forage de la section Mécanique des sols du MTMD préalablement aux autres travaux de terrain sur les 4 sites lors d'une campagne en 2020. La méthodologie suivie lors de l'essai CPTu est basée sur une combinaison des normes ASTM D5778-20 et ISO 22476-1 (2022). La sonde est enfoncée dans le sol avec une vitesse constante de 60 cm/min jusqu'à l'atteinte du refus. L'essai permet d'obtenir un profil de la résistance en pointe du cône (q_c), du frottement du sol contre le fût de la sonde (F_s) et de la pression interstitielle générée à l'arrière du cône durant l'enfoncement (u₂). La résistance en pointe corrigée q_t est obtenue en corrigeant la résistance en pointe q_c avec la pression d'eau agissant à l'arrière de la pointe. Le paramètre B_q est aussi obtenu par l'essai au piézocône. Ce paramètre correspond au rapport entre l'excédent de pression interstitielle et la résistance en pointe nette selon la formule suivante :

$$B_q = \frac{u_2 - u_0}{q_t - \sigma_{vo}}$$
 (2.1)

où, u₂ est la pression interstitielle générée à l'enfoncement, u₀ est la pression interstitielle naturellement présente dans le sol, q_t est la résistance en pointe corrigée et σ_{v0} est la contrainte verticale totale en place. Le paramètre B_q est également pris en compte lors du choix des sites, et il permet aussi de valider les essais CPTu.

Les paramètres N_{kT} et $N_{\sigma T}$ servent à définir la résistance au cisaillement non drainé (s_u) et la contrainte de préconsolidation (σ'_p) à l'aide d'une calibration entre les résultats du piézocône et des essais au scissomètre de chantier. N_{kT} est défini par l'équation suivante :

$$s_u = \frac{q_t - \sigma_{vo}}{N_{kT}} \qquad (2.2)$$

Selon Leroueil (1997), le N_{kT} varie entre 11 et 18 pour les argiles de l'est du Canada avec une moyenne à 14.

 $N_{\sigma T}$ est défini selon l'équation suivante :

$$\sigma'_p = \frac{q_t - \sigma_{vo}}{N_{\sigma T}} \quad (2.3)$$

Selon Demers et Leroueil (2002), $N_{\sigma T}$ est une constante empirique d'en moyenne 3,4 et variant entre 3,1 et 3,7 pour les argiles de l'est du Canada.

2.2.2 Essai de pénétration standard

L'essais de pénétration standard a été effectué par le MTMD avec la prise d'échantillons par cuillère fendue selon une procédure basée sur la norme BNQ2501-140. Il permet d'obtenir des échantillons remaniés et une mesure de résistance à la pénétration du sol (indice N). Au total, 129 échantillons ont été récupérés aux 4 sites, soit 36 à Saint-Anaclet-de-Lessard, 38 à Trois-Pistoles, 27 à Price et 28 à Saint-Ulric-de-Matane. La cuillère fendue utilisée pour ce projet est de calibre B (diamètre extérieur de 50,8 mm et d'ouverture de 34,93 mm). Sur les trois sites, les cuillères fendues/SPT ont été réalisées à des distances de 0,61, 0,76 ou 1,52 m selon la couche stratigraphique analysée. L'indice N peut être corrigé (N₆₀) avec 60 % de l'énergie totale (PE) selon de multiples facteurs de correction :

$$(N)_{60} = NC_sC_EC_RC_B$$
 (2.4)

où N correspond à l'indice N brut mesuré lors de l'essai. Un analyseur de battage permet d'obtenir le pourcentage d'énergie transmise lorsque le marteau hydraulique frappe les tiges. Les facteurs C_s , C_E , C_R et C_B sont des facteurs de correction. Le facteur de correction C_s tient compte du type de cuillère fendue. Le facteur C_E est trouvé avec l'équation suivante :

$$C_E = \frac{ER}{60\%} \tag{2.5}$$

où ER est l'énergie transmise lors de l'essai. Le facteur de correction C_R varie entre 0,75 et 1,00 en fonction de la longueur des tiges de forage utilisées à la profondeur de l'essai SPT. Finalement, si le trou de forage est d'une dimension non standard, le facteur de correction C_B est appliqué. Dans le cadre de ce projet, seul le C_E est pris en compte. Celuici n'est pas déterminé à toutes les profondeurs, et une valeur moyenne est utilisée quand il n'y a pas d'analyseur de battage.

2.2.3 Piézométrie

Quatre piézomètres pneumatiques ont été installés par le MTMD sur chacun des sites avec une position relative similaire sur tous les sites. Le premier piézomètre est installé à

la base du trou de forage et les trois autres sont placées respectivement dans l'unité inférieure, l'unité intermédiaire (si elle est présente) et l'unité supérieure. Ces unités sont discutées plus loin dans ce rapport. Les piézomètres sont installés dans le premier trou de forage soit après la prise des cuillères fendues. Les données sont lues ponctuellement et doivent être récupérées occasionnellement par un opérateur.

2.2.4 Échantillonnage

Des tubes minces de type Shelby ont été utilisés par le MTMD pour l'échantillonnage du sol intact. Un total de 110 tubes et de 129 cuillères fendues a été pris et leur répartition par site est présentée au Tableau 0-1.

Site	Nombre de tubes récupérés avec sol	Nombre de tubes vides	Nombre de cuillère fendues récupérées
Saint-Anaclet-de- Lessard	27	0	36
Trois-Pistoles	22	2	38
Price	35	2	27
Saint-Ulric-de- Matane	26	4	28

 Tableau 0-1 : Répartition des tubes et des cuillères fendues récupérés dans le cadre de la phase 2.

Le prélèvement de tubes Shelby est effectué conformément à la procédure basée sur la norme ASTM D1587/D1587M-15. À certaines profondeurs aux sites de Trois-Pistoles et Saint-Anaclet-de-Lessard, l'équipe s'est servie d'un piston stationnaire opéré hydrauliquement pour échantillonner le sol. L'utilisation d'un piston stationnaire est faite lorsque la couche inférieure est atteinte et que le sol présente des indices N inférieurs à 10. La norme ASTM D6519-15 est suivie pour la réalisation de l'essai.

Lors des travaux de terrain, les échantillons (tubes, fioles et cuillères fendues) ont été entreposés dans les chambres d'hôtel où l'équipe de travail résidait. Les chambres sont climatisées et la température est constante. Pour les sites de Saint-Anaclet-de-Lessard et Trois-Pistoles, les tubes ont ensuite été transportés jusqu'à l'INRS ou à l'Université Laval. Dans le cas de Price et de Saint-Ulric-de-Matane, les tubes ont été transportés à l'INRS. Une fois arrivés à l'INRS, les échantillons ont été entreposés dans la chambre froide. Le délai entre le transport du terrain et l'INRS était de moins de 5 jours. Les tubes ont ensuite été récupérés et ils ont été rangés dans la chambre froide du Laboratoire de géotechnique de l'Université Laval ou dans la chambre froide du MTMD. À l'université, la chambre froide

est gardée à environ 8 °C avec un taux d'humidité de près de 100 %. Les tubes sont maintenus dans ces conditions, jusqu'à leur détubage quelques jours plus tard. Le temps entre l'arrivée à l'INRS et le transport au MTMD ou à l'Université Laval est généralement de moins de 2 semaines.

2.2.5 Essais sismiques de type « downhole » et « crosshole »

Les compagnies Englobe et Géophysique GPR International inc. ont été mandatées afin de réaliser les essais sismiques de type « downhole ». La réalisation de cet essai a été effectuée conformément à la norme ASTM D7400/D7400M-19. L'essai sismique de type « downhole » permet de mesurer directement la vitesse in situ des ondes de compression P et de cisaillement S dans le sol. Une source sismique est positionnée avec un décalage horizontal du sommet d'un trou de forage. La source émet des ondes sismiques qui sont interceptées par des récepteurs au fond du forage. La réponse des receveurs est enregistrée par un système d'enregistrement des données. Un schéma, tiré de la norme ASTM D7400/D7400M-19, est montré à la Figure 0-2. La distance oblique en ligne droite (L_R) de la source au receveur est déterminée selon l'équation suivante :

$$L_R = \left[\left(E_s - E_g + D_g \right)^2 + X^2 \right]^{0.5}$$
 (2.6)

où,

 E_s = Élévation de la surface du sol en contact avec la source d'énergie et au centre de celle-ci;

E_g= Élévation au sommet du trou récepteur;

Dg= Profondeur du receveur (mesuré au sommet de celui-ci);

X= Distance horizontale entre le centre de la source d'énergie et le forage.

CROSS-SECTION VIEW

Figure 0-2 : Schéma de l'essai sismique de type downhole. Tiré de la norme ASTM D7400/D7400M-19.

À partir de ce calcul, il est possible de déterminer la vitesse moyenne de l'onde de cisaillement pour un intervalle de profondeur correspondant au déplacement des receveurs :

$$V_s = (L_{R2} - L_{R1})/(\Delta T_{R2-R1})$$
 (2.7)

où,

L_{R2} = distance oblique en ligne droite du receveur le plus profond;

 L_{R1} = distance oblique en ligne droite d'un receveur moins profond

 ΔT_{R2-R1} = différence dans le temps de propagation des ondes de cisaillement (source-receveur) entre les deux profondeurs considérées.

Des essais sismiques de type « crosshole » ont seulement été réalisés au site de Price par la compagnie Géophysique GPR International inc. La compagnie réalise l'essai conformément à la norme ASTM D4428M-14. Ce type d'essai est réalisé à partir de 2 forages, séparés d'une distance supérieure à 5 m, équipés de tubage PVC de 2 pouces de diamètre. La source sismique est obtenue avec un marteau générant des ondes S à l'aide d'un système hydraulique. L'onde est récoltée au 1 m dans le second tubage à l'aide de sondes sismiques. Les ondes sismiques de cisaillement déterminées sont donc propagées horizontalement dans le sol. La vitesse des ondes sismiques de compression est également déterminée lors de l'essai.

La vitesse des ondes de cisaillement permet de calculer un module de cisaillement à petite déformation G_o selon l'équation suivante :

$$G_o = \rho V_s^2 \qquad (2.8)$$

où,

 ρ = masse volumique

La masse volumique utilisée dans l'équation est déterminée sur les échantillons utilisés pour les essais œdométriques, discutés plus loin dans ce chapitre.

2.2.6 Scissomètre

Des essais au scissomètre de chantier ont été effectués dans l'unité inférieure de la totalité des sites à l'aide d'un scissomètre Nilcon. Le scissomètre ne peut être réalisé dans la couche supérieure en raison de sa consistance très raide, sauf au site de Saint-Ulric-de-Matane où il a été possible d'en faire. La norme ASTM D2573/D2573M-18 a été utilisée pour la réalisation de l'essai.

2.2.7 Pressiomètre

Les essais au pressiomètre TEXAM ont été effectués sur tous les sites selon la norme ASTM D4719-20. L'essai pressiométrique permet l'obtention du module pressiométrique (E_m) et de la pression limite (P_L) . La procédure B de la norme a été utilisée dans le cadre du projet. La pression limite correspond à la pression à laquelle le volume de la sonde est le double du volume initial du trou dans le sol. L'équation suivante met en relation la pression limite à la résistance au cisaillement non drainé.

$$s_u = \frac{P_L - \sigma_{vo}}{\beta'} \qquad (2.9)$$

où σ_{vo} correspond à la contrainte verticale totale et β ' est un coefficient théorique déterminé à l'aide du scissomètre de chantier. Au total, 32 essais pressiométriques ont été réalisées au cours de la phase II du projet.
2.2.8 Tomodensitométrie (Ct-Scan)

Les essais de tomodensitométrie ont été réalisés par l'Institut national de la recherche scientifique (INRS) dans leur bâtiment du parc technologique de Québec. Dans le cadre du projet, le Ct-Scan a été employé afin d'observer la stratigraphie du sol récolté dans les tubes et de mieux cibler les échantillons à conserver pour les essais de laboratoire en connaissant l'emplacement des graviers et des imperfections des échantillons avant le détubage.

2.3 Méthodologie des travaux en laboratoire

Les travaux de base en laboratoire ont été réalisés en grande partie par le laboratoire de géotechnique du MTMD. Une partie du détubage a été réalisée au Laboratoire de géotechnique de l'Université Laval. Le laboratoire de géotechnique de SNC-Lavalin a effectué plusieurs essais de caractérisation géotechnique de base sur les cuillères fendues de Price et de Saint-Ulric-de-Matane. Pour davantage d'informations quant à la méthodologie détaillée des différents essais de laboratoire, il est préférable de se référer aux différentes normes et dans le cas précis de ce projet, au mémoire de maîtrise de M. Jérémie Ferland (Ferland, 2023).

2.3.1 Extraction et mise en scellé

L'extraction du sol dans un tube à paroi mince a été effectuée à l'horizontale selon la méthode d'essai LC 22-300 à l'aide d'un piston. Une fois découpés, les échantillons sont scellés dans un mélange chauffé de gelée de pétrole et de paraffine (65 % et 35 % respectivement) et de 2 épaisseurs de pellicules plastiques selon la méthode décrite par La Rochelle et coll. (1986).

2.3.2 Essais de caractérisation géotechnique de base

Les essais de bases (sédimentométrie, granulométrie, mesure de la salinité de l'eau interstitielle, résistance au cisaillement non drainé de l'argile intacte et remaniée (s_u et s_{ur}) et limites de consistance) effectués sur les échantillons provenant des tubes Shelby et les cuillères fendues ont été réalisés au laboratoire de géotechnique du MTMD. Des teneurs en eau ont aussi été faites dans les laboratoires de géotechnique du MTMD et de l'Université Laval. Les cuillères fendues des sites de Price et de Saint-Ulric-de-Matane ont été envoyées chez SNC-Lavalin afin qu'ils réalisent les essais de caractérisation de base.

Des teneurs en eau ont été mesurées selon la norme BNQ 2501-170/2014. Ces essais ont été faits sur le terrain, et en laboratoire lors de l'extraction des tubes, des essais triaxiaux et des essais œdométriques.

L'analyse granulométrique des échantillons a été réalisée selon la norme BNQ-2501-025.

La norme BNQ 2501-110/2014 a été suivie pour la réalisation des essais de résistance au cisaillement non drainé sur le sol intact et remanié à l'aide d'un pénétromètre à cône. La détermination de la résistance au cisaillement non drainé du sol à l'état remanié n'a pas pu être réalisée sur l'argile des couches plus raide, car elle est trop difficile à triturer.

La détermination des limites de liquidité et de plasticité a été effectuée conformément aux normes BNQ 2501-092 et ASTM D4318-17.

La salinité de l'eau interstitielle des échantillons a été déterminée en mesurant la conductivité électrique de l'eau contenue dans le sol à la suite de son extraction selon la norme ASTM D4542-22 avec un réfractomètre. La conductivité électrique est ensuite convertie en valeur de salinité à partir d'une relation résistivité/concentration d'une solution NaCI.

2.4 Essais de caractérisation mécanique

Des essais de caractérisation mécanique à l'œdomètre et au triaxial ont été réalisés pour tous les sites au Laboratoire de géotechnique de l'Université Laval.

2.4.1 Essai œdométrique

Les essais œdométriques ont été réalisés en suivant une méthodologie basée sur la méthode A de la norme ASTM D2435/D2435M-11. Avant de débuter les essais, chaque appareil œdométrique a été calibré pour la déformation de l'appareil et des pierres poreuses, ainsi que pour la compressibilité du papier filtre. Les essais sont effectués sur des échantillons de 50,5 mm de diamètre et 19 mm de hauteur. À chaque palier, la masse appliquée est augmentée de 50 %. Les paliers sont déterminés à l'avance selon le diamètre de l'échantillon et la séquence de chargement est prédéfinie. Chacun des paliers a une durée de 24h. Une fois le chargement complété, une phase de déchargement de 3 paliers est réalisée avant de terminer l'essai. L'indice des vides initial (e₀) est déterminé à partir de la teneur en eau de l'échantillon et l'indice des vides est calculé à chaque palier selon la variation de hauteur de l'échantillon mesuré pendant l'essai. La pression de

préconsolidation (σ'_p), les indices de compression (C_c) et de recompression (C_s) sont calculés à l'aide de la méthode de Casagrande.

La qualité d'un échantillon œdométrique peut être estimée lors de l'essai selon le critère de Lunne et coll. (1997). Une mention est donnée à un échantillon selon son rapport $\Delta e/e_0$, (Δe) étant la différence entre l'indice des vides initial (e_0) et l'indice des vides à la contrainte en place ($e_{\sigma'v_0}$).

Les données ont également été traitées selon la méthode décrite par Janbu (1965). Un module œdométrique est défini entre les intervalles de données selon l'équation suivante :

$$M_{oed} = \frac{\sigma'_{vy} - \sigma'_{vx}}{\varepsilon_y - \varepsilon_x}$$
(2.10)

Ce module varie selon différents incréments, et au Bas-Saint-Laurent, il est ultimement calculé à la contrainte verticale effective du sol en place.

2.4.2 Essais triaxiaux

Les essais triaxiaux ont été effectués selon la procédure interne du Laboratoire de géotechnique du département de génie civil et génie des eaux de l'Université Laval (Hébert, 2022) qui est adaptée de la norme ASTM D4767-11. Pour chaque site d'étude, des essais triaxiaux en conditions non drainées ont été réalisés sur des échantillons de différentes profondeurs consolidés aux contraintes effectives en place. De plus, pour chaque site, des essais additionnels ont été réalisés à deux profondeurs à contraintes effectives différentes de celle du sol en place, afin d'obtenir les paramètres de résistance à cette profondeur.

La réalisation de l'essai est séparée en trois phases : saturation, consolidation et cisaillement. Le paramètre de Skempton \overline{B} ($\Delta u/\Delta \sigma_3$) permet de déterminer le degré de saturation lors de l'étape de la saturation de l'échantillon. Ce paramètre prend en compte l'augmentation de la pression interstitielle en réponse à l'augmentation de la contrainte cellulaire. Lorsque le taux de saturation désiré est atteint, l'échantillon est consolidé jusqu'à l'état des contraintes effectives voulues. Pour ce projet, un taux de saturation de 95 % était visé, mais il n'a pas toujours été obtenu. Il a été plus difficile d'obtenir un taux de saturation élevé pour les sols très raides.

Pour obtenir un profil de résistance au cisaillement non drainé représentative du dépôt, l'échantillon est consolidé à la contrainte verticale effective du sol en place. Le coefficient de pression des terres au repos K_o, permettant d'estimer la contrainte horizontale effective en place, a également été estimé selon l'équation suivante (Lefebvre & al., 1991; Hamouche, 1995) :

$$K_o = 0,50CR^{\alpha}$$
 (2.11)

où, OCR est le rapport de surconsolidation et α est une constante. Le OCR est calculé selon les résultats à l'œdomètre et les estimations au piézocône (voir les détails dans les sections suivantes). Sauf pour quelques échantillons, les K_o calculés sont supérieurs à 1 en utilisant un α de 0,5 ou 1. En prenant en compte l'incertitude sur la pression de préconsolidation et la difficulté pratique de réaliser un essai triaxial à un K_o plus grand que 1, il a été décidé de réaliser les essais en conditions de consolidation isotropique (K_o=1). Seul un essai à Saint-Anaclet-de-Lessard, de 17,14 à 17,25 m, présente un K_o de 0,8 et a été réalisé en condition anisotropique.

Lorsque la contrainte verticale effective est atteinte, l'échantillon peut être cisaillé par une compression axiale en condition non drainée. Lors du cisaillement en condition non drainée, une vitesse de déformation de 0,0061 mm/min (0,5 % de déformation / heure) est utilisée. L'étape du cisaillement est effectuée jusqu'à l'obtention d'une déformation axiale (ϵ) de 14 % soit après environ 28 heures. Le comportement contrainte-déformation et les cheminements de contraintes sont obtenus à partir de ces essais. Lors du traitement des données, les corrections d'aire et de membrane sont appliquées selon les détails de La Rochelle et coll. (1988), mais la déformabilité du papier filtre n'a pas été prise en compte.

Lorsqu'un échantillon présente un comportement dilatant, la résistance au cisaillement non drainé a été déterminée à une déformation axiale de 5 %. Cette déformation est arbitraire, mais elle semble raisonnable dans le contexte de la pratique, où une déformation de 5 % est déjà élevée pour la plupart des structures ou des problèmes envisageables. Finalement, un module non drainé (E_u), correspondant à la pente de la portion initiale du comportement contrainte-déformation, a été déterminé à des déformations entre 0,01 et 0,5 %. La résistance au cisaillement non drainée et ce module ont été déterminés pour les échantillons consolidés aux contraintes en place.

2.4.3 Essais de perméabilité à charge constante (cellule triaxiale)

La conductivité hydraulique verticale du sol de l'unité supérieure a été mesurée sous une charge constante, dans un montage de cellule triaxiale, afin d'éviter les chemins

26

préférentiels le long de l'anneau lorsque l'effet est effectué dans un appareil œdométrique. Cette problématique avait été observée lors des travaux de la phase I du projet (Hébert et coll., 2016). Pour ce faire, un échantillon de sol d'un diamètre de 5,08 cm est découpé et installé dans la cellule triaxiale, avec l'ajout de connexions à la base et en tête de l'échantillon afin d'appliquer un gradient hydraulique dans ce dernier. L'échantillon est consolidé à la contrainte verticale effective en place. À la suite de la phase de consolidation, une différence de pression d'eau entre la base et la tête de l'échantillon a été appliquée afin d'obtenir un gradient d'écoulement d'environ 30. Les volumes d'eau entrant et sortant ont été mesurés manuellement pendant environ 1 semaine afin de s'assurer que l'écoulement soit constant. La conductivité hydraulique est obtenue à partir de l'équation suivante :

$$k = \frac{Q*L}{\Delta h * A * t} \qquad (2.12)$$

où :

- Q : Quantité totale d'eau durant un intervalle de temps (m³),
- A : Aire normale à l'écoulement de l'échantillon de sol (m²),
- L : Hauteur de l'échantillon (m),
- Δh : Charge hydraulique constante,
- t : Temps (sec).

CHAPITRE 3 : SAINT-ANACLET-DE-LESSARD

Ce chapitre présente les résultats des travaux de terrain et de laboratoire effectués par l'Université Laval, le MTMD et les sous-traitants pour le site de Saint-Anaclet-de-Lessard. Le profil des données au piézocône, de la campagne de 2020, est initialement discuté en début de chapitre. Par la suite, la stratigraphie propre au site, selon les résultats au piézocône et au Ct-Scan, et le profil géotechnique sont présentés. Finalement, les résultats au pressiomètre, à l'œdomètre, au triaxial et les modules estimés des divers essais sont présentés dans les dernières sections. Les résultats présentés dans ce chapitre sont plutôt factuels puisqu'ils seront analysés plus globalement pour l'ensemble des sites étudiés dans les phases 1 et 2 du projet dans le chapitre 7.

3.1 Piézocône

La Figure 3-1 présente le sommaire des résultats importants obtenus par cet essai. La résistance en pointe corrigée qt et la pression interstitielle générée derrière la pointe u2 sont initialement montrées à la Figure 3-1. Le qt augmente graduellement jusqu'à 5 745 kPa sur les 7 premiers mètres. Il diminue, par la suite, graduellement entre 7 et 16 m de profondeur, avant de se stabiliser. Les données passent ici de 5 745 kPa à des valeurs autour de 2 000 kPa. À des profondeurs entre 16 m et le refus, le qt présente des valeurs moyennes de 1 600 kPa. L'augmentation du qt vers 30,5 m est en lien direct avec le contact entre l'argile et le till. Le u₂ est négatif sur les 14,7 premiers mètres. Ce paramètre augmente ensuite graduellement jusqu'à 1 230 kPa à 30,5 m de profondeur. Le frottement est également présenté à la Figure 3-1. Celui-ci augmente graduellement sur les 6,6 premiers mètres jusqu'à une valeur de 329 kPa. Il diminue progressivement entre 9 et 18 m, avant de finalement se stabiliser à une valeur de 13 kPa. Pour finir, le profil de pression interstitielle excédentaire normalisée (B_a) est montré à la Figure 3-1. Les valeurs sont inférieures à 0 dans les 11,6 premiers mètres. La pression interstitielle mesurée derrière le cône est alors inférieure à la pression interstitielle naturelle du sol (u_0). Les valeurs de B_a augmentent ensuite graduellement à des profondeurs entre 11,6 et 19,6 m. La valeur moyenne est de 0,74 à des profondeurs entre 19,6 et 30 m.

Figure 3-1 : Profil au piézocône à Saint-Anaclet-de-Lessard.

3.2 Stratigraphie

Les images Ct-Scan des échantillons prélevés sur ce site, de même que les profils de q_t et u₂ provenant du piézocône sont présentés à la Figure 3-2. À la suite d'une mince couche organique, un silt et argile gris avec traces de sables et graviers est retrouvé à partir de la surface. Cette unité a une épaisseur d'approximativement 10,8 m, soit entre 0,76 et 11,60 m de profondeur. La résistance en pointe corrigée est plus élevée dans cette unité et le u₂ est négatif. La présence de sable et gravier est également notée au Ct-Scan et ceux-ci sont disposés aléatoirement dans la matrice. Cette unité a une texture homogène et ne présente pas les lits subhorizontaux que l'on retrouve dans les dépôts stratifiés. Nous l'appellerons, comme Hébert et coll. (2016) avant nous, l'unité supérieure. Par la suite, une unité dite intermédiaire est observée entre 11,6 et 16,6 m de profondeur. Celle-ci est caractérisée par une diminution graduelle des multiples paramètres (q_t, F_s, I_L, I_p et N₆₀) avant de se stabiliser dans le bas de l'unité. L'unité intermédiaire est composée d'argile

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT

et silt avec des traces de sable et gravier. Les images Ct-Scan montrent la présence de laminations perturbées à partir de 14 m, et le manque d'information au Ct-Scan entre 10,62 et 14 m rend impossible de savoir où commence exactement ces laminations. Finalement, la dernière unité, que nous appellerons comme Hébert et coll. (2016) unité inférieure, débute directement à la fin de l'unité intermédiaire et elle se termine au refus. Le refus se situant à une profondeur de 32,18 m, l'épaisseur de l'unité inférieure est d'environ 16 m. Le q_t est inférieur à 2 500 kPa dans la grande majorité de l'unité avec une augmentation marquée à l'approche du Till. La composition granulométrique de l'unité reste similaire soit un argile et silt avec traces de sables et une proportion quasi nulle de gravier. Le sol composant l'unité inférieure est de couleur gris-brunâtre et la stratigraphie quasi horizontale est observée au Ct-Scan. Ces strates pratiquement horizontales ou légèrement anguleuses sont toutefois invisibles à l'œil nu. Des lits de sable sont également retrouvés dans l'unité inférieure (Figure 3-2).

La stratigraphie du site de Saint-Anaclet-de-Lessard est donc composée des trois unités argileuses/silteuses suivantes : unité supérieure, unité intermédiaire et unité inférieure, telles que présentées à la Figure 3-2.

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT

Figure 3-2 : Présentation des Ct-Scan dans le profil de qt à Saint-Anaclet-de-Lessard.

3.3 Propriétés géotechniques

Le profil géotechnique à Saint-Anaclet-de-Lessard est présenté à la Figure 3-3 et celui-ci est décrit dans les sections suivantes. Les modules estimés des divers essais réalisés sont également discutés dans cette section et présentés à la Figure 3-4. La surface du site se trouve à une élévation de 25,56 m.

Figure 3-3 : Profil géotechnique à Saint-Anaclet-de-Lessard.

Figure 3-4 : Profil des modules du sol du site de Saint-Anaclet-de-Lessard.

3.3.1 Caractéristiques physicochimiques

La granulométrie au site de Saint-Anaclet-de-Lessard est relativement homogène sur toute l'épaisseur du dépôt. Dans l'unité supérieure, la proportion argileuse est de 46 % en moyenne. Celle-ci est légèrement supérieure pour le silt à 50 % et le reste de l'unité est composé de sable. Dans les unités intermédiaire et inférieure, le pourcentage de particules argileuses varie entre 53 et 62,5 % avec une moyenne à 60 % et la proportion en silt diminue à 38 % en moyenne. Le sable compose majoritairement le reste de la granulométrie (entre 0 et 3,9 %) avec une faible quantité de gravier inférieure à 2 % retrouvée à quelques profondeurs. De façon générale, le sol est considéré comme un silt et argile/argile et silt avec traces de sable et gravier.

Pour l'unité supérieure, les échantillons à 8,86 et 9,59 m présentent des salinités de respectivement 13,4 et 15,1 g/L. La salinité des unités intermédiaire et inférieure est plus élevée que celle de l'unité supérieure. Les 3 essais (14,22 m; 17,14 m et 27,16 m de profondeur) indiquent des salinités de 19,3; 21,4 et 20,2 g/L respectivement.

Les teneurs en eau provenant du terrain et des essais en laboratoire (cône suédois, essais œdométriques et essais triaxiaux) sont présentées sur le profil géotechnique (Figure 3-3). La teneur en eau, dans l'unité supérieure, varie très peu entre 20 et 25%. La teneur en eau augmente graduellement de 25 à 40 %, dans l'unité intermédiaire, avant de se stabiliser dans l'unité inférieure. Dans cette dernière, les teneurs en eau sont entre 35 et 45 % avec des valeurs généralement autour de 40 %.

Les limites d'Atterberg sont aussi présentées à la Figure 3-3. Les limites de plasticité varient très peu sur tout le profil et se situent entre 20 et 27 %. Dans l'unité supérieure, la limite de plasticité est très proche de la teneur en eau. Dans son cas, la limite de liquidité tourne autour de 35-40 % pour l'unité supérieure, puis elle augmente vers 49 % dans l'unité inférieure. Tout comme la teneur en eau, les valeurs augmentent vers une élévation de 12 m, soit au début de l'unité intermédiaire, pour se stabiliser dans l'unité inférieure. Dans l'unité supérieure, l'indice de plasticité se maintient à 16, avec une valeur maximale de 20 entre 8,61 et 9,71 m de profondeur. Il y a ensuite une augmentation de 17 à 25 dans l'unité intermédiaire. Les valeurs se stabilisent finalement autour de 25 dans l'unité inférieure. Les indices de liquidité sont également présentés à la Figure 3-3. Des indices de liquidité près de 0 sont retrouvés dans l'unité supérieure avec des valeurs entre -0,11 et 0,3. Dans l'unité intermédiaire, les indices de liquidité augmentent légèrement de 0,21 à 0,5. Finalement, les L dans l'unité inférieure varient entre 0,46 et 0,66.

3.3.2 Propriétés mécaniques

Cette section fait un survol des différents essais de terrain liés aux caractéristiques mécaniques du sol présentés à la Figure 3-3.

3.3.2.1 Indice de pénétration standard

Le facteur de correction C_E est de 1,35 en moyenne au site de Saint-Anaclet-de-Lessard. Les indices N_{60} augmentent initialement dans l'unité supérieure jusqu'à une valeur maximale de 40 à 9,44 m. Les N_{60} , déterminés dans l'unité supérieure, varient généralement entre 20 et 35. De 13 m de profondeur au refus, les indices N_{60} restent entre 1 et 10. Cet intervalle de profondeur correspond au haut de l'unité intermédiaire jusqu'au bas de l'unité inférieure.

3.3.2.2 Vitesse des ondes de cisaillement et module de cisaillement à petite déformation

Les essais sismiques de type « downhole » ont été faits à tous les intervalles de 1 m entre 0,9 et 28,9 mètres de profondeur. Les résultats de vitesse des ondes sismiques de cisaillement V_s sont présentées à la Figure 3-3. Il est possible de constater que les résultats de V_s suivent bien la tendance générale de q_t . Les vitesses de propagation des ondes de cisaillement augmentent graduellement dans les premiers 3,4 m. De 3,4 à 12,4 m, elles se situent dans un intervalle entre 205 et 241 m/s avec la valeur maximale se trouvant à 8,4 m de profondeur. Cet intervalle se trouve majoritairement dans l'unité supérieure et une valeur est située dans le haut de l'unité intermédiaire. Par la suite, les valeurs diminuent dans les 2 prochains mètres pour finalement se stabiliser à une vitesse moyenne de 175 m/s entre 14,4 et 28,4 m. Bien que l'intervalle de V_s soit faible entre ces profondeurs, une légère augmentation est notée à partir de 18,4 m. Une telle augmentation n'est pas notée dans le profil de q_t .

Le module de cisaillement à petite déformation G_o est présenté à la Figure 3-4. Deux résultats de 56 et 66 MPa sont trouvés près de la surface (2,4 et 3,4 m). Dans l'unité supérieure, le G_o varie de 96 à 123 MPa. Il y a ensuite diminution dans l'unité intermédiaire de 116 à 45 MPa. L'unité inférieure témoigne d'une légère augmentation du module de cisaillement à petite déformation avec la profondeur de 39 à 75 MPa.

3.3.2.3 Résistance au cisaillement et angle de frottement effectif

Des essais de terrain au scissomètre ont été réalisés dans les unités intermédiaire et inférieure à partir d'une profondeur de 12,1 m. Le caractère raide de l'unité supérieure ne

permet pas d'obtenir de résultats au scissomètre. Les 3 premiers résultats dans le haut de l'unité intermédiaire sont de 126, 126 et 104 kPa. Deux autres essais réalisés dans le bas de cette unité ont donné une résistance au cisaillement non drainé de 64 et 60 kPa. Dans l'unité inférieure, elle varie peu entre 45 et 54 kPa. Les données sont présentées dans le profil géotechnique à la Figure 3-3.

Dans l'unité supérieure, les 2 résultats obtenus au cône tombant montrent une résistance au cisaillement non drainé intacte de 327 et 551 kPa, ce qui semble beaucoup plus élevé que les valeurs obtenues aux essais triaxiaux et le profil de résistance estimé du piézocône, elles ne sont donc pas considérées. Le seul essai de l'unité intermédiaire indique une résistance au cône beaucoup plus faible de 96 kPa. Peu de variation est notée dans l'unité inférieure et les 3 essais témoignent d'une résistance entre 29 et 40 kPa. À l'état remanié, les résultats varient entre 6,5 et 9,25 kPa dans l'unité inférieure. Une valeur de s_{uR} maximale de 26 kPa a été déterminée dans le milieu de l'unité intermédiaire et intermédiaire à 14,22 m. La sensibilité reste similaire dans les unités inférieure et intermédiaire avec des valeurs entre 3,5 et 4,9.

La résistance au cisaillement non drainé a aussi été estimée à partir des données du piézocône (Figure 3-3) et du scissomètre de chantier réalisé dans les unités intermédiaire et inférieure. Un N_{kT} de 22 a été obtenu pour corréler les deux résistances à la Figure 3-3; cette valeur est discutée au chapitre 7. Le profil de résistance au cisaillement non drainé de l'unité supérieure estimé à partir de cette relation n'est donc pas nécessairement représentatif de la véritable résistance au cisaillement non drainé du sol en place. Selon cette approche, la résistance augmente, dans l'unité supérieure, jusqu'à 6,9 m pour atteindre une valeur de s_u maximale de 254 kPa. Elle diminue ensuite graduellement à 50 kPa dans le bas de l'unité supérieure et dans l'entièreté de l'unité intermédiaire. Dans l'unité inférieure, les résultats sont principalement confinés dans un intervalle entre 42 et 62 kPa.

Les résultats des essais triaxiaux sont présentés à la Figure 3-5. Le Tableau 3-1 indique les paramètres utilisés lors de la réalisation et les principaux résultats. Le calcul de la contrainte en place est décrit à la section 3.3.2.4. À l'Annexe A3, les figures globales sont présentées pour chaque essai triaxial.

36

Profondeur (m)	Unité	σ' _{v0} (kPa)	Contrainte effective ciblée	Ko	σ' ₁ (kPa)	σ'₃ (kPa)	u (kPa)	Type de rupture	Comportement	s _{u ε=5%} (kPa) / s _u au pic
8,21	Supérieure	88,9	200	1,0	203,6	198,6	126,4	plan	dilatant	
8,23	Supérieure	89,1	90	1,0	92,5	87,5	122,5	plan	dilatant	69
8,86	Supérieure	96,1	300	1,0	280,9	275,9	164,1	baril	dilatant	
9,74	Supérieure	105,6	106	1,0	103,2	98,2	189,4	baril	dilatant	89
14,25	Intermédiaire	150,3	150	1,0	150,3	145,3	186,7	baril	contractant	72
14,38	Intermédiaire	151,5	250	1,0	243,1	238,1	161,9	baril	contractant	
14,48	Intermédiaire	152,3	50	1,0	51,8	46,8	213,2	plan	dilatant	
17,20	Inférieure	175,7	175	0,8	133,7	128,7	222,9	baril	contractant	57

 Tableau 3-1 : Sommaire des essais triaxiaux à Saint-Anaclet-de-Lessard.

Les essais indiquent un comportement dilatant dans l'unité supérieure et un comportement majoritairement contractant dans les unités intermédiaire et inférieure, ce qui corrèle bien avec les données de B_q de la Figure 3-1 et les I_L de la Figure 3-3. L'essai à 8,23 m montre une résistance au cisaillement non drainé à une déformation de 5 % de 69 kPa et elle est de 89 kPa à une profondeur de 9,74 m. La résistance au cisaillement non drainée moyenne dans l'unité supérieure est de 79 kPa et est de 65 kPa dans les unités intermédiaire et inférieure.

Figure 3-5 : Sommaire des 8 essais triaxiaux à Saint-Anaclet-de-Lessard.

L'angle de frottement effectif estimé sur trois échantillons prélevés entre 8,21 et 8,86 m de profondeur et trois autres entre 14,25 et 14,38 m de profondeur est de 29,5° et la cohésion effective est nulle (Figure 3-6). Il faut tenir compte que ces paramètres ont été déterminés sur des sols consolidés dans le domaine surconsolidé.

Figure 3-6 : Angles de frottement et cohésion effective de 2 horizons à Saint-Anaclet-de-Lessard.

3.3.2.4 Contrainte effective et contrainte de préconsolidation

La contrainte effective au site est définie à l'aide de la pression interstitielle mesurée aux 4 piézomètres (3,04; 12,19; 19,76 et 32 m) placés sur le site. Les lectures de ces piézomètres ont été prises à 12 moments entre le 17 juin 2021 et le 23 février 2023 (voir Annexe A2). Les pressions interstitielles mesurées montrent qu'elles sont hydrostatiques. La pression interstitielle varie donc linéairement avec la profondeur et, à 32 m, elle est de 314 kPa.

La masse volumique des échantillons a aussi été déterminée pour tous les essais œdométriques. Les masses volumiques moyennes sont de 20,7 kN/m³ pour l'unité supérieure, de 18,6 kN/m³ pour l'unité intermédiaire et de 18 kN/m³ dans l'unité inférieure. Ces données sont utilisées pour déterminer le profil des contraintes à Saint-Anaclet-de-Lessard (Figure 3-3). La contrainte verticale effective au bas du profil géotechnique est de 298 kPa.

La contrainte de préconsolidation obtenue à partir des données au piézocône est également présentée à la Figure 3-3. Un $N_{\sigma T}$ de 3,6 a été utilisé. Dans l'unité supérieure,

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT

la contrainte de préconsolidation se situe majoritairement entre 500 et 1 500 kPa et indique donc une importante surconsolidation. Il y a ensuite diminution d'environ 600 kPa dans le haut de l'unité intermédiaire à environ 300 kPa dans le bas. Le σ'_p se trouve entre 250 et 350 kPa dans l'unité inférieure, indiquant un sol légèrement surconsolidé.

Au total, 6 échantillons ont été soumis à un essai de consolidation uniaxial à Saint-Anaclet-de-Lessard, soit 2 essais dans l'unité supérieure, 1 dans l'unité intermédiaire et 3 dans l'unité inférieure. Le sommaire des essais est présenté au Tableau 3-2 et les courbes de compression œdométriques se trouvent à la Figure 3-7.

Profondeur (m)	Unité	σ'₀ (kPa)	σ' _p (Casagrande, kPa)	σ' _¤ (min, kPa)	σ' _p (max, kPa)	OCR	e ₀	Cs	Cc	C _{s d-r}	Critère de Lunne (1997)	Évaluation
8,83	Supérieure	96	394	106	739	4,1	0,69	0,03	0,15	0,06	0,05	Bon à mauvais
9,77	Supérieure	106	720	195	941	6,8	0,61	0,02	0,16	0,05	0,04	Bon
14,16	Intermédiaire	149	283	100	483	1,9	1,00	0,05	0,32	0,10	0,09	Mauvais
17,34	Inférieure	177	183	94	316	1,0	1,09	0,04	0,35	0,10	0,10	Mauvais
23,40	Inférieure	202	280	89	280	1,4	1,25	0,09	0,39	0,15	0,14	Mauvais à très mauvais
27,90	Inférieure	263	215	89	307	0,8	1,27	0,09	0,40	0,15	0,17	Très mauvais

Tableau 3-2 : Sommaire des essais œdométriques à Saint-Anaclet-de-Lessard.

La contrainte de préconsolidation est calculée avec la méthode de Casagrande. Les figures pour chaque essai sont présentées à l'Annexe A4. Cette méthode permet aussi de déterminer la contrainte de préconsolidation minimale et maximale du sol. Les deux premiers échantillons se situent dans l'unité supérieure et la contrainte de préconsolidation pour ces échantillons est respectivement de 394 et 720 kPa. Les échantillons de la couche supérieure très raide présentent une forme arrondie qui rend difficile la détermination de la contrainte de préconsolidation, puisque le passage de l'état surconsolidé à normalement consolidé n'est pas net. Le troisième essai est réalisé dans l'unité intermédiaire et la contrainte de préconsolidation est de 283 kPa. Par la suite, les trois autres essais œdométriques ont été effectués à différentes profondeurs dans l'unité inférieure. La contrainte de préconsolidation de ces essais varie entre 183 et 280 kPa. Les échantillons dans les unités intermédiaire et inférieure montrent des courbes œdométriques plus typiques, mais sans marquer un cassé franc au passage de la pression de préconsolidation. En vue de ses résultats, il est possible de constater que la contrainte de préconsolidation diminue généralement en fonction de la profondeur entre 9,77 et 14,16 mètres. Ensuite, les contraintes de préconsolidation restent plus faibles dans l'unité inférieure (183, 280 et 215 kPa). Le paramètre OCR peut alors être calculé. Le sol présente une importante surconsolidation dans l'unité supérieure avec des OCR supérieurs à 4. Par la suite, le rapport de surconsolidation diminue à 1,89 pour l'échantillon de l'unité intermédiaire. Dans l'unité inférieure, le OCR témoigne d'un sol normalement ou légèrement surconsolidé avec des OCR près de 1.

^{3.3.2.5} Module œdométrique et indices de compression et de recompression

Les graphiques de contraintes verticales-modules sont également montrés à la Figure 3-8 (et à la Figure 3-9 pour la contrainte semi-log) et les figures individuelles sont présentées à l'Annexe A4. Aux contraintes en place, dans les 2 essais de l'unité supérieure, les modules œdométriques sont de 8,2 et 7,4 MPa. La déformation respective de ces échantillons est d'environ 2 et 1,75 %. Dans l'unité intermédiaire, le module est de 5,1 MPa. Les valeurs de module diminuent encore plus dans l'unité inférieure pour atteindre des valeurs entre 3,2 et 3,8 MPa. Les déformations sont très élevées ici, et atteignent des valeurs entre 5-14 %, indiquant un remaniement partiel des échantillons.

Les indices de compression et de recompression peuvent également être calculés des courbes œdométriques à la Figure 3-7. L'indice de compression C_c tend à croitre avec l'indice des vides, donc avec la profondeur. Les deux essais réalisés dans l'unité supérieure sont de à 0,15 et 0,16. Dans les deux autres unités, les résultats c_c se situent

entre 0,32 et 0,44. Les données de C_s vont tripler entre l'unité supérieure et les deux derniers essais de l'unité inférieure, passant de 0,02 à 0,06. Dans son cas, l'indice de recompression C_{s d-r} est la pente des données de déchargement. L'écart entre les valeurs est également grand entre les unités et le C_{s d-r} va passer de 0,05 (unité supérieure) à 0,15 (unité inférieure). Notons cependant que C_s est plus faible que C_{s d-r}.

Figure 3-8 : Modules œdométriques à Saint-Anaclet-de-Lessard.

Les modules au triaxial E_u sont définis comme étant la pente de la portion initiale des courbes déformation-contrainte déviatorique. L'intervalle de déformation utilisé pour obtenir le E_u varie donc entre les essais et une incertitude est apportée par la détermination graphique. À noter que seuls les essais faits aux contraintes en place sont pris en compte. Les modules E_u sont présentés en fonction de la profondeur à la Figure 3-4. Dans l'unité supérieure, les modules élastiques E_u sont de 52 et 23 MPa. Pour l'unité inférieure, le module E_u est de 76 MPa à 14,25m et de 73 kPa à 17,20m. Les valeurs plus faibles de l'unité supérieure ne correspondent pas aux attentes, puisque les argiles plus raides surconsolidées présentent généralement des modules E_u plus élevés qu'une argile moins surconsolidée. Les figures utilisées pour le calcul du E_u sont présentées à l'Annexe A3.

3.3.2.7 Pressiomètre

À Saint-Anaclet-de-Lessard, onze essais pressiométriques ont été réalisés et les résultats sont présentés au Tableau 3-3 et à la Figure 3-4 pour ce qui est du module pressiométrique en fonction de leur profondeur.

Profondeur (m)	E _M (MPa)	P _∟ (kPa)	E _M /P∟	Méthode de forage
3,0	2618	478	5,5	Tricône (gros renflement) + eau
4,6	3270	585	5,6	Tricône (gros renflement) + eau
5,0	2759	539	5,1	Tricône (petit renflement) + eau (2x)
8,9	3526	601	5,9	Tricône (gros renflement) + eau
10,0	6591	1064	6,2	Tricône (gros renflement) + eau
14,0	2269	403	5,6	Tricône (gros renflement) + eau (3x)
15,5	10514	712	14,8	Tricône (petit renflement) + eau
17,0	16216	679	23,9	Tricône (petit renflement) + eau
18,5	22602	747	30,3	Tricône (petit renflement) + eau
23,0	21332	808	26,4	Tricône (petit renflement) + eau
26,9	24949	925	27,0	Tricône (petit renflement) + eau

Tableau 3-3 : Essais pressiométriques à Saint-Anaclet-de-Lessard.

Dans l'unité supérieure, la pression limite varie entre 403 kPa et 1 064 kPa. Elle est plus faible dans la partie supérieure de l'unité supérieure, puis augmente graduellement avec la profondeur. Les modules pressiométriques (E_m) sont faibles et varient de 2 269 à 6 591 kPa. Dans l'unité intermédiaire, les valeurs de pressions limites sont de 403 et 712 kPa, pour des modules pressiométriques associés de 2 269 et 10 514 kPa. Dans l'unité inférieure, les pressions limites augmentent graduellement de 679 à 925 kPa. Les modules pressiométriques augmentent également avec la profondeur de 16 216 kPa à 17,00 m et 24 949 kPa à 26,90 m. Selon le tableau 3 de Briaud (2013), les modules pressiométriques, des unités inférieure et intermédiaire, sont typiques d'un sol argileux raide à très raide. Les mêmes conclusions sont tirées du tableau 5.7 du Manuel canadien d'Ingénierie des Fondations (4e édition). Donc dans l'ensemble du dépôt, les valeurs de pression limite augmentent graduellement avec la profondeur, tandis que les valeurs de module pressiométrique sont nettement plus élevées dans l'unité inférieure que dans l'unité supérieure. De plus, le rapport E_m/P_L est d'environ 5,5 dans l'unité supérieure, tandis qu'il est nettement supérieur dans les unités intermédiaire et inférieure avec des valeurs entre 14.8 et 30.3. Les pressions limites peuvent permettre d'obtenir un ordre de grandeur de la résistance au cisaillement non drainé (Leroueil et coll., 1983). Les modules pressiométriques (E_m) et les pressions limites (P_L) obtenus dans l'unité supérieure sont surprenamment faibles par rapport aux attentes. Ce pourrait être dû au remaniement du sol, davantage pour les modules pressiométriques qui sont beaucoup plus influencés par la qualité de l'avant-trou. De façon générale, le module pressiométrique attendu dans une couche raide comme l'unité supérieure serait autour de 12 et 25 MPa (Briaud, 2013). Toutefois, les valeurs plus faibles obtenues dans l'unité supérieure sont cohérentes avec les valeurs de V_s et de modules triaxiaux qui se sont avérées également plutôt faibles. Bien que le module pressiométrique soit davantage affecté par le remaniement de l'avanttrou, les valeurs de pression limite ne sont pas autant affectées par celui-ci et sont donc davantage cohérentes avec ces autres résultats montrant une résistance plus faible dans la partie supérieure de l'unité supérieure. Ces résultats pour l'unité supérieure témoignent d'un sol raide, mais qui est à la fois compressible.

3.3.3 Propriétés hydrauliques

Le Tableau 3-4 présente les résultats des 2 essais de perméabilité réalisés en cellule triaxiale. Les échantillons ont été taillés à un diamètre de 5,08 cm et ils ont été consolidés respectivement à leur contrainte verticale effective en place (σ'_{v0} = 89,0 kPa; 8,08 et 8,18 m de profondeur). Les deux essais ont donné des valeurs de conductivité hydraulique semblable de 1,06x10⁻¹⁰ m/s.

 Tableau 3-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité supérieure de Saint-Anaclet-de-Lessard.

Site	Échantillon	Profondeur (m)	Unité	Conductivité hydraulique (K) (m/s)		
Saint-Anaclet-	TM55	8,18	supérieure	1,06E-10		
de-Lessard	TM55	8,08	supérieure	1,06E-10		

3.4 Sommaire du site de Saint-Anaclet-de-Lessard

Sous une mince couche de terre, on trouve un dépôt de 31 m de silt et argile ou une argile et silt. Ce dépôt se divise en trois unités dont les caractéristiques générales sont les suivantes.

La première unité stratigraphique est l'unité supérieure. Le sol composant l'unité supérieure est considéré comme un silt et argile très raide et des traces de sable et gravier sont également notées. La teneur en eau dans l'unité supérieure est faible et elle va varier entre 20 et 25 %. Les indices de liquidité varient entre -0,11 et 0,3 et les indices de plasticité entre 12 et 17. Étant donné la consistance très raide du sol, des essais au scissomètre n'ont pu être fait et la résistance au cisaillement non drainé est donc déterminée au cône et au triaxial. Au cône, le su est calculé à 327 et 551 kPa. Ces valeurs

semblent beaucoup plus élevées que ce qui est obtenu au triaxial et estimé au piézocône, celles-ci n'étant possiblement pas très représentatives de la résistance en place. Les 4 essais triaxiaux réalisés dans l'unité supérieure montrent un comportement dilatant typique des argiles raides. Ce comportement dilatant est également observable au piézocône par le paramètre B_q qui est négatif. La résistance au cisaillement non drainé à 5 % de déformation est d'en moyenne 79 kPa dans l'unité supérieure. La conductivité hydraulique verticale mesurée en cellule triaxiale est de 1,06x10⁻¹⁰ m/s, et ce pour les deux échantillons testés.

Une zone de transition, appelée unité intermédiaire dans le mémoire d'Hébert (2016), est sous l'unité supérieure. L'unité intermédiaire a une épaisseur d'environ 5 m entre 11,6 et 16,6 mètres de profondeur. Le sol est défini comme étant un argile et silt avec traces de sable. La teneur en eau augmente de 27 % initialement jusqu'à 40 % dans le bas de la zone de transition et les indices de liquidité vont plus que doubler, passant de 0,21 à 0,66. Cette unité est également considérée comme étant raide, mais des essais au scissomètre peuvent être réalisés. La résistance au cisaillement s_{uV} passe de 126 kPa dans le haut de l'unité à 60 kPa dans le bas. La résistance au cisaillement non drainé au pic déterminée au triaxial est de 72 kPa à 14,25 m. La contrainte de préconsolidation est de 283 kPa à 14,16 m et elle permet de calculer un OCR de 1,89.

Finalement, l'unité inférieure compose le reste du site entre 16,6 et le refus à 32 m. L'unité inférieure est également décrite comme un argile et silt et elle est caractérisée par des paramètres nettement supérieurs ou inférieurs à ceux de l'unité supérieure. Les teneurs en eau sont d'environ 40 % sur la totalité de l'unité. Les indices de liquidité (I_L) sont tous inférieurs à 0,66 et les indices de plasticité sont d'environ 20 à 25. Le scissomètre est réalisé jusqu'à une profondeur de 27,4 m et les données sont d'en moyenne 50 kPa. L'essai triaxial montre un sol présentant un comportement contractant et la résistance au cisaillement au pic est de 57 kPa. Les essais œdométriques montrent des formes de courbes typiques présentant les domaines surconsolidés et normalement consolidés.

CHAPITRE 4 : TROIS-PISTOLES

Le présent chapitre est un sommaire des résultats obtenus sur le site de Trois-Pistoles. Initialement, un piézocône (CPTu) a été réalisé sur le site à l'été 2020. À la suite de ces travaux, une caractérisation complète du site a été réalisée. Celle-ci est basée sur les multiples données au piézocône en premier lieu. Les essais permettant d'émettre des conclusions sur la stratigraphie et sur le profil géotechnique sont ensuite présentés. Le Chapitre 4 se termine par une présentation des modules œdométriques et triaxiaux. À noter que les résultats de ce chapitre seront analysés plus globalement dans le chapitre 7.

4.1 Piézocône

La Figure 4-1 présente les principaux résultats de l'essai au piézocône réalisé lors de la campagne 2020 à Trois-Pistoles.

La résistance en pointe corrigée est initialement montrée à la Figure 4-1 avec la pression interstitielle générée derrière la pointe. La résistance en pointe maximale (q_t) se trouve à 4 m. Celle-ci est de 4 600 kPa et elle diminue graduellement par la suite à environ 1 500 kPa au refus. Dans son cas, le profil de u₂ dénote des valeurs négatives sur les 5,8 premiers mètres. Les données augmentent ensuite progressivement sur le reste du profil jusqu'à une valeur d'environ 1 080 kPa. Le frottement atteint sa valeur maximale de 326 kPa également à 4 m de profondeur. Les données diminuent ensuite graduellement jusqu'à une profondeur de 22 m où le frottement se stabilise à 27 kPa. Pour le B_q, le changement de valeur négative à positive se fait à une profondeur de 7,2 mètres et l'augmentation du B_q est ensuite à peu près constante sur les 15 m suivants. Il reste finalement stable à 0,79 kPa entre 22 et 32 m.

Figure 4-1 : Profil au piézocône à Trois-Pistoles.

4.2 Stratigraphie

La séparation des unités est réalisée sur la base du profil de q_t et B_q, de l'indice de liquidité et des images Ct-Scan (Figure 4-2). La première unité débute en surface et elle se termine à 17 m de profondeur. Comme Hébert et coll. (2016), nous appelons celle-ci unité supérieure. Au Ct-Scan, la matrice montre une texture massive et homogène avec une absence de lits subhorizontaux. Des sables et graviers ont également été notés sur ces images. La résistance au cône est supérieure à 2 700 kPa et le B_q est inférieur à 0,3. Par la suite, une autre unité débute directement sous l'unité supérieure et celle-ci se termine quand le refus est atteint à 31,31 m de profondeur. Les q_t sont plus faibles et les B_q plus élevés que dans l'unité supérieure. Les images Ct-Scan présentent une stratigraphie quasi horizontale avec quelques laminations sableuses. Celles-ci commencent à être moins visibles vers 28 m de profondeur où le sol des tubes montre un possible remaniement. Cette unité est appelée unité inférieure, comme Hébert et coll. (2016). En sommes, le sol à Trois-Pistoles est constitué d'argile et silt avec traces de sable et gravier

sur tout le profil. Contrairement aux autres sites, la présence de l'unité intermédiaire, comme discutée par Hébert et coll. (2016), n'est pas nette et les différents paramètres analysés ne montrent pas distinctement une transition entre l'unité supérieure et inférieure. Le manque d'image Ct-Scan entre 14,61 et 18,24 m rend difficile de comprendre exactement le passage entre les unités dans cette zone. La stratigraphie du site de Trois-Pistoles est donc composée de 2 unités, soit l'unité supérieure et l'unité inférieure, typiques de la région.

Figure 4-2 : Présentation des Ct-Scan dans le profil de q_t à Trois-Pistoles.

4.3 Profil géotechnique

La Figure 4-3 présente le profil géotechnique synthèse à Trois-Pistoles. Les informations ayant permis l'établissement de ce profil sont discutées dans les différentes sections de ce chapitre. Les modules déterminés lors du projet sont, dans leur cas, présentés à la Figure 4-4. La surface du site se trouve à une élévation de 33,62 m.

Figure 4-3 : Profil géotechnique à Trois-Pistoles.

Figure 4-4 : Profil des modules du sol du site de Trois-Pistoles.

4.3.1 Caractéristiques physicochimiques

La proportion d'argile se trouve aux alentours de 50 % sur toute l'épaisseur du dépôt à Trois-Pistoles (Figure 4-3). La proportion silteuse varie entre 42 et 47,5 % jusqu'à 25,5 m de profondeur. Par la suite, celle-ci diminue à environ 34 % et le pourcentage de sable augmente à 10 %. La présence de gravier est négligeable sur la totalité de l'épaisseur du dépôt (moins de 2 %). Les deux unités sont caractérisées comme étant composées d'argile et silt avec traces de sable et gravier.

Dans l'unité supérieure, la salinité augmente de 2,48 et 6,70 g/L. La valeur maximale sur le profil de salinité est de 8,70 g/L et celle-ci se trouve à 18,69 m de profondeur dans le haut de l'unité inférieure. Dans le bas de cette unité, la salinité baisse à 1,85 g/L. Ces données sont nettement inférieures à celles du site de Saint-Anaclet-de-Lessard.

Les teneurs en eau sont montrées dans le profil géotechnique synthèse (Figure 4-3). Celles déterminées dans l'unité supérieure ont des valeurs entre 20 et 32 % avec la moyenne à 26,7 %. Dans le bas de l'unité supérieure, les teneurs en eau augmentent graduellement de 29 à 35 % avant d'atteindre la couche inférieure. L'unité inférieure est caractérisée par des teneurs en eau de 32 % en moyenne.

Les limites de plasticité varient entre 21 et 25 % sur toute la profondeur du site de Trois-Pistoles. Hormis les trois résultats près de la surface, les limites de liquidité dans l'unité supérieure sont comprises dans l'intervalle 35 à 40 % et l'intervalle augmente faiblement entre 40 à 43 % dans l'unité sous-jacente. Les indices de plasticité varient principalement entre 11 et 19 dans l'unité supérieure et entre 16 et 21 dans l'unité inférieure. Dans leur cas, les indices de liquidité déterminés dans l'unité supérieure se situent tous sous une valeur de 0,32. Pour l'unité inférieure, les résultats sont plus élevés que 0,51, mis à part un IL de 0,31 sur l'échantillon le plus profond.

4.3.2 Propriétés mécaniques

Dans cette section, les essais de terrain, permettant d'établir les caractéristiques mécaniques du sol de la Figure 4-3 et la Figure 4-4, sont discutés.

4.3.2.1 Indice de pénétration standard

Le facteur de correction C_E est de 1,35 en moyenne au site de Trois-Pistoles. De façon générale, les indices N_{60} de l'unité supérieure sont entre 20 et 36. Dans les 5 derniers mètres de l'unité supérieure, les valeurs diminuent graduellement jusqu'à environ 10.

Finalement, les indices N_{60} de l'unité inférieure sont variables entre 0 et 14. Selon la classification utilisée par le MTMD, la compacité de l'unité supérieure est compacte à dense, et celle de l'unité inférieure est très lâche à moyenne.

4.3.2.2 Vitesse des ondes de cisaillement et module de cisaillement à petite déformation

Les données obtenues de l'essai sismique de type « downhole » comprennent les mesures des vitesses de propagations des ondes de cisaillement V_s prises à tous les 1 m entre 0,57 et 30,57 m de profondeur et elles sont montrées à la Figure 4-3. De 2 à 25 m, le V_s se situent entre 180 et 220 m/s avec une moyenne de 200 m/s. La donnée maximale de 495 m/s est atteinte à une profondeur de 30 m, soit au bas du sondage, et cette vitesse de propagation peut être causée par la proximité avec le Till. La tendance générale du profil de V_s est assez stable contrairement au profil de q_t où les valeurs diminuent graduellement avec la profondeur.

Le module de cisaillement à petite déformation du sol à Trois-Pistoles selon la profondeur est présenté à la Figure 4-4. De 2 à 27 m, le G_o varie entre 64 et 104 MPa. Les valeurs augmentent ensuite à l'approche du refus pour atteindre une valeur maximale de 482 MPa à 30 m. Dans l'unité supérieure, la moyenne des G_o est de 87 MPa et elle est de 82 MPa pour l'unité inférieure.

4.3.2.3 Résistance au cisaillement et angle de frottement effectif

Les résistances au cisaillement non drainées acquises au scissomètre sont présentées à la Figure 4-3. Aucun essai n'a été fait avant 10,5 m, puisque la résistance du sol est trop importante. Les 2 premiers résultats montrent des s_{uV} de 122 et 102 kPa. Par la suite, les données diminuent dans le bas de l'unité supérieure et elles se stabilisent jusqu'à une profondeur de 23 m. Dans cet intervalle de profondeur, les résultats se trouvent entre 48 et 72 kPa. Les s_{uV} sont plus élevés pour les trois derniers essais pour atteindre 166 kPa à 26 m de profondeur.

La résistance au cisaillement non drainée à l'état intact au cône tombant de l'argile est respectivement de 168, 274 et 200 kPa pour les trois premiers essais de l'unité supérieure. Par la suite, le s_u diminue à 49 kPa pour l'essai entre 14,06 et 14,29 m. Dans l'unité inférieure, les trois essais au cône permettent d'obtenir des s_u de 48, 6 et 21 kPa. Les essais de résistance au cisaillement non drainée à l'état remanié débutent à partir de 17,52 m de profondeur. Les données se situent entre 9,25 et 21,5 kPa jusqu'à une

profondeur de 25,53 m, puis elle est de 3,15 kPa pour le dernier essai de l'unité inférieure. La sensibilité la plus élevée (6,69) est déterminée entre 28,03 et 28,22 m et les deux autres sensibilités sont de 3,75 (18,58 à 18,77 m) et 2,85 (5,29 à 25,53 m).

Par la suite, la résistance au cisaillement non drainée est estimée selon les résultats du scissomètre et les données au piézocône (Figure 4-3). Afin de corréler ces deux résistances, un N_{kT} de 22 a été déterminé; cette valeur est discutée au chapitre 7. En omettant les données des deux extrémités du piézocône, la résistance maximale de 226 kPa est atteinte à 4 m. Dans le reste de l'unité supérieure et dans l'unité inférieure, la résistance au cisaillement non drainée diminue progressivement jusqu'à des valeurs de 45 kPa.

Le Tableau 4-1 montre le sommaire des 10 essais triaxiaux effectués sur les échantillons à Trois-Pistoles. La répartition des essais est la suivante : 9 échantillons dans l'unité supérieure et 1 échantillon dans l'unité inférieure. Un sommaire des essais est présenté à la Figure 4-5. À noter que cinq essais ont été consolidés aux contraintes en place et ceux-ci sont présentés à l'Annexe B3.

Profondeur (m)	Unité	σ'₀ (kPa)	Contrainte effective ciblée	Ko	σ'₁ (kPa)	σ'₃ (kPa)	u (kPa)	Type de rupture	Comportement	s _{u ε=5%} / s _u au pic (kPa)
3,2	Supérieure	40	47	1	50	45	31	plan	dilatant	47
3,83	Supérieure	48	150	1	155	150	38	plan	dilatant	
3,93	Supérieure	49	250	1	251	246	39	baril	dilatant	
5,94	Supérieure	72	72	1	75	70	58	plan	dilatant	53
9,67	Supérieure	114	64	1	74	69	95	plan	dilatant	
10,21	Supérieure	119	200	1	201	196	100	baril	dilatant	
10,32	Supérieure	120	120	1	129	124	101	plan	dilatant	127
10,32	Supérieure	120	250	1	254	249	101	plan	dilatant	
14,22	Supérieure	160	160	1	165	160	140	baril	dilatant	86
19,07	Inférieure	206	206	1	192	187	187	baril	contractant	77

Tableau 4-1 : Sommaire des essais triaxiaux à Trois-Pistoles

Tous les échantillons présentent un comportement dilatant mis à part l'échantillon de l'unité inférieure à 19,07 m qui montre un comportement contractant. Le s_u à 5 % est plus faible pour les deux premiers échantillons (47 et 53 kPa), puis il augmente à 127 kPa à une profondeur de 10,32 m. L'échantillon à 14,22 m présente un s_u de 86 kPa. Finalement, l'échantillon à 19,07 m de l'unité inférieure a une résistance au cisaillement non drainée au pic de 77 kPa.

La Figure 4-6 présente la synthèse des résultats pour les échantillons entre 3,20 et 3,93 m de profondeur et des 4 essais entre 9,67 et 10,32 m. L'enveloppe de rupture tracée avec les échantillons près de 3,5 m de profondeur témoigne que le sol a une cohésion effective nulle et un angle de frottement effectif de 27,7°. À noter que l'échantillon à 3,83 m n'a pas eu le temps de cisailler, puisqu'un problème informatique est survenu à environ 4 % de déformation, mais le cheminement de contraintes de cet échantillons vers 10 m, les résultats sont étalés, mais ils permettent tout de même l'obtention d'une ligne d'état critique moyenne avec un angle de frottement effectif de 26,0° et une cohésion effective de 11,1 kPa. Il faut tenir compte que ces paramètres ont été déterminés sur des sols consolidés dans le domaine surconsolidé.

Figure 4-6 : Angles de frottement et cohésion effective de 2 horizons à Trois-Pistoles. 4.3.2.4 Contrainte effective et contrainte de préconsolidation

Les pressions interstitielles ont été prises à 11 reprises à Trois-Pistoles après la mise en place des piézomètres entre le 15 juillet 2021 et le 23 février 2023 (voir Annexe B2). Les résultats piézométriques ont permis de déterminer que la pression interstitielle est en condition hydrostatique dans ce dépôt. Ces pressions sont nulles à la surface et elles augmentent constamment jusqu'à 307 kPa au refus à 31,31 m de profondeur.

Selon les essais œdométriques, les masses volumiques moyennes sont de 21 kN/m³ pour l'unité supérieure et de 19,3 kN/m³ dans l'unité inférieure. La contrainte verticale effective au refus est de 323 kPa.

Les données au piézocône peuvent être prises en compte pour estimer la contrainte de préconsolidation avec un N_{oT} 3,6 à la Figure 4-3. Cette valeur sera discutée plus en détail au Chapitre 7. Dans les 4,07 premiers mètres, la contrainte de préconsolidation augmente jusqu'à 1 260 kPa et le sol est très surconsolidé. Il y a ensuite diminution graduelle jusqu'à un σ'_p d'environ 260 kPa dans le bas de l'unité inférieure. Ces résultats indiquent une surconsolidation dans le haut de l'unité inférieure et un sol légèrement à normalement surconsolidé dans le bas de l'unité.

Au total, 7 essais œdométriques ont été réalisés à plusieurs profondeurs au site de Trois-Pistoles. Les 4 premiers essais ont été faits dans l'unité supérieure et les 3 autres dans l'unité inférieure. Le Tableau 4-2 présente les principaux résultats obtenus des essais œdométriques et le sommaire des courbes œdométriques se trouve à la Figure 4-7. L'Annexe B4 présente les résultats pour chaque essai.

Profondeur (m)	Unité	σ'₀ (kPa)	σ' _p (Casagrande, kPa)	σ' _ɐ (min, kPa)	σ' _¤ (max, kPa)	OCR	e ₀	Cs	Cc	C _{s d-r}	Critère de Lunne (1997)	Évaluation
3,32	Supérieure	41	489	204	1487	11,9	0,85	0,05	0,20	0,10	0,03	Très bon à bon
5,24	Supérieure	65	418	221	1610	6,4	0,70	0,03	0,17	0,06	0,03	Très bon à bon
9,72	Supérieure	114	434	189	1374	3,8	0,68	0,05	0,15	0,05	0,06	Mauvais
14,32	Supérieure	161	196	73	672	1,2	0,85	0,04	0,20	0,07	0,12	Mauvais
18,54	Inférieure	201	356	149	924	1,8	0,95	0,09	0,36	0,09	0,13	Mauvais
25,18	Inférieure	262	259	100	452	1,0	0,98	0,05	0,29	0,09	0,14	Mauvais à très mauvais
28,28	Inférieure	292	85	57	418	0,3	0,72	0,05	0,18	0,05	0,18	Très mauvais

Tableau 4-2 : Sommaire des essais œdométriques à Trois-Pistoles

Dans l'unité supérieure, l'intervalle des résultats pour les trois premiers essais est de 418 à 489 kPa. Les courbes ont des formes arrondies, ce qui rend difficile l'obtention d'un résultat précis. Le OCR, dans cette unité, varie entre 3,8 et 11,9. La forme arrondie fait également en sorte que l'intervalle min-max est important pour ces échantillons, ce qui montre une importante incertitude dans les résultats o'p dans l'unité supérieure. Par la suite, un essai à 14,32 m montre un σ'_p de 196 kPa et le OCR est de 1,22. Ainsi, le sol composant l'unité supérieure est initialement très surconsolidé, et il est plutôt légèrement surconsolidé dans le bas de l'unité. Dans son cas, l'unité inférieure montre une contrainte de préconsolidation de 356 kPa à 18.54 m et une valeur plus faible de 85 kPa à 28.28 m. La forme est plus typique, mais elle ne montre pas clairement le passage de la pression de préconsolidation. Les OCR ont des valeurs entre 0,29 et 1,77 dans l'unité inférieure. Le résultat inférieur à 1 est toutefois étrange, puisqu'il indique que l'argile est sousconsolidée à cette profondeur, ce qui n'est définitivement pas le cas à Trois-Pistoles. Cet échantillon présente donc un fort remaniement qui vient affecter le résultat. Les autres données de l'unité inférieure témoignent d'un sol légèrement surconsolidé à normalement consolidé.

Figure 4-7 : Courbes œdométriques à Trois-Pistoles.

4.3.2.5 Module œdométrique et indices de compression et de recompression

Les modules œdométriques ont été déterminés à l'aide des graphiques contraintesmodules de la Figure 4-8 et de la Figure 4-9 (pour la contrainte semi-log). Les figures individuelles sont présentées à l'Annexe B4. Les modules œdométriques de l'unité supérieure sont entre 3,1 et 10,8 MPa. Dans l'unité inférieure, ils varient entre 4,8 et 7,1 MPa.

L'indice C_s varie entre 0,02 et 0,03 et l'indice de compression entre 0,17 et 0,21 dans l'unité supérieure. Pour l'unité inférieure, l'indice C_s se situe entre 0,02 et 0,07 et l'indice C_c entre 0,18 et 0,36. Dans son cas, l'indice de recompression C_{s d-r} est situé entre 0,05 et 0,10 dans l'unité supérieure. Les 2 premiers échantillons de l'unité inférieure ont, de leur côté, un C_{s d-r} de 0,09. Ce paramètre descend à 0,05 pour l'échantillon à 28,28 m. Il est possible également d'observer que l'indice C_s est plus faible que le C_{s d-r}.

Figure 4-8 : Modules œdométriques à Trois-Pistoles.

Figure 4-9 : Modules œdométriques à Trois-Pistoles (semi-log).

4.3.2.6 Module triaxial

Le module triaxial E_u a été déterminé avec les échantillons consolidés aux contraintes en place. Les données varient entre 22 et 72 MPa sur les 4 échantillons de l'unité supérieure. Pour le seul échantillon de l'unité inférieure, le module E_u est de 65 MPa. L'argile très surconsolidée présente des modules E_u plus faibles que l'argile moins surconsolidée, ce qui diffère des attentes.

4.3.2.7 Pressiomètre

Le Tableau 4-3 présente les 9 essais pressiométriques qui ont été réalisés sur le site. Dans son cas, la Figure 4-4 montre les valeurs de module pressiométrique en fonction de la profondeur.

Profondeur (m)	E _M (MPa)	P∟ (kPa)	E _M /P∟	Méthode de forage
3,0	2663	349	7,6	Tricône (petit renflement) + eau
3,0	3762	697	5,4	Tricône (petit renflement) + eau
4,9	2961	494	6,0	Tricône (petit renflement) + eau
10,0	5361	751	7,1	Tricône (petit renflement) + eau
12,0	10012	751	13,3	Tricône (petit renflement) + eau
14,0	2955	596	5,0	Tricône (petit renflement) + eau
16,0	7614	657	11,6	Tricône (petit renflement) + eau
17,8	10121	679	14,9	Tricône (petit renflement) + eau
25,0	14117	863	16,4	Tricône (petit renflement) + eau

Tableau 4-3 : Essais pressiométriques à Trois-Pistoles.

Dans l'unité supérieure, les 7 essais réalisés présentent un module pressiométrique entre 2 663 et 10 012 kPa. Les pressions limites, dans cette unité, varient de 349 à 751 kPa. Selon le tableau 4.7 du Manuel Canadien d'Ingénierie des Fondations (4^e Édition, 2013), les pressions limites obtenues se trouvent dans l'intervalle typique des argiles ferme à raide ou des silts. Les modules pressiométriques sont très faibles dans l'unité supérieure. Le ratio E_m/P_L varie entre 5 et 7,6, mise à part une mesure à 13,3. Dans l'unité inférieure, les modules pressiométriques sont respectivement de 10 121 et 14 117 kPa et les pressions limites sont de 679 kPa à 17,8 m et de 863 kPa à 25 m. Le sol est donc également défini comme une argile ferme à raide et le rapport E_m/P_L , entre 14,9 et 16,4, est typique d'une argile raide. Sur l'ensemble du dépôt, les valeurs de pression limite sont relativement constantes. Toutefois, les modules pressiométriques sont beaucoup plus faibles dans l'unité supérieure que dans l'unité inférieure. Comme mentionné à la section 3.3.2.7, les valeurs plus faibles obtenues dans l'unité supérieure sont tout de même cohérentes avec les valeurs de V_s et de modules triaxiaux qui se sont avérées également plutôt faibles dans cette couche. Bien que le module pressiométrique soit davantage affecté par le remaniement de l'avant-trou, les valeurs de pression limite ne sont pas autant affectées par celui-ci. Les pressions limites sont plutôt constantes sur l'ensemble du dépôt. Ces résultats pour l'unité supérieure témoignent d'un sol raide, mais qui est à la fois compressible.

4.3.3 Propriétés hydrauliques

Le Tableau 4-4 présente les résultats des 2 essais de perméabilité réalisés en cellule triaxiale. Les échantillons ont été taillés à un diamètre de 5,08 cm et ils ont été consolidés respectivement à leur contrainte verticale effective en place (σ'_{v0} = 122,0 kPa; 10,44 et 10,54 m de profondeur). Les deux essais ont donné des valeurs de conductivité

hydraulique assez similaires de 1,53x10⁻¹⁰ m/s et 1,26x10⁻¹⁰ m/s. Ces valeurs sont dans le même ordre de grandeur que les résultats obtenus à Saint-Anaclet-de-Lessard.

Site	Échantillon	Profondeur (m)	Unité	Conductivité hydraulique (K) (m/s)
Trojo Distolas	TM57	10,44	supérieure	1,53E-10
I rois-Pistoles	TM57	10,54	supérieure	1,26E-10

Tableau 4-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité supérieure de Trois-Pistoles.

4.4 Sommaire du site de Trois-Pistoles

Le dépôt de 31 m est situé sous une mince couche organique et il est composé des deux unités stratigraphiques suivantes. L'unité supérieure est la première retrouvée sur le site et celle-ci a une épaisseur d'environ 17 m. Les essais de granulométrie et de sédimentométrie indiquent que le sol est un argile et silt avec traces de sable et gravier. Les multiples teneurs en eau varient généralement entre 22 et 30 %. Quant à eux, les indices de liquidité sont faibles avec des valeurs entre -0,12 et 0,32. Cing essais au scissomètre ont été réalisés à partir de 10,5 mètres. Les deux premiers résultats sont de 122 et 102 kPa à 10,5 et 11 m respectivement, puis les résistances diminuent de moitié à environ 56 kPa pour les essais à 15,16 et 17m. Pour leur part, les essais triaxiaux ont été réalisés en majorité dans l'unité supérieure et le comportement du sol est dilatant pour les 9 essais. La résistance au cisaillement est déterminée à une déformation de 5 % et celleci atteint son maximum de 127 kPa à 10,32 m de profondeur, puis elle baisse à 86 kPa pour l'échantillon du bas de l'unité à 14,22 m. Les courbes œdométriques sont distinguées par une forme arrondie ne montrant pas un changement net au passage de la contrainte de préconsolidation, sauf l'essai à 14,32 m où la forme est un peu plus typique. L'essai de perméabilité, mesurée en cellule triaxiale sur deux échantillons, a donné des valeurs de conductivité hydraulique verticale de 1.53x10⁻¹⁰ m/s et 1.26x10⁻¹⁰ m/s.

Comme il a été mentionné auparavant, rien n'indique précisément la présence d'une unité intermédiaire à Trois-Pistoles puisque le profil du piézocône diminue graduellement à partir de 4 m. Toutefois, le manque de tube entre 14,61 et 18,24 m rend difficile la confirmation de cette théorie. En effet, les données générales semblent différer légèrement du reste à partir de 14 m. Le manque d'information fait en sorte que la portion entre 14,6 et 17,0 m est considérée dans l'unité supérieure.

L'unité inférieure complète le profil géotechnique à Trois-Pistoles. Celle-ci débute à 17 m et elle se termine au refus à 31,31 m de profondeur. L'unité inférieure est également décrite comme un argile et silt gris avec traces de sable et gravier. Les teneurs en eau sont stables entre 30 et 35 %. Les indices de liquidité ont des valeurs générales entre 0,51 et 0,61 et elle diminue à 0,31 sur un échantillon à 27 m. La résistance au cisaillement non drainé s_{uV} est d'en moyenne 60,8 kPa de 17 à 21 m, puis elle augmente graduellement jusqu'à atteindre 166 kPa à 26 m de profondeur. Dans son cas, l'essai triaxial montre un sol dont le comportement est contractant et la résistance au cisaillement non drainée est de 77 kPa. La contrainte de préconsolidation diminue de 356 kPa à 85 kPa selon la profondeur, ce qui est similaire à la tendance du qt. L'essai œdométrique à 28,28 m de profondeur indique toutefois un sol sous-consolidé, ce qui est probablement causé par un remaniement important de l'échantillon.

CHAPITRE 5 : PRICE

Ce chapitre présente les principales caractéristiques du site de Price. La première section du chapitre fait un survol des données obtenues par le piézocône. La section suivante discute de la stratigraphie retrouvée sur le site de Price. Les résultats du profil géotechniques sont ensuite présentés, suivis des essais au pressiomètre. Les données discutées dans ce chapitre seront analysées beaucoup plus globalement au chapitre 7.

5.1 Piézocône

Le piézocône CPTu-07 a été réalisé préalablement aux travaux de terrain à Price lors de la campagne de 2020 et les données sont présentées à la Figure 5-1.

Le paramètre q_t varie grandement sur la totalité du profil au piézocône entre 1 318 et 24 359 kPa. Cette variation est particulièrement importante sur les 14 premiers mètres, puis le q_t diminue graduellement entre 14 et 16,80 m avant d'être constant jusqu'à 20,5 m. La pression interstitielle générée derrière le cône est négative jusqu'à 15,59 m. Les données augmentent ensuite dans le mètre qui suit avant de se stabiliser à 650-850 kPa sur le reste du profil. Le frottement varie entre 240 et 400 kPa sur les 9 premiers mètres. Il diminue ensuite à environ 100 kPa entre 10 et 12,5 m. Le frottement augmente par la suite jusqu'à 420 kPa en moyenne entre 13 et 14,6 m. Il devient constant à 16,8 m, entre 5 et 20 kPa, et ce jusqu'au refus. Le paramètre B_q est inférieur à 0 sur les 16,09 premiers mètres de profondeur et il augmente graduellement à 0,75 jusqu'au refus.

Figure 5-1 : Profil au piézocône à Price.

5.2 Stratigraphie

La Figure 5-2 présente les images Ct-Scan en fonction de la profondeur à Price. Une première unité de sable et gravier est située à la surface et celle-ci a une épaisseur d'environ 3,65 m. Par la suite, un sol composé de silt argileux avec des traces de sable d'une épaisseur de 14-15 m se trouve sous la couche de sable et gravier. Les 4 premiers tubes de la Figure 5-2 montrent la présence de strates avec un angle variable. Par la suite, les tubes à 8,20-8,80 et 8,80-9,40 m témoignent d'une matrice massive avec un peu de gravier. La présence de strate potentielle est de nouveau notée dans les tubes entre 10,60 et 11,80 m. Vers 13,70 m, les tubes sont constitués d'un sol massif à texture homogène. Bien que celle-ci ne soit pas la première unité retrouvée sur le site, cette unité à Price correspond à l'unité supérieure identifiée dans cette étude. Le sol composant l'unité supérieure est gris foncé avec des taches noires et il est de consistance très raide. L'alternance entre l'argile massive et stratifiée concorde bien avec les pics de résistance identifiés au piézocône. L'unité suivante est composée d'une mince unité de 4-5 m de silt et argile avec traces de sable à partir de 16,8 m. Cette unité est située par-dessus le Till

et comme pour Hébert et coll. (2016), elle est identifiée comme étant l'unité inférieure. Le sol est ferme à raide d'une couleur gris foncé à noir et des lits subhorizontaux sont visibles au Ct-Scan. En vue des résultats au piézocône et au Ct-Scan, la stratigraphie de Price est composée des unités supérieure et inférieure notées par Hébert et coll. (2016). L'appellation « unité supérieure » est conservée dans ce chapitre, mais la nature de cette unité sera discutée dans le Chapitre 7, car elle présente des différences par rapport aux unités supérieures rencontrées ailleurs dans ce projet.

Figure 5-2 : Présentation des Ct-Scan dans le profil de qt à Price.

5.3 Propriétés géotechniques

Le profil géotechnique synthèse à Price est montré à la Figure 5-3. Le profil des modules est, de son côté, présenté à la Figure 5-4. L'élévation à la surface du sol est de 80,77 m à Price.

Figure 5-3 : Profil géotechnique à Price.

Figure 5-4 : Profil des modules du sol du site de Price.

5.3.1 Caractéristiques physicochimiques

Dans l'unité supérieure, le pourcentage d'argile est constant entre 18 et 20 % jusqu'à 10,2 m de profondeur. La proportion de silt est ici d'environ 75 % et le sable est retrouvé entre 3,5 et 7 %. De 10,2 à 18 m, l'argile est décelée en plus grande proportion, soit entre 31,9 et 40,1 %. La granulométrie silteuse diminue du même coup vers un intervalle de 58-65 %. Le sable est toujours présent, mais dans des proportions inférieures à 3 %. La granulométrie de l'unité inférieure est principalement composée de silt à environ 56 % et d'argile à 42,5 %. Le sable est également décelé avec des proportions qui varient entre 0,5 et 3,5 % et la présence de gravier n'a pas été notée dans cette unité.

La salinité est concentrée dans un intervalle de 0,15 à 0,22 g/L dans les 11,5 premiers mètres. À 14,76 m, elle augmente à 0,57 g/L. La salinité diminue finalement dans le bas de l'unité supérieure à 0,28 g/L, puis elle augmente légèrement à 0,36 g/L pour le seul échantillon de l'unité supérieure.

De 3,65 à 10,2 m, la teneur en eau (w) varie entre 15 et 18,5 %, puis celle-ci augmente entre 15,5 et 20,5 % sur les 6,6 prochains mètres. Dans l'unité inférieure, la teneur en eau se situe entre 22 et 27,5 %.

La Figure 5-3 présente les limites d'Atterberg déterminées au site de Price. Dans l'unité supérieure, la limite de plasticité est assez constante, entre 4 et 12 %. La limite de plasticité w_P augmente dans l'unité inférieure avec une moyenne de 10 %. Les limites de liquidité (w_L) varient entre 22 et 32 % dans l'unité supérieure avec une moyenne de 29 % dans l'unité inférieure. Les indices de plasticité varient entre 4 et 12 dans l'unité supérieure et entre 6 et 13 dans l'unité inférieure. L'indice de liquidité est plus petit que 0,2 dans l'unité supérieure. Les deux premiers échantillons de l'unité inférieure ont un l_L de -0,13 et 0,08, puis les données augmentent entre 0,41 et 0,91 pour le reste de cette couche. Ces faibles indices de liquidité pourraient indiquer que la couche inférieure commence plus bas. Toutefois, le rapport B_q est positif à partir de 16 m. Il est possible que la zone entre 16 et 18 m de profondeur soit une zone de transition (unité intermédiaire).

5.3.2 Propriétés mécaniques

Cette section résume les propriétés mécaniques présentées à la Figure 5-3.

5.3.2.1 Indice de pénétration standard

Dans l'unité supérieure, de 4,88 à 15,55 m, les indices N_{60} varient entre 14 et 59. Il y a ensuite diminution jusqu'à 47 à 16,31 m soit la fin de l'unité supérieure. Dans l'unité inférieure, l'indice N_{60} diminue avec la profondeur et la moyenne est de 17. À noter que le facteur C_E est de 1,26 en moyenne au site de Price, ce qui diffère des sites de Saint-Anaclet et de Trois-Pistoles (1,35), mais qui est semblable à celui du site de Saint-Ulric-de-Matane (1,27).

5.3.2.2 Vitesse des ondes de cisaillement et module de cisaillement à petite déformation

Des essais sismiques de type « downhole » et « crosshole » ont été réalisés sur le site de Price. Les résultats de ces deux essais permettent de tracer le profil de V_s à la Figure 5-3.

Pour l'essai sismique de type « downhole », la vitesse de propagation des ondes sismiques de cisaillement varie entre 197 et 316 m/s sur tout le profil. Dans l'unité supérieure, la vitesse des ondes sismiques de cisaillement est d'en moyenne 246 m/s et elle augmente légèrement à 260 m/s pour l'unité inférieure. L'essai sismique de type « crosshole » permet également de déterminer les V_s. De 1 à 3 mètres, les résultats de V_s au « crosshole » exhibent des valeurs inférieures à 200 m/s. Les données sont ensuite très stables dans les deux unités avec un V_s moyen de 241 m/s et un écart-type de 24 m/s. Dans l'ensemble, les vitesses de cisaillement obtenues de l'essai « crosshole » sont légèrement plus faibles que celles obtenues de l'essai « downhole ».

Les modules de cisaillement à petite déformation (G_o) calculés à partir des V_s mesurés avec l'essai sismique de type « downhole » sont présentés à la Figure 5-4. Initialement, les données entre 1,5 et 5,5 m sont d'environ 100 MPa. Par la suite, un pic de 170 MPa est trouvé à 8,5 m, ce qui concorde bien avec le pic du profil de q_t. Les données descendent à 100 MPa vers 10,5 m avant d'atteindre la valeur maximale de 218 MPa du profil à 12,5 m. Finalement, les données varient entre 152 et 177 MPa sur les 6 m suivants et G_o atteint 117 MPa à la fin du profil.

5.3.2.3 Résistance au cisaillement et angle de frottement effectif

Les essais au scissomètre ont été réalisés, majoritairement, dans l'unité inférieure avec un essai dans l'unité supérieure à 11,5 m de profondeur. La résistance au cisaillement non drainée, dans l'unité supérieure, est de 102 kPa. Dans l'unité inférieure, le premier essai a une résistance au cisaillement non drainée de 164 kPa et les 5 autres essais donnent des résultats s_{uv} variant de 78 à 90 kPa.

Les résistances au cisaillement à l'état intact et remanié, déterminées au cône, sont présentées à la Figure 5-3. Entre 5,3 et 11,5 m, la résistance est de 295 kPa en moyenne. Par la suite, l'échantillon à 14,7 m témoigne de la plus grande résistance à 1 151 kPa. Le dernier résultat dans le bas de l'unité supérieure, à 16,35 m de profondeur, est de 252 kPa. La diminution des valeurs continue dans l'unité inférieure où la résistance au cisaillement s_u est de 61 kPa à une profondeur de 17,9 m et la résistance au cisaillement remanié s_{uR} est ici de 0,6 kPa. Les autres résultats de s_{uR} dans l'unité inférieure ne semblent pas démontrer de tendance et leur moyenne est de 13,9 kPa.

La résistance au cisaillement non drainée, estimée au piézocône, est montrée à la Figure 5-3 avec un N_{kT} de 18. L'utilisation de ce paramètre est discutée en détail au Chapitre 7. Dans l'unité supérieure, les données varient grandement entre 120 et 850 kPa. Pour l'unité inférieure, la résistance au cisaillement non drainée est stable et les valeurs sont de 80 kPa en moyenne.

Un sommaire des résultats des essais triaxiaux est présenté à la Figure 5-5. À des profondeurs de 10,8 et 14,6 m, trois essais ont été réalisés respectivement dans l'objectif de déterminer l'état critique du sol. Un sommaire des données est présenté au Tableau 5-1.

Profondeur (m)	Unité	σ' _{v0} (kPa)	Contrainte effective ciblée	K₀	σ'₁ (kPa)	σ'₃ (kPa)	u (kPa)	Type de rupture	Comportement	s _{u ε=5%} (kPa)
5,16	Supérieure	99	99	1	104	99	211	plan	dilatant	426
10,83	Supérieure	168	168	1	171	166	184	baril	dilatant	256
10,93	Supérieure	169	50	1	54	49	152	plan	dilatant	
10,93	Supérieure	169	250	1	254	248	249	baril	dilatant	
14,61	Supérieure	209	100	1	105	100	180	baril	dilatant	
14,63	Supérieure	209	209	1	209	204	182	plan	dilatant	268
15,14	Supérieure	214	250	1	250	245	155	plan	dilatant	
17,81	Inférieure	241	241	1	244	239	182	plan	dilatant	194

Tableau 5-1 : Sommaire des essais triaxiaux à Price.

Un comportement dilatant est noté sur les 8 échantillons. À 5,16 m de profondeur, la résistance au cisaillement non drainée à 5 % de déformation est de 426 kPa. Elle diminue par la suite à 256 kPa sur l'échantillon à 10,83 m. Le dernier échantillon de l'unité supérieure, à 14,73 m, a un s_u de 268 kPa. L'échantillon de l'unité inférieure, à 17,81 m, témoigne d'une résistance au cisaillement non drainée à 194 kPa.

Les essais réalisés au site de Price montrent tous un comportement dilatant (Figure 5-5). Cependant, pour certains essais (TM-24 à 10,93 m, TM-34 à 14,61 m et TM-35 à 15,14 m), la pression interstitielle augmente vers la fin de l'essai. Ce comportement est surprenant et pourrait peut-être être causé par la grande variabilité du sol, tel qu'observé sur le Ct-Scan (Figure 5-2). Cette particularité n'est observée qu'à des déformations plus élevées que 7 % et les essais où celle-ci est observée sont très cohérents avec les autres essais de ce site. Ces essais sont considérés comme valides. Il faut également tenir compte que ces paramètres ont été déterminés sur des sols consolidés dans le domaine surconsolidé.

Figure 5-5 : Sommaire des 8 essais triaxiaux à Price. La Figure 5-6 montre les 2 horizons : 10,83 à 10,93 m et 14,73 à 15,14 m. L'angle de frottement effectif est constant à 33,7°. Les essais entre 10,78 et 10,98 m ont une

cohésion effective de 21,6 kPa et celle-ci est nulle pour les échantillons entre 14,73 et 15,14 m.

Les données de piézomètres ont été prises à 4 reprises entre le 18 mai 2022 et le 23 février 2023 sur des piézomètres à 3,5; 8; 13,5 et 20,5 m de profondeur et elles sont présentées à la Figure 5-3 et à l'Annexe C2. Les pressions interstitielles sont initialement nulles jusqu'à 3,4 m, correspondant à la couche de sable, et elles augmentent ensuite graduellement jusqu'à environ 100 kPa au piézomètre à 13,5 m. Le piézomètre situé à 20,5 m de profondeur, dans l'unité inférieure, montre quant à lui des valeurs d'environ 100 kPa également.

Pour l'unité supérieure, la masse volumique est de 21,2 kN/m³. La masse volumique diminue ensuite à 20,7 kN/m³ dans l'unité inférieure. Au refus, la contrainte verticale effective est donc de 285,4 kPa.

L'estimation des contraintes de préconsolidation a été réalisée selon un $N_{\sigma T}$ de 3,6. Une discussion sur ce paramètre est présentée au Chapitre 7. Au haut de l'unité supérieure, le σ'_p est de 4 000 kPa, puis il diminue à un intervalle de 1 500 et 2 300 kPa entre 6 et 8

m de profondeur. À 9,13 m, un pic de 3 813 kPa est décelé et les valeurs diminuent ensuite pour atteindre environ 700 kPa. Une dernière augmentation à environ 1 950 kPa est ensuite observée entre 12 et 15 m de profondeur. Dans le reste de l'unité supérieure et dans l'unité inférieure, la contrainte de préconsolidation diminue graduellement vers des valeurs de 350 kPa à 20 m de profondeur. En somme, le sol à Price est très surconsolidé dans l'unité supérieure et légèrement surconsolidé dans l'unité inférieure.

À Price, 5 essais œdométriques ont été réalisés sur la totalité du profil : quatre dans l'unité supérieure et un dans l'unité inférieure. Le Tableau 5-2 présente le sommaire des essais œdométriques et un rassemblement des courbes œdométriques est fait à la Figure 5-7 et à l'Annexe C4.

Profondeur (m)	Unité	σ'₀₀ (kPa)	σ' _p (Casagrande, kPa)	σ' _p (min, kPa)	σ' _p (max, kPa)	OCR	e ₀	Cs	Cc	C _{s d-r}	Critère de Lunne (1997)	Évaluation
5,72	Supérieure	110	379	83	1300	3,4	0,36	0,02	0,06	0,01	0,12	Très mauvais
7,7	Supérieure	131	514	112	1077	3,9	0,39	0,01	0,07	0,02	0,08	Mauvais
14,69	Supérieure	209	357	140	1250	1,7	0,63	0,03	0,15	0,05	0,09	Mauvais
16,49	Supérieure	228	300	125	150	1,3	0,51	0,04	0,14	0,04	0,16	Très mauvais
17,71	Inférieure	240	353	113	743	1,5	0,65	0,09	0,15	0,04	0,11	Mauvais

Tableau 5-2 : Sommaire des essais œdométriques à Price.

Pour l'unité supérieure, la contrainte de préconsolidation est entre 300 et 514 kPa et le OCR est respectivement de 1,3 et 3,9. La contrainte de préconsolidation, dans l'unité inférieure, est de 353 kPa et le OCR est de 1,5. Ce résultat se situe à l'intérieur de l'intervalle de l'unité supérieure, ce qui montre une similitude de contrainte de préconsolidation entre les unités. De façon générale, le sol est légèrement surconsolidé à très surconsolidé. Les essais œdométriques montrent également une forme arrondie, tel qu'observé aux autres sites d'étude et les valeurs de contrainte de préconsolidation sont donc difficiles à définir, ce qui augmente grandement l'incertitude des résultats.

Figure 5-7 : Courbes œdométriques à Price.

5.3.2.5 Module œdométrique et indices de compression et de recompression Les résultats pour tous les échantillons sont présentés à l'Annexe C4, et le sommaire est présenté à la Figure 5-8 et à la Figure 5-9 (pour la contrainte semi-log). Les modules œdométriques varient entre 11,6 et 15 MPa dans l'unité supérieure. Dans l'unité inférieure, l'essai montre un M_{oed} de 13 MPa.

Les indices de compression et de recompression ont également été déterminés pour tous les échantillons. Les indices de recompression pour les deux premiers essais, 5,72 et 7,70

m de profondeur, sont de 0,02 et 0,01 respectivement. À 14,71 m, l'indice de recompression est de 0,03 et celui-ci augmente pour les échantillons à 16,49 et 17,71 m de profondeur ($C_s = 0,04$ et 0,09 respectivement). L'indice de compression C_c présente une tendance similaire sur le profil. Entre 5,72 et 7,70 m, le c_c est d'en moyenne 0,065 et celui-ci va plus que doubler par la suite à 0,145 pour les 2 échantillons à la fin de l'unité supérieure. Dans l'unité inférieure, le C_c reste similaire à 0,14. Finalement, dans l'unité supérieure, les indices $C_{s d-r}$ passent de 0,02 à 0,05. Entre 17,66 et 17,76 m, le $C_s d-r$ est de 0,04. Nous notons ici la différence importante de valeurs entre les indices C_s et $C_s d-r$.

Figure 5-8 : Modules œdométriques à Price.

Figure 5-9 : Modules œdométriques à Price (semi-log).

5.3.2.6 Module triaxial

Dans l'unité supérieure, les modules E_u varient entre 31 et 81 MPa pour les 3 essais triaxiaux. Il y a ensuite augmentation à 77 MPa pour l'échantillon à 17,81 m dans l'unité inférieure.

5.3.2.7 Pressiomètre

Les modules pressiométriques et les pressions limites sont présentés au Tableau 5-3. Les modules pressiométriques sont également présentés en profil à la Figure 5-4.

Profondeur (m)	E _M (MPa)	P∟ (kPa)	E _M /P∟	Méthode de forage
3,45	4844	575	8,4	Tricône (petit renflement) + eau
5,60	4065	737	5,5	Tricône (petit renflement) + eau
8,70	3940	1093	3,6	Tricône (gros renflement) + eau
10,75	2948	491	6	Tricône (petit renflement) + eau + tube mince
13,75	13875	1458	9,5	Tubage BW avec rotation à sec
16,30	6889	1052	6,5	Tricône (petit renflement) + eau + tube mince
18	12154	829	14,7	Tricône (petit renflement) + eau + tube mince

Tableau 5-3 : Essais pressiométriques à Price.

Les modules pressiométriques varient entre 2 948 et 13 875 kPa pour tous les essais de l'unité supérieure. Selon Briaud (2013), les résultats correspondent à une argile de rigidité moyenne, ce qui est faible considérant la forte résistance apparente de l'unité supérieure. Les valeurs de pression limite varient entre 491 et 1 458 kPa. Dans l'unité inférieure, un module de 12 154 kPa est déterminé à 18,00 m, pour une pression limite de 829 kPa. Selon le Manuel Canadien d'Ingénierie des Fondations (4^e édition, 2013), cet intervalle est typique d'une argile ferme à raide ou d'un silt et les résultats corrèlent bien avec le profil géotechnique. Tel que pour les deux sites précédents, le rapport E_m/P_L est plutôt faible dans l'unité supérieure, avec des valeurs entre 3,6 et 9,5, tandis que le rapport obtenu dans l'unité inférieure est plus élevé, avec une valeur de 14,7. Les valeurs plus faibles obtenues dans l'unité supérieure sont tout de même cohérentes avec les valeurs de V_s et de modules triaxiaux qui se sont avérées également plutôt faibles dans cette couche. Bien que le module œdométrique soit davantage affecté par le remaniement de l'avant-trou, les valeurs de pression limite ne sont pas autant affectées par celui-ci et sont donc davantage cohérentes avec ces autres résultats montrant une résistance plus faible dans la partie supérieure de l'unité supérieure.

5.3.3 Propriétés hydrauliques

Le Tableau 5-4 présente le résultat de l'essai de perméabilité réalisé en cellule triaxiale. L'échantillon a été taillé à un diamètre de 5,08 cm et il a été consolidé à la contrainte verticale effective en place (σ'_{v0} = 159,3 kPa; 10,24 m de profondeur). L'essai a donné une valeur de conductivité hydraulique de 2,3x10⁻¹⁰ m/s. Ces valeurs sont dans le même ordre de grandeur que les résultats obtenus à Saint-Anaclet-de-Lessard et Trois-Pistoles.

Site	Échantillon	Profondeur (m)	Unité	Conductivité hydraulique (K) (m/s)
Price	TM23	10,24	supérieure	2,34E-10

Tableau 5-4 : Résultats des essais de perméabilité réalisés en cellule triaxiale pour l'unité supérieure de Price.

5.4 Sommaire du site de Price

Un dépôt de 18,3 m de silt argileux/silt et argile est retrouvé sous une couche de sable et gravier sur le site d'étude de Price. Ce dépôt est divisé en 2 unités stratigraphiques dont les caractéristiques géotechniques sont les suivantes.

La première unité d'argile du site est appelée unité supérieure. Celle-ci varie entre 3,65 et 16,80 m de profondeur et elle est composée d'un silt argileux. Contrairement aux autres sites, l'unité supérieure semble composée de différents horizons, correspondant à différents épisodes, ou phases, d'avancée et de réavancée glaciaire dans le secteur. Ceci est observable sur les images Ct-Scan, où l'on observe une succession de couches homogènes et sans laminations, et de couches avec stratifications. Pour les autres sites, les essais ont été réalisés sur le sol homogène et sans stratifications apparentes, tandis qu'à Price, les essais ont été faits sur ces deux types de couches, amenant des variations importantes dans les résultats. De 3,65 à 10,20 m, la teneur en eau varie entre 15,1 à 18,4 % et il y a une légère augmentation entre 17,7 et 20,3 % dans le reste de l'unité. Des valeurs négatives d'indice de liquidité sont retrouvées dans l'unité supérieure et tous les résultats sont inférieurs à 0,2. Pour les essais triaxiaux dans l'unité supérieure, la résistance au cisaillement non drainée à 5 % de déformation axiale est de : 426 kPa à 5,16 m, 256 kPa à 10,83 m et 268 kPa à 14,63 m. Les courbes œdométriques présentent une forme « arrondie ». La conductivité hydraulique verticale mesurée en cellule triaxiale est de 2,34x10⁻¹⁰ m/s.

La seconde unité argileuse/silteuse est nommée « unité inférieure ». L'unité inférieure débute à 16,8 m et elle termine à 21,99 m. La granulométrie de l'unité inférieure est principalement composée de silt à environ 56 % et d'argile à 42,4 %. Le sable est également décelé avec des proportions variantes entre 0,3 et 3,6 %. La teneur en eau, dans cette unité, se situe entre 21,9 et 27,5 %. Pour l'indice de liquidité, les 2 premiers échantillons de l'unité ont un I_L de -0,13 et 0,08 respectivement, puis les données

85

augmentent entre 0,41 et 0,91 pour le reste de cette couche. Dans cette unité, le premier essai au scissomètre à une résistance au cisaillement non drainée de 164 kPa et les autres essais ont des s_{uv} entre 78 à 90 kPa. Dans son cas, l'échantillon à 17,81 m de l'unité inférieure témoigne d'une résistance au cisaillement non drainée à 5 % de déformation de 193,7 kPa selon l'essai triaxial. La contrainte de préconsolidation, dans l'unité inférieure, est de 353 kPa et le OCR est de 1,5. Le sol est ici considéré comme légèrement surconsolidé.

CHAPITRE 6 : SAINT-ULRIC-DE-MATANE

Ce chapitre présente les principales caractéristiques du site de Saint-Ulric-de-Matane. La première section du chapitre fait un survol des données obtenues avec le piézocône. La section suivante discute de la stratigraphie retrouvée sur le site de Saint-Ulric-de-Matane. Les résultats du profil géotechniques sont ensuite présentés, suivis des essais au pressiomètre. Les données présentées dans ce chapitre seront discutées au chapitre 7.

6.1 Piézocône

Le piézocône CPTu-08 a été réalisé préalablement aux travaux de terrain à Saint-Ulricde-Matane lors de la campagne de 2020 et les données sont présentées à la Figure 6-1.

Le profil montre que le site de Saint-Ulric-de-Matane est principalement composé par l'unité supérieure jusqu'à une profondeur de 19,20 m. Le dernier mètre du profil correspond à l'unité inférieure, où une diminution marquée est observable dans la résistance en pointe mesurée (qt). Dans l'unité supérieure, le paramètre qt est relativement constant sur la totalité du profil au piézocône. Trois zones plus ou moins distinctes se distinguent, soit entre 3 et 9 m (qt entre 2 et 3 000 kPa), entre 9 et 15 m (qt entre 3 et 4 000 kPa) et entre 15 et 19 m de profondeur (qt à environ 3 000 kPa). Ces zones sont intercalées par des horizons de matériaux granulaires, qui sont reconnus par les pics de résistance en pointe observés à 5 m, 9,5m et 17 m de profondeur. La pression interstitielle générée derrière le cône est principalement négative jusqu'à environ 10 m de profondeur, puis augmente légèrement en oscillant entre des valeurs négatives et environ 850 kPa. L'unité est également identifiable par le B_q qui est nul jusqu'à environ 10,50 m de profondeur, puis oscille entre 0 et 0,25 jusqu'à la fin de l'unité supérieure à 19,20 m de profondeur. Le frottement F_s varie entre 50 et 140 kPa dans l'unité supérieure, mis à part les valeurs plus élevées associées aux horizons de matériaux granulaires discutés précédemment.

Les unités supérieure et inférieure sont séparées par un horizon de matériaux granulaires de 29 cm d'épaisseur entre 18,98 et 19,27 m, identifiable par le pic en q_t ainsi que par une baisse des pressions interstitielles générées ainsi que par le paramètre B_q qui redevient nul. L'unité inférieure est donc présente de 19,27 m jusqu'à 20,03 m, avant le refus à 20,23 m. Celle-ci est identifiable par la résistance en pointe plus faible que dans l'unité supérieure (entre 1 500 et 900 kPa), une génération positive de pressions interstitielles

de l'ordre de 1 000 kPa, une nette diminution dans la friction sur les tiges, ainsi qu'une forte augmentation du paramètre B_q autour de 0,75.

Figure 6-1 : Profil au piézocône à Saint-Ulric-de-Matane.

6.2 Stratigraphie

La Figure 6-2 présente les images Ct-Scan en fonction de la profondeur à Saint-Ulric-de-Matane. Les profondeurs d'échantillonnage ont été sélectionnées afin d'éviter les horizons de sol granulaire observés au piézocône par les pics de résistance en pointe. Un premier horizon de sable et gravier de 2,90 m d'épaisseur est observé sur le profil. Par la suite, un silt argileux avec traces de sable et présence de plusieurs graviers de plusieurs centimètres de diamètre compose la majorité du dépôt de sol, de 2,90 à 19,20 m de profondeur. Les tubes récupérés témoignent d'une matrice argileuse homogène et sans laminations, typique de l'unité supérieure retrouvée aux autres sites lors de ce projet, tel que noté par Hébert (2016). La consistance du sol est très raide. Le profil au piézocône montre toutefois la présence de plusieurs horizons de matériaux granulaires, tel qu'observables à 5,50, 9,50, 12,50, 15,00, 17,00 et 19,00 m de profondeur par la résistance en pic (q_t). Comme mentionné précédemment, ces horizons n'ont pas été échantillonnés. À 19 m de profondeur, un horizon de matériaux granulaires marque la fin de l'unité supérieure. L'unité suivante ne fait que 1 m d'épaisseur, et n'a donc pas été échantillonnée. Elle est composée d'un silt argileux de consistance ferme à raide, et dont la matrice semble homogène, tout comme le reste du dépôt. Le sol ne présente pas de laminations particulières. Elle représente ici l'unité inférieure du dépôt. Le dernier tube récupéré, entre 19,00 et 19,60 m, se trouve à la limite entre l'unité supérieure et l'unité inférieure. Cette unité est située par-dessus le till (refus au piézocône à 20,20 m de profondeur).

Figure 6-2 : Présentation des Ct-Scan dans le profil de q_t à Saint-Ulric-de-Matane.

6.3 Propriétés géotechniques

Le profil géotechnique synthèse à Saint-Ulric-de-Matane est montré à la Figure 6-3. Le profil des modules est présenté à la Figure 6-4. L'élévation à la surface du sol est de 77,25 m à Saint-Ulric-de-Matane.

6.3.1 Caractéristiques physicochimiques

Les caractéristiques décrites ci-dessous font référence au profil géotechnique présenté à la Figure 6-3.

Dans l'unité supérieure, le pourcentage d'argile augmente très légèrement avec la profondeur, passant de 33 % à 3,05 m à 44 % à 19,20 m. La proportion de silt varie donc entre 57 et 49 %, et le sable entre 6 et 14 % selon les échantillons. Dans l'unité inférieure, la granulométrie effectuée sur le seul échantillon donne un pourcentage d'argile de 42,3 %, pour un pourcentage de silt, sable et gravier respectif de 50,1 %, 6,4 % et 1,2 %.

Les 4 valeurs de salinité obtenues d'échantillons dans l'unité supérieure sont inférieures à 1 g/l.

La teneur en eau varie peu dans l'unité supérieure, avec des valeurs augmentant légèrement avec la profondeur entre 18,8 % et 24,2 %. Dans l'unité inférieure, la teneur en eau mesurée est de 22,4 %. Dans l'unité supérieure, la limite de plasticité w_P est assez constante, entre 16 et 21 %. Elle est de 20 % dans l'unité inférieure. Les limites de liquidité (w_L) varient entre 23 et 33 % dans l'unité supérieure avec deux valeurs extrêmes à 38 et 36 % dans les parties supérieures et inférieures de l'unité supérieure, pour une moyenne d'environ 30 %. La valeur de limite de liquidité est de 32 % dans l'unité inférieure. Les indices de plasticité varient entre 9 et 19 dans l'unité supérieure et sont de 12 dans l'unité inférieure, la valeur de liquidité est de 0,2 dans la partie supérieure de l'unité supérieure, la valeur d'indice de liquidité obtenue est de 0,2. Dans l'ensemble, il y a relativement peu de différence dans l'entièreté du dépôt du point de vue des caractéristiques physicochimiques.

6.3.2 Propriétés mécaniques

La section suivante se voit être un sommaire des propriétés mécaniques présentées au profil géotechnique (Figure 6-3).

Figure 6-3 : Profil géotechnique à Saint-Ulric-de-Matane.

Figure 6-4 : Profil des modules du sol du site de Saint-Ulric-de-Matane.

6.3.2.1 Indice de pénétration standard

Dans l'unité supérieure, les indices N₆₀ varient entre 6 et 33. La valeur extrême de 33 est toutefois associée à l'horizon de matériaux granulaires à 2,60 m de profondeur. Les valeurs sont donc assez constantes et la moyenne est de 18. Un pic de résistance est observé à 10,97 m de profondeur, où une valeur de N₆₀ de 30 a été obtenue. Les seules mesures obtenues dans l'unité inférieure sont à 19,35 m (N₆₀ = 17) et à 20,12 m (N₆₀ = 22). À noter que le facteur C_E est de 1,27 en moyenne au site de Saint-Ulric-de-Matane, ce qui diffère de Saint-Anaclet-de-Lessard et de Trois-Pistoles, mais qui est près de celui du site de Price (1,26).

6.3.2.2 Vitesse des ondes de cisaillement et module de cisaillement à petite déformation

Les essais sismiques de type « downhole » ont été faits à tous les intervalles de 1 m entre 0,5 et 19,5 mètres de profondeur. Le profil de vitesse des ondes sismiques de cisaillement V_s sont présentées à la Figure 6-3. Jusqu'à environ 6,5 m, le V_s se situe entre 155 et 182,8 m/s, avec une moyenne de 173 m/s. Pour le reste du dépôt, le V_s se situe entre 211 et 340 m/s, avec une moyenne de 242 m/s, en excluant la valeur finale de 340 m/s qui est due à l'horizon de matériaux granulaire à cette profondeur et à la proximité avec le till à la base du dépôt. La tendance générale du profil de V_s montre que la partie supérieure du dépôt présente des vitesses de cisaillement plus faibles que la partie inférieure. Il n'est pas possible de déduire une valeur de V_s pour l'unité inférieure dans ce cas-ci.

Le module de cisaillement à petite déformation (G_o) du sol à Saint-Ulric-de-Matane selon la profondeur est présenté à la Figure 6-4. Jusqu'à 6,5 m de profondeur, la valeur moyenne de G_o est de 63 MPa, tandis qu'elle est de 125 MPa pour le reste du dépôt, toujours en excluant la valeur finale à 19,5 m de profondeur. La partie initiale de l'unité supérieure présente donc des modules de cisaillement 2 fois plus faibles que le reste du dépôt.

6.3.2.3 Résistance au cisaillement et angle de frottement effectif

Pour ce site, il a été possible de réaliser plusieurs essais scissométriques dans l'unité supérieure. Les essais au scissomètre ont été réalisés uniquement dans cette unité, étant donné que l'épaisseur de l'unité inférieure est inférieure à 1 m. Des mesures ont été prises entre 4 et 7 m de profondeur, puis entre 11 et 17 m de profondeur. La résistance au cisaillement non drainée tend à diminuer avec la profondeur. Entre 4 et 7 m, elle varie

entre 198 et 141 kPa (3 mesures et 1 refus). Entre 11 et 17 m, la résistance varie plutôt entre 162 et 98 (6 mesures et 1 refus).

Les résistances au cisaillement à l'état intact et remanié, déterminées au cône, sont présentées à la Figure 6-3. Les valeurs de résistance mesurées ont tendance à diminuer avec la profondeur. Dans les 8 premiers mètres, la résistance au cisaillement moyenne est de 177 kPa. Plus en profondeur, la résistance moyenne diminue et se situe autour de 98 kPa. Vers la base de l'unité supérieure, la résistance moyenne est de 77 kPa. Pour ce qui est de la mesure à la limite entre l'unité supérieure et inférieure, la valeur mesurée est de 85 kPa. Pour ce qui est des valeurs de résistance au cisaillement à l'état remanié, la consistance très raide du sol fait en sorte qu'il est difficile de bien la mesurer. Les plus faibles valeurs obtenues sont d'environ 9,5 kPa (à 10,3 m), mais des valeurs aussi élevées que 176,4 kPa (à 18,6 m) ont été mesurées.

La résistance au cisaillement non drainée, estimée au piézocône avec un coefficient N_{kT} de 19, est montrée à la Figure 6-3. L'utilisation de ce paramètre est discutée en détail au Chapitre 7. Comme discuté dans la section 6.1, trois zones plus ou moins distinctes se distinguent, soit entre 3 et 9 m (s_u d'environ 125 kPa), entre 9 et 15 m (s_u d'environ 150 kPa) et entre 15 et 19 m de profondeur (s_u d'environ 150 kPa également). Ces zones sont intercalées d'horizons de matériaux granulaires qui montrent des pics de résistance plus élevée. La résistance au cisaillement tend toutefois à diminuer avec la profondeur. Pour l'unité inférieure, la résistance au cisaillement non drainée diminue légèrement avec la profondeur et les valeurs de résistance au cisaillement varient environ entre 60 et 30 kPa.

Un sommaire des résultats des essais triaxiaux est présenté au Tableau 6-1. Tous les essais ont été réalisés dans l'unité supérieure. La Figure 6-5 présente la synthèse globale de tous ces essais. Aux profondeurs d'environ 7,20 et 13,80 m, trois essais ont été réalisés respectivement dans l'objectif de déterminer les paramètres de résistance du sol. Un 4^e essai à une profondeur de 13,93m a également été effectué. De plus, le Tableau 6-2 donne les valeurs de résistance au cisaillement pour une valeur de déformation de 5 % pour les essais consolidés aux contraintes verticales effectives en place. La Figure 6-6 présente uniquement les 7 essais réalisés aux environs de 7,20 et 13,80 m.
Échantillon	Unité	Profondeur moyenne du scellé (m)	σ'₀₀ (kPa)	σ' _{p (oedo)} (kPa)	σ' _p ^(CPTu,NσT=3,6) (kPa)	K _{triax}	Contrainte effective ciblée (kPa)	σ'3 (kPa)	σ'1 (kPa)	u (kPa)	Type de rupture	Comportement	S _{u @ ε} =5% (kPa)
TM-02*	Sup	4,08	68,34	358,4	582,8	1,0	68	67,3	72,3	208,7	baril	dilatant	69,5
TM-04	Sup	7,34	99,63		642,7	1,0	50	48,6	53,6	239,4	baril	dilatant	68,6
TM-04*	Sup	7,04	96,32		708,5	1,0	96	93,3	98,3	153,7	baril	dilatant	80,2
TM-04	Sup	7,23	98,42		686,1	1,0	200	201,1	206,1	238,9	baril	dilatant	192,0
TM-08*	Sup	13,82	171,85	326,1	754,5	1,0	172	151,7	159,9	112,3	baril	dilatant	119,3
TM-08	Sup	13,93	173,07	326,1	648,9	1,0	50	49,9	54,9	153,1	baril	dilatant	50,4
TM-02	Sup	13,93	173,06	326,1	648,9	1,0	173	173,0	173,0	119,9	baril	dilatant	107,4
TM-02	Sup	13,82	171,85	326,1	754,5	1,0	100	99,5	104,5	183,5	baril	dilatant	92,0
TM-11*	Sup	16,01	195,96	204,7	720,8	1,0	196	185,9	196,2	159,1	baril	dilatant	111,6

Tableau 6-1 : Sommaire des essais triaxiaux à Saint-Ulric-de-Matane

*Consolidés aux contraintes en place

résistances au cisaillement non drainé, à 5 % de déformation, obtenues des 5 essais triaxiaux consolidés isotropiquement à la contrainte verticale en place.

Tableau 6-2 : Résistance au cisaillement non	drainé à 5 % de d	déformation à	Saint-Ulric-de-
Matane.			

Échantillon	Profondeur moyenne du scellé (m)	S _{u @ ε=5%} (kPa)		
TM-02*	4,08	69,5		
TM-04*	7,04	80,2		
TM-08*	13,82	119,3		
TM-02*	13,93	107,4		
TM-11*	16,01	111,6		

Selon ces résultats, les essais réalisés sur les échantillons prélevés dans la partie initiale de l'unité supérieure (4,08 m et 7,04 m) montrent une résistance au cisaillement plus faible que pour les échantillons situés à 13,93 m et 16,01 m.

La Figure 6-6 montre les deux horizons : 7,04 à 7,34 m et 13,82 à 13,93 m. La plupart des essais permettent de déterminer un ϕ ' minimum de 29,2°, pour une cohésion effective nulle. Toutefois, les essais TM-08 (13,82 m) et TM-04 (7,23 m) donnent une enveloppe de rupture dont les paramètres effectifs de résistance sont de 31,4° pour ϕ ' et d'une cohésion effective c' de 18,9 kPa. Une moyenne de ces essais donnerait un angle de frottement ϕ ' de 30° pour une cohésion effective d'environ 10 kPa. Il faut tenir compte que ces paramètres ont été déterminés sur des sols consolidés dans le domaine surconsolidé.

6.3.2.4 Contrainte verticale effective et contrainte de préconsolidation

Les données de piézomètre ont été prises à trois reprises entre le 9 juin 2022 et le 3 novembre 2022 sur des piézomètres à 3,5; 7,0; 13,5 et 20,2 m de profondeur et elles sont présentées à la Figure 6-3 et à l'Annexe D2.

Les pressions interstitielles sont initialement nulles jusqu'à 1,4 m, correspondant à la couche de sable, et elles augmentent ensuite graduellement jusqu'à 192,18 kPa au refus à 21,0 m de profondeur. Les conditions d'eau souterraine se rapproche de la condition hydrostatique.

CARACTÉRISATION GÉOTECHNIQUE DES PROPRIÉTÉS DES ARGILES DU BAS-SAINT-LAURENT

Pour l'unité supérieure, la masse volumique varie entre 20,67 et 20,84 kN/m³ pour l'ensemble de la couche, selon les résultats des 4 essais œdométriques. Aucune donnée n'est disponible pour l'unité inférieure. Au refus, la contrainte verticale effective est de 234,06 kPa.

L'estimation des contraintes de préconsolidation a été réalisée selon un N_{ot} de 3,6. Une discussion sur ce paramètre est présentée au Chapitre 7. Dans l'ensemble du profil, les valeurs de contraintes de préconsolidation varient entre 500 et 750 kPa. Les pics observables dans le profil sont dus aux horizons de matériaux granulaires observables à 5,50, 9,50, 12,50, 15,00, 17,00 et 19,00 m de profondeur. Les valeurs de σ'_p dans l'unité inférieure sont d'environ 250 kPa, entre 19,20 m et environ 20,20 m.

À Saint-Ulric-de-Matane, 4 essais œdométriques ont été réalisés dans l'unité supérieure, à 4,18, 13,23, 16,45 et 17,71 m. Aucun essai n'a été fait dans l'unité inférieure, car aucun tube Shelby n'y a été récupéré. Le Tableau 6-3 présente le sommaire des essais œdométriques et un rassemblement des courbes œdométriques est fait à la Figure 6-7 et à l'Annexe D4.

Profondeur (m)	Unité	σ'₀₀ (kPa)	σ' _p (Casagrande, kPa)	σ' _p (min, kPa)	σ' _Ϸ (max, kPa)	OCR	e ₀	Cs	Cc	C _{s d-r}	Critère de Lunne (1997)	Évaluation
4,18	Supérieure	60	358	90	1302	6,0	0,37	0,02	0,12	0,03	0,10	Mauvais
13,23	Supérieure	160	326	100	580	2,0	0,61	0,01	0,17	0,05	0,11	Mauvais
16,45	Supérieure	195	205	72	576	1,0	0,67	0,03	0,18	0,06	0,11	Mauvais
17,71	Supérieure	209	382	77	577	1,8	0,65	0,06	0,21	0,07	0,11	Mauvais

Tableau 6-3 : Sommaire des essais œdométriques à Saint-Ulric-de-Matane.

Pour l'unité supérieure, la contrainte de préconsolidation varie entre 212 et 428 kPa en utilisant la technique de Casagrande. Les valeurs d'OCR varient grandement dans l'unité, avec une valeur de 6,0 à 4,18 m jusqu'à 1,0 à 16,45 m. Les essais œdométriques montrent une forme arrondie, comme observé aux autres sites d'étude, et les valeurs de contrainte de préconsolidation sont donc difficiles à définir, ce qui augmente grandement l'incertitude des résultats. Les valeurs de contrainte de préconsolidation minimales et maximales déterminées à partir de ces courbes témoignent également de cela (Tableau 6-3).

6.3.2.5 Module œdométrique et indices de compression et de recompression Les résultats pour tous les échantillons sont présentés à l'Annexe D4, et le sommaire est présenté à la Figure 6-8 et à la Figure 6-9 (pour la contrainte semi-log).

Les modules œdométriques varient entre 5,8 et 6,5 MPa pour les trois premiers essais dans l'unité supérieure, et est de 12,1 MPa pour le dernier essai à 17,71 m. Les indices de compression et de recompression ont également été déterminés pour tous les échantillons. Les indices de recompression pour les deux premiers essais, 4,18 et 13,23 m de profondeur, sont de 0,02 et 0,01 respectivement. À 16,45 m, l'indice de recompression est de 0,03 et celui-ci augmente à 0,06 pour l'échantillon à 17,71 m de

profondeur. L'indice de compression C_c varie entre 0,12 et 0,21 pour ces 4 essais. Finalement, dans l'unité supérieure, les indices $C_{s d-r}$ passent de 0,03 à 0,07.

Figure 6-8 : Modules œdométriques à Saint-Ulric-de-Matane.

6.3.2.6 Module triaxial

Dans l'unité supérieure, les modules E_u varient entre 28 et 233 MPa pour les 5 essais triaxiaux. Ces modules sont présentés à la Figure 6-4.

6.3.2.7 Pressiomètre

Les modules pressiométriques et les pressions limites sont présentés au Tableau 6-4. Les modules pressiométriques sont également présentés en profil à la Figure 6-4.

Profondeur (m)	Profondeur (m) E _M (MPa)		E _M /P∟	Méthode de forage
3,65	3083	726 4,2		Carottier NQ à sec
6,40	2126	590	3,6	Carottier NQ à sec + tricône avec eau
8,04	6787	747	9,1	Tricône avec eau + tubage NQ sans rotation
11,25	9365	908	10,3	Tricône avec eau + tubage NQ sans rotation
14,05	6272	834	7,5	Tricône avec eau + tubage NQ sans rotation
15,86	6186	786	7,9	Tricône avec eau + tubage NQ sans rotation

Tableau 6-4 : Essais pressiométriques à Saint-Ulric-de-Matane.

Les essais réalisés dans la partie initiale de l'unité supérieure, à 3.65 m et 6.40 m, montrent des valeurs anormalement faibles de module pressiométrique (3 083 et 2 126 kPa) par rapport aux autres essais et pour le type de sol raide rencontré. Les valeurs de pression limite sont de 726 et 590 kPa, ce qui correspond à des sols de consistance raide. Pour les 4 autres essais, les modules pressiométriques varient entre 6 186 et 9 365 kPa, avec des valeurs de pression limite associées de 747 à 908 kPa. Selon Briaud (2013), les résultats des deux premiers essais correspondent à une argile de rigidité moyenne et les 4 autres résultats correspondent à une argile de consistance raide. Selon le Manuel Canadien d'Ingénierie des Fondations (4^e édition, 2013), cet intervalle est typique d'une argile ferme à raide ou d'un silt et les résultats corrèlent bien avec le profil géotechnique. Dans l'ensemble, les valeurs de pression limite sont assez constantes dans tout le dépôt. Le rapport E_m/P_L varie entre 3,6 et 10,3 sur l'ensemble de l'unité. Aucun essai n'a été réalisé dans l'unité inférieure. Tel que pour les trois sites précédents, les valeurs plus faibles obtenues dans l'unité supérieure sont tout de même cohérentes avec les valeurs de V_s et de modules triaxiaux qui se sont avérées également plutôt faibles dans cette couche. Bien que le module pressiométrique soit davantage affecté par le remaniement de l'avant-trou, les valeurs de pression limite ne sont pas autant affectées par celui-ci et sont donc davantage cohérentes avec ces autres résultats montrant une résistance plus faible dans la partie supérieure de l'unité supérieure.

6.3.3 Propriétés hydrauliques

Le Tableau 6-5 présente le résultat de l'essai de perméabilité réalisé en cellule triaxiale. L'échantillon a été taillé à un diamètre de 5,08 cm et il a été consolidé à la contrainte verticale effective en place (σ'_{v0} = 160,0 kPa; 13,25 m de profondeur). L'essai a donné une valeur de conductivité hydraulique de 1,19x10⁻¹⁰ m/s. Ces valeurs sont dans le même ordre de grandeur que les résultats obtenus aux autres sites.

Tableau 6-5 : Rés	ultats des	essais de	perméabilité	réalisés e	n cellule	triaxiale	pour l'	unité
supérieure de Sai	nt-Ulric-de	-Matane.	-				-	

Site	Échantillon	Profondeur (m)	Unité	Conductivité hydraulique (K) (m/s)
Saint-Ulric-de- Matane	TM1	13,25	supérieure	1,19E-10

6.4 Sommaire du site de Saint-Ulric-de-Matane

En surface, le site de Saint-Ulric-de-Matane est composé d'une couche de sable et gravier d'environ 2,90 m d'épaisseur. Celle-ci recouvre un dépôt de sol argileux d'une épaisseur de 16,30 m identifié comme étant l'unité supérieure. Dans cette unité, plusieurs horizons de sable et gravier sont identifiables sur le profil du piézocône à des profondeurs de 5,50, 9,50, 12,50, 15,00, 17,00 et 19,00 m. L'unité inférieure n'est observable que sur une épaisseur d'environ 1 mètre, soit entre 19,20 et 20,20 m.

Les essais de granulométrie et de sédimentométrie indiquent que le sol est un silt et argile avec traces de sable et gravier. Les multiples teneurs en eau varient généralement entre 18,8 % et 24,2 %. En moyenne, les indices de plasticité sont de 12. Les indices de liquidité sont faibles avec une valeur moyenne d'environ 0,3 dans toute l'unité, mais où certaines valeurs plus élevées peuvent être observées, telles que 0,72 vers 8 m de profondeur. Les indices de liquidité sont légèrement plus élevés vers la base de l'unité.

Contrairement aux autres sites, des essais au scissomètre ont pu être réalisés dans toute l'unité supérieure. Un total de 9 mesures a été fait, pour des valeurs qui varient entre 98 et 198 kPa. Aucun essai scissométrique n'a été fait dans l'unité inférieure. Les essais triaxiaux ont tous été réalisés dans l'unité supérieure et le comportement du sol est dilatant pour les 9 essais. Pour les essais où le sol a été consolidé à la contrainte verticale effective, la résistance au cisaillement non drainée, déterminée à une déformation de 5 %, atteint son maximum de 119,3 kPa à 13,82 m de profondeur. Dans l'ensemble, les valeurs varient entre 69,5 et 119,3 kPa. Les deux essais situés à des profondeurs de 4,08 et 7,04 m donnent les résistances au cisaillement non drainé les plus faibles de l'unité (69,5 et 80,2 kPa. Les courbes œdométriques sont distinguées par une forme arrondie ne montrant pas un changement net au passage de la contrainte de préconsolidation. La conductivité hydraulique verticale mesurée en cellule triaxiale est de 1,19x10⁻¹⁰ m/s.

Rien n'indique très clairement la présence d'une unité intermédiaire à Saint-Ulric-de-Matane. Le profil du piézocône montre une diminution de la résistance en pointe sur quelques dizaines de centimètres, puis un horizon de sable et gravier, et finalement le début de l'unité inférieure.

Comme mentionné précédemment, l'unité inférieure ne mesure qu'un mètre d'épaisseur. Aucun échantillon intact n'y a été récupéré, et donc les seules données disponibles proviennent des essais sur la cuillère fendue obtenue vers 20,1 m. Les données géotechniques sont semblables à celles obtenues dans l'unité supérieure, avec un I_P de 12, et un I_L de 0,2 avec une teneur en eau de 22,4 %. L'essai de sédimentométrie a donné un résultat également similaire.

CHAPITRE 7 : DISCUSSION SUR LES PROPRIÉTÉS GÉOTECHNIQUES DES ARGILES ÉTUDIÉES

Ce chapitre débute par une analyse des paramètres permettant de distinguer les unités rencontrées aux divers sites d'étude présentés aux chapitres précédents (unité supérieure, unité de transition/intermédiaire et unité inférieure). Une section discute aussi brièvement de l'hypothèse sur la formation de ces unités. Des corrélations entre les propriétés géotechniques des argiles des sites étudiés sont ensuite présentées et discutées. Ces corrélations sont présentées dans l'ordre suivant : propriétés des sols à l'état remanié, propriétés des sols à l'état intact et propriétés caractéristiques au passage de l'état intact à l'état déstructuré. Dans ce chapitre, les deux sites étudiés par Hébert et coll. (2016) sont combinés aux quatre sites d'étude présentés aux chapitres précédents. Dans certains cas, les données du site de Price sont présentées dans les figures, mais sont exclus des corrélations étant donné qu'ils divergent davantage des autres sites d'étude. En fait, l'unité supérieure à cet endroit semble composée de différentes couches, correspondant à différents épisodes, ou phases, d'avancée et de réavancée glaciaire dans le secteur. Ceci est observable sur les images Ct-Scan, où l'on observe une succession de couches homogènes et sans laminations, et de couches avec stratifications. Pour les autres sites, les essais ont été réalisés sur le sol homogène et sans stratifications apparentes, tandis qu'à Price, les essais ont été faits sur ces deux types de couches, amenant des variations importantes dans les résultats. Pour ce site, les essais n'ont pas été séparés préalablement selon ces deux types de couches.

7.1 Identification des unités stratigraphiques

Trois outils ont été utilisés afin de délimiter les différentes unités rencontrées aux sites d'étude. Il s'agit du piézocône, de l'indice de liquidité et de la tomodensitométrie (Ct-Scan).

Dans l'unité supérieure, la résistance en pointe corrigée (q_t) obtenue au piézocône est élevée (valeurs supérieures à 2 500 kPa) et très variable pour un site donné et entre les sites eux-mêmes. Il s'avère donc difficile de déterminer un intervalle de valeurs de q_t pour distinguer cette unité. S'il existe une unité intermédiaire, ou zone de transition, comme c'est le cas à Saint-Anaclet-de-Lessard, celle-ci est caractérisée par une diminution graduelle du q_t . Cette unité fait une transition entre les valeurs élevées de q_t de l'unité supérieure et les valeurs plus faibles de l'unité inférieure. Pour l'unité inférieure, le q_t est généralement inférieur à 2 500 kPa et les variations de ce paramètre, dans le profil, sont minimes. Un autre paramètre obtenu du piézocône, le B_q, est aussi utile pour distinguer les unités. Le B_q est inférieur à 0 dans l'unité supérieure, ce qui est typique d'un sol dilatant et de l'unité supérieure comme démontré aux chapitres précédents. Toutefois, à Trois-Pistoles, le paramètre B_q est plus élevé que 0 dans une portion de l'unité supérieure. Le B_q à lui seul ne peut donc pas être utilisé afin de délimiter les différentes unités. Dans l'unité intermédiaire, le B_q augmente de façon graduelle et devient supérieur à 0, avant de se stabiliser dans l'unité inférieure et de rester relativement constant sur le reste du profil. En général, les données au piézocône (qt et B_q) sont de bons indicateurs pour une distinction préliminaire des unités des sites étudiés.

L'indice de liquidité (I_L) est également utilisé dans la délimitation des unités stratigraphiques. Pour l'unité supérieure, la teneur en eau se situe généralement près de la limite de plasticité ou légèrement en dessous donnant des indices de liquidité généralement plus faible que 0,4 et variant généralement entre 0.1 et 0.2, avec des valeurs pouvant même être négatives. Dans l'unité intermédiaire/zone de transition, les valeurs de I_L augmentent légèrement et sont positives. L'unité inférieure est caractérisée par des indices de liquidité se situant entre 0,5 et 1,0, valeurs supérieures à celles de l'unité supérieure. En somme, la différence marquée entre les intervalles d'indice de liquidité peut être un indicateur des différentes unités.

L'observation de la stratigraphie du sol à partir des images obtenues du Ct-Scan permet aussi de différencier les unités. Les images Ct-Scan dans l'unité supérieure montrent un sol avec une matrice homogène et massive. La présence de strates n'a pas été notée dans cette unité. Dans l'unité intermédiaire, des strates onduleuses sont aperçues sur les Ct-Scan au site de Saint-Anaclet-de-Lessard. Celles-ci ne sont toutefois pas vues dans l'unité intermédiaire d'Hébert et coll. (2016). L'imagerie Ct-Scan, à elle seule, n'est donc pas une bonne alternative pour l'unité intermédiaire, puisqu'il existe des différences majeures de cette unité entre les sites. Les strates deviennent pratiquement horizontales voir complètement horizontales dans l'unité inférieure. Ces caractéristiques sont malheureusement invisibles lors de l'observation à l'œil nu des échantillons, ce qui rend essentielle l'utilisation de la tomodensitométrie pour les visualiser.

En somme, la combinaison des données du piézocône, des indices de liquidité et de la tomodensitométrie a permis de délimiter les différentes unités rencontrées dans les sites à l'étude.

107

7.2 Hypothèse sur la formation des dépôts

Dans le rapport final de la première phase du projet, Hébert et coll. (2016) proposent une explication sur la formation des différents dépôts étudiés. L'ajout de nouveaux résultats dans la région vient appuyer cette explication quant à la formation des différentes unités stratigraphiques de la région du Bas-Saint-Laurent.

Initialement, un dépôt d'argile marine stratifiée, mais donc les stratifications ne sont pas visibles à l'œil nu, aurait été formé dans le bassin sédimentaire de la mer Goldthwait. Celle-ci a été identifiée comme « argile massive » par Locat (1978) et correspondant à l'unité inférieure de cette étude. Selon Hétu (1998), lors d'une récurrence glaciaire dans la région entre 12 400 et 12 000 ans B.P., une grande quantité de sols aurait été perturbée et déplacée par les glaciers présents dans la région. Hébert et coll. (2016) mentionnent que l'argile raide aurait été délestée par le glacier flottant sur les sédiments marins existants de l'unité inférieure. Ces auteurs mentionnent l'hypothèse que le glacier aurait été semi-flottant, expliquant pourquoi l'unité inférieure est légèrement surconsolidée, voire normalement consolidée. Cette hypothèse expliquerait la présence d'une couche sans stratification (possiblement dû au processus de perturbation et de délestage), à faible indice de liquidité et très raide (unité supérieure) sur une couche stratifiée (mais uniquement visible à la tomodensitométrie) moins raide et dont la résistance se serait adaptée à cette nouvelle surcharge sédimentaire rapide. Le gel aurait également pu pénétrer le sol en surface lors de la réavancée glaciaire, un mécanisme qui pourrait aussi expliquer une teneur en eau plus faible et, ultimement, les faibles l observés dans l'unité supérieure. Dans tous les cas, l'analyse nous permet de proposer que le sol de l'unité supérieure aurait hérité ses caractéristiques physiques particulières de l'effet des masses glaciaires et du délestage, préalablement à sa déposition sur le dépôt sous-jacent. La résistance et la contrainte de préconsolidation de l'unité supérieure auraient donc été acquises au contact des glaciers préalablement à la mise en place actuel.

Dans l'unité intermédiaire, Hébert et coll. (2016) notent un comportement dilatant pour ces sites, ce qui n'est pas observé au site de Saint-Anaclet-de-Lessard. Selon ces auteurs, cette unité pourrait correspondre à l'endroit où l'effet du gel aurait commencé à diminuer graduellement. Ceci pourrait expliquer la variation graduelle des différents paramètres dans l'unité intermédiaire à ce site. Pour la granulométrie, l'unité intermédiaire est composée d'un sol similaire à l'unité inférieure et à l'unité supérieure. Celle-ci est notée sur les sites de Notre-Dame-des-Neiges, Isle-Verte et Saint-Anaclet-de-Lessard, et

possiblement au site de Trois-Pistoles. La variabilité des couches intermédiaires témoigne d'un lien possiblement plus complexe avec le mode de mise en place de la couche supérieure.

Pour l'unité inférieure, celle-ci semble correspondre à l'argile massive observée par Locat (1978) dans la région de Baie-des-Sables – Trois-Pistoles. Cette argile se serait déposée dans la mer de Goldthwait. Le mode et le contexte géologique de déposition seraient donc semblables à celui des autres argiles de l'est du Canada. Toutefois, comme indiqué aux chapitres précédents, les l_L sont généralement inférieurs à 1, et l'unité inférieure au Bas-Saint-Laurent est beaucoup moins sensible que l'argile des autres bassins de sédimentation de l'est du Canada. Ceci est probablement dû au fait que cette argile s'est fait recouvrir par l'unité supérieure très tôt dans son histoire et est devenue normalement consolidée à une charge supérieure réduisant donc d'autant son indice de liquidité avant le lessivage. La salinité de cette unité varie entre 0,36 et 28,6 g/L selon le niveau de lessivage, et les sur sont supérieurs à 1 kPa. À cet effet, Locat (1976, p. 131-135), comparant l'argile de Rimouski à celle de St-Urbain (argile marine stratifiée très sensible), a montré à l'aide de l'analyse du Tritium et du Deutérium contenus dans l'eau interstitielle, que l'aspect massif de l'argile de Rimouski pouvait avoir ralenti le processus de lessivage par rapport à des argiles plus stratifiées comme on le retrouve dans le cas d'argiles très sensibles.

L'unité supérieure du site de Price (Chapitre 5) présente des caractéristiques géotechniques qui diffèrent des autres sites. Ce sol est beaucoup plus silteux et les indices de plasticité sont nettement plus faibles. De plus, les images Ct-Scan montrent la présence de strates à plusieurs intervalles de profondeur, dans l'unité supérieure, entre des couches plus massives. Cette alternance indique un mode de déposition qui diffère probablement de celui des autres sites. Les strates concordent généralement bien avec les valeurs plus faibles au piézocône, mais elles présentent tout de même un Bq négatif et un comportement dilatant. De plus, les résultats de l'essai de pénétration standard et de l'essai sismique de type « downhole » concordent généralement mal avec les données au piézocône. Il est donc considéré que l'unité supérieure du site à Price diffère de celles étudiées par Hébert et coll. (2016) et ceux de la présente étude. Les résultats de l'unité supérieure du site de Price sont présentés sur les différents graphiques pour des fins d'information et de comparaison, mais ne sont pas pris en compte lors de l'établissement de corrélations discutées dans les sections suivantes.

Les incertitudes qui persistent quant au mode de déposition de l'unité supérieure et du moment où cela s'est produit pourraient éventuellement être précisées par une analyse des microfossiles et la datation de coquillages obtenus lors des forages.

7.3 Corrélations entre les propriétés géotechniques

La section 7.3 présente les différentes corrélations étudiées dans le cadre de ce projet. À noter que les données de l'unité intermédiaire ne sont pas utilisées dans les sections 7.3 et 7.4, puisque les propriétés mécaniques diffèrent de celles des unités inférieure et supérieure.

7.3.1 Propriétés des sols à l'état remanié

7.3.1.1 Relation entre le contenu en argile et l'indice de plasticité

La Figure 7-1 présente l'indice de plasticité en fonction du contenu en argile des sites d'étude du Bas-Saint-Laurent. L'activité (A_c) d'un sol correspond au rapport entre l'indice de plasticité et le contenu en argile d'un sol. Les sols étudiés présentent un pourcentage d'argile variant entre 15 et 65 % et des indices de plasticité se situant entre 2,5 et 30 %, correspondant à des activités variantes entre 0,12 et 0,58. De façon générale, les points s'encrent bien entre les limites d'activité de 0,25 à 0,75 définies par Leroueil et coll. (1983) pour les argiles sensibles de l'est du Canada. Quelques résultats sont cependant sous cette limite, dont les résultats des sites de Notre-Dame-des-Neiges, de Price, et de Saint-Ulric-de-Matane. La faible activité pourrait être causée par une plus grande quantité de farine de roche dans la fraction argileuse (c.-à-d. présence de minéraux non argileux comme le quartz, le feldspath potassique, le plagioclase, etc.), tel qu'observé pour les argiles de l'est du Canada (Leroueil et coll., 1983; Locat et St-Gelais, 2013).

Figure 7-1 : Activité (A_c) des argiles des sites du Bas-Saint-Laurent.

7.3.1.2 Relation entre la limite de liquidité et l'indice de plasticité

La Figure 7-2 présente la relation entre la limite de liquidité et l'indice de plasticité. Les sites d'études au Bas-Saint-Laurent présentent des limites de liquidité variant entre 21 et 55 % et des indices de plasticité entre 2,5 et 30. Les valeurs se situent entre les lignes A de Casagrande et la limite supérieure définie par Leroueil et coll. (1983) pour les argiles de l'est du Canada et suivent la moyenne définie par Garneau et Le Bihan (1977) pour les argiles de la mer de Champlain (Figure 7-2). Les propriétés remaniées des sols des sites d'étude au Bas-Saint-Laurent se situent donc dans les limites attendues pour les argiles de l'est du Canada, ce qui indiquerait une composition minéralogique similaire, et ce, pour toutes unités confondues.

Figure 7-2 : Relation entre la limite de liquidité et la limite de plasticité des sites au Bas-Saint-Laurent avec les limites de Leroueil et coll. (1983) et la moyenne de Garneau et Le Bihan (1977).

La relation entre la résistance au cisaillement à l'état remaniée et l'indice de liquidité est présentée à la Figure 7-3. Celle-ci ne tient compte que des essais réalisés sur le sol des unités inférieures. Les indices de liquidité sont généralement inférieurs à 1 et les résistances s_{uR} se situent entre 3 et 36,5 kPa. Les données des sites du Bas-Saint-Laurent suivent cependant bien la courbe de Leroueil et coll. (1983) définie pour les autres argiles de l'est du Canada. Toutefois, les résistances au cisaillement non drainé à l'état remanié supérieures à 1 kPa et les faibles I_L (moins de 0,5) sont moins fréquemment observées dans les argiles sensibles étudiées par Leroueil et coll. (1983) dont l'indice de liquidité est le plus souvent supérieur à 1,0.

Figure 7-3 : Résistance au cisaillement non drainé remanié de l'unité inférieure des sites au Bas-Saint-Laurent en relation avec l'indice de liquidité et l'équation de Leroueil et coll. (1983).

7.3.1.4 Relation entre l'angle de frottement à grande déformation et l'indice de

plasticité

Les angles de frottement à grande déformation et les indices de plasticité sont mis en relation à la Figure 7-4 pour les sites du Bas-Saint-Laurent. Cette figure est tirée et modifiée de celle de Leroueil et coll. (1983) pour les argiles de l'est du Canada. L'angle de frottement varie entre 26 et 34 ° pour des indices de plasticité variant entre 4 et 30. Les angles de frottement diminuent avec l'augmentation de l'indice de plasticité, et les données suivent assez bien la courbe moyenne de Bjerrum et Simons (1960), comme c'est le cas pour les autres argiles de l'est du Canada dans le domaine normalement consolidé (Leroueil et coll., 1983), sauf pour le site de Trois-Pistoles, où les résultats se trouvent à être en-dessous de la courbe de tendance. À noter cependant que, considérant la forte résistance de ces argiles, les données sur les sites du Bas-Saint-Laurent ont été définies dans le domaine surconsolidé.

Figure 7-4 : Relation entre l'angle de frottement et l'indice de plasticité des argiles. Modifiée de Leroueil et coll. (1983).

7.3.2 Propriétés des sols à l'état intact

7.3.2.1 Résistance au cisaillement non drainé du sol intact

La Figure 7-5 présente les profils de résistance au cisaillement non drainé du sol intact des sites d'étude et le sommaire des différentes corrélations discutées dans cette section obtenues du piézocône, du SPT (N_{60}), de la mesure du V_s (G_o) et du pressiomètre (pression limite P_L).

Dans l'unité supérieure, les essais triaxiaux en compression et l'essai au cône suédois sont les seuls essais réalisés dans le cadre de ce travail qui permet de mesurer une résistance au cisaillement non drainé du sol, à l'exception du site de Saint-Ulric-de-Matane, où des mesures de scissomètre de chantier ont pu être réalisées dans cette unité. Le comportement dilatant du sol, rencontré aux divers sites d'étude, ne permet cependant pas l'obtention d'une résistance bien définie, comme pour les sols contractants. En effet,

la résistance maximale du sol, lors des essais triaxiaux, est atteinte à la fin de l'essai, vers 15% de déformation axiale. 15% n'est cependant peut-être pas une déformation que l'ingénieur souhaite voir mobilisée dans ses ouvrages. La déformation choisie pour définir la résistance devrait donc dépendre du problème considéré et du jugement de l'ingénieur. Par exemple, la déformation à considérer dans des conditions de poussée active devrait être bien plus faible que celle à considérer dans des conditions de poussée passive. Pour ce projet de recherche,, il a été décidé de considérer la résistance au cisaillement non drainé mobilisée à une déformation axiale de 5 % lors des essais triaxiaux présentant une dilatance. Cette valeur, arbitraire est utilisée afin d'établir les corrélations pour l'unité supérieure à des fins de recherche. À la Figure 7-5, la résistance au cisaillement non drainé à une déformation axiale de 10 % est également présentée pour fins de comparaison. Les données présentées dans cette figure seront décrites dans les sections suivantes.

Étant donné le faible nombre d'essais triaxiaux dans l'unité inférieure, la résistance au cisaillement non drainé obtenue au scissomètre est utilisée pour définir la résistance dans cette unité.

Les sections suivantes présentent les différentes corrélations considérées dans cette étude afin de déterminer la résistance au cisaillement non drainé des sites d'étude à partir des divers outils utilisés, soit le piézocône (N_{kT}), l'essai de pénétration standard, le scissomètre de chantier (uniquement pour le site de Saint-Ulric-de-Matane), le pressiomètre et la mesure du V_s.

Figure 7-5 : Profil de différentes estimations de su pour les 6 sites d'étude.

7.3.2.1.1 Résistance en pointe du piézocône corrigée avec u2 et $\sigma v0$ (qnet)

Aucun ensemble de mesures de résistance au scissomètre de chantier (s_{uv}) n'a été obtenue dans l'unité supérieure. En conséquence, la corrélation entre le s_{uv} et la résistance en pointe corrigée du piézocône via le paramètre N_{kt} n'est pas possible dans cette couche. Mais pour les besoins de recherche, l'exercice a quand même été effectué et présenté dans ce rapport, en se basant sur les valeurs de N_{kt} obtenues dans la couche inférieure. À la Figure 7-6, la résistance au cisaillement non drainé (s_{uv} et s_{u triax ε=5%}) est donc mise en relation avec la résistance en pointe nette (q_{net} = q_t- σ_{vo}). La Figure 7-6a présente des q_{net} variants de 2 550 à 4 850 kPa et des s_{u triax ε=5%} variants entre 47 et 220 kPa pour l'unité supérieure. Ainsi, les limites de N_{kT} (N_{kT} = q_t- $\sigma_{vo/Su}$) varient de 8 à 88 et il existe une variabilité non négligeable du paramètre N_{kT} entre les résultats. Ces limites sont nettement supérieures à celles des argiles de l'est du Canada (entre 11 et 18 déterminées avec la résistance au scissomètre selon Leroueil (1997)) et trop variables pour que l'utilisation du N_{kT} à lui seul puisse être utilisé pour définir la résistance au cisaillement non drainé de cette unité.

Pour l'unité inférieure, les q_{net} sont inférieures à 2 000 kPa et la résistance obtenue des essais scissométriques varie entre 30 et 200 kPa (Figure 7-6b). Les N_{kT} des sites d'études pour cette unité se situent principalement entre 11 et 22, ce qui est légèrement plus élevé que les limites de 11 à 18 de Leroueil (1997) pour les argiles sensibles. La variabilité du N_{kT} dans cette unité est cependant beaucoup plus faible que dans l'unité supérieure. Les données de l'unité supérieure de Saint-Ulric-de-Matane sont également présentées à la figure 7-6b, étant donné que des essais au scissomètre de chantier ont pu être réalisés dans cette unité. La valeur de q_{net} supérieure à 3 000 kPa pour ce site est due à la proximité d'un horizon de sol granulaire dans le dépôt et n'est donc possiblement pas représentative par rapport aux autres données. La valeur se situant sur la ligne « N_{kT} = 22 » se trouve à 18 m de profondeur dans le dépôt, donc dans un horizon argileux. Le reste des points donne des valeurs de N_{kT} variant environ entre 13 et 16.

Il a été démontré que les valeurs du coefficient N_{kT^*} pour un sol chargé sous un remblai sont plus élevées que pour le même sol à l'état intact (Demers, 2000; Leroueil et coll., 2001). La Figure 7-7, tirée de l'article de Leroueil et coll. (2001) et basée sur la thèse de doctorat de Demers (2000), montre que le rapport N_{kT}/N_{kT^*} , où N_{kT^*} correspond à la valeur pour les sols sous remblais, est inférieur à 1. Les valeurs de N_{kT} plus élevées obtenues dans les unités inférieures pour les sites du Bas-Saint par rapport aux autres argiles de l'est du Canada sont cohérentes avec les résultats de cette étude puisque l'unité inférieure a été surchargée au-delà de sa pression de préconsolidation comme une couche sous un remblai, ce dernier étant l'unité supérieure.

À noter ici que plusieurs essais au piézocône ont été réalisés à Notre-Dame-des-Neiges, et que ceux-ci présentent une importante variabilité (voir Hébert et coll., 2016). Le piézocône CM-05 utilisé à la Figure 7-6b donne les plus faibles valeurs de N_{kT} , mais c'est peut-être parce qu'il ne correspond pas au scissomètre.

Le profil de résistance obtenu selon un N_{kT} moyen (18, 19 ou 22 selon le site) corrélé avec le s_{uv} de l'unité inférieure est présenté à la Figure 7-5 pour chacun des sites étudiés.

Figure 7-6 : Relation entre q_t - σ_{v0} et a) la résistance au cisaillement non drainé au triaxial à 5 % de déformation de l'unité supérieure; b) la résistance au cisaillement non drainé au scissomètre de l'unité inférieure (l'unité supérieure de Saint-Ulric-de-Matane est également incluse).

Figure 7-7 : Rapport de N_{kT} déterminé sur l'argile intacte et de N_{kT^*} déterminé sous un remblai, en fonction du I_P (tiré de Demers, 2000).

7.3.2.1.2 Frottement latéral au piézocône (fs)

La Figure 7-8 présente la relation entre la résistance au cisaillement non drainé déterminée à 5 % de déformation axiale à l'essai triaxial, et le frottement latéral (f_s) obtenu des sondages au piézocône et la résistance au scissomètre (Figure 7-8b). À partir des échantillons de données considérés ici, les données sont très variables et il n'est pas possible d'affirmer qu'il existe un lien entre ces deux paramètres.

Figure 7-8 : Frottement latéral (f_s) au piézocône en fonction de la résistance au cisaillement non drainé obtenu aux essais triaxiaux déterminée à une valeur de déformation axiale de 5 % (a) et de la résistance au cisaillement non drainé obtenu de l'essai scissométrique (b).

7.3.2.1.3 Indice N₆₀ de l'essai de pénétration standard

La Figure 7-9 présente la relation entre l'indice N_{60} obtenu des essais de pénétration standard et la résistance au cisaillement non drainé ($s_u triax \epsilon=5\%$) pour l'unité supérieure uniquement. Pour les sites du Bas-Saint-Laurent, les indices N_{60} se situent entre 11 et 49 et les résistances au cisaillement non drainé varient entre 47 et 210 kPa. Les indices N_{60} inférieurs à 10 ne sont pas utilisés, puisque ces données présentent une variabilité lors de la prise de données. La Figure 7-9 montre les limites pour des rapports s_u/N_{60} de 5 et 6, basée sur les travaux de Stroud (1974) pour lesquels le rapport entre s_u et N_{60} se situait entre 4 et 6 et est fonction de l'indice de plasticité pour les argiles non sensibles (Figure 7-10). Compte tenu de la dispersion observée sur la Figure 7.9, il est difficile de conclure que la relation est applicable aux sites étudiés. udiés.

Les profils de résistance, obtenus selon un ratio s_u/N_{60} de 6, sont présentés à la Figure 7-5. Il est possible d'observer que cette relation surestime la résistance au cisaillement non drainé dans l'unité supérieure, même celle mobilisée à une déformation axiale de 10 %. Cependant, une similitude semblerait exister entre la résistance obtenue avec un rapport s_u/N_{60} de 6 et celle obtenue avec le N_{kT} , considérant les limitations mentionnées à la section précédente, il est difficile de statuer sur la qualité et la pertinence de ces résultats.

Dans l'unité inférieure, il n'est pas pertinent d'utiliser une relation entre le s_u et le N_{60} , puisque les indices N_{60} sont trop faibles.

Figure 7-9 : Relation entre l'indice N_{60} et la résistance au cisaillement non drainé au triaxial à 5 % de déformation axiale pour l'unité supérieure.

Figure 7-10 : Corrélation entre l'indice de plasticité et le rapport S_{uUU}/N_{60} (Stroud, 1974). 7.3.2.1.4 Pression limite du pressiomètre

La relation entre la résistance au scissomètre s_{uv} et la pression limite nette (P_L - σ_{v0}) pour l'unité inférieure des sites du Bas-Saint-Laurent est montrée à la Figure 7-11 (modifiée de Leroueil et coll., 1983). Seules les données des unités inférieures sont présentées par manque de suy pour les sols de l'unité supérieure, à l'exception du site de Saint-Ulric-de-Matane, où des mesures de scissomètres ont pu être faites. De plus, deux essais ont été faits dans l'unité intermédiaire de Saint-Anaclet-de-Lessard et ont été ajoutés sur cette figure. Les sols de l'unité inférieure de Saint-Anaclet-de-Lessard et de Trois-Pistoles présentent des pressions limites nettes variant entre 300 et 400 kPa et des résistances s_{uv} se situant entre 50 et 60 kPa. En utilisant un β' ($\beta' = P_L - \sigma_{v0} / s_u$) de 8,5, les quelques résultats semblent bien concorder avec la relation des argiles de l'est du Canada (Leroueil et coll., 1983) pour les pressions nettes sous 400 kPa. Ceci s'applique également à un des essais de l'unité intermédiaire, mais pas pour celui réalisé à 14 m de profondeur. Toutefois, cet essai donne des valeurs très faibles de module pressiométrique et de pression limite et il n'est pas nécessairement représentatif de l'unité intermédiaire. Pour ce qui est des résultats de l'unité supérieure à Saint-Ulric-de-Matane, les résultats ne s'accordent pas du tout avec les relations présentées à la Figure 7-11. La pression limite nette (P_L - σ_{v0}) varie en effet entre 456 et 650 kPa, pour des résistances au cisaillement non drainé (s_{uv}) variant entre 98 et 198 kPa. La valeur de β ' devrait être beaucoup plus faible, autour de 3,5 pour s'ajuster avec ces résultats. Il en va de même pour le seul essai réalisé à Price, qui suit environ la même tendance. Il est à noter cependant qu'il y a une discordance allant jusqu'à 1 m entre les profondeurs d'essais pour les essais scissométriques et les essais pressiométriques, ce qui pourrait expliquer ces résultats.

Les profils de s_u avec β '=8,5 sont présentés pour 5 des 6 sites du Bas-Saint-Laurent à la Figure 7-5. Ceux-ci indiquent que la relation estime mal la résistance au cisaillement non drainé dans l'argile raide de l'unité supérieure mesurée au triaxial, ainsi qu'au scissomètre de chantier uniquement au site de Saint-Ulric-de-Matane, et la relation présentée par Leroueil et coll. (1983) ne permet donc pas d'estimer le s_u de cette unité selon les données actuelles.

Figure 7-11 : Corrélation entre P_{I} - σ_{v0} et s_{uv} pour l'unité inférieures des sites du Bas-Saint-Laurent Modifiée de Leroueil et coll. (1983).

7.3.2.1.5 Module de cisaillement à petite déformation déterminé à partir du V_s À la Figure 7-12, la vitesse de propagation des ondes sismiques de cisaillement est mise en relation avec la résistance au cisaillement non drainé (s_{uV} et s_{u triax $\epsilon=5$ %) et la relation} développée par L'Heureux et Long (2017), pour les argiles norvégiennes ayant des similitudes avec les argiles de l'est du Canada. Les V_s proviennent des essais de type « downhole », sauf pour les sites de Notre-Dame-des-Neiges et de l'Isle-Verte où le SCPTu a été utilisé.

La Figure 7-12a présente des résistances au cisaillement non drainé (s_{u triax ε=5 %}) variant de 47 à 220 kPa et des V_s se situant entre 188 et 388 m/s. Sur cette figure, la relation pour les sites étudiés est légèrement supérieure à celle de L'Heureux et Long (2017) à partir de V_s ≥ 140 m/s. L'équation de la tendance donne un coefficient de détermination de 0,47, indiquant un faible niveau de corrélation, probablement dû au faible nombre de données (n = 17) dans l'unité supérieure. L'équation prend toutefois une forme similaire à celle de L'Heureux et Long (2017) et un plus grand nombre d'essais triaxiaux dans l'unité supérieure permettrait probablement de préciser cette corrélation. Il faut toutefois tenir compte que cette relation a été définie pour des argiles sensibles sédimentaires.

La corrélation entre la résistance mesurée au scissomètre (s_{uV}) et le V_s de l'unité inférieure est présentée à la Figure 7-12b. La résistance au cisaillement non drainé (s_{uV}) varie entre 45 et 134 kPa et la vitesse de propagation des ondes de cisaillement varie entre 145 et 332 m/s. L'équation suivante indique une bonne corrélation ($R^2 = 0,72$) entre les 2 paramètres, selon les 38 données :

$$s_{uV} = 0.14 V_s^{1.16} \tag{7.1}$$

Dans l'unité inférieure, les résultats suivent généralement bien la tendance des argiles norvégiennes (L'Heureux et Long, 2017), mais elle diffère pour quelques données à Notre-Dame-des-Neiges.

Aucun essai scissométrique n'a été fait dans l'unité inférieure de Saint-Ulric-de-Matane, mais des valeurs ont été obtenues dans l'unité supérieure. Il y a beaucoup de dispersion dans ces données et celles-ci ne sont pas prises en compte dans la relation présentée dans la Figure 7-12b.

Figure 7-12 : Relation entre la vitesse de cisaillement et a) la résistance au cisaillement non drainé à 5% de déformation obtenue au triaxial pour l'unité supérieure; b) la résistance au cisaillement non drainé du scissomètre pour l'unité inférieure.

Comme la relation entre le module G_o et la résistance est toutefois plus logique que celle avec le V_{s} , la Figure 7-13 présente donc la relation entre la résistance au cisaillement non drainé (s_{uV} et $s_{u \text{ triax } \epsilon=5 \%}$) et le module de cisaillement à petite déformation.

Pour l'unité supérieure (Figure 7-13a), la résistance au cisaillement non drainé (s_{u triax ϵ =5 %) varie entre 47 et 220 kPa et le G_o entre 80 000 et 280 000 kPa. Le R² est de 0,50, et tout comme pour le V_s, le faible nombre de données (n = 17) diminue probablement ce coefficient.}

Dans l'unité inférieure, les résistances s_{uv} se situent entre 45 et 134 kPa et les G_o varient entre 40 000 et 220 000 kPa (Figure 7-13b). La Figure 7-13b montre un regroupement des données par sites et celles-ci sont plus faibles à Saint-Anaclet et Trois-Pistoles, puis elles augmentent à l'Isle-Verte, Price et Notre-Dame-des-Neiges. En général, les points présentent une faible variabilité et suivent bien la courbe de tendance. Aucun essai scissométrique n'a été fait dans l'unité inférieure de Saint-Ulric-de-Matane, mais des valeurs ont été obtenues dans l'unité supérieure. Il y a beaucoup de dispersion avec ces données et celles-ci ne sont pas prises en compte dans la relation présentée dans la Figure 7-13b. Les résultats présentent une bonne corrélation ($R^2 = 0,74$ avec n=38) entre les 2 paramètres selon l'équation suivante :

$$s_{\mu\nu} = 0.14G_0^{0.54}$$
 (7.2)

L'équation de la Figure 7-13b, basée sur les données de l'unité inférieure, est utilisée afin de définir des profils de résistance en fonction de la profondeur pour les cinq sites d'étude à la Figure 7-5. Graphiquement, le profil de s_u (estimé avec G_o) permet une corrélation avec les données s_u triax $\epsilon=5$ % de l'unité supérieure des sites de Saint-Anaclet-de-Lessard, Trois-Pistoles et Isle-Verte, mais il sous-estime les valeurs à Notre-Dame-des-Neiges.

Malgré tout, considérant les résultats présentés aux figures 7.12 et 7.13, les relations entre le V_s et le G_o et la résistance au cisaillement de la couche supérieure semblent incertaines et ne sont donc pas recommandées pour l'instant.

Figure 7-13 : Relation entre le module de cisaillement à petite déformation et a) la résistance au cisaillement non drainé à 5 % de déformation axiale obtenue au triaxial pour l'unité supérieure (incluant Saint-Ulric-de-Matane); b) la résistance au cisaillement non drainé du scissomètre pour l'unité inférieure (excluant Saint-Ulric-de-Matane).

7.3.2.2 Contrainte de préconsolidation

Selon la formation géologique atypique de l'unité supérieure, telle que décrite plus haut dans ce chapitre (voir section 7.2), la contrainte de préconsolidation aurait été acquise au contact des glaciers et du délestage, avant la déposition, et n'aurait pas la même signification que dans un sol formé par sédimentation. De plus, les courbes œdométriques de l'unité supérieure, discutées dans les sections résultats, présentent une forme « arrondie », rendant difficile la détermination précise du passage de l'état surconsolidé à l'état normalement consolidé. L'unité supérieure n'est donc pas utilisée pour les relations avec la contrainte de préconsolidation de cette section. Pour cette unité, il est plutôt d'intérêt de définir les modules de déformation, comme discuté plus loin dans ce chapitre.

Pour l'unité inférieure, les courbes œdométriques montrent une limite séparant les domaines surconsolidé et normalement consolidé. Celle-ci n'est toutefois pas aussi nette que généralement notée dans les échantillons de grande qualité des argiles de l'est du Canada et une variabilité sur la détermination de la contrainte de préconsolidation est aussi présente, mais moins grande que pour la couche supérieure. Ceci est en partie dû au fait que ce dépôt d'argile a subi le chargement de l'unité supérieure, en excès de sa contrainte de préconsolidation d'alors. De plus, selon le critère de Lunne et coll. (1997), les échantillons de l'unité inférieure ont subi du remaniement, que ce soit à l'échantillonnage ou à la manipulation lors des essais, augmentant ainsi la déformabilité dans le domaine surconsolidé (Leroueil et coll. 1983). Le remaniement a pour conséquence d'apporter une incertitude quant aux valeurs de contrainte de préconsolidation dans l'unité inférieure. Tout de même, quelques relations sont analysées pour cette unité dans cette section, afin de réaliser un comparatif avec des corrélations préexistantes. Aussi, les données œdométriques avec un OCR < 1 ne sont pas utilisés.

7.3.2.2.1 Résistance en pointe du piézocône corrigée avec u_2 et σ_{v0} (q_{net})

La relation entre la résistance en pointe q_{net} et la contrainte de préconsolidation est analysée dans l'unité inférieure, afin de déterminer un paramètre $N_{\sigma T}$ ($N_{\sigma T} = q_t - \sigma_{vo /} \sigma'_p$). En se fiant au profil de contrainte verticale effective des différents sites à l'étude, un $N_{\sigma T}$ de 3,6 semble être adéquat pour analyser la tendance générale des profils σ'_p de l'unité inférieure des sites étudiés comme il est vu aux Figures 3-3, 4-3, 5-3 et 6-3. L'utilisation d'une valeur supérieure aurait pour conséquence d'amener la contrainte de préconsolidation sous le σ'_{v0} (argile sous-consolidée). Cette valeur est légèrement supérieure à la moyenne de 3,4 des argiles de l'est du Canada tout en demeurant dans la plage typique de 3,1 à 3,7 (Demers et Leroueil, 2002), et des données d'Hébert et coll. (2016), mais permet d'estimer grossièrement les σ'_p (œdomètre) sans atteindre le domaine sous-consolidé. Notons que l'utilisation d'un N_{kT} de 3,4 indiquerait une petite surconsolidation de la couche inférieure, ce qui est probable, compte tenu de la consolidation secondaire et de la structuration vécue au cours des 12 000 dernières années.

7.3.2.2.2 Module de cisaillement à petite déformation déterminé à partir du Vs

La Figure 7-14 présente la relation entre la vitesse de propagation des ondes sismiques de cisaillement et la contrainte de préconsolidation dans l'unité inférieure. Les contraintes de préconsolidation varient entre 183 et 1 000 kPa et les V_s se situent entre 153 et 382 m/s. Les résultats suivent généralement la relation de L'Heureux et Long (2017), sauf à Price et Notre-Dame-des-Neiges. Le nombre d'essais est toutefois faible et la variabilité des essais amène une incertitude non négligeable dans la relation. Aucun essai œdométrique n'a été fait dans l'unité inférieure de Saint-Ulric-de-Matane.

Figure 7-14 : Relation entre la vitesse de propagation des ondes de cisaillement et la contrainte de préconsolidation pour l'unité inférieure des sites du Bas-Saint-Laurent.

La Figure 7-15 montre la relation entre le module de cisaillement à petite déformation et la pression de préconsolidation pour les données de l'unité inférieure des sites du Bas-Saint-Laurent. L'unité inférieure présente des contraintes de préconsolidation variant entre 183 et 1 000 kPa et des modules G_o variant entre 40 000 et 175 000 kPa. L'équation suivante est obtenue des données :

$$\sigma'_p = 0,0026G_o$$
 (7.3)

Les points montrent une forte variation, possiblement causée par le remaniement des échantillons, mais suivent relativement bien la tendance. Le faible nombre d'essais (n = 7) ne permet pas d'obtenir un R² satisfaisant, et la réalisation d'essais supplémentaires pourrait permettre l'obtention d'une plus forte relation entre les paramètres. Aucun essai œdométrique n'a été fait dans l'unité inférieure de Saint-Ulric-de-Matane.

Figure 7-15 : Relation entre le module de cisaillement à petite déformation et la contrainte de préconsolidation pour l'unité inférieure des sites du Bas-Saint-Laurent.

7.3.2.2.3 Rapport suv/o'p avec l'indice de plasticité

La Figure 7-16 montre la relation entre le rapport s_{uv}/σ_p^{o} et l'indice de plasticité pour les données de l'unité inférieure avec σ'_p correspondant à celui obtenu d'une corrélation avec le piézocône utilisant un N_{σ T} de 3,6. L'indice de plasticité varie entre 12 et 25 et le rapport s_{uv}/σ_p^{o} est environ de 0,2 pour les sites du Bas-Saint-Laurent. Les points moyens se situent sous la tendance des argiles de l'est du Canada (Leroueil et coll., 1983) montrée à la Figure 7-16, mais le faible nombre de données rend cette relation incertaine. Aucun essai œdométrique n'a été fait dans l'unité inférieure de Saint-Ulric-de-Matane.

Figure 7-16 : Variation du rapport s_{uv}/σ'_p avec l'indice de plasticité pour l'unité inférieure du Bas-Saint-Laurent en relation avec l'équation de Leroueil et coll. (1983).

7.3.2.3 Modules de cisaillement

7.3.2.3.1 Relation entre le module non drainé (E_u) et le module de cisaillement à petite déformation (G_o)

À la Figure 7-17, le E_{max} obtenu du G_o ($E_{max} = 3G_o$) est mis en relation avec le module E_u mesuré au triaxial en conditions non drainées. Dans l'unité supérieure, les E_u se situent entre 22 et 118 kPa et les E_{max} varient entre 230 et 830 MPa. Bien qu'aucune tendance ne puisse être décelée avec les résultats, un écart important entre les deux paramètres peut être observé. Comme le module de cisaillement à petite déformation est un paramètre obtenu à de très faibles déformations (< 0,001 %) et le module non drainé E_u est calculé au triaxial selon un intervalle de déformation beaucoup plus important (entre 0,1 – 0,5 % pour cette étude), la différence entre les données pourrait être expliquée en partie par la dégradation du module triaxial avec la déformation. Évidemment, des essais supplémentaires permettraient de mieux caractériser la courbe de dégradation (G/G_o –
logγ) dans les unités stratigraphiques du projet. Le remaniement des échantillons est aussi probablement un facteur qui explique la grande différence qu'il y a entre $E_{max} = 3G_o$ et E_u .

Figure 7-17 : Module E_u mis en relation avec le module élastique maximum (3G_o) pour les argiles du Bas-Saint-Laurent.

7.3.2.3.2 Relation entre le module œdométrique (Moed) et le module de cisaillement

à petite déformation (G_o)

À la Figure 7-18, les modules œdométriques, tels que mesurés aux contraintes en place, sont présentés en fonction des modules de cisaillement à petite déformation pour les sites

du Bas-Saint-Laurent (Figure 7-18a). Les modules œdométriques se situent entre 2,5 et 21,7 MPa et les G_o entre 40 et 400 MPa. La relation montre une bonne corrélation entre les paramètres avec un R^2 de 0,63 selon l'équation suivante :

$$M_{oed} = \alpha G_o = 0.07 G_o(7.4)$$

Le paramètre α est de 0,07, et il se situe entre l'intervalle de 0,05 et 0,2 défini par Mayne (2007) pour les argiles et les silts (Figure 7-18b).. La relation théorique élastique entre les 2 paramètres pour un même domaine de déformation serait :

$$G = \frac{M_{oed}}{2(1+\nu')}$$
 (7.5)

où u' est le coefficient de Poisson. Le facteur 0,07 est donc très faible, comme dans le cas de la corrélation entre E_{max} et G_o (Section 7.3.2.3.1), et reflète probablement la dégradation et le remaniement.

Figure 7-18 : Rapport entre le module œdométrique et le module de cisaillement à petite déformation : a) pour les sites au Bas-Saint-Laurent; b) pour plusieurs types de sol (tirée de Mayne, 2007).

7.3.2.3.3 Module pressiométrique

Les modules pressiométriques (E_m) ont été mis en relation avec différents modules obtenus dans le cadre du projet (G_o , M_{oed} et E_u), les intervalles typiques de Briaud (2013) et les valeurs du Manuel canadien d'Ingénierie des Fondations (2013). En comparaison avec le module œdométrique et le module non drainé, les E_m sont très faibles dans l'unité supérieure. Ceci est étonnant, puisque la déformation mobilisée au courant des essais pressiométriques est généralement inférieure à celle mobilisée lors des mesures de Eu et de Moed. Il est vrai que le module pressiométrique est fortement influencé par la mode de préparation du trou de l'essai (Leroueil et coll., 1983) et le remaniement du sol dans l'avant-trou a probablement affecté les résultats de cet essai. Les résultats des essais pressiométriques sur tous les sites montrent donc que l'unité supérieure présente des modules pressiométriques faibles pour des pressions limites typiques d'un sol raide, et qui sont relativement constants sur l'ensemble du dépôt. Les résultats des essais dans l'unité inférieure montrent des modules pressiométriques plus élevés que dans l'unité supérieure, et ce pour des valeurs de pression limite toujours typiques d'un sol raide. Les deux paramètres obtenus de l'essai pressiométrique (module pressiométrique et pression limite) caractérisent deux aspects différents du sol. Le module pressiométrique caractérise la déformabilité, tandis que la pression limite caractérise la résistance au cisaillement mobilisée. Le sol de l'unité supérieure semble donc à la fois compressible et raide, ce qui est difficile à expliquer.

7.3.2.4 Propriétés hydrauliques

Les résultats des essais de perméabilité réalisés en cellule triaxiale sont présentés au Tableau 7-1. Au site de Saint-Anaclet-de-Lessard, les valeurs de conductivité hydraulique obtenues des deux essais à 8,18 et 8,08 m de profondeur sont de 1,06x10⁻¹⁰ m/s. Au site de Trois-Pistoles, les deux essais à 10,44 et 10,54 m de profondeur ont donné des valeurs de conductivité hydraulique respectives de 1,53x10⁻¹⁰ et 1,26x10⁻¹⁰ m/s. Au site de Price et de Saint-Ulric-de-Matane, un seul essai par site a été effectué. À Price, la conductivité hydraulique mesurée est de 2,34x10⁻¹⁰ m/s à 10,24 m de profondeur. À Saint-Ulric-de-Matane, la valeur mesurée est de 1,19x10⁻¹⁰ m/s à 13,25 m de profondeur. Ces résultats sont environ 1 ordre de grandeur plus faible que les conductivité hydrauliques des argiles sédimentaires de l'est du Canada, qui montrent une conductivité hydraulique d'environ 1x10⁻⁹ m/s (Leroueil et coll., 1983), mais sont cohérents avec le fait que l'indice de liquidité est beaucoup plus faible. Notons que Hébert et coll. (2016) avaient mesuré des valeurs

de 1,4x10⁻⁹ m/s et 8,5x10⁻¹⁰ m/s sur l'argile de Notre-Dame-des-Neiges et de 5,1x10⁻¹¹ m/s sur l'argile de l'Isle-Verte. Si cette dernière valeur est cohérente avec celles mesurées dans la dernière phase du projet, celle mesurée sur l'argile de Notre-Dame-des-Neiges est plus caractéristique d'une argile sédimentaire. Ces essais ont été faits pendant les essais œdométriques, et la valeur plus élevée au site de Notre-Dame-des-Neiges est possiblement due à un écoulement préférentiel le long des parois de l'échantillon.

Site	Échantillon	Profondeur (m)	Unité	Conductivité hydraulique (K) (m/s)
Saint-Anaclet-	TM55	8,18	supérieure	1,06E-10
de-Lessard	TM55	8,08	supérieure	1,06E-10
Trois-Pistoles	TM57	10,44	supérieure	1,53E-10
11013-11310163	TM57	10,54	supérieure	1,26E-10
Price	TM23	10,24	supérieure	2,34E-10
Saint-Ulric-de- Matane	TM1	13,25	supérieure	1,19E-10

Tableau 7-1 : Résumé des essais de perméabilité réalisés sur les sites de Saint-Anaclet-de-Lessard et de Trois-Pistoles.

7.3.3 Propriétés caractéristiques au passage de l'état intact à déstructuré

7.3.3.1 Corrélation entre l'indice des vides et le Cc

L'indice des vides initial et l'indice de compression (C_c) sont mis en relation à la Figure 7-19. L'indice des vides initial varie de 0,35 à 1,25 et les valeurs de C_c varient de 0,10 à 0,22 pour l'unité supérieure et de 0,13 à 0,42 pour l'unité inférieure. On note une augmentation de l'indice de compression avec l'indice des vides. L'équation suivante relie le C_c en fonction de l'indice des vides initial :

$$C_c = 0.38e_0 - 0.07 \quad (7.6)$$

Le coefficient de détermination R^2 de 0,89 indique ici que la régression linéaire est forte. Cette corrélation est basée sur les travaux de Leroueil et coll. (1983) et des modifications apportées par Hébert et coll. (2016). Le C_c est toutefois obtenu à grande contrainte qui, dans notre cas, n'est pas toujours mobilisée lors d'un problème de tassement.

Figure 7-19 : Corrélation entre l'indice des vides initial (e_0) et l'indice de compression (C_c). La Figure 7-20 présente la relation C_c - e_0 des sites à l'étude dans un diagramme plus général établi pour les argiles sédimentaires de l'est du Canada et prenant en compte la sensibilité de l'argile (Leroueil et coll., 1983). Les données se situent entre les limites de faible sensibilité pour les différentes unités et les résultats sont cohérents avec les faibles sensibilités mesurées en laboratoire. En somme, le lien entre l'indice des vides naturel (e_0) et l'indice de compression (C_c) pour les argiles du Bas-Saint-Laurent est bon et les données sont cohérentes avec celles obtenues par Leroueil et coll. (1983).

Figure 7-20 : Corrélation entre l'indice des vides naturel, l'indice de compression et la sensibilité des argiles.

7.4 Synthèse des corrélations entre les propriétés géotechniques

Les propriétés géotechniques à l'état remanié ont été comparées avec celles des autres argiles de l'est du Canada (Leroueil et coll., 1983). Cette comparaison permet de conclure que les relations de Leroueil et coll. (1983) à l'état remanié semblent en général bien corréler avec les argiles des sites du Bas-Saint-Laurent et indiquerait sous preuve de vérification que la composition minéralogique des sols de la région à l'étude serait similaire. Cependant, considérant la forte résistance de la couche supérieure, toutes les corrélations à l'état remanié n'ont pas pu être testées dans ce projet.

Dans l'unité supérieure, l'essai au cône suédois et les essais triaxiaux ont permis d'obtenir une mesure de la résistance non drainée, à l'exception du site de Saint-Ulric-de-Matane où il a été possible d'utiliser le scissomètre de chantier. Des essais triaxiaux en conditions non drainées ont été réalisés à la contrainte verticale effective en place. Les résultats montrent que le sol présente un comportement dilatant, rendant difficile la détermination d'une résistance de cette argile. Une résistance au cisaillement non drainé a donc été déterminée à une déformation axiale de 5 % pour des fins de recherche pour ce projet. Les principales conclusions résultant de l'analyse des corrélations liant la résistance non drainée aux autres propriétés géotechniques de l'unité supérieure sont les suivantes :

- Les valeurs de N_{kT} obtenues dans l'unité supérieure sont supérieures à celles des argiles de l'est du Canada (entre 11 et 18 déterminées avec la résistance au scissomètre selon Leroueil (1997)) et trop variables pour que l'utilisation du N_{kT} à lui seul puisse être utilisé pour définir la résistance au cisaillement non drainé de cette unité.
- La corrélation avec l'indice N₆₀ obtenu du SPT (s_u/N₆₀ = 5) s'applique mal à la résistance non drainée mesurée au triaxial.
- La relation entre la vitesse de propagation des ondes sismiques de cisaillement (ou le G_o) et la résistance au cisaillement non drainée mesurée au triaxial semble présenter une forme similaire à celle de L'Heureux et Long (2017), développée pour les argiles sensibles. Cette relation semble donc intéressante à préciser dans une suite du projet portant sur le comportement à petite déformation de ce sol. Cependant, considérant le faible coefficient de détermination obtenu, cette relation est difficilement applicable à la couche supérieure avec les connaissances actuelles.

La résistance au cisaillement non drainé obtenue au scissomètre a été utilisée pour étudier les relations dans l'unité inférieure. Le paramètre N_{kT} varie typiquement entre 11 et 22 pour les sites du Bas-Saint-Laurent, ce qui est légèrement supérieur aux limites entre 11 et 18 observées dans les argiles de l'est du Canada (Leroueil, 1997). Les travaux de Demers (2000) et de Leroueil & coll. (2001) ont toutefois montré que le paramètre N_{kT} est typiquement plus élevé pour un sol se trouvant sous un remblai que pour un sol intact. Le sol de l'unité inférieure étudiée ici a été chargée par la couche supérieure et se trouve donc à être dans une situation similaire à une argile sous un remblai, et il est donc logique de retrouver des valeurs de N_{kT} supérieures à celles d'un sol intact.

Pour les quelques résultats au pressiomètre dans l'unité inférieure des sites de Saint-Anaclet-de-Lessard et de Trois-Pistoles, ceux-ci corrèlent bien avec les conclusions de Leroueil et coll. (1983) pour les pressions limites nettes sous 400 kPa et un β = 8,5. Par contre, les résultats d'essais pressiométriques obtenus dans l'unité supérieure à Saint-Ulric-de-Matane montrent qu'ils ne sont pas cohérents avec ces conclusions de Leroueil

137

et coll. (1983) et la résistance déduite de ces essais sous-estime probablement la résistance au cisaillement non drainé du sol.

La résistance au cisaillement non drainé dans l'unité inférieure peut également être corrélée avec la vitesse de propagation des ondes de cisaillement et du module de cisaillement à petite déformation, mais les données de résistance sont généralement plus faibles que celles de L'Heureux et Long (2017) pour les argiles norvégiennes.

Il semblerait que l'unité supérieure n'ait pas été formée par un processus de sédimentation typique, mais plutôt par l'action des glaciers présents dans cette région qui aurait remanié et déplacé le sol formant l'unité supérieure. La contrainte de préconsolidation et l'origine de la forte résistance de cette unité ne peuvent pas être expliquées par un processus de surconsolidation géologique. De plus, la forme arrondie des courbes de compression rend l'estimation de la contrainte de préconsolidation par la méthode de Casagrande difficile. Les modules de l'unité supérieure ont été mesurés à l'œdomètre (Moed), au triaxial (Eu) et au pressiomètre (Em). De façon générale, les modules déterminés sur le sol de l'unité supérieure sont plus faibles que dans l'unité inférieure. Ceci a surtout été remarqué pour les modules pressiométriques (Em) et les modules non drainé (Eu), tandis que les modules déterminés aux essais œdométriques sont plutôt constants sur l'ensemble du dépôt. L'unité supérieure présenterait une forte dégradation des modules, tel que l'indique les faibles Eu et Moed. Cette dégradation serait moins importante dans l'unité inférieure. Les principales conclusions résultant de l'analyse des corrélations liant les modules de déformation aux autres propriétés géotechniques de l'unité supérieure sont les suivantes :

- La relation entre le module œdométrique (M_{oed}) et le module de cisaillement à petite déformation (G_o) se situe entre des intervalles définis par Mayne (2007) pour les argiles et les silts (α = 0,05 à 0,2), malgré une grande variation des données. Cette relation semble intéressante à préciser dans une prochaine étude portant sur le comportement à petite déformation de ce sol. Cependant le coefficient de 0,07 est très faible et reflète probablement la dégradation des modules avec la déformation, et le remaniement des échantillons.
- Le module mesuré au triaxial (E_u) ne corrèle pas bien avec le module de cisaillement à petite déformation (G_o). Ceci pourrait s'expliquer par le fait que ces deux modules sont mesurés à des déformations différentes.
- Les modules pressiométriques (E_m) ont été mis en relation avec différents modules obtenus dans le cadre du projet (G_o, M_{oed} et E_u), les intervalles typiques de Briaud

(2013) et les valeurs données par le Manuel canadien d'Ingénierie des Fondations (2013). En comparaison au module œdométrique et au module non drainé, les E_m sont faibles dans l'unité supérieure. Ces faibles valeurs pourraient être dues au remaniement créé lors de la préparation de l'avant-trou. Toutefois, les essais sismiques ont montré que les modules G_o sont également faibles dans l'unité supérieure, et ce pour l'ensemble des sites étudiés. Il est donc possible que les valeurs faibles de E_m soient caractéristiques du sol.

Dans l'unité inférieure, les courbes œdométriques montrent une limite entre le domaine surconsolidé et normalement consolidé qui n'est pas aussi nette que celle notée dans les argiles de l'est du Canada. Tout de même, des corrélations ont été étudiées avec la pression de préconsolidation obtenue dans l'unité inférieure. L'utilisation d'un paramètre N_{oT} de 3,6 permet une bonne estimation des profils de pression de préconsolidation. Cette valeur est légèrement supérieure au résultat moyen de 3,4 d'Hébert et coll. (2016) pour la phase I du projet et de Demers et Leroueil (2002) pour les argiles de l'est du Canada, mais demeure à l'intérieur de la plage typique de 3,1 à 3,7 pour celles-ci. La relation entre la contrainte de préconsolidation et la vitesse de propagation des ondes de cisaillement suit la courbe de tendance des argiles norvégiennes (L'Heureux et Long, 2017) pour les sites de Saint-Anaclet-de-Lessard et Trois-Pistoles, mais les valeurs sont inférieures à la relation pour les sites de Notre-Dame-des-Neiges, Isle-Verte et Price. Cependant, le nombre de données est faible et ne permet pas d'obtenir une corrélation très précise. Le rapport s_{uv}/σ_{p} (CPTu) est d'en moyenne 0,2 pour les sites étudiés et est légèrement inférieur aux valeurs trouvées pour les argiles de l'est du Canada, pour les mêmes indices de plasticité (Leroueil et coll., 1983). Ceci est cependant cohérent avec les observations faites par Leroueil et al. (2001) pour des argiles sous des remblais.

Pour l'unité inférieure, la relation entre le module œdométrique et le module de cisaillement à petite déformation se situe dans les intervalles définis par Mayne (2007) pour les argiles et les silts ($\alpha = 0,05$ à 0,2), tel qu'observé pour l'unité supérieure. Peu d'essais triaxiaux ont été réalisés sur des échantillons de l'unité inférieure et les modules obtenus de ces essais (E_u) corrèlent mal avec le module de cisaillement à petite déformation (G_o), comme pour la couche supérieure. Selon Briaud (2013), les valeurs de modules pressiométriques (E_m) obtenus dans l'unité inférieure correspondent à une argile raide.

Finalement, la relation entre l'indice des vides naturel (e_0) et l'indice de compression (C_c) pour les unités supérieure et inférieure des cinq sites du Bas-Saint-Laurent (excluant le site de Price) est en bon accord avec la relation proposée par Leroueil et coll. (1983). Le C_c est toutefois obtenu à grande contrainte qui, dans notre cas, n'est pas toujours mobilisée lors des problèmes d'ingénierie.

Au site de Price, la variabilité plus importante lors de la mise en place de l'unité supérieure (différentes phases d'avancées et de réavancées glaciaires) fait en sorte que deux couches différentes sont présentes dans cette unité supérieure (homogène sans stratifications, et avec stratifications). Les résultats montrent donc une importante variabilité qui fait en sorte que les caractéristiques géotechniques diffèrent passablement de celles des autres sites étudiés. Les données du site de Price ne sont donc pas utilisées lors de l'établissement de corrélations dans ce projet. Le site de Saint-Ulric-de-Matane montre également beaucoup de variabilité et plusieurs horizons de sable, ce qui peut expliquer certaines disparités dans les résultats. De plus, l'unité inférieure de ce site ne mesure qu'environ 1 m d'épaisseur, ce qui n'a pas permis de l'échantillonner et d'ajouter des données supplémentaires aux différentes corrélations. Cependant, considérant les résultats du scissomètre dans les deux unités de ce site, il pourrait être un site intéressant à exploiter davantage dans une future étude.

CHAPITRE 8 : PORTÉE DE L'ÉTUDE

Ce projet de recherche a permis d'approfondir les connaissances des propriétés physicochimiques et mécaniques de six sites au Bas-Saint-Laurent. Cette étude a mis en lumière, pour la première fois, l'existence d'un horizon argileux d'origine glaciaire délesté sur des sédiments marins argileux. Avec les deux phases d'investigation, le grand nombre de données cumulé indique que la couche supérieure présente un comportement atypique et une grande variabilité, affectant les corrélations obtenues, et cela pour des propriétés géotechniques largement obtenues de sa formation sous le glacier. Cette grande variabilité dans les résultats pour la couche supérieure est probablement due à divers facteurs tels que :

- la variabilité des propriétés de l'unité supérieure est déjà importante sur un même site;
- le comportement dilatant des sols (absence de résistance bien définie, sauf à Saint-Ulric-de-Matane);
- la forme des courbes œdométriques (difficulté de définir la contrainte de préconsolidation);
- un certain remaniement des échantillons;
- le faible nombre d'essais aux contraintes en place;
- lors de la planification des travaux de terrain et de laboratoire, une attention particulière a été portée afin que les mesures de terrain et les essais de laboratoire soient réalisés aux mêmes profondeurs. Malgré cette attention, certaines propriétés qui ont été corrélées entre elles n'ont pas été mesurées à la même profondeur, ce qui peut ajouter à la variabilité des résultats obtenus.

L'hypothèse que cette étude nous permet de faire est que l'unité supérieure présentera toujours de fortes variabilités des propriétés géotechniques à cause de son mode de formation qui pourrait varier beaucoup d'un site à l'autre dépendant du rôle plus ou moins important du glacier et des caractéristiques sédimentaires de la zone de délestage en milieu marin. Quant à la couche inférieure, formée par sédimentation, les corrélations sont plus précises. Considérant cette grande variabilité, les corrélations présentées dans ce rapport sont préliminaires et seraient difficilement applicables à toutes les argiles de la région de Bas-Saint-Laurent, pour le moment. Ces corrélations développées pour les deux unités peuvent cependant servir à caractériser, d'une façon préliminaire, d'autres sites de la région. Afin d'appliquer les résultats et observations de cette étude à la région du Bas-

Saint-Laurent, il faudra d'abord déterminer l'étendue et l'épaisseur de cette couche raide (ou de ces couches) dans la zone côtière.

Il est aussi important de noter que des contradictions sont observées dans certaines des propriétés géotechniques déterminées dans l'unité supérieure. Les valeurs de contraintes de préconsolidation estimées des essais œdométriques et du piézocône, la forte résistance au cisaillement non drainée déduite du piézocône (résistance en pointe et frottement latéral) et du SPT, et le comportement dilatant de l'argile indiguent que le sol de l'unité supérieure est raide et a un comportement surconsolidé. Cependant, les résultats des essais triaxiaux montrent que les résistances au cisaillement déterminées avec cet essai sont plus faibles que celles déduites du piézocône, en utilisant le N_{kT} basé sur la résistance au scissomètre de la couche inférieure. De plus, les valeurs de vitesse des ondes de cisaillement, et donc du module Go, et les modules de déformation déterminés à partir des essais triaxiaux et œdométriques sont également plus faibles que ce à quoi on peut s'attendre d'après les résultats au piézocône et le SPT. Ceci est également remarqué dans les résultats des modules pressiométriques qui sont faibles dans l'unité supérieure des différents sites d'étude. Cette différence entre ces propriétés reste difficile à expliquer, mais comme elle est observée aux six sites d'études, elle ne semble pas venir d'une anomalie méthodologique. Ces informations indigueraient donc que le sol de cette unité est raide, mais tout en étant relativement compressible II reste donc plusieurs aspects à mieux comprendre. Ces difficultés d'interprétation viennent vraisemblablement de son mode de formation particulier.

CONCLUSIONS ET RECOMMANDATIONS

Ce rapport se veut être la conclusion de la phase II du projet de recherche « Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent (R729.2) » et il fait suite aux rapports d'étape 01 (Hébert & Locat, 2021) et 02 (Hébert et coll., 2022), ainsi qu'aux travaux réalisés lors de la phase I et qui ont été présentés par Hébert et coll. (2016). Les objectifs spécifiques de ce projet de recherche sont :

• La caractérisation géotechnique des différentes unités géologiques de 4 sites supplémentaires dans la région d'étude, de façon à pouvoir identifier rapidement les unités présentes dans un rapport de sondage.

 L'établissement de relations, facteurs de corrélations et/ou abaques permettant un meilleur contrôle de la qualité des données obtenues dans les essais in situ et en laboratoire lors d'étude sur les argiles du Bas-St-Laurent, donc une plus grande efficacité et des économies dans les campagnes de sondages.

Des travaux de terrain et de laboratoire ont été réalisés sur les sites de Saint-Anaclet-de-Lessard, Trois-Pistoles, Price et Saint-Ulric-de-Matane. Ceux-ci ont ultimement permis la réalisation de 4 profils géotechniques détaillés. La méthodologie de l'investigation est présentée au chapitre 2. Ces sites présentent des unités stratigraphiques généralement similaires à celles de l'Isle-Verte et de Notre-Dame-des-Neiges (Hébert et coll., 2016). Ils sont composés d'une couche de sol argileux très raide (unité supérieure) reposant sur une couche argileuse ferme à raide (unité inférieure). Ces unités ont été délimitées en utilisant les paramètres qt, Bq, IL et les images au Ct-Scan. Sur les images de tomodensitométrie, l'unité supérieure présente une matrice massive, tandis que l'unité inférieure présente des stratifications subhorizontales. Les indices de liquidité se situent entre -0,1 et 0,72 dans l'unité supérieure et les essais triaxiaux indiquent que le sol possède un comportement dilatant. Les propriétés géotechniques de ces six sites ont été présentées en détail aux chapitres 3 à 6 de ce rapport et permettent de distinguer les propriétés de l'unité supérieure et inférieure. La section 7.1 résume la méthode d'identification de l'unité supérieure et inférieure. Ces propriétés ont ensuite été mises en relation afin de développer des corrélations entre les propriétés (Chapitre 7). Ces corrélations ont ensuite été comparées aux relations développées pour les argiles de l'est du Canada et pour d'autres sols similaires d'autres régions du monde. La section 7.4 présente une synthèse des corrélations dans laquelle sont identifiés les essais ou techniques qui fonctionnent bien et ceux qui fonctionnent moins. La portée de cette étude est discutée au chapitre 8. Pour le moment, les corrélations présentées dans ce rapport sont préliminaires et seraient difficilement applicables à l'étendue des argiles de la région de Bas-Saint-Laurent. Les corrélations entre les caractéristiques mécaniques ne sont pas très probantes et vont demander davantage de réflexion, et peut-être plus de données, éventuellement sur d'autres sites de la région. Lors d'investigations futures, les corrélations présentées ici peuvent cependant servir à identifier l'unité supérieure et inférieure et à valider, d'une façon préliminaire, les relations entre les propriétés géotechniques définies pour chacune de ces unités à des sites similaires aux sites d'études de ce rapport.

En sommes, ce travail a contribué à :

- confirmer que dans la région du Bas-Saint-Laurent, on retrouve une couche argileuse homogène raide au-dessus d'une couche sédimentaire à peu près normalement consolidée et mettre en lumière, pour la première fois, son origine glaciaire délestée sur des sédiments marins argileux;
- fournir les caractéristiques générales de ces deux couches, ce qui permet de les caractériser;
- démontrer que l'origine de la couche supérieure fait en sorte que les corrélations développées pour l'unité supérieure sont très variables et que celles-ci pourraient varier beaucoup d'un site à l'autre dépendant du rôle plus ou moins important du glacier et des caractéristiques sédimentaires de la zone de délestage en milieu marin;
- accroître la banque de données actuellement disponible au ministère ainsi que la caractérisation géotechnique générale des argiles du Bas-Saint-Laurent, moins étudiées que celle de la mer de Champlain;
- vérifier si les corrélations propres aux argiles de la mer de Champlain s'appliquent à celles des argiles du Bas-Saint-Laurent ou s'il faut déterminer des corrélations qui leur sont propres.

À la suite des deux phases du projet de recherche « Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent », les conclusions suivantes sont avancées :

 L'utilisation d'une combinaison d'outils est recommandée afin de distinguer les unités stratigraphiques. Ces outils sont principalement : les paramètres qt et Bq, l'indice de liquidité et les images Ct-Scan. La distinction des unités est importante puisque les propriétés mécaniques des unités sont nettement différentes.

- La réalisation des essais triaxiaux, et de scissomètre de chantier lorsque possible, permettent une mesure de la résistance au cisaillement non drainé dans l'unité supérieure. Dans le cadre de ce projet, la résistance est déterminée arbitrairement à 5 % de déformation axiale. Cette valeur, arbitraire, permet d'obtenir une résistance pour les besoins du présent projet de recherche afin d'établir les corrélations pour l'unité supérieure à des fins de recherche. Cette définition de la résistance n'est certainement pas adéquate pour tous les projets.
- Les essais au scissomètre permettent d'obtenir des résistances convenables dans l'unité inférieure. La variation du N_{kT} diffère toutefois des limites de Leroueil et coll. (1983), les valeurs obtenues étant typiquement plus élevées que pour les autres dépôts d'argiles de la mer de Champlain.
- Étant donné que la couche très raide aurait hérité de ses propriétés mécaniques dues à l'action des glaciers (surcharge et température) et préalablement à sa déposition sur la couche moins raide, le principe de contrainte de préconsolidation pour les sols de l'unité supérieure diffère de celui pour un sol formé par un processus de sédimentation.
- Les relations de L'Heureux et Long (2017), entre le V_s et la résistance des argiles, et celle de Mayne (2007), entre le G_o et le module œdométrique, seraient intéressantes à préciser davantage. Cependant, considérant le faible coefficient de détermination obtenu, cette relation est difficilement applicable à la couche supérieure avec les connaissances actuelles.
- Les essais pressiométriques réalisés dans la couche supérieure donnent des valeurs de modules pressiométriques et de pressions limites plus faibles que celles de l'unité inférieure. Les rapports E_m/P_L obtenus des essais montrent que le sol de l'unité supérieure est raide, mais tout en étant relativement compressible. Une recherche sur la méthodologie de cet essai dans des sols raides similaire permettrait probablement d'améliorer la méthode pour être utilisée plus efficacement aux sites du Bas-Saint-Laurent.

Pour ce qui est des essais de terrain et de laboratoire, les actions suivantes sont recommandées :

- S'assurer, lors d'investigations futures, de mesurer les propriétés géotechniques in situ et de réaliser l'échantillonnage aux mêmes profondeurs afin de réduire la variabilité des résultats.
- La réalisation d'essais triaxiaux en condition drainée et à faibles contraintes, selon la méthode décrite par Lefebvre (1981), pourrait servir à définir les paramètres de résistance effectifs à utiliser lors des analyses de stabilité de talus dans l'unité supérieure.

Afin de préciser les données recueillies dans les deux phases de ce projet et d'améliorer notre connaissance sur la présence de la couche raide dans la région du Bas-Saint-Laurent, les actions suivantes sont recommandées :

- Établir un programme de reconnaissance utilisant le piézocône et quelques forages afin de déterminer l'étendue de la couche raide dans la région du Bas-Saint-Laurent et préciser son mode de mise en place.
- Réaliser un CPTu, un essai scissométrique, un essai de mesure de la vitesse de propagation des ondes sismiques de cisaillement (essai de type « downhole » ou SCPTu) au même endroit au site de Notre-Dame-des-Neiges afin de clarifier les corrélations à ce siteé
- Refaire le scissomètre de chantier à Trois-Pistoles, car les résultats de celui qui a été effectué dans le cadre de ce projet ne sont pas satisfaisants.
- Valider la méthodologie de l'essai pressiométrique et refaire cet essai sur les sites d'étude afin de confirmer l'utilité de cet essai dans ce type d'argile.
- Échantillonner en continu à Saint-Anaclet-de-Lessard entre 10 et 14 m de profondeur, et à Trois-Pistoles entre 14 et 19 m afin de déterminer le contact entre les différentes unités et pour préciser les limites entre les unités et leur mode de déposition.
- Échantillonner de nouveau aux sites d'étude afin de réaliser d'autres essais triaxiaux et œdométriques et de préciser la résistance non drainée et les modules de déformation.
- Investiguer un nouveau site, possiblement le site de l'ancien glissement de Rimouski, afin d'ajouter des données et valider et mieux comprendre les corrélations avancées dans cette 2^e phase du projet.

RÉFÉRENCES

ANDRUS, R.D., MOHANAN, N.P., PIRATHEEPAN, P., ELLIS, B.S. & HOLZER, T.L., 2007. *Predicting shear-wave velocity from cone penetration resistance*. Proceedings of Fourth International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece.

ASTM, 2010. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM D2216-10. ASTM International, West Conshohocken, PA. 7 p.

ASTM, 2018. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM D4318-17. ASTM International, West Conshohocken, PA. 20 p.

ASTM, 2011. Standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM D2435/D2435M-11. ASTM International, West Conshohocken, PA. 15 p.

ASTM, 2011. Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM D4767-11. ASTM International, West Conshohocken, PA. 14 p.

ASTM, 2014. Standard Test Methods for Crosshole Seismic Testing. ASTM D4428/D4428M-14. ASTM International, West Conshohocken, PA. 7 p.

ASTM, 2015. Standard Practice for Sampling of Soil Using the Hydraulically Operated Stationary Piston Sampler. ASTM D6519-15. ASTM International, West Conshohocken, PA. 7 p.

ASTM, 2015. Standard Practice for Thin-Walled Tube Sampling of Fine-Grained Soils for Geotechnical Purposes. ASTM D1587/D1587M – 15. ASTM International, West Conshohocken, PA. 10 p.

ASTM, 2018. Standard Test Method for Field Vane Shear Test in Saturated Fine-Grained Soils. ASTM D2573/D2573M – 18. ASTM International, West Conshohocken, PA. 8 p.

ASTM, 2019. *Standard Test Methods for Downhole Seismic Testing.* ASTM D7400/D7400M – 19. ASTM International, West Conshohocken, PA. 11 p.

ASTM, 2020. Standard Test Method for Electronic Friction Cone and Piezocone Penetration Testing of Soils. ASTM D5778-20. ASTM International, West Conshohocken, PA.

147

ASTM, 2020. *Standard Test Methods for Prebored Pressuremeter Testing in Soils*. ASTM D4719 – 20. ASTM International, West Conshohocken, PA. 13 p.

ASTM, 2022. Standard Test Methods for Pore Water Extraction and Determination of the Soluble Salt. ASTM D4542-22. ASTM International, West Conshohocken, PA. 6 p.

BJERRUM, L. & SIMONS, N. E., 1960. *Comparison of shear strength characteristics of normally consolidated clays*. Norwegian Geotechnical Institute, Publ., 35, pp. 13-22.

BNQ, 1981. Sols - Détermination de la limite de liquidité à l'aide du pénétromètre à cône suédois et de la limite de plasticité. BNQ-2501-092, 14 p.

BNQ, 1987. Sols - Analyse granulométrique des sols inorganiques. BNQ 2501-025, 28 p.

BNQ, 2022. Sols - Essai de pénétration standard (SPT) et échantillonnage au carottier fendu. BNQ 2501-140. 2^e édition. 16 p.

BNQ, 2014. Sols – Détermination de la teneur en eau. BNQ-2501-170/2014. 11 p.

BNQ, 2014. Sols – Détermination de la résistance au cisaillement non drainé et de la sensibilité des sols cohérents à l'aide du pénétromètre à cône. BNQ-2501-110/2014. 20 p.

BRIAUD, J. L., 2013. *The pressuremeter test: Expanding its use*, Ménard Lecture, Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, pp 107-126.

Demers, D., 2000. Le piézocône : Outil d'investigation et de dimensionnement dans les sols argileux. Ph.D Thesis, Université Laval, Québec.

DEMERS, D., & LEROUEIL, S., 2002. Evaluation of preconsolidation pressure and the overconsolidation ratio from piezocone tests of clay deposits in Quebec. Revue Canadienne de Géotechnique. 39 : 174-192.

DION, D. J., & MARANDA, R., 1978. *Levé géotechnique de la région de Rimouski. Rapport d'étude et carte d'aptitude*, ministère des Richesses Naturelles, DPV 580.

DIONNE, J.-C., 1977. *La Mer de Goldthwait au Québec.* Géographie physique et Quaternaire, vol. 31, n° 1-2, p. 61-80.

FERLAND, J., 2023. Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent. Mémoire M.Sc., Université Laval, (à publier). GARNEAU, R., & LE BIHAN, J. P., 1977. *Estimation of some properties of Champlain clays with the Swedish fall cone*. Canadian Geotechnical Journal, 14(4), pp. 57 1-58 1

GAUTHIER, C., 1975a. The Reversal of Glacial Movement During the Deglaciation of the Chaudière River Region, Québec, Résumé 28 Congr. Ann. de l'Ass. Géol. Can., p. 760.

GAUTHIER, C., 1975b. *Déglaciation d'un secteur des rivières chaudière et Etchemin, Québec*. Mémoire de M.Sc., Université McGill, non publié, 180 p.

GOUVERNEMENT DU QUÉBEC, ministère des Affaires municipales et de l'Occupation du territoire, 2017. *Glissements de terrain dans les dépôts meubles Types et causes*. ISBN 978-2-550-78149-3. 7 p.

HAMOUCHE, K., 1995. Comportement des argiles Champlain sollicitées horizontalement. Ph.D. Thesis, Université Laval, Québec, Canada.

HÉBERT, K., 2016. Caractérisation des sols argileux du secteur de l'Isle-Verte et Trois-Pistoles. Mémoire de M.Sc., Université Laval, 417 p.

HÉBERT, K., 2022. Procédure de laboratoire : essai triaxial consolidé non drainé (CIU) sur sols cohérents. Université Laval, 19 p.

HÉBERT, K., LEROUEIL, S. & LOCAT, A., 2016. Caractérisation des argiles du Bas-Saint-Laurent (R729.1) – Rapport final. 391 p.

HÉBERT, K. & LOCAT, A., 2021. Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent (R729.2) – Rapport d'étape 01.

HÉBERT, K., FERLAND, J. & LOCAT, A., 2022. Caractérisation géotechnique des propriétés des argiles du Bas-Saint-Laurent (R729.2) – Rapport d'étape 02.

HÉTU, B., 1998. La déglaciation de la région de Rimouski, Bas-Saint-Laurent (Québec) : indices d'une récurrence glaciaire dans la Mer de Goldthwait entre 12 400 et 12 000 BP. Géographie physique et Quaternaire, vol. 52, n° 3, p. 325-347.

ISO 22476-1. 2022. Geotechnical investigation and testing – Field testing – Part 1: Electrical cone and piezocone penetration test. ISO/TC 182 Geotechnics, 2nd edition, 66 p.

JAMBU, N., 1965. Consolidation of clay layers based on non-linear stressstrain, *Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering*, Montreal, 2, pp. 83–87.

LA ROCHELLE, P., LEROUEIL, S. & TAVENAS, F., 1986. A technique for long-term storage of clay samples. Can. Geotech. J. 23, 602-605.

LA ROCHELLE, P., LEROUEIL, S., TRAK, B., BLAIS, L. & TAVENAS, F., 1988. *Observational approach to membrane and area corrections in triaxial tests*. Advanced triaxial testing of soil and rock, ASTM STP 977, pp. 715-731.

LEBUIS, J., 1973. Géologie du Quaternaire de la région de Matane-Amqui, Comtés de Matane et Matapédia. Min. Rich. Nat. Qué., D.P. 216, 18 p.

LEFEBVRE, G., 1981. Fourth Canadian Geotechnical Colloquium: Strength and slope stability in Canadian soft clay deposits. Canadian Geotechnical Journal 18 (1981): 420-442.

LEFEBVRE, G., BOZOZUK, M., PHILIBERT, A. & HORNYCH, P., 1991. *Evaluating K*_o in *Champlain clays with hydraulic fracture tests*. Canadian Geotechnical Journal *28* (3): 365-377. <u>https://doi.org/10.1139/t91-047</u>

LEROUEIL, S., TAVENAS, F. & LE BIHAN, J.P., 1983. *Propriétés caractéristiques des argiles de l'est du Canada.* Revue Canadienne de Géotechnique, 20: 681-705.

LEROUEIL, S., 1997. *Geotechnical characteristics of eastern Canada clays*. Workshop on soft clays, Yokosuka, Japan. 30 p.

LEROUEIL, S., DEMERS, D. & SAIHI, F., 2001. *Considerations on Stability of Embankments on Clay.* Japanese Geotechnical Society, Soils and foundations, Vol. 41, No. 5, 117-127.

LOCAT, J., 1976. Quaternary geology of the Baie-des-Sables/Trois-Pistoles area, Québec; with some emphasis on the Goldthwait sea clays. Thèse M. Sc. Université de Waterloo, 214 p.

LOCAT, J., 1977. L'émersion des terres dans la région de Baie-des-Sables/Trois-Pistoles, *Québec*. Géographie Physique et Quaternaire. vol. 31, n° 3-4, p. 2979-306. LOCAT, J., 1978. *Le quaternaire de la région de Baie-des-Sables – Trois-Pistoles.* ministère des Richesses Naturelles, Québec, 64 p.

LOCAT, J., LEFEBVRE, G. & BALLIVY, G., 1984. Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada. Revue Canadienne de Géotechnique. 21: 530–540.

LOCAT, J., & ST-GELAIS, D., 2013. *Nature of sensitive clays from Quebec*. Landslides in Sensitive Clays: From Geosciences to Risk Management, Advances in Natural and Technological Hazards Research. 416 p.

LOCAT, J., TANAKA, H., TAN, T.S., DASARI, G.R. & LEE, H., 2003. *Natural soils: geotechnical behavior and geological knowledge*. In: Characterisation and engineering properties of natural soils, vol 1 (Proc. Singapore Workshop), Balkema. Swets & Zeitlinger, Lisse, pp. 3-28.

LUNNE, T., BERRE, T., & STRANDVIK, S., 1997. *Sample disturbance effects in soft low plastic Norwegian clay*, Proceedings of the Conference on Recent Developments in Soil and Pavement Mechanics, Rio de Janeiro, Brazil, Rotterdam: Balkema, 81–102.

L'HEUREUX, J.-S. & LONG, M., 2017. Relationship between shear-wave velocity and geotechnical parameters for Norwegian clays. J. Geotech. Geoenviron. Eng., 143(6), 20 p.

MAYNE, P.W., 2007. NCHRP synthesis « *Cone penetration testing state-of-practice »*. Transportation Research Board Report Project 20-05. 118 p.

MINISTÈRE DES TRANSPORTS ET DE LA MOBILITÉ DURABLE, 2019. Méthode d'essai LC 22-300 – Extraction d'un échantillon de sol cohérent d'un tube à paroi mince. 23 p.

PANIAGUA, P., D'IGNAZIO, M., L'HEUREUX, J-S., LUNNE, T., & KARLSRUD, K., 2019. *CPTU correlations for Norwegian clays: an update*. AIMS Geosciences, 2019, 5(2): 82-103. doi: 10.3934/geosci.2019.2.82

PRICHONNET, G., 1995. Géologie glaciaire et géochronologie postglaciaire dans la région limitrophe de la Gaspésie et du Bas-Saint-Laurent, Québec. Geological Survey of Canada, Bulletin 488, 1995, 74 p.

ROBERTSON, P.K., 2012. *The James K. Mitchell Lecture: Interpretation of in-situ tests* – *some insights*. Geotechnical and Geophysical Site Characterization 4, ISC'4 Brazil, 22 p.

SALSABILI, M., SAIDI, A., ROULEAU, A., & NASTEV, M., 2022. Development of empirical CPTu-Vs correlations for post-glacial sediments in Southern Quebec, Canada, in consideration of soil type and geological setting. Soil Dynamics and Earthquake Engineering Volume 154 (2022) 107131.

SOCIÉTÉ CANADIENNE DE GÉOTECHNIQUE, BECKER, D.E., MOORE, I.D., LAFLEUR, J., 2013. *Manuel Canadien D'ingénierie Des Fondations*. 4E édition ed. Richmond, BC: Société canadienne de géotechnique c/o BiTech Publishers; 2013. 488 p.

STROUD, M.A., 1974. *The standard penetration test in insensitive clays and soft rocks*. Proceedings, European Symposium on Penetration Testing, Stockholm, 2.2, pp. 367-375.

ANNEXES

Les Annexes A, B, C et D permettent une séparation des différents sites d'études. Dans ces annexes, les rapports de sondage et les différents essais de laboratoire sont présentés pour les 4 sites de la phase II. L'Annexe E contient différentes corrélations analysées lors de l'étude et qui n'ont pas été abordées au chapitre 7.

Annexe A : Saint-Anaclet-de-Lessard

Annexe A1 : Rapport de sondage

Figure A1-1 : Rapport de sondage FSZ-061	155
Figure A1-2 : Rapport de sondage FSZ-06 (suite)1	156
Figure A1-3 : Rapport de sondage FSZ-06 (suite)1	157
Figure A1-4 : Rapport de sondage FSZ-06A.	158
Figure A1-5 : Rapport de sondage FSZ-06A (suite)	159
Figure A1-6 : Rapport de sondage FSZ-06B.	160
Figure A1-7 : Rapport de sondage FSZ-06B (suite)1	161
Figure A1-8 : Rapport de sondage FSZ-06C.	162
Figure A1-9 : Rapport de sondage FSZ-06C (suite)1	163

Loc	alisation cé	nérale:	Diverses Municipalités - Bas-	-St-I	Lau	rent			Dos	sier:	384(437)19		Sondage: FS	Z-06				
									Date	e du so	ndage: 2021	1-06-07"	Profondeur to	ale: 34	,13 n	n		
End	roit: Saint-	Anaclet	1						Coo	rdonne	es (m): 537	1372,12 m (Y)	Élévation:	25	,56 n	n (Z)	
			COUPE GÉOLOGIQUE		Г			_	Ê	CHAN	TILLONS	3658,68 m (X)	(Approximatif)		ES	SSA	IS	
5	Élév.(m)/	Piézo-	Description			Ê	N R	듷	á	N		Description	Observations	Ess	ai de		leso	mètr
Prot	25,56	metrie	stratigraphique Surface du terrain naturel	00	â	Prof.	Type Callt	Sous-	Recu (%)	RQD	N coups	des échantillons	de chantier	25 t	aratio	n	50 10	0150
-	0,00	ŀŀ	UNITE SUPERIEUR : Silt argileux, traces de sable et	ľ	Х	0,00	CF-01		46	6		Matière organique, très sec, lâche.			Π	Τ	Π	
-		714	gravier.	K	É	0.78	в		⊨			City and an income	-					
	- 1			ľ	Х	0,70	CF-02		61	4		de sable, gris - brun		H	Ħ	$^{+}$	Ħ	+
- 5	-			ľ	Ð	1,52	<u> </u>	1		-		lâche. Présence de matière organique.						
	- 2			ľ	Ă		CF-03 B		62	2		Silt argileux, traces de sable, très lâche.		\vdash		+	+	+
	[417		h		2,28	CE-04	1	0	12		Silt argileux, traces	1					
- 10	3			1			В					de sable, compact.	_	Ш	Ц		\square	
				1	Х	3,05	CF-05		82	14		Silt argileux, traces de sable, compact.						
				1	Ê	3.81	в					Cill and any traces	=					
	- 4	FIT :		1	Х	3,01	CF-06		82	21		de sable, compact.		H	Ħ	t	Π	\top
-15				ľ	Þ	4,57	<u> </u>	1				Silt argileux, traces	7					
	5				Å		CF-07 B		67	17		de sable, gris foncé, compact.		H	₩	+	+	\vdash
	5,33 CF-08 0 24 de sable gris foncé.																	
- 20	- 6	11:		[k			B+N		_	-		compact.		Щ.	Ц	+	Ц	4
- 20	-	.111:		ŀ	Х	6,09	CF-09		69	18		Silt argileux, traces de sable, gris foncé,						
-	Ξ.	: :		l	E	6.85	_ <u>_</u> B					compact.	4					
	Ē			ŀ	Х	0,00	CF-10		75	23		de sable et gravier,		\square	Π	Τ	Π	
-25		kit :		ł	Ð	7,62		1				gris foncé, compact Silt argileux, traces	4					
	- 8 ^{17,56}			۳	Å		CF-11 B		67	23		de sable, gris foncé, compact.		H	H	$^+$	Ħ	+
	-	let :			∇	8,38	CE-12	1	90	26		Silt argileux, traces	1					
- 20	- 9	·[ŀ]·			≙		В					de sable, gris fonce horizon noir,		\vdash		+	+	\vdash
		EF.			М	9,14	CF-13		89	29		compact. Présence de matière						
	10				Ê	9.91	в		⊨			organique. Silt aroileux, traces	4	Ц				
	-				Х		CF-14 B		92	25		de sable, gris foncé	·					
-35					P	10,67		1				Silt argileux, traces	1					
	-11	112			Ц	44.00	CF-15 B		95	26		de sable et gravier, gris foncé, compact		H	Ħ	t	Π	\top
-	-				Χ	11,28	CF-16		95	22		Silt argileux, traces de sable, gris foncé,	1					
-40	12 12,00	1	UNITE INTERMEDIAIRE: Silt	R	\overline{V}	11,89	CE-17	1	92	10	1	compact. Silt aroleux, tracer	4	\vdash	₩	+	H	26
		X	argileux, traces de sable et gravier.		$\left(\right)$	12,50	в		F			de sable, gris foncé,						
	-13		-	h	Х		CF-18 B		92	10		compact. Silt argileux, traces	1	\vdash	$\downarrow\downarrow$	+	₽	126
	-			k	Х	13,11	CF-19	1	100	7		de sable, gris foncé, compact.						
-45	Argle siteuse, 104																	
	[14			k	Δ		CF-20 B		100	<i>'</i>		gravier, gris -	1	\square	Π	T	T	\square
-	-			ł	Х	14,48	CF-21	1	100	5		orunätre, compact. Argile silteuse,	1					
Rer	narques:							-	-			Ţy	pe de sondage: Fora	ige au	diam	ant	<u>. </u>	
												Eq	upement de forage: pe de marteau: Auto	matiqu	drill (je	31-1	•	
Ter	Date du rapport: 2022-10-31																	

Figure A1-1 : Rapport de sondage FSZ-06.

\\sir	ifra0-app(02\Log	iciels\Geotec80\Logo\Trans	вро	R	ÆP	PO	R	Tl	DE	SOND	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FS	Z-06				_
									Date	e du so	ndage: 2021	-06-07"	Profondeur tot	ale: 3	4,13	m		
End	roit: Saint	Anaclet	1						Coo	rdonné I NAD 8	es (m): 537 3 (Zone:6) 233	1372,12 m (Y) 3658,68 m (X)	Élévation: (Approximatif)	2	5,56	m (2	9	
_			COUPE GÉOLOGIQUE				_		É	CHAN	TILLONS				E	SS/	AIS	
Prof. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	ious-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Est péné 25	sai d trati 50 7	e s on	cisso 50 10	mètre 10150
-	-			n	F	-	в	"				traces de sable, gris		Ť	Ħ			+
Ł				ł	X	15,24	CF-22 B		100	2		- brunätre, läche à compact. Aroile siteuse					×	
Ł	-16			ľ	Χ	16,00	CF-23	1	100	4		traces de sable, gris - brunâtre. un peu		Ħ	Π	Ħ	60	
-55	-17			ł	Þ	16,76	CE-24	1	100	2		rougeâtre, lâche à compact.					Ĺ	
-				ľ	Ê	17.52	В			-		traces de sable, gris brunâtre, lâche à					4 6	
-	-18			ł	Δ		CF-25 B		100	4		compact. Argile silteuse,		\vdash	+		+	
- 60				ł	Х	18,29	CF-26	1	100	7		traces de sable et gravier, gris					*	
-	-19	44		ł	X	18,90	CF-27	1	100	5		à lâche à compact. Argile silteuse,		H	Ħ	H	52	
-65	5,56	-		ł	X	19,51	CF-28	1	100	1		traces de sable et gravier, gris					×	
Ē	20,00		UNITE INFERIEURE: Argile silteuse, traces de sable.		X	20,12	CF-29	1	100	6		brunâtre, très lâche à lâche à compact. Arnile siteuse					*	
F	-21				X	20,73	CF-30	1	100	1		traces de sable et gravier, gris		\vdash	\square		+	
-70		••••			X	21,34	B CF-31	1	100	2		brunâtre, très lâche à lâche à compact.					¥	
ŧ	-22				Ē		в	1				traces de sable et gravier, gris		H	Ħ	H	47	+
- -75	-			ł		22.86						brunâtre, très lâche à lâche à compact.					×	
È.				ł	Δ		CF-32 B		98	1		Argile silteuse, traces de sable et					49	
È.	-24											brunåtre, très läche à läche à compact.		\vdash	\square		++	
-80	Ē	:::			X	24,38	CF-33		100	2		Argile silteuse, traces de sable, gris					*	
Ŀ	-25			ł	\cap		В	1				orunatre, lache a compact. Aroile silteuse		H	+	$\left \right $	54	+
-85				ł	L							traces de sable, gris brunâtre, lâche à					\uparrow	
È	-26	:::			Х	25,90	CF-34 B		100	2		compact. Argile silteuse, traces de sable et					48 ×	
Ł	-27											gravier, gris brunåtre, läche à		\parallel			-	
-90	-	••••			$\overline{\nabla}$	27,43	CE-35		100	2		compact. Argile silteuse,					*	
E	-28				$^{\wedge}$		В			-		brunâtre, très lâche à lâche à compact		\vdash	+		+	+
-				ł								Argile silteuse, traces de sable et						
- 30	-29			ł	Х	28,96	CF-36]	100	3		gravier, gris brunâtre, très lâche		Π	Π	Π	Π	
F	-30 ^{-4,44}			Ł				1				Argile silteuse, traces de sable et		\square	\parallel		\downarrow	
400					┢	30,48						gravier, gris brunâtre, très lâche						
-	-31				Å		CF-37 B		36	17		à láche à compact. Argile silteuse,		\vdash	+		+	+

Figure A1-2 : Rapport de sondage FSZ-06 (suite).

\\si	infra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	₩P	PO	R	ΤI	DE	SONE	DAGE							
Lo	calisation gé	nérale:	Diverses Municipalités - Bas	St-I	Laur	ent			Dos	sier: \$	184(437)19		Sondage: FS	Z-06				_	٦
									Date	du so	ndage: 2021	1-06-07"	Profondeur tot	ale: 34	1 ,13	m			
E	croit: Saint	Anaciet							Coo	rdonné	es (m): 537	1372,12 m (Y)	Élévation: (Approximatif)	25	5,56	m (2	Z)		
			COUPE GÉOLOGIQUE						Ê	CHAN	TILLONS		(Approximal)		E	SS	AIS	_	
9.5	Élév.(m)/ Prof.(m)	Piézo- métrie	Description		¥	Ē	PN0	-éch	d o	N	Nicoups	Description	Observations	Ess	ai d	le s	cise	iomi	ètre
۲, E			stratigraphique	ပိ	4	Prof.	Type Call	Sous	SS €	RQD		des échantillons	de chantier	25	trati 50 7	5	50 1	1001	50
F	E			Γ	Π							brunâtre, très lâche à lâche à compact.				Π			
405	-32					32,00						Argile silteuse, traces de sable, gris		H	+	H	+	+	Н
È.	t i						CF-1		0	198		brunâtre, très lâche							
ŀ	-33											a lache a compact. Silt sableux, un peu		Щ.		Ц	+	+	Ц
410	F											d'argile et gravier, compact.							
+	E.																		
Ł	34,13		FIN DU FORAGE	t	1														
ŀ	È.																		
415	-35													H	Ħ	Ħ	t	Ħ	Η
F	E																		
Ł	-36													H	\vdash	H	+	+	Н
420																			
ŀ	-37													\vdash	\vdash	Н	+	+	Н
F	E																		
t_	-38													Щ		Ц	\downarrow		Ц
- 20	-																		
ŀ	-																		
F														Π		Π	Τ	Г	Π
430	t i																		
F	-40													H	T	Ħ	T	T	П
ŀ	E																		
435	-41													H	+	H	+	+	Н
ŀ	;																		
Ē	-42													\vdash	\vdash	Н	+	+	Н
ŀ	E																		
440	-43													Ш		Ц			Ц
ŀ	-																		
t	ŧ.,																		
445	-44													$ \uparrow$		Ħ	T	Π	Π
t	Ē																		
ŀ	-45													┝┼╴		H	+	+	Η
450	È i																		
F	46													\vdash		H	+	+	Н
t	E																		
	-47													Щ		Ц	+	+	Ц
465	Ē																		

Figure A1-3 : Rapport de sondage FSZ-06 (suite).

\\sir	nfra0-app(002\Log	iciels\Geotec80\Logo\Trans	spo	R	ЖP	PO	R	ΤI	DE	SONE	DAGE																		
Loc	alisation gé	énérale:	Diverses Municipalités - Bas-	St-I	Laur	ent		_	Dos	sier: 3	384(437)19		Sondage:	FSZ	-06A			_												
-									Date	e du so	ndage: 2021	1-06-07"	Profondeu	r totai	e: 29	m														
End	roit: Saint	Anaciet	i de la constante de						Coo	rdonné INAD 8	es (m): 537	1372,12 m (Y)	Élévation: (Approxim	atif)	25,	56 m	(Z)													
-			COUPE GÉOLOGIQUE					_	Ê	CHAN	TILLONS			T		ES	SAI	s												
of. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ę	Į.	(m) -	e-No libre	s-éch	-dno	N	N coups	Description	o Observation	ns	Essa	i de	Sci	ssoi	nètre											
Ł			stratigraphique	ŏ	•	Prof	Typ Cal	Sour	A S S S S S S S S S S S S S S S S S S S	RQD		des echantilio	ons de chantie	<u> </u>	25 5	0 75		0 100	1150											
ŀ	t i																													
È.	Ē.																													
ŀ	E'													Γ			Π		Τ											
- 5	-																													
ŀ	- 2													F		+	Π	Ħ	\top											
Ē	E																													
-10	- 3													ŀ		+	Ħ	H	+											
F	Ē																													
ŀ	4													ŀ	+	+	H	H	+											
-15	-																													
Ł	5 5,00 TM-39 33 de sable, aris foncé.																													
F	5 5 5.00 TM-39 33 Silt argileux, traces de sable, gris foncé.																													
- 20	TM-39 33 de sable, gris foncé.																													
-	F																													
Ł	Ē,													L																
ŀ																														
-25	F.																													
ŀ						8,00	TM-40		74			Silt argileux, trac de sable, oris for	ces noé -	Γ			Π		\top											
È.	<u> </u>					8,61	714.44		82			horizon noir, seo	1. tière																	
-30	- 9						100-41		62			organique.		F		+	Ħ	H	+											
È.	E					9,40	TM-42		71	1		de sable, gris for	ncé -																	
ŀ	-10					10,00						horizon noir. Silt argileux, trac	tes	ŀ	+	+	H	H	+											
-35	-						TM-43		00			de sable, gris for horizon noir. trop	ncé p																	
ŀ	-11											dur, enfoncé de fiole 71.	19".	ŀ	+	+	H	\vdash	+											
ţ.	E											Silt argileux, trac de sable et gravi	tes ier,																	
-	-12											gris foncé.		╞			\mathbb{H}		+											
-40	E																													
ŀ	-13													Ļ			\square	Ц												
F	È .																													
-45	Ē.																													
-	["				1	14,00	TM-44		100			Argile cilteuce, traces de sable,	gris	Γ																
È	È.											brunâtre, vraime plus molle.	ent																	
Ren	narques:			_	-				_				Type de sondage: l	Forag	e au o	diama tritt C	int T.e		-											
													Type de marteau: /	utom	natique	2 H G	0													
Ter	hoicieo: lá	rémia Ea	bach		Vé	cifió na						Appro	unie ou rapport: 20	22-10	9-31				Date du rapport: 2022-10-31											

Figure A1-4 : Rapport de sondage FSZ-06A.

\\sir	nfra0-app0	002\Log	iciels\Geotec80\Logo\Trans	spo	R	ÆP	PO	R	TI	DE	SOND	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FS	Z-06A				
	kalt Calat	Annelat							Date	du so	ndage: 2021	1-06-07"	Profondeur tot	ale: 29	m			
En	TOIL Gaine	Anacier							Coo	rdonné NAD 8	es (m): 5371 3 (Zone:6) 233	1372,12 m (Y) 3658,68 m (X)	Élévation: (Approximatif)	25	,56 n	n (Z))	
			COUPE GÉOLOGIQUE					_	É	CHAN	TILLONS				ES	SA	IS	
Prof. (p	Elév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	Sous-éch	Récup.	N RQD	N coups	Description des échantillons	Observations de chantier	Ess pénét 25 5	ai de ratio 0 75	nSc	isso 50 1(omètre 20150
F	5			F	T											t	Π	
È.	-																	
ŀ	-16					15,85	PS-45		61			Argile silteuse, traces de sable, gris		H	Π	t	Π	
-55	-				Ĩ			1				brunätre, läche ä compact.						
ŀ	-17					16,99	PS-46		85			Argile silteuse,		H	H	t	Ħ	
F	Ē					17,60						brunâtre.						
t_	-18						PS-47		90			traces de sable, gris		H	\vdash	╈	+	
F	-											brunätre.						
È.	-19													\vdash	\vdash	+	+	+
ŀ	-					19,50			⊢			Argile silteuse,						
-65	-20						PS-48		95			traces de sable, gris brunâtre, lâche à		\vdash	\vdash	+	⊣	+
ŀ	Ē					20,12	PS-49		89			compact.						
ţ.	-21				Ĩ			1				traces de sable, gris		Щ.		\downarrow	Н	
-70	Ē											compact.						
ţ.	-22													Ш		\downarrow	\square	
ŀ	-																	
-75	E.,,																	
Ł	1					23,01	PS-50		93			Argile silteuse, traces de sable, gris				Ι		
F	-					23,62	PS-51		100			brunâtre, lâche à compact.						
-80	-24				1							Argile silteuse, traces de sable, gris		\square		T	Π	
-	-											brunåtre, läche ä						
ţ.	-25											est parts.		H	H	t	Ħ	
ŀ	E																	
-85	-26													H	H	t	Ħ	
Ł	Ē																	
F	-27					27,00	00.00		400			Argile silteuse,		H	\vdash	+	\mathbb{H}	
-90	F					27.61	P3-02		100			traces de sable, gris brunâtre, lâche à						
F	-28						PS-53		93			compact. Argile silteuse,		\vdash	\vdash	+	⊢	
Ē												traces de sable, gris brunâtre, lâche à compact.						
-96	-29													\square		t	Π	\square
	-																	
_	-30													H		\dagger	\ddagger	+
400	E																	
_	-31													\vdash	\vdash	+	+	+

Figure A1-5 : Rapport de sondage FSZ-06A (suite).

\\sir	nfra0-app0	02\Log	iciels\Geotec80\Logo\Trans	spo	R	×	₽Đ	R	T I	DE	SONE	DAGE							
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Laur	rent			Dos	sier: 3	184(437)19		Sondage: FS	Z-068					1
									Date	e du so	ndage: 2021	-06-07"	Profondeur to	tale: 19) m				
En	oron: Saint	Anaciet	l de la constante de						Coo	rdonné	es (m): 537	1372,12 m (Y)	Élévation: (Approximatif	25	i,56 i	m (2	9		
			COUPE GÉOLOGIQUE					_	É	CHAN	TILLONS				E	ss/	NS		
of. (p)	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ş	X	(m) -	e-No	-éch	dng 🖓	N	N coups	Description	Observations	Ess	ai d		ciss	omi	être
ď			stratigraphique	ŏ	•	Prof	d Typ	Sout	4 C 4 C	RQD		des echantilions	de chantier	25 (50 7	5	50 1	10015	50
ŀ	ŧ –																		
Ľ.	Ē,													Ш					
ŀ	E '													Π	Π		Τ		Π
- 6	-																		
ŀ	2													H	Π	T	Τ	Π	П
F	t i																		
-10	- 3													Ħ	Ħ	T	+	Ħ	Η
ŀ	E																		
È.	- 4													H	Ħ	\uparrow	+	t	Η
-15	E																		
È.	- 5					5,00						Silt argileux, traces	-	H	H	+	+	+	Η
ŀ	TM-54 54 de sable et gravier, gris foncé.																		
														\vdash	\mathbb{H}	+	+	+	Η
ŀ	t i																		
F	- 7													\vdash	Η	+	+	+	μ
28	E																		
-	- 8					8.00						City and	_	Щ	Ц	4	+	\perp	Ц
È.	Ē					0,00	TM-55		33			de sable et gravier,							
ŀ	Ε,							1				gris fonce horizon noir.		Ш	Ш				
-30	5					9.40						Citt amileux, traces	_						
ŀ	E.					3,40	TM-56		84			de sable et gravier,							
È.	E					10,01	TM-57	1	84			gris tonce - horizon noir. fiole 69,		Π	Π	Т	Т	Γ	Π
-35	È.								-			compact. Silt argileux, traces	-1						
F	-11 [de sable, gris foncé		Ħ	Π	T	T	Π	Π
Ł	E																		
-40	-12													H	\exists	\uparrow	+	Ħ	Η
ŧ	E																		
F	-13													\vdash	\mathbb{H}	+	+	+	Η
45	F																		
F	-14					14,00						Argile silteuse,	-	\vdash	⊢	+	+	+	Н
	È i					14.00	TM-58		100			traces de sable, gri brunâtre, plus moli-	5						
Pro	-					14,01	PS-59		97			lâche à compact.	na da contara: Err						Ц
riter	narques:											É	quipement de forage	: Versa	drill	GT-	6		
												D	ate du rapport: 2022	10-31	~				
Tec	hnicien: Jé	rémie Fe	rland		Vé	rifié pa	ir:					Approuv	é par:						1

Figure A1-6 : Rapport de sondage FSZ-06B.

\\sir	nfra0-app0)02\Log	iciels\Geotec80\Logo\Trans	spo	R	×₽	PO	R	ΤI	DE	SONE	DAGE							
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Laur	ent			Dos	sier: 2	184(437)19		Sondage: FS	Z-068	в				
E~	trait Calat	Anaclat							Date	du so	ndage: 2021	1-06-07"	Profondeur tot	ale: 1	9 m				
	aron. Gaine	Anacier	•						Coor	rdonné NAD 8	es (m): 537 3 (Zone:6) 233	1372,12 m (Y) 3658,68 m (X)	Élévation: (Approximatif)	2	5,5	6 m ((Z)		
-			COUPE GÉOLOGIQUE						Ê	CHAN	TILLONS					ESS	AIS	1	
of. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ę	M	(m) -	e-No libre	s-éch	cnb.	N	N coups	Description	Observations	Es	sai	de	Scis	som	iètre
å			stratigraphique	ŏ	"	Prof	47 S	Sou	້	NQU		des echanonons	de chander	25	50	75	50	1001	150
F	ŧ.											Argile silteuse, traces de sable, gris							
F	-16											brunâtre. , lâche à compact.		Ш					
È.																			
-55	E.,																		
È.	Ε"					17,00	PS-60		100			Argile silteuse, traces de sable, gris		Π	Τ			Τ	
ŀ	È.				2	17,61	PS.61		100			brunâtre. Argile silteuse,							
-60	-18											traces de sable, gris brunâtre.		Π			Π	Τ	
t	-																		
ŀ	-19													Π	T		Π	T	Π
-65	-																		
ŀ	-20													Ħ	t	Π	H	t	Π
F	E																		
270	-21													H	+		H	$^+$	+
F	Ē																		
ţ.	-22													H	+	+	H	+	+
ŀ	E																		
-75	-23													H	+	+	H	+	Η
Ł	È																		
F	-24													H	+	+	H	+	+
-80	ŧ –																		
ŀ	-25													\vdash	+	+	H	+	+
Ē	-																		
-85	-26													\vdash	+	+	H	+	+
F	-																		
t	-27													\vdash	+	+	\vdash	+	+
-90	E																		
ţ.	-28													Щ	+	\downarrow	Ц	+	\downarrow
ŀ	E																		
-95	-29													Щ	\downarrow	\downarrow	Ц	\downarrow	\square
E	-																		
F	-30																		
400	È																IT		
-	- -																		
Ł	-31																	Í	\square

Figure A1-7 : Rapport de sondage FSZ-06B (suite).

\\si	nfra0-app(002\Log	jiciels\Geotec80\Logo\Tran	spo	R	A	PO	R	T I	DE	SONE	DAGE								
Lo	calisation gé	enérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	384(437)19		Sondage:	FSZ	Z-060	;				-
	desite e staat								Date	e du so	ndage: 2021	-06-07"	Profonder	ur tota	ale: 2	7,4 1	m			
	droit: Saint	-Anacle	L Contraction of the second seco						Coo	rdonné	es (m): 537	1372,12 m (Y)	Élévation: (Approvin	: Aite	2	5,56	m (Z)		
			COUPE GÉOLOGIQUE		Γ				É	CHAN	TILLONS	3636,66 m (A)	(Approxin	auty		E	SS	AIS		-
of. (pi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ep	Ħ	<u>E</u>	Pro Pro	éch	ġ.	N	N coups	Description	n Observatio	ons	Est	sai d	ie	ciss	som	ètre
P			stratigraphique	ပိ	ц,	Prof.	Call Call	Sous	8 8€	RQD		des échantille	ons de chanti	er	péné 25	trati	ion 15	50 1	1001	50
	2																Π			
ŀ	ţ.																			
F	F 1														\vdash	+	H	+	t	Ħ
- 5	Ē																			
F	2														\vdash	+	H	+	+	Η
ŀ	È.																			
-10	- 3														\vdash	+	Н	+	╀	Н
Ł																				
F																				
Ŀ.																				
F	15 5 5.00 Silt argileux, traces																			
Ł	5 5,00 TM-62 89 Silt argileux, traces de sable, gris foncé,																			
F	ŧ.								\vdash	1		compact.								
-20	Ē																Π		Γ	Π
ŀ	È																			
Ŀ	- 7														H	+	H	$^+$	t	Η
-25	Ē																			
t	8				77	8,00						Silt argileux, tra	ces		\vdash	+	H	+	+	Н
ŀ	ŧ.					9.61	TM-63		69			de sable, gris fo fiole 87, compa	oncé ct.							
-30	- 9					0,01	TM-64		95			Silt argileux, tra de sable, gris fo	oes moé -		\vdash	+	H	+	╀	Н
-	E					9,40	-					horizon noir fiole compact.	e 67,							
È.	-10						TM-65		8/			Silt argileux, tra	ces		\square	+	Ц	+	+	Ц
ŀ	F											compact.	ince ,							
-35	E11														\square		Ц			
ŀ	È.																			
Ē	F.,																		12	
-40	E ¹²																Π		×	Π
Ē	t i																			
ŀ	-13														\vdash	+	Ħ	+	X	Η
-45	E																			
F	-14														\vdash	+	\mathbb{H}	ᅷ	104	Η
Ē	ŧ																			
-	<u>t</u>												Tupe de condecou	Eerc			Ц			Ц
Rei	marques:												Équipement de for	rage:	ye au Versi	adrill	GT	-6		
													Date du rapport: 2	022-1	10-31	e				
1 Ter	chnician: lá	rémie Ee	hand		VA	rifié na	10 C					Anna	nuvé nar:							

Figure A1-8 : Rapport de sondage FSZ-06C.

\\sir	fra0-app0)02\Log	iciels\Geotec80\Logo\Tran	spo	R	А́Р	₽Đ	R	ΤI	DE	SONE	DAGE					
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Laur	ent			Dos	sier: 2	84(437)19		Sondage: FS	Z-06C			
									Date	e du so	ndage: 2021	-06-07"	Profondeur tot	ale: 27	,4 m		
End	roit: Saint	Anaclet	t.						Соо	rdonné I NAD 8	es (m): 5371 3 (Zone:6) 233	1372,12 m (Y) 3658.68 m (X)	Élévation: (Approximatif)	25	,56 m	(Z)	
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS				ES	SAIS	
Prof. (pi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	rof. (m)	Type-No Calibre	sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Essa pénét 25 5	ai de ratior	Scisso	omètre 00150
F				F	Η	-									Ħ	64	
ŀ	-16															×	
-55																×	
	-17															46 ×	
- -60 -	-18															50 X	
	-19															52 X	
-65	-20													\square		47	
-	-21																
Ē	-22															×	
-75	-23															47 ×	
																49 ×	
- -80	-24															53 ×	
	-25															54 ×	
-85 - -	-26															48 ×	
- 90	-27															49 X	
Ē	-28																
-95	-29																
Ę	-30																
- 400																	
ŀ	-31													\vdash			\square

Figure A1-9 : Rapport de sondage FSZ-06C (suite).

Annexe A2 : Terrain

Figure A2-1 : Piézocône préliminaire de Saint-Anaclet-de-Lessard	165
Figure A2-2 : Résultats de l'analyseur de battage à Saint-Anaclet-de-Lessard	166
Figure A2-3 : Piézomètres à Saint-Anaclet-de-Lessard	167
Figure A2-4 : Résultats de l'essai sismique de type « downhole » à Saint-A	naclet-de-
Lessard	168

Figure A2-1 : Piézocône préliminaire de Saint-Anaclet-de-Lessard.

Trans	orts Québec 🖥	Formulaire d'essai							Formulaire: FGG-086				
Servi	ce géotechnique e	Résultats - Analyseur de battage						ge	2015-03-11 Page 1 de		1 de 1		
	# Projet :	9											
	Localisation :	Recherche BSL				_							
(Chargé de Projet :	Antony Gagné				_							
	Analysé par :	Antony Gagné				_							
	# Fam	ES7.06							- t		2021	06.01	
	# Forage :	F32-00				-		D	ate :		2021-	06-01	
	Operateur SP1 :		eremie Feria	ano		-							
	Cie Forage :	Explora-Sol					Туре	Marte	au :	Automatique			
	# Foreuse :					-	#	Marte	au :				
	Foreur :	Maurice Gagné				_	Poids	: Mart	eau:	63.5 kg			
	Drof Dárrat (m)	F. (%)	C										
	Prof. Depart (m)	E _R (70)	1.25						CE				
CF-5	3.05	81.0%	1.35										
CF-6	3.81	78.0%	1.30	0.0	30 0).90	1.00	1.10	1.20	1.30	1.40	1.50	1.60
CF-7	4.57	79.0%	1.32										
CF-0	6.09	80.0%	1.32	2.00		++	_		\vdash	++		\rightarrow	-
CE-10	6.85	80.5%	1.33										
CF-10	7.61	81.3%	1.34	4.00		++	_	\vdash	\vdash	┥┥	\square	++	-
CF-12	8.38	79.5%	1.33							II			
CF-13	9.14	82.2%	1.37	6.00		++	+	\vdash	\vdash	+	\vdash	++	-
CF-14	9.91	82.7%	1.38										
CF-15	10.67	79.9%	1.33	8.00		\square			\vdash				
CF-16	11.28	80.1%	1.34	10.00									
CF-17	11.89	81.2%	1.35	10.00		Π			\square	•			
CF-18	12.50	80.0%	1.33	12.00									
CF-19	13.11	80.1%	1.34	12.00									
CF-20	13.72	83.1%	1.39	14.00		\square			\square				_
CF-21	14.48	86.1%	1.44										
CF-22	15.24	84.3%	1.41	16.00		\square	_		\vdash	++	4	\rightarrow	-
CF-23	16.00	82.1%	1.37										
				18.00									
Moyenne : 81.1% 1.3													
Nemarq	uc3 .												

 E_R : Energy Ratio (Rapport d'énergie) C_E : Facteur de correction

Figure A2-2 : Résultats de l'analyseur de battage à Saint-Anaclet-de-Lessard.

Figure A2-3 : Piézomètres à Saint-Anaclet-de-Lessard.

Figure A2-4 : Résultats de l'essai sismique de type « downhole » à Saint-Anaclet-de-Lessard.

Annexe A3 : Essais triaxiaux

Figure A3-1 : Sommaire des 3 essais triaxiaux réalisés entre 8,16 et 8,9	91 m à Saint-
Anaclet-de-Lessard.	170
Figure A3-2 : Sommaire des 3 essais triaxiaux réalisés entre 14,20 et 14,	53 m à Saint-
Anaclet-de-Lessard.	171
Figure A3-3 : Sommaire des essais triaxiaux réalisés aux contraintes en p	place à Saint-
Anaclet-de-Lessard.	172
Figure A3-4 : Module E _u lors de l'essai triaxial de 8,18 à 8,28 m	173
Figure A3-5 : Module Eu lors de l'essai triaxial de 9,69 à 9,79 m.	174
Figure A3-6 : Module Eu lors de l'essai triaxial de 14,20 à 14,30 m	175
Figure A3-7 : Module E _{ll} lors de l'essai triaxial de 17.14 à 17.25 m	176

Figure A3-1 : Sommaire des 3 essais triaxiaux réalisés entre 8,16 et 8,91 m à Saint-Anacletde-Lessard.

Figure A3-2 : Sommaire des 3 essais triaxiaux réalisés entre 14,20 et 14,53 m à Saint-Anaclet-de-Lessard.

Figure A3-3 : Sommaire des essais triaxiaux réalisés aux contraintes en place à Saint-Anaclet-de-Lessard.

Figure A3-4 : Module E_u lors de l'essai triaxial de 8,18 à 8,28 m.

Figure A3-5 : Module E_u lors de l'essai triaxial de 9,69 à 9,79 m.

Figure A3-6 : Module E_u lors de l'essai triaxial de 14,20 à 14,30 m.

Figure A3-7 : Module E_u lors de l'essai triaxial de 17,14 à 17,25 m.

Annexe A4 : Essais œdométriques

Figure A4-1 : Essai œdométrique à Saint-Anaclet-de-Lessard à 8,83 m de profondeur. Figure A4-2 : Déformation-contrainte de l'essai œdométrique à 8,83 m à Saint-Anaclet-Figure A4-3 : Contrainte - module œdométrique de l'essai à 8.83 m à Saint-Anaclet-de-Figure A4-4 : Essai œdométrique à Saint-Anaclet-de-Lessard à 9,77 m de profondeur. Figure A4-5 : Déformation-contrainte de l'essai œdométrique à 9.77 m à Saint-Anaclet-Figure A4-6 : Contrainte - module œdométrique de l'essai à 9.77 m à Saint-Anaclet-de-Figure A4-7 : Essai œdométrique à Saint-Anaclet-de-Lessard à 14,16 m de profondeur. Figure A4-8 : Déformation-contrainte de l'essai œdométrique à 14.16 m à Saint-Anaclet-Figure A4-9 : Contrainte - module œdométrique de l'essai à 14,16 m Saint-Anaclet-de-Lessard 186 Figure A4-10 : Essai œdométrique à Saint-Anaclet-de-Lessard à 17,34 m de profondeur. Figure A4-11 : Déformation-contrainte de l'essai œdométrique à 17,34 m à Saint-Anaclet-Figure A4-12 : Contrainte - module œdométrique de l'essai à 17,34 m à Saint-Anaclet-de-Figure A4-13 : Essai œdométrique à Saint-Anaclet-de-Lessard à 23,40 m de profondeur. Figure A4-14 : Déformation-contrainte de l'essai œdométrique à 23,40 m à Saint-Anaclet-Figure A4-15 : Contrainte - module œdométrique de l'essai à 23.40 m à Saint-Anaclet-de-Figure A4-16 : Essai œdométrique à Saint-Anaclet-de-Lessard à 27.90 m de profondeur. Figure A4-17 : Déformation-contrainte de l'essai œdométrique à 27,90 m à Saint-Anaclet-Figure A4-18 : Contrainte - module œdométrique de l'essai à 27.90 m à Saint-Anaclet-de-

Figure A4-1 : Essai œdométrique à Saint-Anaclet-de-Lessard à 8,83 m de profondeur.

Figure A4-2 : Déformation-contrainte de l'essai œdométrique à 8,83 m à Saint-Anaclet-de-Lessard.

Figure A4-3 : Contrainte - module œdométrique de l'essai à 8,83 m à Saint-Anaclet-de-Lessard.

Figure A4-4 : Essai œdométrique à Saint-Anaclet-de-Lessard à 9,77 m de profondeur.

Figure A4-5 : Déformation-contrainte de l'essai œdométrique à 9,77 m à Saint-Anaclet-de-Lessard.

Figure A4-6 : Contrainte - module œdométrique de l'essai à 9,77 m à Saint-Anaclet-de-Lessard.

Figure A4-7 : Essai œdométrique à Saint-Anaclet-de-Lessard à 14,16 m de profondeur.

Figure A4-8 : Déformation-contrainte de l'essai œdométrique à 14,16 m à Saint-Anaclet-de-Lessard.

Figure A4-9 : Contrainte - module œdométrique de l'essai à 14,16 m Saint-Anaclet-de-Lessard.

Figure A4-10 : Essai œdométrique à Saint-Anaclet-de-Lessard à 17,34 m de profondeur.

Figure A4-11 : Déformation-contrainte de l'essai œdométrique à 17,34 m à Saint-Anaclet-de-Lessard.

Figure A4-12 : Contrainte - module œdométrique de l'essai à 17,34 m à Saint-Anaclet-de-Lessard.

Figure A4-13 : Essai œdométrique à Saint-Anaclet-de-Lessard à 23,40 m de profondeur.

Figure A4-14 : Déformation-contrainte de l'essai œdométrique à 23,40 m à Saint-Anaclet-de-Lessard.

Figure A4-15 : Contrainte - module œdométrique de l'essai à 23,40 m à Saint-Anaclet-de-Lessard.

Figure A4-16 : Essai œdométrique à Saint-Anaclet-de-Lessard à 27,90 m de profondeur.

Figure A4-17 : Déformation-contrainte de l'essai œdométrique à 27,90 m à Saint-Anaclet-de-Lessard.

Figure A4-18 : Contrainte - module œdométrique de l'essai à 27,90 m à Saint-Anaclet-de-Lessard.

Annexe B : Trois-Pistoles

Annexe B1 : Rapport de sondage

Figure B1-1 : Rapport de sondage FSZ-01	197
Figure B1-2 : Rapport de sondage FSZ-01 (suite)	198
Figure B1-3 : Rapport de sondage FSZ-01 (suite)	199
Figure B1-4 : Rapport de sondage FSZ-01B.	200
Figure B1-5 : Rapport de sondage FSZ-01B (suite)	201
Figure B1-6 : Rapport de sondage FSZ-01B (suite)	202
Figure B1-7 : Rapport de sondage FSZ-01C.	203
Figure B1-8 : Rapport de sondage FSZ-01C (suite).	204
Figure B1-9 : Rapport de sondage FSZ-01D.	205
Figure B1-10 : Rapport de sondage FSZ-01D (suite).	206
Figure B1-11 : Rapport de sondage FSZ-01D (suite).	207

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	Á	₽₽	R	T I	DE	SONE	DAGE							
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FS	Z-01					
En	ingit: Taska	Distala							Date	du so	ndage: 2021	-07-05"	Profondeur to	tale: 32 r	m				
	and Trois	Pistole	5						Coo	rdonné	es (m): 5333 3 (Zone:5) 18/	7088,11 m (Y) 4201.56 m (X)	Élévation: (Approximatif)	33,6	62 m	(Z)			
			COUPE GÉOLOGIQUE		Γ				É	CHAN	TILLONS	1201,00 m (A)		ESSAIS					
f. (bi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	e	ŧ	Ê	Pre No	-éch	ġ.	N	N coups	Description	Observations	Essa	i de	Scis	somètr		
۲, T	33.62	-	stratigraphique Surface du terrain naturel	8	÷	Prof.	Call Call	Sous	8€ 8€	RQD		des échantillons	de chantier	25 50	ation	50	100150		
	0,00		UNITÉ SUPÉRIEURE: Silt arriteur, traces de sable et	ľ	\mathbb{N}	0,00	CE-01	<u>A</u>	68	5		Terre végétale, noir.		\square		Π			
[t i		gravier.	K	\square		В	в		<u> </u>		organique.	1						
ŀ	Ł.			K	Þ	0,76			\vdash			Sable, traces de silt et gravier, brun,							
ŀ	F'	糠		n	M		CF-02 B		57	8		lâche. Présence de matière organique.	1	\square	Τ	Π			
- 5	ļ.			h	F	1,52		1				Silt argileux, traces	1						
ŀ	2	111		P	łХ		CF-03		69	16		gris brunåtre, låche.							
ŀ	-	••••		p	E	2.28	-					Présence de matière organique.							
t.	F			ľ	łX	2,20	CF-04		80	21		Silt argileux, traces de sable et gravier.	1						
[- 3	111		D	E		в					gris, un peu rosé		\square	_	Ц	\rightarrow		
Ľ.	Ł			ľ	N	3,05	CF-05		77	23		maurice), compact.	1						
ŀ	ŀ	H			\mathbb{P}		в		\vdash			Silt argileux, traces de sable et gravier,							
ŀ	- 4	111		ŀ	ł	3,81	CE-06	1	74	21		gris, compact. Silt argileux, traces	4	\vdash	+	\vdash	++		
ŀ	t i	111		0	₽		B		<u> </u>	-		de sable, gris,							
-15	Ł			ĺ	\mathbf{k}	4,57			\vdash			Silt argileux, traces	1						
ŀ	- 5			ľ	M		CF-07 B		74	20		de sable, gris, compact.		\vdash	+	\mathbb{H}	++		
Ľ	ŀ	W		l		5,33		1	F			Silt argileux, traces de sable, gris	1						
Į.	t i						CF-08 B + N		0	25		compact.	J I						
-20	- 6			ŀ		6.10			Þ			de sable, gris,		H	+	\mathbb{H}	++-		
ŀ	-			ŀ	łХ	0,10	CF-09		80	19		compact. Argile et silt, traces	1						
ŀ	20.02	•[•]•		ł	ł	6,71	в		⊢			de sable et gravier, gris, compact.	1						
ŀ	7,00	111:	UNITÉ INTERMÉDIAIRE: Silt	ł	ŧΧ		CF-10 B		75	15		Argile et silt, traces	1	H	+	H	++		
1	Ł		argieux, traces de sable et gravier.	K	Þ	7,32	CE 11	1		25		gris, compact.	1						
[*	F			K			B		04	20		Argile et silt, traces de sable, gris,							
ŀ	- 8			K		7,93	CF-12		0	27		compact. Argile et silt, traces	1	\square	+	Π			
ŀ	t.	 		ľ		8.54	B + N					de sable, gris. plus							
ŀ	Ł.			K	X	0,01	CF-13		79	16		compact.	1						
-30	-			K	É	9,15	6		\vdash			Argile et silt, traces de sable et gravier,							
ŀ	ļ.	11:		K	ļ		CF-14 B + N		0	19		gris. plus maléable et collante, compact.	1						
t i	-10			K		9.91			F			Argile et silt, traces	1	Ш		Ц			
[ł	••••		K	X	-,	CF-15		90	17		compact.	J						
-35	F			ľ.	E	10.67	0		\vdash			Argile et silt, traces de sable, gris,							
ŀ	-11			K	X	10,67	CF-16		87	17		compact. Argile et silt, traces	1	$\mid \mid \mid$	+	\square	++		
	t i	11/		1	P		В					de sable et gravier,							
	Ł			1	N	11,43	CF-17		100	16		Argile et silt, traces	1						
- Res	narques:			n	$\langle \rangle$		В	L				de sable, gris	e de sondage: Fors		iame	1 I			
	an que a.											Équ	ipement de forage: e de marteau: Auto	Versad	rill G	r-6			
												Dat	e du rapport: 2021-	11-23					
Tec	hnicien: Jé	remie Fe	erland		Vé	rifié pa	IT:					Approuvé	par:						

Figure B1-1 : Rapport de sondage FSZ-01.

\\si	\\sinfra0-app002\Logiciels\Geotec80\Logo\TransportAdPPORT DE SONDAGE Localisation générale: Diverses Municipalités - Bas-St-Laurent Dossier: 384/437/19 Sourtane: FSZ-01																				
Loc	alisation gé	inérale:	Diverses Municipalités - Bas-	St-	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FS	Z-01					٦		
	dealle 🖛	_							Date	du so	ndage: 2021	-07-05"	Profondeur tot	ale: 3	2 m						
En	aroit: Trois	-Pistoles	s						Coo	rdonné	es (m): 5337 3 (Zone:6) 18/	7088,11 m (Y) 4201.56 m (X)	Élévation: 33,62 m (Z) (Approximatif)								
			COUPE GÉOLOGIQUE		Γ				É	CHAN	TILLONS		(ESSAIS							
Prof. (pi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	rof. (m)	ype-No Calibre	ous-éch	R écup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Es: péné	sai o trat	ie ion	Scis	somè	tre		
		41.00		h	-	•	B	00	-			brunåtre, compact.		25	50 /		-	10015	ή		
[F			K	\mathbb{N}	12,20	CE-18	1	03	13		aSilt argileux, traces de sable, alternance									
Ļ	t i	144		K	\square		В			10		gris et brun (rosé).									
ŀ	-13			K	b	12,95		1	\vdash			plus maléable, compact.		\vdash	+	\square	+	++	\neg		
ŀ	F			K	IX		CF-19 B		85	10		Argile silteuse, traces de sable, gris									
-45	t			ł	E	13.72		1	F			rosé, compact.									
ŀ	-14			k	1X	10,12	CF-20		100	8		Argile silteuse, traces de sable et		\vdash	+	$\left \right $	+	+	+		
ŀ	ļ.	1.		ł	Ľ		В					gravier, gris									
ŀ	Ł			ł	ĪV	14,48	CE-21	1	100	10		à compact.									
ŀ	-15	:::		ł			В					Argile silteuse, traces de sable, gris		\vdash	+	\square	+	++	-		
-50	t i			ł	b	15,24			\vdash			brunätre-rosé,									
ŀ	ŀ			ŀ	łX		CF-22 B		100	8		compact. Argile silteuse,									
ŀ	-16	••••		ŀ	E	16.00	-		Þ			traces de sable, gris brunâtre-rosé		\vdash	+	\square	+	++			
ŀ	Ł			l	łX	10,00	CF-23		100	4		compact.									
1	-	•••			P		В		\vdash			Argile silteuse, traces de sable, gris									
-55	L17	•••			∇	16,76	CE-24	1	100	6		brunätre, läche à		\square	\perp	Ц	_	\square			
[Ł	10.		ľ	\mathbb{P}		B			°		Argile silteuse,									
	F			n	b	17,52			\vdash			traces de sable, gris brunâtre, lâche à									
Ļ	-18			n	X		CF-25 B		100	6		compact.		Ш							
-60	-	•••		K	E	18 28	-		Þ			traces de sable, gris									
ŀ	È i			K,	IX	10,20	CF-26		100	5		brunâtre, lâche à									
ŀ	Ł.			K	μ		В		⊢			Argile silteuse,									
ŀ	F	ļ.		K	∇	19,04	05.07	1	100			traces de sable, gris brunâtre alternance									
ŀ	t i			K	\mathbb{N}		B		100	•		gris et brunâtre à									
-65	L _{an}			ł	b	19,81			\vdash			compact.									
ŀ	F	•••		K	Х		CF-28 B		100	2		Argile silteuse, traces de sable, gris		Π	Т	Π	Т	Π	٦		
ŀ	t i	••••		K	E	20.57	-		Þ			. teinte de brun,									
ŀ.	ł.			K	ſΧ	20,57	CF-29		100	2		Argile silteuse,									
ŀ	-21			K	μ		В		⊢			traces de sable, gris , teinte de brun, eau				Π		Π			
-70	t	1		K	∇	21,34	CE 20	1	100	E		brune , très lâche à									
[- 11.62			K	\square		B		100	2		Argile silteuse,									
	22,00		UNITÉ INFÉRIEURE: Argile	Ľ	N	21,95	CE-31		100			traces de sable et gravier, gris		\square	Τ	Π		П	Π		
Ļ	Ł		gravier.	K	\square		В			Ŭ		brunätre, très läche									
-75	ŀ	444		K	X	22,56	CF-32		100	10		a lache à compact. Argile silteuse,									
ŀ	-23			K	\mathbb{A}	23.17	В					traces de sable, gris brunâtre, très lâche		Ħ	\top	Ħ	+	†	٦		
-	Ł			K	X		CF-33		100	1		à lâche à compact.									
-	F			K	K	23.78	В		⊢			Argile silteuse, traces de sable, gris									
-	-24	• • •		ł	X		CF-34		100	8		brunâtre, très lâche à lâche à compact		H	+	Ħ	+	+	۲		
-80	ŀ	1		K	Đ	24,38	в		\vdash			Argile silteuse,									
-	F	\cdot		ł	X		CF-35 B		52	0		traces de sable, gris brunâtre, très lâche									
9 L	1	ا م اما		и.	a i		-	1	L				1			1			_ 1		

Figure B1-2 : Rapport de sondage FSZ-01 (suite).

\\sinfra0-app002\Logiciels\Geotec80\Logo\Transport PORT DE SONDAGE Localisation générale: Diverses Municipalités - Bas-St-Laurent Dossier: 384(437)19 Sondage: FSZ-01																
Lo	calisation gé	inérale:	Diverses Municipalités - Bas-	St-L	au	rent		sier: 3	84(437)19		Sondage: FS	Z-01				
	deniti T an In	Bistole							Date	du so	ndage: 2021	1-07-05"	Profondeur tot	ale: 32 m		
"	uloit: Trois	Pistole	5						Coo	rdonné	es (m): 5337	7088,11 m (Y) 4201 56 m (X)	Élévation: 33,62 m (Z) (Approximatif)			
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	4201,36 m (X)	(Approximati)	ES	SAIS	
Prof. (pi)	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	rof. (m)	Type-No Calibre	sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Essai de pénétration 25 50 75	Scissomèt	
- - - - - - - - - - - - - - - - - - -	-26 -27 -28 -29					25,90	CF-36 B CF-37 B CF-38 B		100	2 8 29		à lâche à compact. Argile silteuse, traces de sable et gravier, gris brunâtre, très lâche à compact. Argile silteuse, traces de sable et gravier, gris brunâtre, très lâche à lâche à compact. Argile silteuse, traces de sable, gris brunâtre. très molle, très lâche à compact. Argile silteuse, traces de sable et gravier, gris brunâtre. très molle, très lâche à compact. Argile silteuse, traces de sable et gravier, gris brunâtre. très molle, très lâche à compact. Argile silteuse, traces de sable et gravier, gris brunâtre. très molle, très lâche à compact. Argile silteuse, très lache à compact. Argile silteuse, traces de gravier, gris				
- + - - - + 105	-30 		FIN DU FORAGE									de gravia, grès brunâte, très molle, très lâche à lâche à compact. Sable et gravier sitteux, un peu d'argile, compact.				
- - 410 - -	-33 															
- +15 -	- 35															
AST 10-19018-1201701	-37															
	F															

Figure B1-3 : Rapport de sondage FSZ-01 (suite).

\\si	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	ÁP	₽Đ	R	T I	DE	SONE	DAGE							
Lo	alisation gé	inérale:	Diverses Municipalités - Bas-	St-I	Laur	ent			Dos	sier: 3	84(437)19		Sondage: FS	SZ-016	в				
En	denit: Teolo	Distala							Date	du so	ndage: 2021	1-07-08"	Profondeur to	tale: 2	9,2	1 m			
"	uloit. Trois	Pistole	5						Coo	rdonné	es (m): 533	Élévation: (Approximatif	Élévation: 33,62 m (Z) (Approximatif)						
6			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	4201,00 m (x)	(Approximati	ES			AIS		_
of. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	qe	at	(m)	e-No ibre	s-éch	()	N	N coups	Description	o Observations	Es	son	nètre			
å			stratigraphique	ပိ	Đ	Prof	Cal Cal	Sout	8 8 8 0	RQD		des echantillo	de chantier	25	50	75	50	100	150
ŀ	Ł																		
ŀ	F																		
ŀ	F 1													\vdash	+	+	\vdash	+	+
ŀ.	È .																		
[*	È .																		
	2													\mathbb{H}	+	+	H	+	+
ŀ	-																		
ŀ	F																		
-10	- 3					3,00	TM-30		82			Silt argileux, trad	ces	H	t		Π	T	Π
Ľ	È.						110-55					fiole							
	4					3,61	тм-40		0					Ц			Ц		
ŀ	Ł																		
-15	-																		
ŀ	- 5				777	5.00						Silt argileux, trad	286	\mathbb{H}	+	+	\vdash	+	+
Ľ.	Ì.						TM-41		89			de sable, gris.							
Ļ	t i					5,61						Silt argileux, trad	ces						
-20	6						TM-42		20			de sable, gris. Aucune fiole		H	+		H	+	+
ŀ	Ł																		
ŀ	F																		
t	F'													\square	T		Π	T	Π
-25	È.																		
ŀ	4													Ц	\downarrow		Ц	1	
ŀ	ŀ																		
ŀ	ł																		
Ľ.	- 9													\mathbb{H}	+	+	\vdash	+	+
["	ļ.				777	9.40						Silt araileux, trac							
ŀ	ļ.					0,40	TM-43		84			de sable, gris.							
ŀ	-10					10,00			-			Silt argileux, trac	ces	\mathbb{H}	+		\vdash	+	+
ŀ	Ł						TM-44		84			de sable, gris. fi 9,	ole						
-35	ł.				Π														
ſ	F"													\square	T		\square	T	
-	ļ.																		
-	-																		
Re	marques:												Type de sondage: For Équipement de forage	age au : Vers	u di adr	amar II G1	nt 1-6		
													Type de marteau: Aut Date du rapport: 2021	omatiq -11-23	que 3				
Те	chnicien: Jé	remie Ee	rland	_	VA	rifié na	r	_	_			Appro	uvé par:		_	_		_	\neg

Figure B1-4 : Rapport de sondage FSZ-01B.

\\si	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	AP	PO	R	ΤI	DE	SOND	DAGE									
Lo	calisation gé	inérale:	Diverses Municipalités - Bas-	St-I	Laur	rent			Dos	sier: 3	84(437)19		Sondage: FS	Z-01B							
	depite Tracto								Date	du so	ndage: 2021	1-07-08"	Profondeur tot	ale: 29),21	m					
	droit: Trois	-Pistole	5						Coo	rdonné	es (m): 5337	7088,11 m (Y)	Élévation:	33,62 m (Z)							
			COUPE GÉOLOGIQUE					_	É	CHAN	TILLONS	4201,56 m (X)	ESSAIS				;	\neg			
1	Élév.(m)/ Prof.(m)	Piézo-	Description	•	<u>+</u>	Ê	N- a	éch	d a	N	Neoune	Description	Observations	Ess	ai c	ie į	Scis	sor	nètre		
18	1 ronquity	incure	stratigraphique	ð	Ê	Prof.	Calit	Sous	Réci %	RQD	N COUPS	des échantillons	de chantier	péné 25	trat 50 7	ion 75	50	100	150		
F	-			F	Π	_								\vdash	t	Π	+	1	+		
ŀ	Ł																				
ŀ	ŀ																				
ŀ	-13													\square	Γ	Π	Τ	Τ			
t.	ļ.																				
4	-14																				
	2																				
ŀ	F																				
ŀ	-15													\vdash	+	\square	+	+	+		
-50	ļ.																				
t	t																				
[-16													\vdash	┝	H	+	+	+		
ŀ	F																				
-55	ļ.																				
ŀ	-17													H	t	H	+	+	+		
ŀ	Ł																				
t	-																				
60	F ¹⁰					18 24						Assile eitterne									
-	ļ.					10,24	PS-45		95			traces de sable, gris.									
ŀ	-19					18,85						Argile silteuse,		\square		Ц		_			
ŀ	Ł						PS-46		97			traces de sable, gris. fiole 105,									
ł.	-																				
-65	-20													\vdash	╞	\square	+	+	+		
Ļ	ţ.																				
ŀ	t i																				
ŀ	-21													\vdash	┝	H	+	+	+		
-70	-					21.40															
ŀ	F					21,40	PS-47		0			traces de sable, gris.									
[-22				7	22,10			\vdash			fiole 128 Argile silteuse,		\vdash	t	H	+	+	Η		
ŀ	Ł						PS-48		97			traces de sable, gris. fiole 140									
-75	L.,,																				
-	-																	T			
-	F																				
	-24													\parallel		\square			\perp		
80	Ł																				
-	Ł																				
	Ľ													Ц		\square					

Figure B1-5 : Rapport de sondage FSZ-01B (suite).

\\sinfra0-app002\Logiciels\Geotec80\Logo\Transport PORT DE SONDAGE Localisation générale: Diverses Municipalités - Bas-St-Laurent Dossier: 384(437)19 Sondage: FSZ-01B																			
Lo	calisation gé	inérale:	Diverses Municipalités - Bas-	St-I	aur	ent			Dos	sier: 3	84(437)19		Sondage: FS	Z-01	в				
	dealth Tracto								Date	du so	ndage: 2021	-07-08"	Profondeur tot	ale: 2	29,2	1 m			
	uloit. Trois	Pistole	5						Coo	rdonné NAD 8	es (m): 5337 3 (Zone:6) 184	7088,11 m (Y) 4201,56 m (X)	Élévation: 33,62 m (Z) (Approximatif)						
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	201,00111(x)	(opproximati)		_	ESS	SAIS	3	
je je	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ę	at	E)	e-No	l-éch	din (9	N	N coups	Description	Observations	Es	sai	de	Bcis	som	nètre
å			stratigraphique	ပိ	ŝ,	Prof	Call	Sous	Réc 3	RQD		des échantillons	de chantier	pen 25	etra 50	75	50	1001	150
F	-					24,99	PS-49		100			Argile silteuse, traces de sable et					Π	Τ	
ŀ	Ł											gravier, gris. fiole							
-85	-26											()		\mathbb{H}	+	+	H	+	Η
[F																		
ŀ	F																		
ŀ	-27													H	$^{+}$	\top	H	$^{+}$	Π
-90	t i																		
ŀ	-28													\square			Ш		
	-					27,99	PS-50		77			Argile silteuse, traces de sable et							
ŀ	-					28,60						gravier, gris. Argile silteuse,							
-95	-29						PS-51		70			traces de sable et gravier, gris, fiole		\vdash	+	+	H	+	+
ŀ	Ì.											113,							
t	t.																		
	-30													H	+	+	H	+	Η
400	ł																		
ŀ	F																		
ŀ	-31													Π	T	Τ	Π	T	Π
ŀ																			
405	-32													Ц	\downarrow		Ц	\perp	\square
-	2																		
ŀ	ł																		
ŀ	-33													\vdash	+	+	\vdash	+	+
t.	F																		
["																			
ŀ	-34													H	+	+	H	+	Η
ŀ	Ł																		
ŀ	-																		
415	-													Π	T		Π		
[F																		
ŀ	-36													μ	\downarrow	\perp	μ	\perp	\downarrow
-	t																		
420	Ł																		
1001	-37													\mathbb{H}	+	+	\mathbb{H}	+	+
000	F																		
	F																		
-	F													H	\pm	\pm	Ħ	\pm	\pm

Figure B1-6 : Rapport de sondage FSZ-01B (suite).
\\sir																				
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	aur	Dossier: 384(437)19 Sondage: FS						Z-01(C								
End	aniti Tasta								Date	du so	ndage: 2021	1-07-14"		Profondeur tot	ale: 1	9,5	m			
End	ITOIL: Trois	Pistole	s						Coo	rdonné	es (m): 5337		Élévation: (Approximatif)	ation: 33,62 m (Z						
-			COUPE GÉOLOGIQUE						É	CHAN		(Approximality	ESSA				5			
of. (b)	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	olo	at	(m)	e-No ibre	s-éch	dn:	N	N coups	Description	n	Observations	Essai de			de Scisso		nètre
å			stratigraphique	ŏ	Ű	Prof	Cal Cal	Sout	N N N N N N N N N N N N N N N N N N N	KQD		des echantili	ons	de chantier	25	50	75	50	100	1150
ŀ																				
ŀ	-																			
ŀ	- 1														\vdash	+	+	H	+	+
Ľ,	-																			
F	-																			
ŀ	- 2														H	+	+	H	+	+
ŀ	-																			
Ľ.	- 3														Ц			Ц		
["						3,00	TM-52		79			Silt argileux, tra de sable, gris. fi	ole							
ŀ						3,61						126, Silt argileux, tra	ces							
ŀ	4						TM-53		87			de sable et grav gris. fiole 107,	ier,		\vdash	+	+	Н	+	+
ŀ.	-																			
[¹⁸	-																			
ŀ	- 5					5,00						Silt argileux, tra	ces		H	+	+	H	+	+
ŀ	-						IM-54		97			123,	ole							
ŀ	6					5,61	TM-55		100			Silt argileux, tra de sable, gris. fi	ole		Ш					
-20												108,	_							
[-																			
ŀ	- 7														\vdash	+	+	H	+	+
ŀ	-																			
-25	-																			
[- 8														H	+	+	H	+	+
ŀ																				
ŀ																				
-30	-																			
t	-					9,40	TM-56		100			Silt argileux, tra de sable, gris. fi	ces ole							
[-10					10.01						110, Silt argileux, tra	ces		\vdash	+	+	Н	+	+
ŀ	1						TM-57		100			de sable, gris. fi	ole							
-35	-											120,	\neg							
t	-11														\vdash	+	+	H	+	+
	1																			
-	-			L																
Ren	narques:												Type o Équipe	de sondage: Fora ement de forage:	ge ai Vers	u di adr	ama II G	nt F-6		
													Type of Date d	de marteau: Auto du rapport: 2021-	matic 11-23	que 3				
Tec	hnicien: Jé	remie Fe	rland	_	Vé	rifié pa	r:	_				Appr	ouvé par	r:		_			_	-

Figure B1-7 : Rapport de sondage FSZ-01C.

w																						
Ī	ocalisa	tion gé	nérale:	Diverses Municipalités - Bas-	St-l	Laur	rent			Dossier: 384(437)19 Sondage: F5						Z-01C						
	-	Teolo	Distalas							Date	du so	ndage: 2021	1-07-14"	Profondeur tot	ale: 1	9,5	m					
ľ	indroit:	Trois-	Pistoles	\$						Coo	rdonné	es (m): 5337	7088,11 m (Y) 4201 56 m (X)	Élévation: (Approximatif)	Élévation: 33,62 m (Z)							
L				COUPE GÉOLOGIQUE						É	CHAN	TILLONS	4201,00 m (x)	(Approximati)	ESSAIS							
	Élév	v.(m)/ of.(m)	Piézo- métrie	Description	ę	Ħ	<u>(</u>	N e	éch.	di a	N	N coups	Description	Observations	Es	sai (de	Scist	cissomètre			
1				stratigraphique	ů	ţ,	Prof.	Call Call	Sous	Réc %	RQD		des échantillons	de chantier	péné 25	S0	tion 75	50	1001	50		
F	F																Π		T	Π		
ŀ	ŧ																					
ŀ	L 13														Ц							
ŀ	-																					
	5																					
ŀ	- 						14.00						Silt amileux traces		\vdash	+	\square	+	+	Н		
ŀ	ŧ							TM-58		100			de sable, gris. fiole									
ŀ	Ł									\vdash			102,									
ŀ	-15														\vdash	+	+	+	+	Н		
ľ	°F																					
ŀ	F																					
ŀ	-16														Ħ	t	Η	+	$^+$	Π		
ŀ	ţ																					
-6	5																					
ŀ	-F"														Π	Τ			Τ			
[F																					
ŀ	-18														\parallel	+	Ц	_	+	Ц		
-•	٥È						18,24			\vdash			Argile silteuse,									
ŀ	Ł							TM-59		100			traces de sable, gris. fiole 116,									
ŀ	-19								1						\vdash	+	+	+	+	Н		
[F																					
-	5 F																					
ŀ	-20														H	$^{+}$	Ħ	+	$^{+}$	Η		
ŀ	Ł																					
ŀ	Ł																					
Ľ,	"F ²¹															Γ				Π		
Ľ	Ŧ																					
ŀ	-22														Щ		Ц	_	⊥	Ц		
ŀ	ŧ																					
ŀ	Ł																					
[-23														\vdash	+	+	+	+	Η		
	F																					
-	F																					
-	-24														H	\dagger	Ħ	+	+	Η		
-8	٩Ł																					
t	Ł																					
Ł	F														⊢+	-	+	\pm	+	\leftarrow		

Figure B1-8 : Rapport de sondage FSZ-01C (suite).

\\si																						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas	St-I	Laur	rent		Dos	sier: 3	84(437)19	437)19 Sondage: FSZ-0					-01D						
En	init: Teolo	Distala							Date	du so	ndage: 2021	-07-15"		Profondeur totale: 32 m								
	aron: Trois	Pistole	5				Coo	rdonné	es (m): 533	7088,11 m (Y) 4201 56 m (X)		Élévation: 33,62 m (Z) (Approximatif)										
	COUPE GÉOLOGIQUE									CHAN	TILLONS	4201,00 m (x)		(Approximatil)	ESSAIS							
je je	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ę	at	(<u>m</u>)	e-No bre	-éch	dn ()	N	N coups	Description	n 0	bservations	Essai de Scissom			omètre				
Å			stratigraphique	ပိ	ġ,	Prof	Call	· · · · · · · · · · · · · · · · · · ·											5 50 100150			
a. - - - - - - - - - - - - - - - - - - -			suaugrapinque	Ğ		2 3,61 4,22	Ca-17r 17r-160 17r-161	800	92 75 90			Silt argileux, tra de sable, gris. fi 119. Silt argileux, tra de sable, gris. fi 124.	ces ole ces ole									
-35	-10																	1(122 ×			
Rer	Remarques: Type de sondage: Forage au diamant Équipement de forage: Versadrill GT-6 Type de marteau: Automatique Date du rapoort: 2021-11-23																					
Ter	Technicien: Jérémie Ferland Vérifié nar: Annrowé nar:																					

Figure B1-9 : Rapport de sondage FSZ-01D.

\\si																			
Lo	calisation gé	inérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FSZ-01D						
E.	denit: Tests	Distala							Date	du so	ndage: 2021	1-07-15"	Profondeur to	ale: 3	2 m	1			
["											es (m): 533	7088,11 m (Y) 4201 56 m (X)	Élévation: 33,62 m (Z) (Approximatif)						
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	4201,00 m (x)	(Approximati)		ESSAIS				
e, fe	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	qe	at	E)	e-No ibre	s-éch	id ()	N	N coups	Description	Observations	Es	Essai de Scise		Scisso	omètre	
2			stratigraphique	ပိ	ā	Prof	⁷	Sout	S S S S S S S S	RQD		des echantillons	de chantier	25 50 75			50 10	00150	
ŀ	-																		
ŀ	F																		
t	-13													\vdash	+	+	_		
Ļ	1																		
-45	1																		
ŀ	-14					14,00			$\left - \right $			Argile silteuse,		H	+	+			
ŀ	Ł						TM-62		87			traces de sable, gris.							
[-																48		
-50	-18													Π			Ŷ		
ŀ	-																		
ŀ	-16													\vdash	+	+	64 ×		
[ţ.																		
-55	È .																		
ŀ	-17													H	+	+	×		
ŀ	-																		
ŀ	F																58		
60	-18													H	T	Π	×		
-	ļ.																		
ŀ	-19													Щ	_		62		
ŀ	t i																		
-	Ł																		
[***	-20													\vdash	+	+	- <u>70</u>	$\left \right $	
ŀ	F																		
ŀ	F																58		
t_	-21													Ħ	\dagger	\parallel	×	\square	
[⁷⁰	ţ.																		
ŀ	-22													Ц			72		
ŀ	t																		
ŀ	Ł																		
75	-23													\vdash	+	+	- 1 7	$\left \right $	
	F																		
-	F																84		
-	-24													Ħ	\dagger	\parallel	×	\square	
-80	ļ.																		
	Ł													\square				129	

Figure B1-10 : Rapport de sondage FSZ-01D (suite).

\\sir																			
Loc	alisation gé	inérale:	Diverses Municipalités - Bas-	-St-I	aur	ent			Dos	sier: 3	84(437)19	Sondage: FS	Sondage: FSZ-01D						
End	mit Trois	Distala							Date	e du so	ndage: 2021	-07-15"	Profondeur tot	ale: 3	2 m	1			
	non. Trois	Pistole	5						Coo	rdonné	es (m): 5337	7088,11 m (Y) 4201 56 m (X)	Élévation: (Approximatif)	Élévation: 33,62 m (Z) (Approximatif)					
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	201,00 m (x)	(Approximati)	ESSAIS					
e, fei	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	ę	Ħ	(m)	o-No	-éch	d .	N	N coups	Description	Observations	Es	sai	i de Scissom		iètre	
Pa			stratigraphique	ပိ	Ē,	Prof.	Call	Sous	S S S S S	RQD		des échantillons	de chantier	pene 25	50	tion 75	50	1001	150
F	-																	Τ	Π
ŀ	Ł																		
-85	-26													\vdash	+	+	+	+	166
Ē	F																		
ŀ	ļ.																		
ŀ	-27													H	t	Ħ	Ħ	$^+$	Η
-90	t i																		
ŀ	L																		
Ľ	-20													Π	Τ			Τ	
ŀ	F																		
-95	-29													\vdash	+	\square	\vdash	+	Н
ŀ	1																		
ŀ	Ł																		
t	-30													\vdash	+	+	\vdash	+	Η
400	F																		
ŀ	ļ.																		
ŀ	-31													H	t	Ħ	H	$^+$	Η
ŀ	t i																		
1	L.,,																		
["	- 32													Π	Τ			Τ	
ŀ	F																		
ŀ	-33													$\mid \mid$	+	\square		+	Ц
ŀ																			
410	Ł																		
[-34													\vdash	+	+	+	+	Н
ŀ	F																		
ŀ	F																		
415	-35													Ħ	t	Ħ	T	t	Η
t -	t i																		
[-36																		
ŀ	-																		
420	F																		
- 100	-37													$\mid \mid$	+	$\downarrow \downarrow$	\vdash	+	$\downarrow \downarrow$
-	t i																		
	t i																		
_	-													\vdash	+	+	\pm	\pm	\pm

Figure B1-11 : Rapport de sondage FSZ-01D (suite).

Annexe B2 : Terrain

Figure B2-1 : Piézocône préliminaire de Trois-Pistoles.	.209
Figure B2-2 : Résultats de l'analyseur de battage à Trois-Pistoles.	.210
Figure B2-3 : Piézomètres à Trois-Pistoles.	.211
Figure B2-4 : Résultats de l'essai sismique de type « downhole » à Trois-Pistoles	.212

Figure B2-1 : Piézocône préliminaire de Trois-Pistoles.

Trans	orts Québec 🖥	*	F	Formulaire	d'es	sai		Formulaire: FGG-086						
Servi	ce géotechnique e	t géologie	Résulta	ats - Analys	2015-03-11	Page 1	de 1							
	# Projet :		384(437)1	9										
	Localisation :		Recherche I	BSL										
(Chargé de Projet :		Antony Gag	jné										
	Analysé par :		Antony Gag	jné										
	# Forage ·		FS7-01				Date ·	2021	.07-01					
	Onérateur SPT ·		lárámia Forl	and			Date .	2021	07 01					
	Operated SFT.		erenne i en	anu										
	Cie Forage :		Explora-So	ol	Ту	pe Ma	rteau :	Autom	atique					
	# Foreuse :					# Ma	rteau :							
	Foreur :		Maurice Ga	gné	Po	ids Ma	arteau:	63.	5 kg					
CE	Prof Dápart (m)	F- (%)	<u>(</u> -											
	Proi. Depart (m)	LR (70)	1.22	-			CE							
CF-5	3.05	79.3%	1.32											
CF-6	3.81	77.0%	1.28	0.80 0.9	90 1.0	0 1.1	1.20	1.30 1.40	1.50 1.	.60 -				
CF-/	4.57	83.8%	1.40											
CF-8	5.33	80.8%	1.35	2.00										
CF-9	6.10	77.4%	1.29											
CF-10	6./1	/8.3%	1.31	4.00		\square								
CF-11	7.32	80.4%	1.34											
CF-12	7.93	80.3%	1.34	6.00		\rightarrow								
CF-13	8.54	80.5%	1.34											
CF-14	9.15	79.9%	1.33	8.00		$ \rightarrow $	\rightarrow			-				
CF-15	9.91	82.7%	1.38											
CF-16	10.67	81.7%	1.36	10.00		\rightarrow	\rightarrow							
CF-17	11.43	83.6%	1.39											
CF-18	12.19	82.1%	1.37	12.00		\rightarrow	\rightarrow							
CF-19	12.95	82.2%	1.37											
CF-20	13.71	81.6%	1.36	14.00		+				-				
CF-21	14.47	81.9%	1.37											
CF-22	15.23	82.0%	1.37	16.00		+		+		-				
CF-23	15.99	80.2%	1.34											
CF-24*	16.75	87.3%	1.46	18.00						J				
	Moyenne :	80.8%	1.35											
Remarq *Le dern	u es : ier essai a été ret	iré du calcı	ıl de la mo	yenne. II est si	ignifica	itivem	ent diffe	erent.						

E_R : Energy Ratio (Rapport d'énergie) C_E : Facteur de correction

Figure B2-2 : Résultats de l'analyseur de battage à Trois-Pistoles.

Figure B2-3 : Piézomètres à Trois-Pistoles.

Figure B2-4 : Résultats de l'essai sismique de type « downhole » à Trois-Pistoles.

Annexe B3 : Essais triaxiaux

Figure B3-1 : Sommaire des 3 essais triaxiaux réalisés entre 3,14 et 3,98 m à	Trois-
Pistoles.	214
Figure B3-2 : Sommaire des 3 essais triaxiaux réalisés entre 9,62 et 10,37 m à	Trois-
Pistoles.	215
Figure B3-3 : Sommaire des essais triaxiaux réalisés aux contraintes en place à	Trois-
Pistoles	216
Figure B3-4 : Module E _u lors de l'essai triaxial de 3,15 à 3,25 m.	217
Figure B3-5 : Module Eu lors de l'essai triaxial de 5,88 à 5,98 m.	218
Figure B3-6 : Module Eu lors de l'essai triaxial de 10,27 à 10,37 m.	219
Figure B3-7 : Module E _u lors de l'essai triaxial de 14,15 à 14,25 m	220
Figure B3-8 : Module E _u lors de l'essai triaxial de 19,02 à 19,12 m	221

Figure B3-1 : Sommaire des 3 essais triaxiaux réalisés entre 3,14 et 3,98 m à Trois-Pistoles.

Figure B3-2 : Sommaire des 3 essais triaxiaux réalisés entre 9,62 et 10,37 m à Trois-Pistoles.

Figure B3-3 : Sommaire des essais triaxiaux réalisés aux contraintes en place à Trois-Pistoles

Figure B3-4 : Module E_u lors de l'essai triaxial de 3,15 à 3,25 m.

Figure B3-5 : Module E_u lors de l'essai triaxial de 5,88 à 5,98 m.

Figure B3-6 : Module E_u lors de l'essai triaxial de 10,27 à 10,37 m.

Figure B3-7 : Module E_u lors de l'essai triaxial de 14,15 à 14,25 m.

Figure B3-8 : Module E_u lors de l'essai triaxial de 19,02 à 19,12 m.

Annexe B4 : Essais œdométriques

Figure B4-2 : Déformation-contrainte de l'essai œdométrique à 3,32 m à Trois-Pistoles. Figure B4-3 : Contrainte - module œdométrique de l'essai à 3.32 m à Trois-Pistoles...225 Figure B4-4 : Essai œdométrique à Trois-Pistoles à 5,24 m de profondeur......226 Figure B4-5 : Déformation-contrainte de l'essai œdométrique à 5,24 m à Trois-Pistoles. Figure B4-6 : Contrainte - module œdométrique de l'essai à 5.24 m à Trois-Pistoles..228 Figure B4-8 : Déformation-contrainte de l'essai œdométrique à 9.72 m à Trois-Pistoles. Figure B4-9 : Contrainte - module œdométrique de l'essai à 9,72 m à Trois-Pistoles..231 Figure B4-10 : Essai œdométrique à Trois-Pistoles à 14,32 m de profondeur......232 Figure B4-11 : Déformation-contrainte de l'essai œdométrique à 14.32 m à Trois-Pistoles. Figure B4-12 : Contrainte - module œdométrique de l'essai à 14,32 m à Trois-Pistoles. Figure B4-14 : Déformation-contrainte de l'essai œdométrique à 18,54 m à Trois-Pistoles. Figure B4-15 : Contrainte - module œdométrique de l'essai à 18,54 m à Trois-Pistoles. Figure B4-17 : Déformation-contrainte de l'essai œdométrique à 25.18 m à Trois-Pistoles. Figure B4-18 : Contrainte - module œdométrique de l'essai à 25,18 m à Trois-Pistoles. Figure B4-19 : Essai œdométrique à Trois-Pistoles à 28,28 m de profondeur......241 Figure B4-20 : Déformation-contrainte de l'essai œdométrique à 28.28 m à Trois-Pistoles. Figure B4-21 : Contrainte - module œdométrique de l'essai à 28,28 m à Trois-Pistoles.

Figure B4-1 : Essai œdométrique à Trois-Pistoles à 3,32 m de profondeur.

Figure B4-2 : Déformation-contrainte de l'essai œdométrique à 3,32 m à Trois-Pistoles.

Figure B4-3 : Contrainte - module œdométrique de l'essai à 3,32 m à Trois-Pistoles.

Figure B4-4 : Essai œdométrique à Trois-Pistoles à 5,24 m de profondeur.

Figure B4-5 : Déformation-contrainte de l'essai œdométrique à 5,24 m à Trois-Pistoles.

Figure B4-6 : Contrainte - module œdométrique de l'essai à 5,24 m à Trois-Pistoles.

Figure B4-7 : Essai œdométrique à Trois-Pistoles à 9,72 m de profondeur.

Figure B4-8 : Déformation-contrainte de l'essai œdométrique à 9,72 m à Trois-Pistoles.

Figure B4-9 : Contrainte - module œdométrique de l'essai à 9,72 m à Trois-Pistoles.

Figure B4-10 : Essai œdométrique à Trois-Pistoles à 14,32 m de profondeur.

Figure B4-11 : Déformation-contrainte de l'essai œdométrique à 14,32 m à Trois-Pistoles.

Figure B4-12 : Contrainte - module œdométrique de l'essai à 14,32 m à Trois-Pistoles.

Figure B4-13 : Essai œdométrique à Trois-Pistoles à 18,54 m de profondeur.

Figure B4-14 : Déformation-contrainte de l'essai œdométrique à 18,54 m à Trois-Pistoles.

Figure B4-15 : Contrainte - module œdométrique de l'essai à 18,54 m à Trois-Pistoles.

Figure B4-16 : Essai œdométrique à Trois-Pistoles à 25,18 m de profondeur.

Figure B4-17 : Déformation-contrainte de l'essai œdométrique à 25,18 m à Trois-Pistoles.

Figure B4-18 : Contrainte - module œdométrique de l'essai à 25,18 m à Trois-Pistoles.

Figure B4-19 : Essai œdométrique à Trois-Pistoles à 28,28 m de profondeur.

Figure B4-20 : Déformation-contrainte de l'essai œdométrique à 28,28 m à Trois-Pistoles.

Figure B4-21 : Contrainte - module œdométrique de l'essai à 28,28 m à Trois-Pistoles.

Annexe C : Price

Annexe C1 : Sondages

245
246
247
248
249
250
251
252

\\sir	fra0-app(02\Log	iciels\Geotec80\Logo\Trans	spo	R	AP	PO	R	T	DE	SONE	DAGE							
Loc	alisation gé	inérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	384(437)19			Sondage: FS	Z-07			_	
									Dat	e du so	ndage: 2022	2-05-17"		Profondeur tot	ale: 21	,184	m		
End	Iroit: Price								Сос	rdonné I NAD 8	es (m): 538 3 (Zone:6) 25	4518,74 m (Y) 8820,10 m (X)		Élévation: (Fixée à 100 m	10)	0,00	m (Z)	
-			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	_				ES	SAI	S	
Prof. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	rof. (m)	lype-No Calibre	ious-éch	Récup. (%)	N RQD	N coups	Description des échantillo	n Sins	Observations de chantier	Essa pénét	ai de tratio	n Sci	isso	mètre
	0,00	• • •	Sable graveleux, traces de		$\overline{\mathbf{h}}$	0,00	-	<i>•</i>				Sable graveleux,				Ħ	ť	H	
	- 00.04		silt, brun, lâche.	Ē	Ň		CF-01 B		43	9		traces de silt, bru Jâche	un,						
	99,24 - 1 ^{0,76}		Gravier, un peu de sable,			0,76						Gravier, un peu o	de						
ŀ	- 00 40		traces de silt, gris, très lâche.	•			CF-02 B+N		Ľ	2		sable, traces de oris, très lâche	silt,						
- 5	- 1,52		Sable, un peu de gravier,			1,52	05.02					Sable, un peu de	•						
[- 2		traces de silt, brun, très lâche.	•			B+N		Ľ	2		gravier, traces de silt, brun, très lâc	e che. /			\vdash	+	H	+
ŀ	F	[J]J]																	
-	- 06 05	HH		e.															
- ¹⁰	- 3,05		Sable silteux, un peu d'argile,		\vee	3,05	CE-04	1		15		Sable silteux, un	peu				Т	Π	
[96.19		gris, compact.	1	\square		B			13		d'argile, gris, compact.							
-	4 3,81		Silt, un peu d'argile et sable,	n	∇	3,81	CE-05	1	70	32		Silt, un peu d'arg	jile			\vdash	╀	Н	+
ŀ.,	-	•••	gns, compact a dense.	k	\bowtie		B		13			et sable, gris, de	nse.						
-15	-			r.	∇	4,57	CE-06	1	84	19		Silt, un peu d'arg	jile						
$\left \right $	- 5	l l h		K	\bowtie		В		–			et sable, gris, compact.				H	$^{+}$	Ħ	+
ŀ	-			Ŀ	∇	5,33	CF-07	1	69	12		Silt, un peu d'arg	jile						
-	- 6	• • •		K	ho		В					compact.			\square	\square	⊥	Ц	4
20	-	11		V	∇	6,10	CF-08	1	72	15		Silt, un peu d'arg	jile						
ŀ	93,14	• • •			\sim		В					compact.							
ŀ	- 7 6,86		Silt argileux, un peu de sable, gris	K	Ν	6,86	CF-09	1	90	14		Silt argileux, un p de sable, oris	peu			\vdash	+	H	+
25	92,38	111/	odolo, grio.	K	\sim		В					consistance raid	e. /						
[20	7,62		Silt, un peu d'argile et sable, gris, compact.	И	Ν	7,62	CF-10		80	13		Silt, un peu d'arg	jile						
ŀ	Ē	477	and, compact	ΙU	\simeq		В					compact.					Τ		
ŀ	-	XZ		M	Ν	8,38	CF-11		74	11		Silt, un peu d'arg et sable, oris	jile						
-30	- 9			И	\cong		В					compact.				\vdash	+	Η	+
- "	-	•]••		ľ.	N	9,14	CF-12		82	23		Silt, un peu d'arg et sable, oris	jile						
-	-			K	Ê		в					compact.							
t I	-10			IJ	X	9,91	CF-13		38	18		Silt, un peu d'arg et sable, gris.	jile			\square	T	Π	
-35	F			1	Ê	10.05	в					compact.							
-	-11			K	IX	10,67	CF-14		100	15		Silt, un peu d'arg et sable, gris,	jile		⊢	\vdash	╀	Н	-
-	88,57	••••	Cilt and and a shine	L	Ê	44.42	в		⊨			compact.							
t	- 11,43		et gravier, gris, consistance	Ľ	ſΧ	11,43	CF-15		100	17		Silt argileux, trac de sable et gravi	es er,						
-40	-12	• •	dure.	H	É	10.40	_ <u>B</u>		\models			consistance très			\vdash	\vdash	+	H	+
F	-				łХ	12,19	CF-16		97	20		Silt argileux, trac	es						
F	-13			ľ	É	12.05	_ <u>B</u>		⊨			de sable et gravi	er,		Щ	\square	\perp	Ц	
Ē	-			1	IХ	12,95	CF-17		95	31		Silt argileux, trac	es						
-45	-	777		1	Ê	13 70	в		F			de sable et gravi consistance dure	er,						
	-14	X/		K	IХ	13,12	CF-18		100	32		Silt argileux, trac	es		\vdash	+	+	+	+
				K	Ê	14.48			Þ	-		de sable et gravi consistance dure	er, a.						
	-			K	Х		CF-19		80	22		Silt argileux, trac	es						
Ren	narques:												Type of	le sondage:	Diedri	ch D	50 1	ITO	
													Type d	le marteau: Auto	matiqu	ie ie	50 W		
Ter	hnician: SA	hastion	Rioux Tech		Vé	rifió po	r -					Anoro	Date d	u rapport: 2023-()5-15				

Figure C1-1 : Rapport de sondage FSZ-07.

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Trans	spo	R	A	PO	R	ΤJ	DE	SONE	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dose	sier: 3	384(437)19		Sondage: FS	Z-07				
	droit: Drice								Date	du so	ndage: 2022	2-05-17"	Profondeur tot	ale: 2	1,184	4 m		
	aron. Price								Coor	rdonné NAD 8	es (m): 538 3 (Zone:6) 25	4518,74 m (Y) 8820,10 m (X)	Élévation: (Fixée à 100 n	<mark>1</mark>	00,00	0 m	(Z)	
-			COUPE GÉOLOGIQUE			-	_		É	CHAN	TILLONS			Ĺ	E	SS/	AIS	
Prof. (p	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	Sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Es péne 25	sai d itrati 50 7	es on	ciss 50 1	omètre 00150
-	-			Ķ	X	15,24	<u>В</u> CF-20	1	85	46		de sable et gravier, consistance dure. Silt argileux, traces						
Ē	-16			k	X	16,00	CF-21	1	100	37		de sable et gravier, consistance dure. Silt argileux, traces		\vdash		H	+	
-55	-17			· ·	X	16,76	CF-22	1	79	30		de sable et gravier, consistance dure. Silt argileux, traces		\vdash		$\left \right $	+	
Ē	- 82,47 - 17,53 - 18		Argile et silt, traces de sable et gravier, gris, consistance		X	17,53	CF-23		100	20		de sable et gravier, consistance dure. Argile et silt, traces						
- 60 -	- 81,71 - 18,29		très raide. Argile silteuse, traces de sable et gravier, gris.		X	18,29	CF-24		100	14		de sable et gravier, gris, consistance très raide.						
-	-19 ^{80,95}			И	X	19,05	CF-25 B+ N		25	8		traces de sable et gravier, gris. Argile silteuse, un		H			T	
-65	-20	X			X	19,81	CF-26 B+ N		82	7		peu de sable, gris, consistance ferme. Argile silteuse, un		\vdash		+	+	
-	-21				X	20,57	CF-27 B+ N		25	0		peu de sable, gris. Argile silteuse, un peu de sable, gris.		\mid			\downarrow	
-70	21,18		FIN DU FORAGE															
-	[Τ	
-75	-23													H			+	
-	-24													\vdash		$\left \right $	+	
-	-25													\parallel			_	
- 85																		
F	Ē																	
- -90	-27													\vdash			+	
Ē	-28													\parallel			+	$\left \right $
-95	-29																_	
400	- 30																	
- Internet	-31													\vdash			+	\square

Figure C1-2 : Rapport de sondage FSZ-07 (suite).

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	A	₽Đ	R	T I	DE	SONE	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	-St-I	Lau	rent			Dos	sier: 3	84(437)19		Sondage: FS	Z-07A			_	
									Date	e du so	ndage: 2022	2-05-19"	Profondeur to	tale: 22	,27 n	n		
End	I OIL								Coo		es (m): 538	4527,34 m (Y) 8818 27 m (X)	Élévation: /Fixée à 100 n	10	0,00	m (7	Z)	
			COUPE GÉOLOGIQUE						É	CHAN	TILLONS	5010,27 m (X)		ľ	ES	SA	IS	
Prof. (pi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	of. (m)	pe-No alibre	us-éch	écup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Essa pénét	ai de tratio	n Sc	isso	omètre
Ľ	100,00		Surface du terrain naturel Sable silteux, traces d'argile,			ž	Ϋ́	S	e					25 5	0 75	╀	50 10	00150
-	-		gris.	X														
Ł	1													\vdash	\vdash	+	+	\vdash
- 5	-																	
È	2			\backslash										\vdash	\vdash	+	+	
$\left \right $	-																	
-10	- 3			1		3.00			\vdash			Sable silteux, traces	-	\vdash	\vdash	+	+	
Ł	96,40		0.1				TM-01		78			d'argile, gris.						
F	- 4 3,60		Silt sableux, un peu d'argile, gris.	K		3,60	TM-02		52			Silt sableux, un peu d'argile, gris.		\vdash	\square	+	+	
-15				X	Ĩ			1		1			1					
ŀ	95,00		Silt up peu d'argile et sable			5.00						Silt up pou d'araile	_	\square	\square	\downarrow	\perp	
Ē	- 3,00		gris.	K		5,00	TM-03		55			et sable, gris.						
-	6			k		5,60	TM-04		78			Silt, un peu d'argile et sable, gris.		Щ		\downarrow		
- 20	-			ļ				1		1			1					
t I	- _93,00			ľ.														
$\left \right $	- 7,00		Silt argileux, un peu de sable, gris.	K		7,00	TM-05		88			Silt argileux, un peu de sable, gris.						
-25	E a			K		7,60	TM-06	1	75	1		Silt argileux, un peu de sable, gris	1					
ŀ						8,20	TM 07		67			Silt argileux, un peu	-					
F	-			H		8,80	TM-07		0/			de sable, gris. Silt argileux, un peu	-					
-30				ł			TM-08		47			de sable, gris.			Π	Т		
$\left \right $	-			K														
È	-10			ľ											Π	Τ		
-35	89,20/		Argile et silt, traces de sable,	Ŕ		10,60	TM-09		88			Argile et silt, traces	1					
F	-11		gns.	ľ		11,20	T11.40					Argile et silt, traces	-			T		
È	-			K			TM-10		83			de sable, gris.	-					
-40	-12			K										\square	Π	t	\square	
F	-			H														
E	-13			Ø										\square	\square	t		$ \uparrow $
-45	-			Ø	-	12.00						Apple of all 1	-					
her l	-14			ł		13,80	TM-11		100			de sable, gris.		H	\square	\dagger	\top	
-				H		14,40	TM-12		96			Argile et silt, traces de sable, gris.]					
Ren	narques:		l	12				-				Тур	e de sondage: Fora	ige au	diam	ant		<u> </u>
												Equ	e de marteau: Auto	matiqu	ch D- Ie	50	MIQ	1
Tec	hnicien: Sé	bastien	Rioux, Tech.		Vé	rifié pa	r:					Dat Approuvé	e du rapport: 2023- par:	vo-15				

Figure C1-3 : Rapport de sondage FSZ-07A.

\\sir	nfra0-app0)02\Log	jiciels\Geotec80\Logo\Tran	spo	R	A	PO	R	T I	DE	SONE	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	-St-	Lau	rent			Dos	sier: 3	84(437)19		Sondage: FS	Z-07A				
Env	troit								Date	e du so	ndage: 2022	2-05-19"	Profondeur tot	ale: 22	,27 r	n		
	2010								Coo MTN	rdonné NAD 8	es (m): 5384 3 (Zone:6) 258	4527,34 m (Y) 8818,27 m (X)	Élévation: (Fixée à 100 m	10 1.)	0,00	m (2	Z)	
÷	<u>.</u>		COUPE GÉOLOGIQUE					-	É	CHAN	TILLONS			Ĺ	E	SA	IS	
Prof. (p	Elev.(m)/ Prof.(m)	Piezo- métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	Sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Ess pénét 25 (ai de tratic 50 75	n Sc	isso 50 10	mètre 00150
-	5			K												T	Π	
ţ.	-			K														
ŀ	16,00		Silt argileux, gris foncé.	ľ		16,00	TM-13	1	98	1		Silt argileux, gris foncé.			Π	T	Π	
-55	-			Þ		16,60	TM-14		02			Silt argileux, gris						
Ł	-17			ŀ		 	1111-1-4					foncé.		\square	Ħ	t	Π	
ŀ	-			k		17,60	TH 45		00			Silt argileux, gris						
-60	-18			ł		18.20	1 M-15		63			foncé. Silt argileux gris		\vdash	Ħ	+	Ħ	+
ŀ	E			K			TM-16		100			foncé.						
F	-19			K										H	H	$^{+}$	Ħ	
-				ľ														
F	-20			p										\vdash	\vdash	+	+	
È.	-			ŀ														
ŀ	-21			k										\vdash	\mathbb{H}	+	+	
-70	- 21,34		Sable silteux, un peu d'argile, gris foncé, très lâche	Þ	∇	21,34	CF-28		100	4		Sable silteux, un peu d'argile, gris foncé						
ŀ	-2277,94		Sable graveleux un neu de		₿	22.06	B+ N		14	000		très lâche.		\vdash	\square	+	\square	
Ē	22,27		silt, gris, très dense.	-			B					peu de silt, gris, très						
-75	-23											dense.		\vdash	\square	+	\square	
F	Ē																	
Ł	-24													\square	Ц	\downarrow	\square	
-80	-																	
ţ.	-25														Ц	\perp		
ŀ	F																	
-85	-26																	
Ł	-														Ī			
F	27																	
-90	–															Τ		
ŀ	F.																	
ţ.	-28														\square	T	Π	
-	-																	
-95	-29													$ \uparrow$	Ħ	\dagger	Π	\square
	-																	
	-30													\vdash	\vdash	+	\exists	+
400	E																	
	-31													\vdash	+	+	+	+

Figure C1-4 : Rapport de sondage FSZ-07A (suite).

\\sir	nfra0-app(02\Log	iciels\Geotec80\Logo\Tran	spo	R	×P	PO	R	T]	DE	SONE	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Laur	rent		_	Dos	sier: 3	84(437)19		Sondage: FS	Z-07B				-
									Date	e du so	ndage: 2022	2-05-25"	Profondeur tot	ale: 21,	97 m			
End	droit: Price								Coo	rdonné	es (m): 538	4523,69 m (Y)	Élévation:	100	,00 m	1 (Z)		
\vdash			COUPE GÉOLOGIQUE						MTN É	CHAN	3 (Zone:6) 258 TILLONS	8809,53 m (X)	(Fixée à 100 n	<u>1.)</u>	ESS	SAIS		_
(id)	Élév.(m)/	Piézo-	Description	<u>_</u>		Ê	N, S	éch	ė.	N		Description	Observations	Essa	i de	Scis	somé	ètre
Pro	Prot.(m)	metrie	stratigraphique	8	Ê	Prof.	Calib	sno	Récu (%)	RQD	N coups	des échantillons	de chantier	25 50	ation	50	10015	50
	- 0,00		Forage destructif en NW	┢		-		Ĩ,						<u>t t t</u>	1	Ť	+	H
F	-																	
ŀ	- 1													\vdash	+	\vdash	+	Н
- 5	E																	
ŀ	- 2																\square	
È	-																	
ŀ	-																	
-10	96,20 380 Silt et sable, un peu d'argile, IEEE 380 marcano sono Silt et sable un peu																	
ŀ	96,20																	
Ł	- 4 ^{3,80}		Silt et sable, un peu d'argile, gris.	X		3,80	TM-17		88			Silt et sable, un peu d'argile, gris. Labo		\vdash	+	\vdash	+	Η
-15	- <u>95,50</u> - 4,50		Silt, un peu d'argile et sable,	H								MTQ.						
ŀ	15 4,50 Silt, un peu d'argile et sable, gris. MTQ.															Н		
Ē	Ē			Í.		0,00	TM-18		80			et sable, gris.						
ŀ	6			K		5,60	TM-19		82			Silt, un peu d'argile et sable, gris.						
-20	2			k		6,20	TM 20					Silt, un peu d'argile						
ŀ	-			i,		6 90	TM-20		80			et sable, gris foncé. Labo MTQ.						
È	- 7			K		0,00	TM-21		83			Silt, un peu d'argile et sable, gris foncé		H	-		\square	Π
-25	E			k		7,40	TM-22	1	80	1		Fiole 2-9. Labo						
Ł	- 8								-			Silt, un peu d'argile		\vdash	+	\vdash	+	Н
F	-			ľ								et sable. Fiole 2-5. Labo MTQ.						
1	- 9			K	1									\square	+	\square	+	
-30	-			ŀ														
ŀ	90,00			ľ														
È.	10,00		Silt argileux, traces de sable, gris foncé. Gris foncé.	K		10,00	TM-23		88			Silt argileux, traces de sable, gris foncé.					Π	
-35	-		-	K		10,60	TH 24		00			Fiole 2-49						
È	-11			ľ		11 20	10-29		02			de sable, gris foncé.			+		+	Η
ŀ	F			h		11,20	TM-25		67			Silt argileux, traces						
-	-12							1				de sable. Gris foncé.		\vdash	+	\vdash	+	Н
-	-			ľ														
E	-13													Щ	_		\downarrow	
F	F																	
-45	È.			1	777	13,80						Silt argileux traces						
-	E ¹⁴						TM-26		97			de sable. Fiole 2-33.						Π
-	È I					14,40	TM-27		70			remanié.						
Ren	narques:							L	-			Туре	de sondage: Fora	age au d	liama	nt		Ч
												Équi	pement de forage: de marteau: Auto	Diedric matique	h D-5	0 MT	Q	
Too	hnicion: En	ancois Tr			VA	rifié na						Date	du rapport: 2023-	05-15				\neg
1.90	annoen, ma	iniyota H	ernosey, 1.1.P.P		46	une ha	n					Approuve p	· .					

Figure C1-5 : Rapport de sondage FSZ-07B.

\\si	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	AP	PO	R	T I	DE	SONE	DAGE				
Loc	alisation gé	inérale:	Diverses Municipalités - Bas-	-St-I	Lau	rent			Dos	sier: 🕻	384(437)19		Sondage: FS	Z-07B		
	denile Bulan								Date	e du so	ndage: 2022	2-05-25"	Profondeur tot	ale: 21,97 m	ı	
En	aroit: Price								Coo MTM	rdonné NAD 8	es (m): 5384 3 (Zone:6) 258	4523,69 m (Y) 8809,53 m (X)	Élévation: (Fixée à 100 n	100,00 i	n (Z)	
÷	<u>.</u>		COUPE GÉOLOGIQUE					-	É	CHAN	TILLONS			ES	SAIS	
Prof. (p	Elév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	Sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Essai de pénétration 25 50 75	Scissom	nètre 150
F	2			И		_		Ĩ				Silt argileux, traces de sable, gris foncé.				
È	È .			K	1							Fiole 2-22				
ŀ	-16			И												Π
-55	E			И												
ŀ	-17			K											+++	Η
Ē	82,40		Argile et silt, traces de sable	И		17,60						Argile et silt, traces				
+	-18		et gravier, gris foncé.	K			TM-28		100			de gravier. Fiole			+++	+
-60	È .			K		18,20	TM-29		0			un 7 cm de remanié				
Ł	-19			K		18,80	тм-30	1	100			Argile et silt, traces		\square	+++	+
F	80,60		Forage destructif en NW.	ГИ								gris foncé.				
-65	-20		Installation downhole.												+++	\square
ŀ	Ē															
È.	-21															
-70	-															
È	78,03															
ŀ	²⁴ 21,97		FIN DU FORAGE													
-75	-															
ŀ	-23															
F	È .															
-	-24															Π
F	E															
Ł	-25														+++	Η
ŀ	Ē															
-85	-26													+ +	+++	+
ŀ	F															
ţ	-27													+ + +	+++	+
-90	-															
Ē	-28														+++	\square
ŀ	E															
-95	-29														$\downarrow \downarrow \downarrow$	
1000	F															
100																
2-	F.															
5 C	-31															

Figure C1-6 : Rapport de sondage FSZ-07B (suite).

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	ЖP	PO	R	T]	DE	SONE	DAGE							
Loc	.ocalisation générale: Diverses Municipalités - Bas-St-Laurent Dossier: 384(437)19 Sondage: FSZ-07C Date du sondage: 2022-05-26" Profondeur totale: 21 m Endroit: Price Coordonnées (m): 5384521,10 m (Y) Élévation: 100,00 m (Z) MTM NAD 63 (Zone:6) 258811,00 m (X) (Fixée à 100 m.)																		
Env	troit: Dalars								Date	e du so	ndage: 2022	2-05-26"	Profondeur to	ale: 2	1 m				
LIN	TOIL Price								Coo	rdonné I NAD 8	es (m): 538/ 3 (Zone:6) 25	4521,10 m (Y) 8811.00 m (X)	Élévation: (Fixée à 100 n	1 n.)	00,0	0 m	(Z)		
÷			COUPE GÉOLOGIQUE					_	É	CHAN	TILLONS			Ĺ	E	SS	AIS		_
Prof. (p	Elév.(m)/ Prof.(m)	Piézo- métrie	Description stratigraphique Surface du terrain naturel	Code	État	Prof. (m)	Type-No Calibre	Sous-éch	Récup. (%)	N RQD	N coups	Description des échantillons	Observations de chantier	Est péné 25	said étrati 50 7	ie ion 75	iciss	iomè 10015	tr 0
-			Forage destructif en NW.	T										Ħ		Π	+		-
-	-																		
-	- 1													H		Π	+	Π	
- 5	Ē																		
-	- 2													H	+	H	+	+	-
-	Ē																		
-10	3													\vdash	+	\mathbb{H}	+	+	_
-	F																		
-	4													\vdash	+	\square	+	+	_
- -15	-												Describes						
-	- 5												tentative pour	\vdash	+	\square	+	+	_
-													essai de scissomètre.						
-	- 6												Refus à l'enfoncement	\vdash		\square	\perp	\square	
-20	-												des palettes après 15 cm.						
	Ē,													Ш					
-	Ę																		
-25	È.																		
-														Π		Π	Τ	Π	
-	-																		
-30	- 9													H	+	Ħ	$^+$	Ħ	-
_	E																		
-	-10												Deuxième	+	+		+	+	-
-35	Ē												tentative pour essai de						
-	-11												scissomètre entre 10.00 et	\vdash	+		+		_
-	F												12.25m. Refus à l'enfoncement.					×	
-40	-12													\vdash	+		+	+	_
-	-				777	12.50						Silt argileux, traces		1					
_	-13					-,	TM-31		92			de sable et gravier. Fiole 2-17		$\mid \mid$	-		+	\parallel	
-	Ē					13,10	TM-32		100			Silt argileux, traces							
-45	-14					13,70	TM-33		85	1		Silt argileux, traces	1	Щ		Ц	\perp	\square	
-	F					14,30	TM-24		100			de sable. Fiole 2-61 Silt argileux, traces							
	-						1111-34		100			de sable. Fiole 2-88							
Rer	narques:											Type	e de sondage: pement de forage:	Died	rich I	D-50	MT	Q	
												Type	e de marteau: Auto du rapport: 2023-	matiq 05-15	ue				
Tec	hnicien: Fra	ançois Tr	remblay, T.T.P.P		Vé	rifié pa	r:					Approuvé p)ar:						-

Figure C1-7 : Rapport de sondage FSZ-07C.

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Trans	spo	R	ÆP	PO	R	TI	DE	SONI	DAGE						
Loc	alisation gé	nérale:	Diverses Municipalités - Bas-	St-I	Lau	rent			Dos	sier: 3	84(437)19		Sondage: FS	Z-07C	;			
E-	denite Bulan								Date	e du so	ndage: 2022	2-05-26"	Profondeur tot	ale: 2 *	1 m			
	aroit. Price								Coo	rdonné	es (m): 538	4521,10 m (Y) 8811.00 m (X)	Élévation: (Fixée à 100 m	1	00,0	10 m	(Z)	
-			COUPE GÉOLOGIQUE						É	CHAN	TILLONS		(1000 0 100 1		E	ESS	AIS	
of. (pi	Élév.(m)/ Prof.(m)	Piézo- métrie	Description	e e	at	(E)	e-No Ibre	-éch	d G	N	N coups	Description	Observations	Ess	sai o	de	cisso	omètre
ă			stratigraphique	ပိ	- D	Prof	Cal	Sour	Réć C	RQD		des echantilions	de chantier	25	50 T	75	50 10	00150
ŀ	È.					14,90	TM-35		95			Silt argileux, traces de sable. Fiole 2-64						
ţ.	-					15,50	TM-36	1	0									
ŀ	-16					16,10	TM 27		100			Silt argileux, traces			T	Π		
-55	E						TM-37		100			de sable. Fiole 2-24						
ŀ	-17												Troisième	\vdash	+	H	++	\vdash
ţ.	È i												tentative pour essai de					
ŀ	-18												scissomètre entre 17.00 et	\vdash	+	\mathbb{H}	++	164 ×
-60	-												21.00m. Refus à l'enfoncement				90 ×	2
ŀ	-19													\square	+	Н	- 90	
Ē	E																79 ×	
-65	-20																78	
Ę																	86	
ŀ	È.																1	
70	2121,00		FIN DU FORAGE	Γ	1										T	Π		
-	E																	
ţ.	-22													\vdash	+	H		
ŀ	F																	
-75	-23													\vdash	+	\mathbb{H}	++	\vdash
ŀ	-																	
È	-24													\vdash	+	Н		
-80	Ē																	
È	-25														\perp	\square		
ŀ																		
-85	-																	
ŀ	20														Γ	Π		
ţ.	È																	
ŀ	-27													+	\dagger	\exists	+	+
-90	E																	
\mathbf{F}	-28													\vdash	+	+	+	$\left \right $
ļ.	È I																	
-95	-29													\vdash	+	\square	+	\square
Ĺ	E																	
-	-30														\perp	\square		
400	-																	
-	-																	
Ł	-31															\square		

Figure C1-8 : Rapport de sondage FSZ-07C (suite).

Annexe C2 : Terrain

Figure C2-1 : Piézocône à Price	254
Figure C2-2 : Résultats de l'analyseur de battage à Price.	255
Figure C2-3 : Piézomètres à Price	256
Figure C2-4 : Résultats de l'essai sismique de type « downhole » et « crosshole » à	Price.
	257

Figure C2-1 : Piézocône à Price.

Transı	orts Québec 🖥	*	F	Formu	lair	e d'	essa	ai			Form	nulaire	e: FG	G-08	6
Servi	ce géotechnique e	t géologie	Résulta	ats - An	aly	seu	r de	bat	age	' [2015-	03-11	Pag	e 1 de	e 1
	# Projet :		384(437)1	9						-					
	Localisation :		Recherche E	BSL											
(Chargé de Projet :		Antony Gag	jné											
	Analysé par :		Antony Gag	jné											
	# Famme .		ES7-07						Data			2022	05.1	7	
	# rorage :		F3L-U/	0.02		_			Date			2022	-05-1	/	
	Operateur SP1 :		Sebasuen Ri	oux		_									
	Cie Forage :		MTQ				Туре	Mai	teau	:		Auton	natiqu	e	
	# Foreuse :						#	Mai	teau	:					
	Foreur :	Je	an-Claude [Defoy		_	Poid	s Ma	rteau	u:		63.	5 kg		
CF	Prof. Départ (m)	E _R (%)	C _F												
CF-4	3.05	63.8%	1.06	1					•	CE					
CF-6	4.57	77.0%	1.28	0.8	0	0.90	1.00	1.1	0 1	20	1.30	1.40	1.50	1.60	
CF-8	6.10	76.5%	1.28	0.00	- -			τŤ			1			τĨ	
CF-10	7.62	76.5%	1.28											11	
CF-12	9.14	74.2%	1.24											11	
CF-14	10.67	76.2%	1.27	5.00				\square			•			Ш	
CF-16	12.19	75.7%	1.26								41			11	
CF-18	13.72	76.2%	1.27								×ا			11	
CF-20	15.24	77.3%	1.29								^			11	
CF-22	16.76	78.6%	1.31	10.00	+	+	\vdash	H	+	\square	x	\vdash	\vdash	H	
CF-24	18.29	79.2%	1.32											11	
CF-26	19.81	76.1%	1.27								11			11	
				15.00	+	+		\vdash	_	\vdash	<u>\</u>	\vdash	\vdash		
														11	
											1			11	
				20.00										ш	
				20.00										11	
				25.00				1		1					
	Movenne ·	76.7%	1.26												
Demo	integenne i	101110	1120												
Kemarqı L'essai C	ues :)F-4 a été retiré d	lu calcul de	la moyeni	ne.											

E_R : Energy Ratio (Rapport d'énergie) C_E : Facteur de correction

Figure C2-2 : Résultats de l'analyseur de battage à Price.

Figure C2-3 : Piézomètres à Price.

Figure C2-4 : Résultats de l'essai sismique de type « downhole » et « crosshole » à Price.

Annexe C3 : Essais triaxiaux

Figure C3-1 : Sommaire des 3 essais triaxiaux réalisés entre 10,78 et 10,98	m à Price.
Figure C3-2 : Sommaire des 3 essais triaxiaux réalisés entre 14,55 et 15,20	m à Price.
Figure C3-3 : Sommaire des essais triaxiaux aux contraintes en place à Price. Figure C3-4 : Module E_u lors de l'essai triaxial de 5,11 à 5,21 m (Price) Figure C3-5 : Module E_u lors de l'essai triaxial de 10,78 à 10,88 m (Price) Figure C3-6 : Module E_u lors de l'essai triaxial de 14,58 à 14,68 m (Price) Figure C3-7 : Module E_u lors de l'essai triaxial de 17,76 à 17,86 m (Price)	

Figure C3-1 : Sommaire des 3 essais triaxiaux réalisés entre 10,78 et 10,98 m à Price.

Figure C3-2 : Sommaire des 3 essais triaxiaux réalisés entre 14,55 et 15,20 m à Price.

Figure C3-3 : Sommaire des essais triaxiaux aux contraintes en place à Price.

Figure C3-4 : Module E_u lors de l'essai triaxial de 5,11 à 5,21 m (Price).

Figure C3-5 : Module E_u lors de l'essai triaxial de 10,78 à 10,88 m (Price).

Figure C3-6 : Module E_u lors de l'essai triaxial de 14,58 à 14,68 m (Price).

Figure C3-7 : Module E_u lors de l'essai triaxial de 17,76 à 17,86 m (Price).

Annexe C4 : Essais œdométriques

Figure C4-1 : Essai œdométrique à Price à 5,72 m de profondeur.267Figure C4-2 : Déformation-contrainte de l'essai œdométrique à 5,72 m à Price.268Figure C4-3 : Contrainte - module œdométrique de l'essai à 5,72 m à Price.269Figure C4-4 : Essai œdométrique à Price à 7,70 m de profondeur.270Figure C4-5 : Déformation-contrainte de l'essai œdométrique à 7,70 m à Price.271Figure C4-6 : Contrainte - module œdométrique de l'essai à 7,70 m à Price.272Figure C4-6 : Contrainte - module œdométrique de l'essai à 7,70 m à Price.273Figure C4-8 : Déformation-contrainte de l'essai œdométrique à 14,69 m à Price.274Figure C4-8 : Déformation-contrainte de l'essai œdométrique à 14,69 m à Price.274Figure C4-9 : Contrainte - module œdométrique de l'essai à 14,69 m à Price.275Figure C4-10 : Essai œdométrique à Price à 16,49 m de profondeur.276Figure C4-11 : Déformation-contrainte de l'essai œdométrique à 16,49 m à Price.278Figure C4-12 : Contrainte - module œdométrique de l'essai à 16,49 m à Price.278Figure C4-13 : Essai œdométrique à Price à 17,71 m de profondeur.279Figure C4-14 : Déformation-contrainte de l'essai œdométrique à 17,71 m à Price.280Figure C4-15 : Contrainte - module œdométrique de l'essai à 17,71 m à Price.281

Figure C4-1 : Essai œdométrique à Price à 5,72 m de profondeur.

Figure C4-2 : Déformation-contrainte de l'essai œdométrique à 5,72 m à Price.

Figure C4-3 : Contrainte - module œdométrique de l'essai à 5,72 m à Price.

Figure C4-4 : Essai œdométrique à Price à 7,70 m de profondeur.

Figure C4-5 : Déformation-contrainte de l'essai œdométrique à 7,70 m à Price.

Figure C4-6 : Contrainte - module œdométrique de l'essai à 7,70 m à Price.

Figure C4-7 : Essai œdométrique à Price à 14,69 m de profondeur.

Figure C4-8 : Déformation-contrainte de l'essai œdométrique à 14,69 m à Price.

Figure C4-9 : Contrainte - module œdométrique de l'essai à 14,69 m à Price.

Figure C4-10 : Essai œdométrique à Price à 16,49 m de profondeur.

Figure C4-11 : Déformation-contrainte de l'essai œdométrique à 16,49 m à Price.

Figure C4-12 : Contrainte - module œdométrique de l'essai à 16,49 m à Price.

Figure C4-13 : Essai œdométrique à Price à 17,71 m de profondeur.

Figure C4-14 : Déformation-contrainte de l'essai œdométrique à 17,71 m à Price.

Figure C4-15 : Contrainte - module œdométrique de l'essai à 17,71 m à Price.

Annexe D : Saint-Ulric-de-Matane

Annexe D1 : Sondages

Figure D1-1 : Rapport de sondage FSZ-08.	
Figure D1-2 : Rapport de sondage FSZ-08A.	284
Figure D1-3 : Rapport de sondage FSZ-08A (suite).	
Figure D1-4 : Rapport de sondage FSZ-08B.	
Figure D1-5 : Rapport de sondage FSZ-08C	287
Figure D1-6 : Rapport de sondage FSZ-08D.	

W	sinfra0-a	pp()02\Log	iciels\Geotec80\Logo\Trans	spo	R	AP	₽Đ	R	T I	DE	SONI	DAGE								
L	ocalisatio	n gé	nérale:	Diverses Municipalités - Bas-	st-	Lau	rent			Dos	sier: 3	384(437)19		Sondage: FS	Z-0	8					-
										Date	e du so	ndage: 2022	2-06-07"	Profondeur to	tale	21,	376	m			
E	Endroit: st	-Uli	fic .							Coo	rdonné	es (m): 539	9514,08 m (Y) 3625 22 m (X)	Élévation: (Fixée à 100 n	n.)	10	0,00	m	(Z)		
	_			COUPE GÉOLOGIQUE						É	CHAN	TILLONS			Г		E	ss/	AIS		
100	Elév.(m)/ m)	Plézo- métrie	Description stratigraphique	Code	État	rof. (m)	ype-No Calibre	ous-éch	Récup.	N RQD	N coups	Description des échantilions	Observations de chantier	E pé	issa nét	al de ratio	e s	ciss	omé	/tre
F	- 0	00	+ + •	Surface du terrain naturel Sable, un peu de silt, traces		\sim	0,00	CE-01	ð	84	13		Sable, un peu de silt		1.		0 76	<u> </u>	801	0018	^
E	<u> </u>	24		de gravier, brun, compact.	1	e	0.76	В	Ģ		10		traces de gravier,								
Ł	5 98	48		gravier, brun, läche.	ŧ.	Ă	0,10	CF-02	4	41	5		Sable silteux, un peu	1							
Ł	E 2 1	52	381	Sable sliteux et graveleux,		${ imes}$	1,52	CF-03		52	11		de gravier, brun,	1	⊢		\vdash	+	+	\vdash	\square
ŧ	È 👡	~~		brun, compace		X	2,29	CF-04	'	44	26		Sable silteux et	1							
<u>†</u> 1	0 - 390	05		Arglie et silt, traces de sable,	Ŵ	$\overline{\mathbf{x}}$	3,05	LB.	f	56	11		graveleux, brun,		F		H	+	+		
ŧ	E 4			gris, compact.	Ð	₿	3.81	B	A	07			compact. Sable silteux et	1	L						
Ę1	5		116		K	ě	0,01	CF-06 B	A	8/	14		graveleux, brun,								
Ę	- 5				1	\boxtimes	4,57	CF-07		97	14		compact. Arglie et slit, traces	1	⊢	\square	\vdash	+	+	+	\neg
ŧ	Ē				H	X	5,33	CF-08	1	79	16		de sable, gris,								
-2	10 E 6				Ð	$\overline{\mathbf{X}}$	6,10	B CE-09	f	89	16		consistance raide. Arglie et silt, traces	1	F		H	+	+	\square	
ŧ	- <u>93</u>	14 86		Arglie et silt, traces de sable	И	€	6.86	B	A	07	40		de sable, gris.		L						
-2	5		X /	et gravier, gris.	k	e	7.50	CF-10 B	6	0/	12		Arglie et slit, traces de sable, gris,								
ŧ	8		• • •		H	X	7,62	CF-11		87	12		Arglie et slit, traces	1	\vdash	\vdash	\vdash	+	+	+	\neg
ŧ	Ē,				H	\times	8,38	CF-12	1	85	12		de sable, gris. Argle et silt, traces	4							
-3	10 E 3				И	$\overline{\mathbf{X}}$	9,14	B	1	79	15		de sable, gris.		Г						
ţ	-10		• • •		И	€	9.91	B	A	00	47		Arglie et slit, traces		⊢		\vdash	+	+	-	\square
-3	5				H	e	10.67	CF-14 B	A	00	17		gris.								
ŧ	-11		••••		H	X	10,67	CF-15		84	23		Arglie et slit, traces		F		H	+	+	+	
ŧ	12				И	X	11,43	CF-16	1	80	20		gris.		L						
14	۳E				Ł	X	12,19	B	A	92	17		Arglie et slit, traces								
ŧ	-13		4/_		H	€	12.95	B	A	00	42		gris.		⊢		\vdash	+	+	\vdash	\vdash
Ė₄	5 86	28	户,	Arolla et ellt up neu de enble	14	e		CF-18 B	4	92	13		Arglie et slit, traces	1							
ŧ	-14 13	12	<u> </u>	et gravier, gris.	H	X	13,72	CF-19		84	14		gris.		F		H	+	+	\square	
ţ	-15				ĽЯ	X	14,48	CF-20	/	69	13		Arglie et slit, traces	1	L						
-5	10 E		:::		И	$\overline{\mathbf{X}}$	15,24	B	l	90	11		de sable et gravier, gris.								
ŧ	-16				K	₽	16,00	B	1	84	14		Arglie et slit, traces	1	\vdash	\vdash	\vdash	+	+	+	\neg
-5	5 83	24		Arollo et elli impere de enhie	И	e	45.75	CF-22	6	04	14		de sable et gravier, gris.								
ŧ	=1710	10	:::	et gravier, gris.	И	X	10,70	CF-23		90	13		Arglie et slit, traces	1							
ŧ	-18		• • •		K	\ge	17,53	CF-24	1	33	15		de sable et gravier, gris.		L		\square	_	_		\square
-6	10 E				R	$\overline{\mathbf{X}}$	18,29	B+ N	1	70	17		Arglie et slit, traces	1							
ŧ	-19				И	Ē	19,05	B	1	100	13		de sable et gravier, oris.		F	\square	H	+	+	+	\neg
Ļ.	5 E 20		<u> </u>		h	€	10.81	CF-26	1	100	10		Arglie et slit, traces	1							
ŧ	Ē		7//		K	\bowtie	13,01	CF-27		100	16		de sable et gravier, gris.		Г						
F	-21,78	62			И			ш	1				Arglie et slit, un peu	1	⊢		\vdash	+	+	\vdash	\vdash
F7	0 21	38	///	FIN DU FORAGE		┢	21,34	CF-28		•	999		de sable et gravier, gris, consistance								
ŧ	-22												ralde.		F		H	+	+		
-7	5 -23												Arglie et slit, un peu de sable et oravier				Ц				
<u>≩</u>	Ē												gris.								
	-24												Arglie et slit, un peu de sable et gravier.		\vdash	\vdash	\vdash	+	+	+	Н
E	Ē												gris.								
R	temarques	ī.							-				Typ Équ	e de sondage: Fora lipement de forage:	age Die	au o edrio	dlam ch D	hant	мто	2	
2													Typ	e de marteau: Auto e du rapport: 2022-	ma ne.	tiqu ne	е				
R T	echnicien	Sé	bastlen i	Rioux, Tech.		Vé	erffié pa	ar:					Approuvé	с он төррөт. 2022- раг:							-
		_		-		_								-							

Figure D1-1 : Rapport de sondage FSZ-08.

Transp	orts Jué	bec 🔡 R.	AP	PO	OR	RT I	D	E SO	ON	DAG	E		B		-2
Localisation	générai	e : Diverses Municipalités - Br	m-81-Li	aurer	vt			Dossier.	384(4	37119	SOND	AGE: FS	Z-08A	-ge i c	
Endroit St	-Ulric							Date du s	ondeo	× 2022-06-0	Prot. fi	type an	et): 20	.55 m	
CF: Cullère PS: Piston s CR: Cerotie TA: Tarière VR: Vrac IN AU: Autre D	fendue tationnal r k: Indéte E: Déley	UII ETATOR ECHANTLLONS N ire Zizza Intact N Perdu 3 s rminá Carotte k 6 Autre afroi opious	L Péné L Péné L Sciss L Cône L Press	tratio tratio iomit suéc éabil sion li	n dyna n stan tre (kP żois (kl ité (mł imite ()	em. E dend 8 e) A Pe) C b) 9 kPa) C		Module pre Sensibilité Analyse Gr Consolidati Compressio Correction	anulon on sim d'éner	étrique ;- ● W nétrique ○ W ⊢ W pie ⊢ W gie ₹ :	Poids volumique (Teneur en eau (% Pour calculer L (% Limite de liquidité Limite de plasticit Niveau d'eau (m)	kN/m²) i) i) (%) i (%)	Coord MTM 5 Élévati (Foie à	onnées NAD 83 399496. 283619. 283619. on: 100. 100 m.)	(m): (Zone:) 78 m (Y) 70 m (X) .00 m (Z)
Elev. Prof.	10	Description		⊢	0			Réc.		N1/N2/N3/N4	No ET ESSAIS	s. 40	80	120	160 N
(m)	Photo:	stratigraphique	Str.	Ébit	(m)	Calibre		(cm/cm) (%)	RQD	Rem. sur N / RQD	et notes	w 20	40	60	80
					3.20 3.80 7.00 7.60 7.60 10.60 10.60	TM-01 TM-02 TM-03 TM-04 TM-06 TM-08 TM-08 TM-08 TM-09 TM-10		44,60 (73%) 56,60 (93%) 56,60 (83%) 44,60 (83%) 44,60 (83%) 47,60 (78%) 47,60 (78%) 47,60 (78%) 0,60 (0%) 0,60 (0%) 14,60 (0%) 14,60 (23%)							
Remanuer				1			1				Type de cor	dene Fo		lamant	
Technicien	Jérémie	• Ferland	Verifi	é per						App	Type de sor Équipement Type de ma	de forage feau: Aut	age au (r: Diedrik omatiqu	th D-50	MTQ

Figure D1-2 : Rapport de sondage FSZ-08A.

Transports Québec S S RAPPORT DE SONDAGE															
Localisation	n générai	e : Diverses Municipalités - Ba	m-81-Li	aurer	nt			Dossier.	384(4	37)19	SONDA	GE: FS	Z-08A		
Endroit S	t-Ulric							Date du s	ondep	e: 2022-06-0	9 Prof. fin	(type and	N): 20	.55 m	
Élev.		COUPE GÉOLOGIQUE		Γ					É	CHANTILLO	NS ET ESSAIS		-		
Prof.	100	Description			Prof.	Type-No	4	Réc.	N	N1N2/N3/N4	Essals	s, 40	80	120	160 N _{dc}
(m)	2	stratigraphique	ou.	Ê,	(m)	Calibre	ġ	(cm/cm) (%)	RQD	N / RQD	et notes	w 20	40	60	80
5				F			0								
-					15.60	TM-11		60/60							
- 16					16.20			(100%)							
2						TM-12		58/60 (97%)							
-							1								
-															
-															
-18															
-															
-															
-				777	19.00		\mathbf{I}	-							
F						TM-13		(100%)							
È i							1					1.4			
-20															
-			<u> </u>	1			\vdash								
ŀ															
F															
È i															
-22															
2															
ŀ							1								
F															
È i							Ľ								
È								× .							
-24							Γ								
Ł															
F				N		P									
F					1										
È i				r											
-28															
Ľ			1												
F															
F															
F															
t i															
-28															
F															
F															
È .															
t i															
-30															
-~															
F															
ţ.															
Ł															
Ł															
-32															
ţ.															
Ł															
L				1			1								

Figure D1-3 : Rapport de sondage FSZ-08A (suite).

Transp	orts Jué	bec 👪 RA	A P	PO	OR	RT I	D	E SO	ON	DAG	E			hace 1	4.2	
Localisation	cénérai	e : Diverses Municipalités - Ba	n-81-Lu	urer	nt			Dossier	3840	37119	SOND	AGE: F	, SZ-08B	agen	002	
Endroit St	-Ulric						_	Date du s	ondeo	e: 2022-06-1	4 Prof. fi	n (type ar	10(): 1).6 m		
CF: Cuilière PS: Piston s CR: Carottie TA: Tarière VR: Vrac IN AU: Autre D	fendue tationnel r 4: Indéte E: Délay	IIII ETATORE ÉCHANTELIONS N Ire Matat N Perdu à 3 rminé Cardie k pé Autre officio concurs	Pénél Pénél Sciss Cône Perm Press	tratio tratio omit suik éabil ion li	n dyna n stan tre (kP dois (kl ité (m/ ité (m/ imite ()	am. E dand 8 a) A Pa) C s) 9 s) 9 s(Pa) C		Module pre Sensibilité Analyse Gr Consolidati Compressie Correction	anulor on on sim déner	étrique ;÷ ● w nétrique ○ w ⊢ w gie ► w gie ₹ :	Poids volumique Teneur en eau (% Pour calculer L (* Limite de liquidité Limite de plasticit Niveau d'eau (m)	(kh¥/m²) i) 6) (%) á (%)	Coon MTM Élévat (Fixie	500042 339942 28361 ion: 10 100 m	es (m) 83 (Zo 15.70 (16.63 (10.00 (1.)	: m (Y) m (X) m (Z)
Élev. Prof.	5 a	COUPE GEOLOGIQUE		\vdash		_	4	Réc.	E	N1/N2/N3/N4	NS ET ESSAIS	. 4	0 80	12	0 10	90 N
(m)	Piero a	stratigraphique	Str.	in the second se	(m)	Type-No Calibre		(cm/cm)	RQD	Rem. sur	et notes	w				- "de
-2 96.80 3.20 -4 -6 93.60 -10 -10 -12		Argle et sit, traces de sable, gris.			3.20 3.80 7.60 3.20	TM-01 TM-02 TM-03 TM-04 TM-06 TM-06		54/60 (00%) 47/60 (78%) 58/60 (78%) 47/60 (78%) 60/60 (100%) 60/60 (100%)								
14 Remarques	ĸ										Type de sor Équipement	dage: Fo	anage su e: Diedr	diama ich D-	ent 50 MTK	
											Type de ma	rteau: Au	tomatiq			
Technicien	Sébesti	ien Rioux, Tech.	Verifie	é par:						App	rouvé par:					

Figure D1-4 : Rapport de sondage FSZ-08B.

Transp	orts)ué	bec 🔡 R.	APF	0	R	ГΙ)]	E SO	ON	DAG	E				
	`												Pa	ige 1 de	12
Localisation	générai	e : Diverses Municipalités - Be	as-St-Lau	rent				Dossier:	384(4	37)19	SOND	AGE: F8	Z-08C		
Endroit St	Ulric							Date du s	ondag	x: 2022-06-1	5 Prof. fi	1 (type an	et): 19.	75 m	
CF: Cuilière PS: Piston s CR: Cerottie TA: Tarière	fendue tationnal r	ire Perdu A s	Pénétri E Pénétri Scissor Cône s Darmé	ation o ation s mètre uédoi	dynam. standari (kPa) s (kPa)	E, 4 8, 4 4	2 N 2 S 0: A 2 C	Aodule pre lensibilité analyse Gr Consolidati	anulon on	itrique ;: ● W nétrique ○ W - W nie - W	Poids volumique (Teneur en eau (% Pour calculer L (% Limite de liquidité	(ch¥/m²) () () (96)	Coord MTM 1	onnées NAD 83 199488.1	(m): (Zone:) 50 m (Y) 01 m (X)
AU:Autre D	4: Indéte IE: Déley	rminé Carote Autre F	Pressic	n limi	(ma) te (kPa	ĵ,	Ģ	orrection	déner	pie 🛫 :	Niveau d'eau (m)	,	Elévatio (Fixée à	an: 100 m.)	m (Z)
Élev.		COUPE GÉOLOGIQUE	E						É	CHANTILLO	NS ET ESSAIS	I			
Prof.	a data	Description	Str.	• P	rot. Ty	pe-No	éch.	Réc. (cm/cm)	N	N1N2/N3/N4 Rem. sur	Essals	s, 40	80	120	160 N _{dc}
0.00	23	ctratigraphique		a ((m) Ci	alibre	Sour	(%)	RQD	N/RQD	et notes	W 20	40	60	80
4 6 -8.10 8					1.50 TT 1.10 TT 1.70 TT 1.70 TT 1.70 TT 1.70 TT 1.70 TT	M-01 M-02 M-04 M-05 M-06		48,80 (77%) 50,80 (95%) 45,80 (75%) 52,80 (87%) 52,90 (87%)		2.					
-12				1.	3.60 TI 3.60	M-07 M-08		47/60 (78%) 46/60 (77%)							
-															
Remarques	к										Type de sor	dege: For	age au d	liament	MTO .
Technicien	Sébest	en Rioux, Tech.	Vérifé	par:						App	Type de ma	feau: Aut	omatique)	

Figure D1-5 : Rapport de sondage FSZ-08C.

\\sir	nfra0-app()02\Log	iciels\Geotec80\Logo\Tran	spo	R	₩P	PO	R	ΤI	DE	SONI	DAGE							
Loc	alisation gé	nérale:	Diverses Municipalités - Bas	st-	Laur	ent			Dost	sier: 3	84(437)19		S	ondage: FS	Z-08D				
Enc	troit: stam	de							Date	e du so	ndage: 2022	2-06-16"	P	rofondeur tot	ale: 18	,85 r	m		
									Coor MTM	rdonné I NAD 8	es (m): 3 (Zone:)	m (Y) m (X)	ÉI (F	iévation: 1xée à 100 m	10 1.)	0,00) m (Z)	
6	Éláu (m)	Diana	COUPE GÉOLOGIQUE					-	É	CHAN	TILLONS					E	SSA	IS	
Prof. (p	Prof.(m)	métrie	Description stratigraphique	Code	État	Prof. (m)	Type-No Calibre	Sous-éct	Récup. (%)	N RQD	N coups	Description des échantilio	ns de	servations chantier	Ess pénéi 26 (al de tratic 60 70	9 So on 6	:1880 50 10	ométr
-	Ē															Π		Π	
Ę	E 1														\vdash	+	+	+	+
[]	2														\vdash	++	+	+	-
L 10	E 3																		
- "	Ē																		141
-15	E ⁴														\square	Ħ	+	Π	1.
È	5														\vdash	+	+	+	×
-20	6														\square	\square	+	\square	\vdash
Ē	Ē,																		1
-25	Ē																		
Ē	- 8														\vdash	Ħ	+	\square	\square
-30	5 9														\vdash	+	+	+	+
Ē	-10														\square	\square	+	\square	\vdash
-35	E.,																		162
ŧ	Ē																		156
40	-12														H	Ħ	+	1	10
È	13					13,00	TM-01		100			Arglie et slit, un p	eu		\vdash	\mathbb{H}	+	┦	\vdash
45	-14					13,60	TM-02		80			de sable et gravie gris.	er,		\square	Щ	\downarrow		\vdash
Ē	16											Arglie et slit, un p de sable et gravie	eu er,						23
-50	Ē											gris.							
Ē	E-16														H	Ħ	+	+	\vdash
-55	17														\vdash	+	+	2	+
F.	-18														\square	\parallel	\perp	1	10
-60	E.19																		
-	Ē																Τ		
- 60	-20														\vdash	+	+	+	+
70	-21														\vdash	\mathbb{H}	+	+	+
Ę	-22															\square	\downarrow	\square	\parallel
-75																			
È	-23															\square		Π	
80	-24															\square	+	\parallel	
Rer	narques:		I	-							L		Type de so Équipeme Type de m	ondage: Fora nt de forage: arteau: Auto	ge au Diedri matiqu	dian ich D je	nant 1-50 I	мта	
Tec	hniden: Sé	bastlen i	Rioux. Tech.		Vé	rifié pa	r.					Aporo	Date du ra uvé par:	ppon: 2022-(J9-06				

Figure D1-6 : Rapport de sondage FSZ-08D.

Annexe D2 : Terrain

Figure D2-1 : Piézocône à Saint-Ulric-de-Matane.	
Figure D2-2 : Résultats de l'analyseur de battage à Saint-Ulric-de-Matane	
Figure D2-3 : Piézomètres à Saint-Ulric-de-Matane.	
Figure D2-4 : Résultats de l'essai sismique de type « downhole » à Saint-Ulric-d	e-Matane.

Figure D2-1 : Piézocône à Saint-Ulric-de-Matane.

Trans	orts Québec 🖁		F	Formulai	Formulaire: FGG-086						
Servi	ce géotechnique e	t géologie	Resulta	ats - Anal	yseu	r de	batta	ige	2015-03-11	Page 1 de	e 1
	# Projet :		384(437)1	9							
	Localisation :		Recherche E	BSL							
(Chargé de Projet :		Antony Gag	iné							
	Analysé par :		Antony Gag	Iné							
	# Forage :		FSZ-08				D	ate :	2022	-06-07	
	Opérateur SPT :	5	Sébastien Ri	oux			-				_
	Cio Eorogo -		MTO		_	Tuno	Marte		Auto	natique	
	# Forouso :		WILQ		_	Type #	Marte	eau .	Autor	nauque	
	Foreur :	la	an-Claude D)efov	_	# Poide	Mart Mart	eau .	63	5 ka	
	roleul .	16		reity	_	Tolus	, wait	leau.	0	.5 Ng	
CF	Prof. Départ (m)	E _R (%)	CE					~			
CF-5	3.05	71.0%	1.18	1				CE			
CF-7	4.57	76.9%	1.28	0.80	0.90	1.00	1.10	1.20	1.30 1.40	1.50 1.60	0
CF-9	6.10	74.4%	1.24	0.00				\Box			
CF-11	7.62	75.4%	1.26								
CF-13	9.14	75.1%	1.25								
CF-15	10.67	79.1%	1.32	5.00			$\left \right $	++		++++	
CF-17	12.19	78.4%	1.31						∢		
CF-19	13.72	73.7%	1.23								
CF-21	15.24	68.7%	1.15						\mathbf{k}		
CF-23	16.76	80.6%	1.34	10.00				\square			
CF-25	18.29	82.6%	1.38								
CF-27	19.81	80.8%	1.35								
				15.00	_		$\left \right $	4	++++	++++	
				20.00							
				20.00							
<u> </u>											
				25.00							
	Moyenne :	76.4%	1.27								
Remarq	ues :										

E_R : Energy Ratio (Rapport d'énergie) C_E : Facteur de correction

Figure D2-2 : Résultats de l'analyseur de battage à Saint-Ulric-de-Matane.

Figure D2-3 : Piézomètres à Saint-Ulric-de-Matane.

Figure D2-4 : Résultats de l'essai sismique de type « downhole » à Saint-Ulric-de-Matane.

Annexe D3 : Essais triaxiaux

 Figure D3-1 : Sommaire des 3 essais triaxiaux réalisés entre 7,04 et 7,34 m à Saint-Ulric

 de-Matane.
 295

 Figure D3-2 : Sommaire des 4 essais triaxiaux réalisés entre 13,82 et 13,93 m à Saint-Ulric-de-Matane.
 296

 Figure D3-3 : Sommaire des essais triaxiaux aux contraintes en place à Saint-Ulric-de-Matane.
 296

 Figure D3-3 : Sommaire des essais triaxiaux aux contraintes en place à Saint-Ulric-de-Matane.
 296

 Figure D3-4 : Module Eu lors de l'essai triaxial de 4,08 m (Saint-Ulric-de-Matane).
 297

 Figure D3-5 : Module Eu lors de l'essai triaxial de 7,04 m (Saint-Ulric-de-Matane).
 298

 Figure D3-6 : Module Eu lors de l'essai triaxial de 13,82 m (Saint-Ulric-de-Matane).
 299

 Figure D3-7 : Module Eu lors de l'essai triaxial de 13,93 m (Saint-Ulric-de-Matane).
 300

 Figure D3-8 : Module Eu lors de l'essai triaxial de 16,01 m (Saint-Ulric-de-Matane).
 301

Figure D3-1 : Sommaire des 3 essais triaxiaux réalisés entre 7,04 et 7,34 m à Saint-Ulric-de-Matane.

Figure D3-2 : Sommaire des 4 essais triaxiaux réalisés entre 13,82 et 13,93 m à Saint-Ulricde-Matane.

Figure D3-3 : Sommaire des essais triaxiaux aux contraintes en place à Saint-Ulric-de-Matane.

Figure D3-4 : Module E_u lors de l'essai triaxial de 4,08 m (Saint-Ulric-de-Matane).

Figure D3-5 : Module E_u lors de l'essai triaxial de 7,04 m (Saint-Ulric-de-Matane).

Figure D3-6 : Module E_u lors de l'essai triaxial de 13,82 m (Saint-Ulric-de-Matane).

Figure D3-7 : Module E_u lors de l'essai triaxial de 13,93 m (Saint-Ulric-de-Matane).

Figure D3-8 : Module E_u lors de l'essai triaxial de 16,01 m (Saint-Ulric-de-Matane).

Annexe D4 : Essais œdométriques

Figure D4-1 : Essai œdométrique à Saint-Ulric-de-Matane à 4,18 m de profondeur....303 Figure D4-2 : Déformation-contrainte de l'essai œdométrique à 4,18 m à Saint-Ulric-de-Figure D4-3 : Contrainte - module œdométrique de l'essai à 4.18 m à Saint-Ulric-de-Figure D4-4 : Essai œdométrique à Saint-Ulric-de-Matane à 13.23 m de profondeur. 306 Figure D4-5 : Déformation-contrainte de l'essai œdométrique à 13.23 m à Saint-Ulric-de-Figure D4-6 : Contrainte - module œdométrique de l'essai à 13.23 m à Saint-Ulric-de-Figure D4-7 : Essai œdométrique à Saint-Ulric-de-Matane à 16.45 m de profondeur..309 Figure D4-8 : Déformation-contrainte de l'essai œdométrique à 16,45 m à Saint-Ulric-de-Figure D4-9 : Contrainte - module œdométrique de l'essai à 16,45 m à Saint-Ulric-de-Figure D4-10 : Essai œdométrique à Saint-Ulric-de-Matane à 17,71 m de profondeur. Figure D4-11 : Déformation-contrainte de l'essai œdométrique à 17,71 m à Saint-Ulric-de-Figure D4-12 : Contrainte - module œdométrique de l'essai à 17,71 m à Saint-Ulric-de-

Figure D4-1 : Essai œdométrique à Saint-Ulric-de-Matane à 4,18 m de profondeur.

Figure D4-2 : Déformation-contrainte de l'essai œdométrique à 4,18 m à Saint-Ulric-de-Matane

Figure D4-3 : Contrainte - module œdométrique de l'essai à 4,18 m à Saint-Ulric-de-Matane

Figure D4-4 : Essai œdométrique à Saint-Ulric-de-Matane à 13,23 m de profondeur.

Figure D4-5 : Déformation-contrainte de l'essai œdométrique à 13,23 m à Saint-Ulric-de-Matane

Figure D4-6 : Contrainte - module œdométrique de l'essai à 13,23 m à Saint-Ulric-de-Matane

Figure D4-7 : Essai œdométrique à Saint-Ulric-de-Matane à 16,45 m de profondeur.

Figure D4-8 : Déformation-contrainte de l'essai œdométrique à 16,45 m à Saint-Ulric-de-Matane

Figure D4-9 : Contrainte - module œdométrique de l'essai à 16,45 m à Saint-Ulric-de-Matane

Figure D4-10 : Essai œdométrique à Saint-Ulric-de-Matane à 17,71 m de profondeur.

Figure D4-11 : Déformation-contrainte de l'essai œdométrique à 17,71 m à Saint-Ulric-de-Matane

Figure D4-12 : Contrainte - module œdométrique de l'essai à 17,71 m à Saint-Ulric-de-Matane

Annexe E : Estimation de la vitesse de propagation des ondes sismiques de cisaillement

Figure E-1 : Estimation de la vitesse de propagation des ondes sismiques de cisa	aillement
selon les données au piézocône à Saint-Anaclet-de-Lessard	316
Figure E-2 : Estimation de la vitesse de propagation des ondes sismiques de cisa	aillement
selon les données au piézocône à Trois-Pistoles.	317
Figure E-3 : Estimation de la vitesse de propagation des ondes sismiques de cisa	aillement
selon les données au piézocône à Price.	318
Figure E-4 : Estimation de la vitesse de propagation des ondes sismiques de cisa	aillement
selon les données au piézocône à Saint-Ulric-de-Matane.	319

Les Figures E-1, E-2, E-3 et E-4 présentent des relations tirées de la littérature permettant d'estimer la vitesse de propagation des ondes sismiques de cisaillement. Parmi les 5 relations présentées sur ces figures, celle de Robertson (2012) corrèle le mieux avec l'unité supérieure à Saint-Anaclet-de-Lessard et Trois-Pistoles. Les données suivent très bien les 2 profils de V_s. À Price, les 5 relations surestiment le V_s à plusieurs profondeurs dans l'unité supérieure et ces relations sont inadéquates pour ce site. À Saint-Ulric-de-Matane, les relations d'Andrus (2007), de l'Heureux et Long (2017) et de Salsabili et coll. (2022) suivent bien les résultats de l'essai « downhole », tandis que la relation de Robertson (2012) sous-estime le V_s dans la partie supérieure du dépôt et celle de Mayne (2007) le surestime.

Pour l'unité inférieure, à Saint-Anaclet-de-Lessard, les relations de Mayne (2007) et Robertson (2012) sous-estiment le V_s à partir de 19 m. Les autres relations (Andrus, 2007; L'Heureux et Long, 2017; Salsabili et coll., 2022) ne permettent pas une bonne estimation du V_s de l'unité inférieure à Saint-Anaclet-de-Lessard. Pour le site de Trois-Pistoles, l'équation de Robertson corrèle bien au profil de l'unité inférieure jusqu'à 24 m. Cette relation va ensuite sous-estimer le profil de vitesse de propagation des ondes sismiques de cisaillement. Les 4 autres relations ne corrèlent pas avec le profil de V_s à Trois-Pistoles. À Price, aucune relation ne permet l'estimation du profil de V_s.

Figure E-1 : Estimation de la vitesse de propagation des ondes sismiques de cisaillement selon les données au piézocône à Saint-Anaclet-de-Lessard.

Figure E-2 : Estimation de la vitesse de propagation des ondes sismiques de cisaillement selon les données au piézocône à Trois-Pistoles.

Figure E-3 : Estimation de la vitesse de propagation des ondes sismiques de cisaillement selon les données au piézocône à Price.

Figure E-4 : Estimation de la vitesse de propagation des ondes sismiques de cisaillement selon les données au piézocône à Saint-Ulric-de-Matane.