

## DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES – COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL TOME II DE III

Rapport présenté au Ministère des Transports du Québec

Par

Jean-Pascal Bilodeau, ing., Ph.D. Benjamin Shiferaw, ing., Ph.D. Guy Doré, ing., Ph.D. Jean-Michel Piau, ing. Recherche Ferhat Hammoum, ing., Ph.D. Olivier Chupin, ing., Ph.D. Stéphane Bouron, TS

> Mars 2020 Université Laval, Québec









DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES – COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL TOME II DE III

## Table des matières

| 1              | Inti         | roduction                                                                                    | 1            |
|----------------|--------------|----------------------------------------------------------------------------------------------|--------------|
| 2              | Co           | ntexte du projet                                                                             | 2            |
| 3              | Re           | vue de la documentation                                                                      | 6            |
|                | 3.1          | Retours de terrain                                                                           | 6            |
|                | 3.2<br>chau  | Mécanisme pressenti d'apparition subite de désordres en surface<br>ssée                      | de<br>9      |
|                | 3.3          | Trame des recherches menées en laboratoire                                                   |              |
|                | 3.4          | Essais sur EB partiellement saturés                                                          | 13           |
|                | 3.4          | 1 Préparation d'échantillons d'EB partiellement saturés                                      | 13           |
|                | 3.4          | .2 Essai de module complexe sur EB partiellement saturé d'eau, soumis au g                   | el 16        |
|                | 3.4          | .3 Essai CTFS à dilatation libre (Cooling Test in Free Stress condition)                     | 17           |
|                | 3.4          | .4 Essai de retrait-gonflement thermique empêché sur EB partiellemer                         | it saturé    |
|                | (TSI         | RST : Thermal Stress Restrained of Specimen Test)                                            | 21           |
|                | 3.5          | Essai de gel/dégel sur bicouche                                                              | 24           |
|                | 3.6          | Travaux de modélisations numériques                                                          | 30           |
| 4<br>fc        | Pré<br>sse d | é-essais en laboratoire sur les matériaux de la chaussée construite<br>le l'Université Laval | sur la<br>36 |
| 5              | Ra           | ppel sur les caractéristiques de la fosse expérimentale                                      |              |
| 6              | Ex           | cavation de l'ancienne chaussée                                                              | 43           |
| 7 Construction |              | nstruction                                                                                   | 44           |
|                | 7.1          | Compactage                                                                                   | 45           |
|                | 7.2          | Collage du bi-couche                                                                         | 49           |
|                | 7.3          | Stratigraphie et épaisseur des couches                                                       | 50           |
| 8              | Ca           | ractérisation des matériaux                                                                  | 59           |
|                | 8.1          | Propriétés des matériaux et essais de caractérisation                                        | 59           |
|                | 8.2          | Déflectomètre portable                                                                       | 61           |
|                | 8.3          | Compacité couches non liées                                                                  | 64           |

| 8.4         | Compacité des enrobés                                                    | 66         |  |  |
|-------------|--------------------------------------------------------------------------|------------|--|--|
| 8.          | 4.1 Mesure de la compacité par la prise de masse du camion               | 73         |  |  |
| 8.5         | Récapitulatif des Va                                                     | 75         |  |  |
| 9 In        | strumentation                                                            | 76         |  |  |
| 9.1         | Thermistances                                                            | 78         |  |  |
| 9.2         | Cellules de contrainte                                                   | 81         |  |  |
| 9.3         | Déflectomètre de surface et accéléromètre                                | 84         |  |  |
| 9.4         | Teneur en eau                                                            | 86         |  |  |
| 9.5<br>gra  | Capteurs de déformation verticale dans le sol et les matériaux nulaires  | 89         |  |  |
| 9.6<br>bitu | Capteurs de déformation longitudinales et transversales dans l'en mineux | robé<br>93 |  |  |
| 10          | État des instruments                                                     | 103        |  |  |
| 11          | Essais sur la fosse                                                      | 104        |  |  |
| 11.         | 1 Essais au déflectomètre à masse tombante (FWD)                         | 104        |  |  |
| 11.2        | 2 Essais AMAC                                                            | 107        |  |  |
| 12          | Protocole d'essais                                                       | 112        |  |  |
| 13          | Conclusion                                                               | 115        |  |  |
| 14          | Références                                                               | 116        |  |  |
| Annexe A12  |                                                                          |            |  |  |
| Annex       | æ B                                                                      | 122        |  |  |
| Annex       | e C                                                                      | 124        |  |  |
| Annex       | æ D                                                                      | 128        |  |  |
| Annexe E    |                                                                          |            |  |  |
| Annexe F141 |                                                                          |            |  |  |
| Annexe G144 |                                                                          |            |  |  |
| Annexe H149 |                                                                          |            |  |  |
| Annexe I    |                                                                          |            |  |  |
| Annex       | e J                                                                      | 174        |  |  |

## Liste des Figures

| Figure 1. Rappels terminologiques                                                                 |
|---------------------------------------------------------------------------------------------------|
| Figure 2. Formation subite de pelades et chapelets de nids de poule en période hivernale, ayant   |
| nécessité la fermeture de la voie au trafic (Mauduit et al., 2013)                                |
| Figure 3. Carotte prélevée à proximité de désordres de type pelade ou nids de poule (Mauduit et   |
| al., 2013)                                                                                        |
| Figure 4. Schématisation du mécanisme de délaminage pressenti par déformations différentielles    |
| et champ d'autocontraintes générés par effet de gel11                                             |
| Figure 5. Schéma pour décrire le matériel utilisé pour la saturation des échantillons             |
| Figure 6. Valeurs maximales de saturation obtenues en fonction de la porosité des éprouvettes     |
| (losanges noirs) et valeurs après différents temps d'exposition à l'air libre                     |
| Figure 7. Évolution du degré de saturation pour trois éprouvettes de porosité différente, en      |
| condition de drainage naturel, après sortie de l'enceinte de saturation16                         |
| Figure 8. Effet du gel sur les isothermes à température négative, du module complexe des EB,      |
| partiellement saturés en eau ( $porosité = 5,6\%$ , saturation = 35 %)                            |
| Figure 9. Vue d'ensemble dans l'enceinte thermique avec le barreau d'invar et l'éprouvette munie  |
| d'une jauge et d'une sonde de température18                                                       |
| Figure 10. Essai de gel sur éprouvette non contrainte 20                                          |
| Figure 11. Relation entre amplitude de gonflement linéique et teneur en eau volumique pour deux   |
| échantillons d'EB de porosités distinctes                                                         |
| Figure 12. Essai TSRST : Comparaison des réponses entre enrobé sec et partiellement saturé 24     |
| Figure 13. Essais CTFS préalables aux essais TSRST de la Figure 12; Comparaison des réponses      |
| entre enrobé sec et partiellement saturé 24                                                       |
| Figure 14. Schéma d'instrumentation de l'essai bicouche (vue de face) 25                          |
| Figure 15. Dispositif expérimental pour la propagation de front de gel dans le bicouche; Le corps |
| d'épreuve est placé dans un bac adiabatique muni en surface d'un serpentin assurant la            |
| circulation d'un réfrigérant et d'une plaque de diffusion thermiqueque 26                         |
| Figure 16. Cycles de température imposés au niveau de la plaque d'acier; a) Cycle n°1 ; b) Cycles |
| n°2 et 3 décalés de $+5^{\circ}C$ par rapport au premier                                          |
| Figure 17. Températures T2, T3 et déformations corrigées de J2 et J3 sur bicouche sec             |
| Figure 18. Essai sur bicouche partiellement satuté 29                                             |

| Figure 19. Simulation thermique de l'essai CTFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Figure 20. Simulation de l'essai TSRST. Comparaison entre EB sec (a et b) et EB partie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | llement                                                                                           |
| saturé (c et d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                |
| Figure 21. Comparaison entre les résultats expérimentaux (Exp) et numériques (Num) des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s essais;                                                                                         |
| a) Évolutions des déformations CTFS ; b) Évolutions de contrainte axiale TSRST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                                                |
| Figure 22. Simulation de l'essai de gel/dégel sur bicouche saturé en couche supérieure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35                                                                                                |
| Figure 23. Pourcentages de vides obtenus sur la plaque d'enrobé bitumineux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                |
| Figure 24. Essais de laboratoire menés à l'IFSTTAR sur les matériaux de la fosse expérimer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntale 38                                                                                          |
| Figure 25. Essai de saturation gravitaire ; évolution du taux de saturation en fonction du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | u temps                                                                                           |
| (essai encore en cours à la date de rédaction de ce rapport)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38                                                                                                |
| Figure 26. a) Fosse expérimentale et rampe d'accès; b) Vue de dessus de la fosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                |
| Figure 27. Utilisation de pierre nette au fond de la fosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41                                                                                                |
| Figure 28. Unités de conditionnement thermique pour la dalle de béton au bas de la fosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e 41                                                                                              |
| Figure 29. Excavation de l'ancienne chaussée jusqu'à une profondeur Z=-825 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                                                                                |
| Figure 30. Remplissage de la fosse avec le tracteur hydraulique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44                                                                                                |
| Figure 31. Mise à niveau des couches avec des pelles et un râteau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 45                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                   |
| Figure 32. Compactage à la plaque vibrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46                                                                                                |
| Figure 32. Compactage à la plaque vibrante<br>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46<br>urs non                                                                                     |
| Figure 32. Compactage à la plaque vibrante<br>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte<br>accessibles pour la plaque vibrante                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46<br>urs non<br>46                                                                               |
| Figure 32. Compactage à la plaque vibrante<br>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte<br>accessibles pour la plaque vibrante<br>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46<br>urs non<br>46<br>0 sur le                                                                   |
| Figure 32. Compactage à la plaque vibrante<br>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte<br>accessibles pour la plaque vibrante<br>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1<br>GB20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46<br>urs non<br>46<br>0 sur le<br>47                                                             |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46<br>urs non<br>46<br>0 sur le<br>47<br>48                                                       |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48                                                 |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>'enrobé                                      |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enrobe de la sour-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couches d'enrobe de liaison en sous-sections entre les deux couch</li></ul> | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>'enrobé<br>49                                |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enrobe au surface du GB20</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>'enrobé<br>49<br>50                                |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enrobe en œuvre à la surface du GB20</li> <li>Figure 38. Émulsion bitumineuse mise en œuvre à la surface du GB20</li> <li>Figure 39. Grille de coordonnées utilisée pour la mesure des profondeurs</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>'enrobé<br>49<br>50<br>51                          |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'</li> <li>Figure 38. Émulsion bitumineuse mise en œuvre à la surface du GB20</li> <li>Figure 39. Grille de coordonnées utilisée pour la mesure des profondeurs</li> <li>Figure 40. Mesure des profondeurs par rapport à Z=0 mm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>48<br>48<br>48<br>50<br>51<br>52             |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enrobé au surface du GB20</li> <li>Figure 38. Émulsion bitumineuse mise en œuvre à la surface du GB20</li> <li>Figure 39. Grille de coordonnées utilisée pour la mesure des profondeurs</li> <li>Figure 40. Mesure des profondeurs par rapport à Z=0 mm</li> <li>Figure 41. Profil du ESG10 obtenu de l'interpolation par krigeage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>48<br>48<br>48<br>50<br>51<br>52<br>54       |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li> <li>Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secte accessibles pour la plaque vibrante</li> <li>Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG1 GB20</li> <li>Figure 35. Compactage des couches d'enrobé au rouleau</li> <li>Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante</li> <li>Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enropé au surface du GB20</li> <li>Figure 38. Émulsion bitumineuse mise en œuvre à la surface du GB20</li> <li>Figure 39. Grille de coordonnées utilisée pour la mesure des profondeurs</li> <li>Figure 40. Mesure des profondeurs par rapport à Z=0 mm</li> <li>Figure 41. Profil du ESG10 obtenu de l'interpolation par krigeage</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>48<br>48<br>50<br>51<br>52<br>54<br>55       |
| <ul> <li>Figure 32. Compactage à la plaque vibrante</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46<br>urs non<br>46<br>0 sur le<br>47<br>48<br>48<br>48<br>48<br>50<br>50<br>51<br>52<br>55<br>56 |

| Figure 45. Profil du sol d'infrastructure obtenu de l'interpolation par krigeage                       |
|--------------------------------------------------------------------------------------------------------|
| Figure 46. Distribution de la taille des grains pour les matériaux granulaires et le sol               |
| d'infrastructure                                                                                       |
| Figure 47. Essai au LWD sur les couches mises en œuvre – Exemple de la sous-fondation 62               |
| Figure 48. Position des points de mesure pris avec le déflectomètre portable                           |
| Figure 49. Position des points de mesures au nucléodensimètre pour les couches de matériaux            |
| granulaires et le sol d'infrastructure                                                                 |
| Figure 50. Position des mesures au nucléodensimètre sur les couches d'enrobés                          |
| Figure 51. Interpolation spatiale par krigeage des vides interstitiels dans le ESG1073                 |
| Figure 52. Pesée des essieux du camion74                                                               |
| Figure 53. Position des différents instruments à l'exception des jauges de déformation dans            |
| l'enrobé                                                                                               |
| Figure 54. Installation des thermistances dans le sol et les matériaux granulaires, a) excavation      |
| dans le sol d'infrastructure, b) Positionnement de la thermistance au bas de la fosse, c) Installation |
| des thermistances dans le sol 79                                                                       |
| Figure 55. Chapelet de thermistances 80                                                                |
| Figure 56. Chapelet de thermistances installé dans l'enrobé bitumineux                                 |
| Figure 57. Excavations locales pour l'installation des cellules de contraintes                         |
| Figure 58. Mise à niveau des cellules de contrainte83                                                  |
| Figure 59. Déflectomètre de surface, a) Tête de mesure métallique collée, b) Potentiomètre fixé        |
| sur le couvercle                                                                                       |
| Figure 60. a) Accéléromètre PCB393B31, b) Insertion de l'instrument dans le trou de carottage86        |
| Figure 61. Installation de la sonde Decagon dans une excavation locale à la mi-couche dans la          |
| fondation                                                                                              |
| Figure 62. Tube d'insertion pour la sonde multiniveaux ProfileProbe                                    |
| Figure 63. Capteurs de teneur en eau multiniveaux ProfileProbe (PrPr)                                  |
| Figure 64. Capteur de déformation verticale 89                                                         |
| Figure 65. Schéma des capteurs de déformation verticale dans le sol et les matériaux granulaires       |
|                                                                                                        |
| Figure 66. Excavation locale pour l'installation des capteurs de déformation                           |
| Figure 67. Capteurs de déformation verticale installés dans le sol d'infrastructure                    |
| Figure 68. Schéma des jauges TML95                                                                     |

| Figure 69. Jauges TML utilisées pour la mesure des déformations dans les couches d'enrobé 95         |
|------------------------------------------------------------------------------------------------------|
| Figure 70. Installation des capteurs TML à la base de la couche de GB20                              |
| Figure 71. Installation des capteurs TML à la base de la couche de ESG10                             |
| Figure 72. Moules de forme des jauges TML, a) vue de côté, b) vue de dessus                          |
| Figure 73. Moules de forme des TML lors du compactage du GB20                                        |
| Figure 74. a) Retrait des moules au sommet de la couche de base, b) Cinq empreintes de TML au        |
| sommet de la couche de base                                                                          |
| Figure 75. a) Traçage des cavités pour les câbles, b) Nettoyage et brossage des empreintes pour      |
| maximiser l'adhésion de la colle avec l'asphalte, c) Mise en place des jauges avec de la colle epoxy |
|                                                                                                      |
| Figure 76. Position des TML sur chaque horizon, a) à la base du GB20 (vert), b) sommet de la         |
| couche de GB20 (bleu), c) base de la couche de ESG10 (rouge)101                                      |
| Figure 77. Positionnement 3D des jauges TML dans les couches d'enrobé bitumineux 102                 |
| Figure 78. Appareil FWD positionné au-dessus de la fosse en X=1000 mm et Y=2000 mm 104               |
| Figure 79. Résultats des essais FWD, a) Bassins de déflexion moyens pour les quatre niveaux de       |
| charge et les trois emplacements longitudinaux, b) Bassin de déflexion moyen, relation déflexion-    |
| force et modules de surface 106                                                                      |
| Figure 80. Foreuse du Ministère des Transports du Québec 108                                         |
| Figure 81. Équipement de l'essai AMAC 109                                                            |
| Figure 82. Résultat du décollement du bi-couche obtenu lors de la réalisation de l'essai AMAC        |
|                                                                                                      |

## Liste des Tableaux

| Tableau 1. Loi de comportement isotrope pour EB partiellement saturé       31                       |
|-----------------------------------------------------------------------------------------------------|
| Tableau 2. Mesures de profondeurs et d'épaisseurs des couches lors de la construction               |
| Tableau 3. Granulométries des formules d'enrobé bitumineux utilisés         59                      |
| Tableau 4. Caractérisation du sol et des matériaux granulaires       60                             |
| Tableau 5. Résultats des essais au déflectomètre portable       64                                  |
| Tableau 6. Résultats des mesures de masse volumique au nucléodensimètre prises sur les couches      |
| de matériau granulaires et de sols 66                                                               |
| Tableau 7. Mesures brutes au nucléodensimètre sur les couches d'enrobés       69                    |
| Tableau 8. Facteurs de correction de la masse volumique au nucléodensimètre par comparaison         |
| avec les valeurs de laboratoire                                                                     |
| Tableau 9. Mesures corrigées pour la masse volumique au nucléodensimètre       72                   |
| Tableau 10. Pesée du camion lors de la mise en œuvre du ESG10       74                              |
| Tableau 11. Récapitulatif des vides obtenus par trois méthodes dans les couches d'enrobé 75         |
| Tableau 12. Position des thermistances dans les couches de sol et de matériaux granulaires 78       |
| Tableau 13. Position des chapelets de thermistances installés dans l'enrobé bitumineux 81           |
| Tableau 14. Position et identification des cellules de contrainte dans la chaussée expérimentale    |
|                                                                                                     |
| Tableau 15. Position des capteurs de teneur en eau    88                                            |
| Tableau 16. Positon, identification et propriétés des capteurs de déformation verticale dans le sol |
| et les matériaux granulaires                                                                        |
| Tableau 17. Positions et informations sur les capteurs de déformation dans les couches d'enrobé     |
|                                                                                                     |
| Tableau 18. Résultats des essais de déflexion105                                                    |
| Tableau 19. Interprétation du bassin de déflexion moyen à 40 kN                                     |
| Tableau 20. Résultats des essais AMAC       111                                                     |
| Tableau 21. Protocole pour les essais    113                                                        |

## 1 Introduction

Dans les environnements soumis au gel saisonnier, comme c'est le cas au Canada, la performance des structures de chaussées flexibles est significativement affectée par les variations climatiques et l'interaction avec l'action des charges lourdes. Les nids-de-poule et les pelades sont des dégradations de chaussées retrouvées sur les chaussées flexibles souvent attribuées à l'action combinée du climat et des charges. En effet, bien que celles-ci soient retrouvées dans plusieurs types d'environnements et qu'elles ne soient pas exclusivement retrouvées en contexte climatique rigoureux, elles sont toutefois typiques des régions climatiques soumises aux cycles de gel et dégel. La genèse de ces dégradations fait l'objet de nombreuses recherches (Ghosh et al., 2018; Komba et al., 2010; Vu, 2017; Vu et al., 2017).

Ce rapport constitue le second livrable d'un projet collaboratif entre le Ministère des Transports du Québec (MTQ), l'Université Laval (UL) et l'Université Gustave Eiffel (UGE). Le projet de recherche s'inscrit dans le contexte où la France et le Québec cherchent à mieux comprendre les effets du gel et du dégel sur les chaussées et à intégrer efficacement la prise en compte de ces phénomènes climatiques dans le dimensionnement des chaussées, ainsi que pour la formulation et les exigences au niveau des matériaux. Plus spécifiquement, suite aux travaux réalisés à l'UGE, ce projet vise à étudier en conditions réelles et contrôlées les mécanismes conduisant à la formation de cavités dans la partie supérieure d'une chaussée, et à comprendre comment le gel/dégel, l'eau et les charges contribuent à la manifestation de ce type de dégradation.

Ce document présente une revue de la documentation sur l'action du gel et dégel et son effet sur les chaussées, la description et la construction de la section expérimentale qui sera testée en 2020, les instruments utilisés, ainsi que la mise à jour du protocole expérimental qui sera mis en œuvre pour le projet. Quelques premiers essais de laboratoire sont introduits et discutés, mais la majeure partie des résultats des études en laboratoire sera discutée dans le cadre du prochain rapport.

## 2 Contexte du projet

Les structures routières sont non seulement soumises aux sollicitations mécaniques de trafic, mais aussi aux sollicitations climatiques, qui tout en étant susceptibles d'affecter directement la sécurité et le confort des usagers, participent également à l'endommagement des chaussées.

Parmi les effets structurels d'origine climatique, ceux engendrés par les cycles de gel/dégel ont toujours suscité une attention particulière.

De nombreuses recherches ont ainsi été menées sur le comportement des sols-supports de chaussée et celui des couches granulaires non liées, susceptibles de gonfler et de se déformer en période de gel par transformation de leur eau porale en glace, ou susceptibles de subir de fortes pertes de capacité portante en période de dégel. Grace à la bonne compréhension et connaissance de ces phénomènes, ceux-ci sont aujourd'hui maitrisés au travers de sélections, formulations et traitements adaptés des matériaux constitutifs des chaussées et grâce à un ensemble de règles de « dimensionnement thermique », permettant aux structures de chaussée de jouer le rôle d'écran thermique afin de limiter la profondeur de pénétration de gel dans les sols.

Les effets mécaniques à long terme des cycles de gel/dégel sur les couches de surface (Figure 1) ont pour leur part généré moins de recherches, mais peuvent être considérés comme solutionnés en pratique au travers des travaux d'entretien routiers usuels et les renouvellements plus ou moins fréquents des couches de roulement ou de surface.

En revanche, la communauté routière s'est retrouvée plus démunie face aux désordres importants et subits, apparus à diverses reprises en surface de chaussée, au cours de certains hivers relativement récents en France. De tels évènements se sont notamment produits dans le nord-est de la France et dans les pays limitrophes pendant les hivers 2005/2006 et 2009/2010. Les dégradations observées, ayant conduit jusqu'à la fermeture de voies au trafic, se traduisent par la formation de pelades et nids de poules en chapelet, touchant de grands linéaires de chaussée à l'échelle d'une région et se produisant en quelques heures seulement, sans signe précurseur (Figure 2). Elles ont suscité de la part des maîtrises d'ouvrage concernées des interrogations sur les causes d'apparition de tels désordres, sur la possibilité de déterminer à l'avance les chaussées les plus exposées à ce type de risque et sur les pratiques de réalisation ou

d'entretien des couches de roulement à proscrire ou à l'isnverse à prescrire pour éradiquer le problème.

Le présent projet de coopération franco-québécois s'inscrit dans ce contexte. Il fait suite à la réalisation d'enquêtes de terrain et travaux de recherche menés sur le sujet, ayant eu pour objectifs d'élucider les causes probables de ces désordres. Les retours de terrain et les recherches en laboratoire ayant conduit à incriminer le comportement mécanique au gel/dégel des enrobés bitumineux, susceptibles d'être le siège d'écoulements d'eau et d'atteindre des degrés de saturation relativement importants, il a été jugé nécessaire de tester l'hypothèse sur une structure de chaussée à échelle 1, faisant précisément l'objet de l'étude envisagée ici. Les possibilités de chargements mécaniques et thermiques accélérés offertes sur la fosse d'essai de l'Université de Laval se sont alors révélées tout à fait adéquates à la réalisation d'un tel essai.

Cette coopération poursuit par ailleurs une longue tradition de recherches communes partagées entre France et Québec dans le domaine des chaussées, portant notamment sur les effets des températures négatives. On peut du reste supposer que les résultats de la présente étude pourront avoir une portée plus large que celle liée à la problématique spécifique envisagée ici et permettront aussi d'améliorer de façon plus générale la tenue dans le temps des couches de roulement soumises à de nombreux cycles de gel/dégel. 

 Image: Conchest of assister
 Image: Conche de forme

 Couches d'assister
 Couche de forme

 Couche de forme
 Couche de forme

 Sol support
 Sol support

(b)

(a)



Figure 1. Rappels terminologiques

a) Dénomination française des couches de chaussée (https://www.techniroute.fr/vos-routes)b) Dénomination anglo-saxonne (structures typiques, issue de (Jenks et al. 2011))



Figure 2. Formation subite de pelades et chapelets de nids de poule en période hivernale, ayant nécessité la fermeture de la voie au trafic (Mauduit et al., 2013)

## 3 Revue de la documentation

### 3.1 Retours de terrain

En France, l'hiver 2009-2010 a vu apparaître des dégradations d'une ampleur inhabituelle sur le réseau routier national, y compris sur certaines autoroutes concédées. Ces dégâts se sont essentiellement traduits par une apparition subite de nids de poule (souvent en quelques heures seulement), sous forme de chapelet, et de pelades (arrachements de la couche de roulement) sur des linéaires de route importants soumis aux mêmes aléas climatiques. Les nids de poules sont principalement localisés en bandes de roulement. Les carottages effectués au voisinage des zones dégradées montrent en partie haute de chaussée la présence d'eau dans la porosité des enrobés, des décollements d'interface et la décohésion de certaines couches avec un état de désenrobage important (notamment de la couche de liaison ou de l'ancienne couche de roulement) (Figure 3).

Les régions du Nord et du Nord-Est ont été les plus touchées avec un développement spectaculaire sur quelques itinéraires (A 28, RN 4). L'hiver a en outre provoqué de la fissuration et faïençage sur une partie importante des réseaux routiers de ces régions.

De tels désordres, présentant les mêmes caractéristiques de soudaineté sur de larges étendues, ont également été observés dans de nombreux autres pays soumis à des conditions climatiques hivernales plus ou moins rigoureuses (Amérique du Nord, pays du nord de l'Europe, ...).

Ces désordres engendrent de nombreux préjudices sécuritaires et financiers, directs ou indirects. Ils augmentent les taux d'accidents (souvent par suite de pertes de contrôle des véhicules) et d'incidents (ex : bris pneumatiques, trains de suspension, pare-brise, ...). Certaines voies doivent être fermées au trafic, entrainant des perturbations de la circulation. Les gestionnaires de réseaux routiers se voient devant la nécessité d'engager des réparations d'urgence sous trafic, puis des réparations préventives et des travaux de maintenance lourds après la saison hivernale.

Après l'hiver 2009/2010, les coûts dus aux dégradations hivernales des réseaux routiers sont ainsi estimés à plusieurs milliards d'euros sur l'ensemble des pays européens concernés (Allemagne, Belgique, Grande-Bretagne, France et Pays Bas). Environ 20% du montant total concerne les travaux d'urgence réalisés pour boucher les nids de poule. En Grande-Bretagne, les gestionnaires routiers ont dû faire reboucher plus de 1,2 millions nids de poule sur l'ensemble du pays pour 91 millions de livres sterling.

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

L'ampleur de ces désordres et spécialement leur soudaineté a déclenché en France un certain nombre d'enquêtes de terrain et de travaux de recherche, afin de mieux en comprendre l'origine et répondre aux interrogations soulevées par les gestionnaires sur les risques d'épisodes de cette nature sur le réseau existant, sur les modes de réparation les plus adaptés à court terme et sur la prévention possible de ces risques en profitant des opérations de maintenance et réfection périodiques des couches de surface, pratiquées sur le long terme.

Les enquêtes de terrain sur les observations faites en France ont été effectuées par le SETRA et le CEREMA avec l'aide d'exploitants (DIR et SCA).

### Importance des conditions météorologiques

Pour les désordres apparus en 2009/2010, le contexte météorologique de la fin décembre 2009 apparait comme l'élément déclencheur. Cette période a été caractérisée par des chutes de neige, suivies d'une période de froid sévère, puis d'un dégel rapide à partir du 21 décembre (point de départ de l'apparition des dégradations, de façon souvent extrêmement brutale).

D'autres périodes mêlant pluie, froid et neige ont suivi en janvier, février et mars. Des variations de température de l'ordre de 30°C en 48 heures ont été observées dans le Nord-Est de la France.

Au total, l'hiver a été plus rigoureux et plus humide que la moyenne (exemple 22 jours de neige contre 5 jours en moyenne pour une station en Ile-de-France). Il s'est trouvé particulièrement agressif pour les chaussées du fait de l'humidité conjuguée avec la multiplicité des cycles de geldégel et des interventions de viabilité hivernale (chaque salage occasionnant un choc thermique).

En Grande-Bretagne, le mois de février 2009 a été décrit comme le pire hiver des trois dernières décennies, avec des conditions glaciales et de fortes chutes de neige sur décembre, janvier et février. Ces conditions humides avec des alternances autour du zéro ont également été reconnues comme révélatrices de la fragilité du réseau routier (Alarm, 2010).

Le rapport d'étude du MTQ (Tremblay, 2006) recense et compare les fréquences statistiques de telles alternances pluie/gel pour un certain nombre de villes du Canada.

### Age et nature des couches impactées

Le SETRA a également effectué une étude sur l'âge et la nature des sections dégradées en 2009/2010, recensées par les DIR les plus touchées (Est, Nord, Nord-Ouest et Ile-de-France). Les résultats agrégés sont fournis dans le rapport rédigé par les services du ministère (Pandarias, 2010). De manière synthétique, ils fonts ressortir les faits suivant.

S'agissant de l'âge des couches de roulement atteintes, le taux de dégradation est faible pour les couches de 1 à 5 ans (5%), puis augmente avec l'âge : 16% pour la tranche d'âge de 6 à 10 ans, 19% pour la tranche de 11 à 15 ans et 20% pour la tranche de plus de 15 ans.

S'agissant de la nature des couches de roulement (en excluant les chiffres les moins significatifs), les techniques les plus touchées sont les enduits superficiels (30%), les enrobés drainants (25%) et les enrobés de surface à module élevé (19%), puis les bétons bitumineux minces (15%), semigrenus (12%) et très minces (10%). Toutefois, ces premiers chiffres doivent être pris avec beaucoup de prudence, notamment parce que la liste des sections dégradées ne hiérarchise pas la gravité des désordres et que la comparaison entre natures de couches ne tient pas compte ici de leur âge.

### Conclusion sur les retours de terrain

Au final, les analyses de terrain mettent en évidence un rôle important de l'alternance entre pluies et gels, avec atteintes de températures relativement basses, sur le déclenchement brutal de désordres en couches de surface.

Le passage de véhicules au moment même où ces conditions météorologiques défavorables sont réunies, apparait également avoir un effet sur le départ de matériaux, qui se produit essentiellement en bandes de roulement. Les sollicitations mécaniques apportées par le trafic viennent sans doute s'ajouter à une situation déjà critique presque partout.

Mais il est clair également que l'âge des revêtements et donc leur état d'endommagement impact le phénomène, lorsque les circonstances du mécanisme déclencheur surviennent.

Il est plus difficile par contre de se prononcer sur l'importance de la nature des revêtements. Une large variété de techniques peut être impactée par l'apparition subite de graves désordres, ce qui montre dans un certain sens un caractère « universel » des mécanismes physiques en cause.



Figure 3. Carotte prélevée à proximité de désordres de type pelade ou nids de poule (Mauduit et al., 2013)

### 3.2 Mécanisme pressenti d'apparition subite de désordres en surface de chaussée

Les recherches menées en France sur le sujet (IFSTTAR, CEREMA) ont principalement été orientées vers la détermination et la compréhension du mécanisme déclencheur, non véritablement identifié jusque-là dans la littérature technique routière.

Un mécanisme aussi brutal ne peut être expliqué par des phénomènes de fatigue (en appliquant ici le terme aux couches de surface) usuellement rencontrés en Mécanique des Chaussées, qui par définition résultent de l'application de grands nombres de cycles de chargement (mécaniques et/ou climatiques) et d'un cumul de dommages. Ceci même, si comme on l'a vu, une fatigue préalable des couches de surface joue un rôle important dans le phénomène.

Pour le mécanisme de déclenchement à proprement parler, les faits penchent plutôt pour l'existence d'une cause à fort déterminisme, conduisant à des dommages importants en un très faible nombre de chargements.

Les recherches de laboratoire lancées sur le sujet en France ont ainsi assez vite été définies et organisées en fonction du « mécanisme pressenti », décrit ci-après.

Ce mécanisme repose d'une part sur l'hypothèse de déformations de gonflement induites par le gel dans un enrobé partiellement saturé en eau et sur un effet structurel au sein de couches de chaussée liées entre elles et soumises du fait du gel, à un jeu de déformations (horizontales) différentielles.

La première de ces hypothèses est naturelle. On peut en effet s'attendre à ce qu'un échantillon d'enrobé bitumineux, libre de se déformer et possédant une certaine porosité partiellement remplie d'eau, subisse comme la plupart des matériaux poreux, une déformation de gonflement par effet de gel, due à la dilatation entre eau liquide et glace (9% pour l'eau libre). La capacité de fluage des enrobés bitumineux peut être vue à cet égard comme facilitatrice du phénomène par rapport à un matériau purement élastique (à rigidité équivalente).

L'aspect structurel du mécanisme pressenti peut quant à lui, être schématiquement expliqué sur l'exemple d'un bicouche d'enrobés bitumineux partiellement saturé en eau, soumis à l'effet d'un front de gel se propageant du haut vers le bas. Considérons les figures 4b et 4c qui représentent les déformations supposées d'un tel bicouche pour un front de gel parvenu jusqu'au niveau de l'interface et ceci pour les deux types de conditions aux limites extrêmes suivantes : bicouche en appui simple sur support indéformable (Figure 4b), bicouche parfaitement collé sur ce même support (Figure 4c).

Compte-tenu du gonflement supposé induit par le gel dans la couche supérieure du bicouche, celui-ci va se déformer en condition d'appuis simples à la façon d'un bilame métallique thermique, qui se bombe sous l'effet d'un réchauffement lorsque le métal à plus fort coefficient de dilatation est au-dessus. Il y a analogie entre les dilatations différentielles induites par le gel dans le bicouche d'enrobés et celles induites par la température dans le bilame. Ce faisant les déformations en partie gênées des deux couches d'enrobés vont générer un champ d'autocontraintes, avec notamment création de forces d'arrachement et de cisaillement au niveau de l'interface, tendant à séparer les deux matériaux.

Mais cet effet est encore amplifié dans le cas du bicouche à déformation d'ensemble quasiment bloquée, représenté sur la figure de droite, plus représentative d'une structure de chaussée. En

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

assimilant les deux couches d'enrobés à des poutres élastiques, il est facile de montrer que cette configuration « à plat » ne peut exister que grâce à un jeu de moments de flexion et de forces horizontales ponctuels s'appliquant aux extrémités de l'interface. Remis dans le cadre de la Mécanique des Milieux Continus, ces efforts se traduisent par d'importantes concentrations de contraintes de cisaillement et surtout d'arrachement en extrémité du bicouche, propres à faire céder localement l'interface. Mais à supposer que ce mécanisme s'amorce et commence à créer deux fissures horizontales en extrémités d'interface, on peut montrer que celles-ci vont continuer à se propager jusqu'à se rejoindre au centre du bicouche et à séparer les matériaux. Autrement dit, le « moteur de fissuration », né des déformations différentielles entre matériaux, ne faiblit pas au cours de la délamination.



Figure 4. Schématisation du mécanisme de délaminage pressenti par déformations différentielles et champ d'autocontraintes générés par effet de gel

a) bicouche d'EB partiellement saturé, avec front de gel parvenu au niveau de l'interface des deux couches

b) courbure que prendrait la couche supérieure dans le cas d'une interface non collée et pour des déplacements horizontaux bloqués aux extrémités

c) efforts d'arrachements internes générés en extrémités du bicouche dans le cas d'une interface collée ; ceux-ci peuvent être vus comme générant des moments venant fermer l'espace formé, sur la figure de gauche, entre les deux couches. Ces forces s'accompagnent également de contraintes de cisaillement concentrées en extrémités de l'interface, mais d'un ordre de grandeur a priori plus petit que les efforts d'arrachement

### 3.3 Trame des recherches menées en laboratoire

Le mécanisme décrit ci-avant a servi de guide aux recherches bibliographiques, expérimentales et numériques entreprises par l'IFSTTAR et le CEREMA sur le sujet. Elles ont été orientées de façon à tester les hypothèses émises et la pertinence du scénario d'ensemble.

Nos recherches ont ainsi été structurées en trois étapes.

La première étape a été axée sur l'étude en laboratoire de l'effet du gel sur la rhéologie des enrobés bitumineux partiellement saturés, sans nous intéresser spécialement à l'effet de répétition de cycles de gel/dégel. Deux points ont été examinés à ce stade : i) l'effet du gel sur le module complexe des EB, et surtout ii) l'effet sur leur déformation libre, de façon à vérifier et quantifier l'hypothèse de dilatation par formation de glace dans les pores du matériau.

La seconde étape en laboratoire a consisté a regarder l'effet « dual » du précédent, à savoir les contraintes développées lors du gel d'un échantillon d'EB partiellement saturé en eau, lorsque celui-ci est empêché de se déformer. On peut s'attendre d'après l'hypothèse formulée en déformation libre à voir se développer des contraintes de compression, exercées par la transformation liquide/glace au sein du matériau. Compte-tenu toutefois des propriétés de fluage et de relaxation des EB, la question est de déterminer l'intensité de ces contraintes, afin de savoir si celles-ci sont susceptibles d'induire des efforts significatifs par effet structurel, tel que mentionné en section 3.2.

La troisième et dernière étape a consisté à effectuer un essai sur bicouche d'EB, instrumenté, en effectuant quelques cycles de gel/dégel avec la condition de collage sur support rigide décrite sur la Figure 4. L'objectif était de vérifier directement en laboratoire la pertinence du mécanisme décrit en section 3.2.

Cette trame de recherche a notamment sous-tendu les travaux réalisés dans la thèse de Van Thang Vu (Vu, 2017) menée à l'IFSTTAR, sur laquelle nous nous appuyons essentiellement dans la suite de cette première partie du rapport.

Sur le plan bibliographique, il est à noter que la plupart des recherches menées sur les EB en présence d'eau sont en lien avec leur propriété de tenue à l'eau, en phase liquide, qui joue un

rôle essentiel dans l'obtention de matériaux de chaussée résistant à long terme aux sollicitations environnementales.

En revanche, la littérature comporte assez peu de références sur le comportement spécifique au gel/dégel des EB partiellement saturés. La plupart de ces études portent par ailleurs sur l'endommagement induit dans ces matériaux par l'effet de cycles de gel/dégel en nombre relativement élevé et en dehors de toute autre sollicitation mécanique. Parmi ces recherches, on peut notamment citer celles de (Özgan & Serin, 2013), (Xu et al., 2015), (Lamothe et al., 2015), (Pan et al., 2017), qui concluent dans leur ensemble à une quasi-absence d'effet de fatigue des EB par gel/dégel.

Ces résultats ne rentrent donc pas directement dans le champ d'investigation du mécanisme pressenti, pour lequel on recherche des causes à petit nombre de cycles de gel/dégel. Néanmoins, ils nous confortent dans l'idée que les causes de désordres subits en sommet de chaussée sont plutôt d'ordre « structurel » que purement « matériau ».

### 3.4 Essais sur EB partiellement saturés

### 3.4.1 Préparation d'échantillons d'EB partiellement saturés

Les études expérimentales visées dans le cadre du programme de recherches défini ci-dessus ont nécessité de préparer dans leur ensemble des éprouvettes d'EB partiellement saturées, à différentes teneurs en eau. Il est à noter que l'obtention de valeurs précises de teneur en eau au sein d'un EB est un objectif délicat en soi, mais non véritablement nécessaire en général. Il convient surtout de savoir obtenir des degrés de saturation en eau bien différentiés et de mesurer a *posteriori* les valeurs obtenues avec précision par différence de poids entre éprouvettes sèche et saturée.

Dans le cadre des travaux de (Vu, 2017), les éprouvettes d'enrobé sont préparées au compacteur de plaques ou par essais PCG (presse à compaction giratoire), puis éventuellement sciées ou

carottées. Le choix des modalités de compactage permet de maitriser les valeurs finales de porosité des échantillons (ex : de 4 à 15%).

Les éprouvettes sont placées après mûrissement dans une cuve remplie d'eau (Figure 5). Le récipient fermé hermétiquement est ensuite soumis à un vide poussé (ex : -84 kPa). En faisant varier la dépression et le temps de conditionnement (ex : 3 heures), on obtient alors des éprouvettes à teneur en eau distinctes.



Figure 5. Schéma pour décrire le matériel utilisé pour la saturation des échantillons

La Figure 6 rassemble les différentes valeurs de degré de saturation maximales obtenues par Vu en fonction de la porosité des éprouvettes testées, immédiatement après leur sortie de la cuve (losanges noirs). La Figure présente également les degrés de saturation restant après un certain temps d'exposition de ces éprouvettes à l'air libre, afin de simuler les différents laps de temps susceptibles de s'écouler entre la fin des opérations de saturation et le début des divers essais effectués par la suite (Figure 7).

On distingue clairement sur les valeurs maximales de saturation atteintes l'existence d'un seuil de porosité, inférieur à 5%, pour lequel les taux de saturation restent en deçà de 20%. Dans cette gamme de porosité, la part des vides communicants est faible.

Dans la gamme intermédiaire de porosité comprise entre 7% et 9%, les degrés de saturation atteignent des valeurs maximales nettement plus élevées entre 50% et 80% immédiatement après sortie de la cuve.

Au-delà de 9%, ces valeurs rediminuent. Les vides communicants permettent d'emmagasiner une quantité d'eau plus importante (porosité × saturation), mais cette eau s'évacue rapidement par gravité, avant même la pesée des échantillons.

Au-delà de 16h après sortie de l'enceinte de saturation, les éprouvettes de porosité comprise entre 5 et 12% de porosité se stabilisent aux environs d'une saturation de 40%.



Ces résultats rejoignent l'étude de (Terrel & Al-Swailmi, 1993).

Figure 6. Valeurs maximales de saturation obtenues en fonction de la porosité des éprouvettes (losanges noirs) et valeurs après différents temps d'exposition à l'air libre



Figure 7. Évolution du degré de saturation pour trois éprouvettes de porosité différente, en condition de drainage naturel, après sortie de l'enceinte de saturation

### 3.4.2 Essai de module complexe sur EB partiellement saturé d'eau, soumis au gel

On peut trouver dans la littérature les résultats de divers essais de mesure de « module de rigidité » effectués sur EB partiellement saturés en eau, à l'état liquide (Lamothe et al., 2017). Ceux-ci ne mettent en évidence que peu de différences de mesure entre les mêmes essais réalisés sur EB sec ou partiellement saturé. La présence d'air dans les pores d'un EB non complètement saturé, qui limite les variations de pression d'eau contenue dans le matériau (par effet Skempton), justifie cette quasi-insensibilité du module des EB à la présence d'eau liquide.

Dans le cadre du mécanisme décrit en section 3.2, on peut alors se demander ce qu'il en est pour la rigidité d'un EB partiellement saturé, testé à température négative. La question n'est pas tant de s'intéresser en détail à cet effet additionnel éventuel, mais plutôt d'apporter la première preuve sur la base d'un essai standard (ex : mesures de module complexe) d'un effet significatif du gel sur la rhéologie des EB contenant de l'eau.

La Figure 8 présente dans le plan de Cole-Cole (partie imaginaire *versus* partie réelle du module complexe) les résultats d'une telle campagne de mesure, réalisée en flexion 2-points sur éprouvette trapézoïdale. Le matériau de porosité égale à 5,6% est testé à l'état sec, puis pour un degré de saturation de 35%.

Pour rappel, l'échantillon est porté au cours d'un tel essai à différentes températures s'échelonnant entre 40 et -10°C et sollicité pour chaque isotherme à un ensemble de fréquences comprises entre 0,5 et 30 Hz.

On observe que les réponses du matériau, à l'état sec ou partiellement saturé, sont identiques pour les isothermes positives. On retrouve ainsi le résultat signalé précédemment sur la quasiinsensibilité du module à la présence d'eau en phase liquide.

Par contre, un saut de module apparait sur les mesures effectuées à -10°C, avec une rigidité plus forte de l'EB partiellement saturé. L'effet est relativement faible et non essentiel pour notre sujet. Il met néanmoins en évidence l'action effective et immédiate du gel sur le comportement des enrobés bitumineux au travers d'un supplément de rigidité apporté par la glace se formant dans les pores du matériau.



Figure 8. Effet du gel sur les isothermes à température négative, du module complexe des EB, partiellement saturés en eau (porosité = 5,6%, saturation = 35%)

### 3.4.3 Essai CTFS à dilatation libre (Cooling Test in Free Stress condition)

Les essais suivant participent directement à l'explicitation du mécanisme de dégradation de chaussée recherché. Ils visent à vérifier l'hypothèse de gonflement des EB par gel de l'eau

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

contenue dans leur porosité et à quantifier l'amplitude du phénomène. Ils visent également à observer le comportement du matériau lors d'un retour à température positive et de la transformation inverse glace/liquide. Les essais sont effectués sur des éprouvettes d'EB cylindriques équipées de plusieurs jauges de déformation axiale et orthoradiale en périphérie. Les éprouvettes placées en enceinte thermique sont soumises à un faible nombre de cycles journaliers de température par référence à un échantillon d'Invar placé à proximité des échantillons dans les mêmes conditions de température. Une même éprouvette est testée à l'état sec et à différents degrés de saturation pour comparaison (Figure 10).



Figure 9. Vue d'ensemble dans l'enceinte thermique avec le barreau d'invar et l'éprouvette munie d'une jauge et d'une sonde de température

La Figure 10 rend compte des résultats typiques enregistrés au cours d'un essai, comportant une baisse de température de l'air dans l'enceinte de +10 à -10°C, suivie d'un plateau.

La courbe pointillée rouge montre l'évolution de la température mesurée en surface de l'éprouvette sèche (lecture sur l'échelle de droite).

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

Les courbes bleues, continu et pointillé, montrent les évolutions négatives, correspondant à des contractions, des déformations longitudinale et axiale mesurées (et corrigées) sur l'éprouvette sèche. Le zéro de déformation est effectué à la température initiale de +10°C. La quasi-superposition des deux courbes reflète l'isotropie des déformations thermiques. Les deux courbes, quasi-proportionnelles par ailleurs à la température (de surface) de l'éprouvette sèche, illustrent la linéarité des déformations thermiques avec la température. En notant que les déformations se stabilisent aux environs de -500 µdef, on obtient un coefficient de contraction thermique de l'ordre de 25 µdef/°C (=  $-500\mu def/20^\circ C$ ) tout à fait conforme aux valeurs usuelles mesurées sur EB.

Les courbes noires, continu et pointillé, montrent quant à elles les déformations axiale et radiale mesurées sur l'éprouvette partiellement saturée.

Ces courbes se superposent à celles de l'éprouvette sèche jusqu'à des températures de l'ordre de  $-3^{\circ}C$ , ce qui traduit deux choses: i) un effet de surfusion de l'eau porale, qui reste liquide à température légèrement négative, ii) l'absence d'effet d'eau sous cette forme, sur la contraction thermique des EB.

En revanche, sur la plage de températures comprises entre -3 et -8°C environ, l'éprouvette partiellement saturée présente clairement des déformations en extension, qui ne peuvent avoir pour origine que la propagation d'un front de gel à l'intérieur du matériau transformant au cours de sa progression l'eau contenue dans les pores en glace. Les évolutions des jauges axiales et orthoradiales se différentient au cours de cette phase, en raison de l'hétérogénéité de l'échantillon créée par la partition zone gelée/ zone non gelée. L'amplitude de la dilatation enregistrée par la jauge axiale sur cet intervalle de temps apparait d'emblée de l'ordre de 100µdef (variations de -400 à -300 µdef).

Au-delà de cette phase d'essai, les déformations de l'éprouvette partiellement saturée se rejoignent et reprennent une évolution semblable à celles de l'échantillon sec, mais tout en étant décalées vers le haut du fait des dilatations survenues préalablement. Autrement dit, après transformation complète d'eau en glace, l'EB reprend un comportement de solide soumis à un simple effet de contraction thermique.

L'égalité retrouvée au cours de cette phase, des déformations axiale et radiale montre que la dilatation du matériau par effet de gel est un phénomène localement isotrope, en l'absence de contrainte imposée.

Le plateau de température imposé en fin d'essai permet par ailleurs de définir avec une bonne précision l'amplitude du gonflement lié au gel, par différence entre les déformations stabilisées de l'échantillon à l'état sec et pour le degré de saturation testé. Sur la Figure 10, l'amplitude de gonflement linéique ainsi trouvée est de l'ordre de  $\pm 100\mu def$  (soit de  $300\mu def$  en volumique).

Plus largement, le plan d'expérience mené par (Vu et al., 2018) sur deux éprouvettes de porosités distinctes, chacune testée à plusieurs degrés de saturation, conduit à tracer la Figure 11, qui établit une relation quasi-linéaire entre la valeur du gonflement linéique induit par le gel dans un EB et sa teneur en eau volumique (porosité × saturation).



Figure 10. Essai de gel sur éprouvette non contrainte

Évolution des déformations en condition sèche et partiellement saturée (porosité = 7,7% , saturation = 65%) En rouge, avec lecture sur l'échelle de droite : évolution de la température mesurée en surface de l'éprouvette sèche



Figure 11. Relation entre amplitude de gonflement linéique et teneur en eau volumique pour deux échantillons d'EB de porosités distinctes

# 3.4.4 Essai de retrait-gonflement thermique empêché sur EB partiellement saturé (TSRST : Thermal Stress Restrained of Specimen Test)

Les essais de type « retrait empêché » sont d'usage courant en Génie Civil pour évaluer la résistance des matériaux de construction à la fissuration par baisse de température, en condition extrême de déformation bloquée. Ils sont notamment utilisés en Mécanique des Chaussées pour spécifier la tenue au froid des liants bitumineux et des EB à l'état sec, en fonction de la valeur de température atteinte au moment de la rupture des échantillons.

Ces essais ont été repris dans le cadre des recherches considérées ici. Ils sont effectués sur EB secs et EB partiellement saturés. Dans le cas présent, l'objectif n'est pas de s'intéresser à la rupture elle-même des matériaux, mais aux contraintes développées en fonction de l'abaissement de température. On veut notamment vérifier si le phénomène de gonflement vu sur les essais CTFS se traduit à déformation bloquée par une inversion temporaire notable d'évolution de la contrainte axiale, propre à générer des champs d'auto-contraintes significatifs dans une structure bi-couche telle que décrite en section 3.2. La réponse ne découle pas directement en effet de

l'essai CFTS en raison de l'aptitude des EB à relaxer leurs contraintes, même si cette capacité est largement réduite à température négative.

Les essais réalisés dans (Vu et al., 2018) sont effectués selon la norme NF EN 12697-46. Les échantillons de forme cylindrique sont maintenus à déformation axiale bloquée (par référence avec un barreau d'Invar placé dans l'enceinte thermique), tout en étant soumis à une vitesse de refroidissement de  $10^{\circ}C/h$ . La force axiale nécessaire à assurer cette condition est tracée en fonction de la température de l'échantillon.

La Figure 12 présente les résultats d'essai typiques obtenus sur deux éprouvettes d'un même matériau, testé à l'état sec puis en état partiellement saturé (porosité  $\approx 6\%$ , saturation  $\approx 63\%$ ). Les éprouvettes ont préalablement été soumises à l'essai CTFS (non destructif) de façon à caractériser la déformation de gonflement en déformation libre du matériau (Figure 13).

La courbe (en noir) relative à l'EB sec présente de la droite vers la gauche l'évolution classique de la contrainte axiale de traction, mesurée à température décroissante. La contrainte reste quasinulle de +20 à  $+5^{\circ}C$  en raison d'un faible temps de relaxation du matériau par rapport à la vitesse de sollicitation thermique ; elle augmente rapidement ensuite au fur et à mesure de la baisse de température et du raidissement du matériau et de l'augmentation de son temps caractéristique de fluage. Le matériau sec se rompt ici à la température de  $-20^{\circ}C$  pour une traction de l'ordre de +4MPa.

La courbe bleue présente l'évolution mesurée pour le matériau saturé à 63%. Celle-ci est confondue avec la précédente jusqu'à environ -3°C, c-à-d tant que l'eau porale reste sous forme liquide, compte-tenu de l'effet de surfusion déjà constaté sur l'essai CTFS.

Entre -3 et  $-10^{\circ}C$ , les variations de contrainte deviennent chahutées et négatives en moyenne. Elles aboutissent à  $-10^{\circ}C$  à une contrainte de compression de -0.5 *MPa* environ. On observe donc à cette température une différence significative de contrainte de l'ordre de -1.5MPa entre l'EB avec eau (-0.5MPa) et l'EB sec (+1MPa) à  $-10^{\circ}C$ . Cet écart de réponses du matériau est bien entendu attribuable au gel de l'eau contenue dans les pores et est la contrepartie de la déformation de gonflement observée sur l'essai CTFS. Au-dessous de  $-10^{\circ}C$ , l'EB partiellement saturé reprend une courbe d'évolution pratiquement parallèle à celle du matériau sec, mais avec un décalage vers le bas de l'ordre de 1,4 *MPa*.

L'éprouvette rompant pour la même valeur de contrainte que celle atteinte par le matériau sec, il en résulte une température à rupture de  $-27^{\circ}C$ , sensiblement plus basse par conséquent que celle de l'EB sec.

La vue de ce seul résultat pourrait alors laisser penser à un effet bénéfique de l'eau sur le comportement au gel des EB. Mais tel serait le cas pour un mécanisme de rupture basé sur la fissuration thermique du matériau, ne correspondant pas au mécanisme structurel pressenti en section 3.2.

On retiendra donc essentiellement de cet essai que le « gonflement CTFS » vu sur matériau partiellement saturé se traduit bien par une contrainte significative de compression au cours de l'essai TSRST, malgré les propriétés de relaxation des EB, insuffisantes à résorber les efforts internes induits par la transformation liquide/solide de l'eau contenue dans les pores.

En rapprochant la valeur de gonflement linéique de 150  $\mu def$  de l'écart de contrainte de 1,5*MPa*, respectivement mis en évidence sur les figures 12 et 13, il est intéressant d'observer que les deux quantités peuvent être mises en relation au travers d'un module de rigidité de l'ordre de 10 000*MPa*. En analogie thermo-élastique, le comportement du matériau saturé à 63% se traduirait au moment du gel par un module d'Young de 10 000*MPa* et une dilatation linéique de 150  $\mu def$ .



Figure 12. Essai TSRST : Comparaison des réponses entre enrobé sec et partiellement saturé



Figure 13. Essais CTFS préalables aux essais TSRST de la Figure 12; Comparaison des réponses entre enrobé sec et partiellement saturé

## 3.5 Essai de gel/dégel sur bicouche

Compte-tenu des résultats des essais de gel à déformation libre (CTFS) et à déformation bloquée (TSRST) confortant les hypothèses de la section 3.2, un essai de laboratoire sur bicouche a été effectué dans le cadre de la thèse de Vu (Vu et al., 2020).

### Protocole d'essai

Le corps d'épreuve est constitué de deux plaques d'EB (BBSG 0/14) superposées et collées entre elles. Les couches supérieure et inférieure ont respectivement des porosités de 8,1 et 4,7%. La couche d'accrochage est constituée d'une émulsion à 61% de teneur en liant et dosée à  $300kg/m^2$  de liant résiduel. La structure bicouche est elle-même collée sur une plaque en marbre avec la même émulsion et le même dosage. L'instrumentation est composée de jauges extensométriques (corrigées par différence avec barreau d'Invar) et de capteurs de température positionnés à environ 1cm de part et d'autre de l'interface entre les deux couches d'EB (Figure 14).





Figure 14. Schéma d'instrumentation de l'essai bicouche (vue de face)

Un bac muni d'un dispositif de froid en face supérieure et isolé thermiquement à sa base et sur ses parois permet de soumettre le corps d'épreuve à des historiques de température prédéfinis,
#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

mesurés sur la plaque de diffusion thermique en acier. Ces historiques sont ici constitués d'une succession de trois cycles de gel/dégel, similaires à ceux de la Figure 16.

Le corps d'épreuve est testé une première fois à l'état sec pour le cycle de température n°1 représenté sur la Figure 16a.

Il est ensuite saturé en partie haute suivant le protocole décrit en section 3.4.1. Afin d'accentuer le mécanisme que l'on cherche à mettre en évidence, la couche inférieure d'EB déjà de faible porosité est enduite sur ses faces verticales d'un film de bitume afin de limiter sa saturation. La couche supérieure de porosité 8,1% est saturée à 70%. Ces conditions peuvent représenter une situation de couche de roulement saturée par infiltration d'eau de pluie et (partiellement) imperméabilisée à sa base par une couche d'accrochage.



Figure 15. Dispositif expérimental pour la propagation de front de gel dans le bicouche; Le corps d'épreuve est placé dans un bac adiabatique muni en surface d'un serpentin assurant la circulation d'un réfrigérant et d'une plaque de diffusion thermique



Figure 16. Cycles de température imposés au niveau de la plaque d'acier; a) Cycle n°1 ; b) Cycles n°2 et 3 décalés de +5°C par rapport au premier

Le corps d'épreuve est ensuite replacé dans le bac et soumis au trois cycles de gel/dégel de la Figure 16.

#### Résultats

La Figure 17 présente les évolutions des déformations horizontales mesurées (après correction) à l'état sec par les jauges J2, J3, sur la première partie du cycle de température imposé. Les courbes sont proches l'une de l'autre et proportionnelles à la variation de température au voisinage de l'interface. L'amplitude de déformation d'environ 320  $\mu def$  pour une variation de température de  $\Delta\theta = 12,3^{\circ}C$  correspond à un coefficient de dilatation/contraction thermique  $\alpha = 26 \,\mu def/^{\circ}C$ , proche des valeurs usuelles d'un EB. Ceci montre :

- d'une part, un comportement solidaire des couches d'EB entre elles, qui subissent des déformations horizontales voisines de part et d'autre de leur interface ;
- d'autre part, un état de déformation horizontale de l'ensemble des deux plaques relativement peu gêné par le collage sur le marbre (le retrait thermique de celui-ci mesuré par la jauge J4 est de l'ordre de 85  $\mu def$  correspondant à  $\alpha_{marbre} = 7 \mu def/^{\circ}C$ ).
- Lors de la phase de réchauffement (non présentée ici) les deux couches restent collées entre elles.



Figure 17. Températures T2, T3 et déformations corrigées de J2 et J3 sur bicouche sec

La Figure 18 montre quant à elle l'enchainement des trois cycles sur le bicouche saturé, en partie supérieure. Les évolutions du premier cycle et des deux suivants sont clairement à distinguer, indépendamment de la différence entre leurs températures de consigne.

Le premier cycle montre une évolution quasi-identique des jauges J2 et J3, malgré la différence de saturation des deux couches et donc d'effet du gel sur leur comportement. Ceci atteste d'une bonne condition de collage de l'interface et confirme que celle-ci n'a pas été affectée par le cycle préalable effectué à sec.

En revanche, le second cycle met en évidence des comportements fortement différentiés des deux jauges, peu après le nouveau passage à température négative. La jauge J2 subit une variation de déformation en extension, typique des dilatations par effet de gel vues sur essais CTFS à déformation libre, alors que la jauge J3 continue à se contracter en réponse à la baisse de température. Une différence notable de valeurs de déformations continue ensuite à exister tout au long de ce second cycle. Le troisième cycle se comporte quasiment à l'identique du second, confirmant le changement de fonctionnement de l'interface survenu au cours du second cycle.

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

La variation de la réponse relative des jauges J2, J3 entre le premier et second cycle montre sans conteste une désolidarisation subite des couches provoquée par les sollicitations thermiques imposées. L'examen détaillé des courbes montrent que le phénomène commence à se manifester au cours de la phase de dégel du premier cycle. On peut supposer que l'interface rompt sous l'effet des autocontraintes et des efforts d'arrachement se produisant au cours de la première phase de gel, mais que le phénomène ne devient détectable que lorsque l'effet de « colle » apporté par la glace disparait à température croissante.

En tout état de cause, on obtient ainsi en laboratoire une première preuve expérimentale de la possibilité d'un délaminage par effet de gel, d'une interface de couches de chaussée poreuses, partiellement saturées.



Figure 18. Essai sur bicouche partiellement satuté

Evolution de la température T2 (échelle de droite) et des déformations J2&J3 mesurées de part et d'autre de l'interface (échelle de gauche). La comparaison des évolutions entourées d'une ellipse met clairement en évidence un délaminage d'interface

## 3.6 Travaux de modélisations numériques

L'ensemble des travaux expérimentaux menés dans (Vu et al., 2020) a été accompagné de développements théoriques et numériques visant à simuler les essais CTFS, TSRST et de gel sur bicouche, décrits précédemment. Les modélisations effectuées ont permis de s'assurer de la bonne interprétation des essais et de la bonne compréhension des phénomènes mis en jeu.

Ces travaux ont porté sur deux aspects complémentaires:

- 1. la formulation d'une loi de comportement thermo-visco-élastique 3D pour EB partiellement saturé, avec prise en compte de l'effet de gel
- la résolution générale du problème structurel thermo-mécanique semi-couplé, tenant compte :
  - d'une part de l'équation de la chaleur en présence d'un front de gel (conditions de « saut de Stefan »)
  - d'autre part de la loi de comportement mentionnée ci-dessus.

La loi de comportement (Tableau 1) est basée sur le modèle de fluage de Huet (1963) avec addition de deux termes de déformation isotrope, fonction de la température :

- l'un représente le terme usuel de dilatation/contraction des solides, proportionnel à la température
- l'autre terme est associé au gonflement libre mis en évidence sur les essais CTFS.

La dépendance de la loi de fluage à la température est considérée au travers de la fonction de translation en température et de la notion de temps équivalent.

| Tableau 1. Loi de comportement isotrope pour EB partiellement saturé                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boldsymbol{\varepsilon}(t, S_w) = \tilde{J}_H \boxtimes \left[ (1 + v) \dot{\boldsymbol{\sigma}}(t) - v tr(\dot{\boldsymbol{\sigma}}(t)) I \right] + \underbrace{\alpha  \Delta \theta(t) I}_{f} + \varepsilon_f(\theta(t), S_w) I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| déformation de fluage liée aux contraintes dilatation thermique gonflement lié au gel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| avec :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\boldsymbol{\varepsilon}(t, S_w)$ = tenseur de déformation du matériau , fonction du temps et du degré de saturation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\dot{\pmb{\sigma}}(t)$ = dérivée par rapport au temps du tenseur des contraintes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\nu$ = coefficient de Poisson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| heta = température du matériau en °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\Delta 	heta$ = variation de température par rapport à l'état de référence, considéré à déformation nulle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lpha = coefficient de dilatation thermique du matériau (valeur considérée constante)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\tilde{J}_H(u) = \frac{1}{E_{\infty}} \left( 1 + \frac{u^h}{\Gamma(h+1)} + \delta \frac{u^k}{\Gamma(k+1)} \right)$ = loi de fluage de Huet adimensionnalisée en temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $E_{\infty}$ = valeur maximale de rigidité du matériau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $h, k =$ exposants tels que: $0 < k < h < 1$ , $\Gamma =$ fonction Gamma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Image: experimentary entry experimentary experimentery experimentary |
| • $\tilde{J}_H \boxtimes \dot{\sigma} = \int_{-\infty}^{\infty} \tilde{J}_H (\tilde{t}_e(t) - \tilde{t}_e(\tau)) \dot{\sigma}(\tau) d\tau$ où :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • $\tilde{t}_e(t) - \tilde{t}_e(\tau) = \int_{\tau}^{t} \frac{du}{\tau(t-\tau)} = \text{différence entre temps équivalents}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • $a(\theta)$ = fonction de translation en température du matériau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{s}_{c}(\theta, S_{c}) = s_{cc}(S_{c}) \frac{1 - tanh[m(\theta - \theta_{f})]}{1 - tanh[m(\theta - \theta_{f})]} = déformation de gonflement fonction de la température du matériau et de$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| son degré de saturation $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\varepsilon_{f0}(S_w) =$ valeur de gonflement mesurée sur essai CTFS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $	heta_f$ = température de changement de phase liquide/solide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| m = paramètre de régularisation de la loi de changement de phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Les équations thermique et mécanique du problème structurel sont écrites sous forme variationnelle et résolues numériquement sur la base d'une discrétisation temporelle par différences finies et d'une discrétisation spatiale par éléments finis. Les algorithmes obtenus (cf. Annexe A) sont implémentés en 2D (contraintes planes, déformations planes et en axisymétrie pour la modélisation des essais sur éprouvettes cylindriques), sous forme de scripts au sein de l'environnement FreeFem++ (Hecht, 2012).

L'ensemble de ces développements sur la loi de comportement et la résolution des problèmes structurels est décrit en détail dans (Vu et al., 2018) et (Vu et al., 2020).

Les Figure 19 à Figure 22 suivantes présentent quelques résultats de simulation ainsi obtenus des différents essais mentionnés précédemment. On peut observer dans l'ensemble une bonne restitution numérique des observations et mesures expérimentales.



Figure 19. Simulation thermique de l'essai CTFS

Maillage FreeFem++ et comparaison des cartes de température calculées à l'instant t = 50 min dans le cas d'un EB sec et d'un EB partiellement saturé ( $\theta_{ext} = -8,1^{\circ}C, \theta_{f} = -7^{\circ}C$ )

Les calculs sur EB saturé mettent clairement en évidence la présence du front de gel lié à la chaleur latente de transformation d'eau liquide en glace



Figure 20. Simulation de l'essai TSRST. Comparaison entre EB sec (a et b) et EB partiellement saturé (c et d) Cartes de température et des contraintes axiale et de cisaillement obtenues à l'instant t = 3,12 h pour  $\theta_{périphérie éprouvette} \approx -12^{\circ}C$ . La figure du bas montre en particulier la forte hétérogénéité de contrainte axiale induite dans l'échantillon par le front de gel





Les simulations génèrent des évolutions plus lisses que les courbes expérimentales en phase de gel partiel, où l'eau est présente sous forme liquide et solide en fonction de la position du front de gel dans l'échantillon, mais les deux essais sont convenablement simulés dans leur ensemble





Figure 22. Simulation de l'essai de gel/dégel sur bicouche saturé en couche supérieure

Comparaison des évolutions expérimentales et numériques de l' évolutions des déformation des jauges J2&J3 a) Simulation du premier cycle en supposant l'interface parfaitement collée; b) Simulation du secnd cycle, en supposant l'interface fissurée

La bonne restitution numérique d'ensemble des courbes expérimentales conforte l'interprétation du délaminage de l'interface provoquée par le gel

# 4 Pré-essais en laboratoire sur les matériaux de la chaussée construite sur la fosse de l'Université Laval

Une plaque de 600X400 (mm) a été fabriquée à partir des matériaux ESG 10 foisonnés, prélevés lors de la réalisation de la couche de roulement de la fosse expérimentale de l'Université Laval. Ces matériaux ont été expédiés à l'IFSTTAR afin de mener en laboratoire, une série d'essais préliminaires aux essais à échelle réelle.

Dans un premier temps, une série d'échantillons a été confectionnée avec le Compacteur de plaques MLPC (NF EN 12697-33) de l'Université Gustave Eiffel, afin d'obtenir un pourcentage de vides proche de celui obtenu sur la fosse de l'Université Laval (n entre 7.9% et 9,1%). La valeur de la teneur en vides a été obtenue par mesure au banc Gamma. Les résultats de ces essais montrent un pourcentage de vide moyen de l'ordre de 8 % (Figure 23).



Figure 23. Pourcentages de vides obtenus sur la plaque d'enrobé bitumineux

Des prismes et cylindres ont été sciés ou carottés dans ces plaques d'enrobé, afin de réaliser les trois types d'essais de laboratoire suivants (Figure 24) :

- Prismes pour mesures de permittivité à la sonde CAPA ;
- Prismes pour essais de saturation à charge constante ;
- Cylindres pour essais de Gel/Dégel 3D en enceinte (essai CTFS).

La mesure de la permittivité du prisme 1 est réalisée à différents niveaux de saturation. L'objectif est de caractériser le taux de saturation d'un échantillon par une méthode non destructive. Cette méthode servira par la suite pour estimer le degré de saturation de l'enrobé de surface de la chaussée de la fosse d'essai.

De l'autre côté, l'essai de saturation gravitaire réalisé sur l'éprouvette 2 a pour objectif de nous renseigner sur la durée nécessaire pour atteindre le degré de saturation visé, fixé à environ 40% (Figure 25).

L'essai de gel/dégel 3D sur les éprouvettes cylindriques est réalisé dans le but de déterminer la cinétique de propagation du front de gel dans la couche de surface et la déformation de gonflement telle que définie dans l'essai CTFS. Cet essai est réalisé sous condition sèche, puis partiellement saturée.

D'autres types d'essais sont prévus, ils seront réalisés dans un second temps.

- Essai de gel 1D sur bicouche (condition adiabatique sur les flancs)
- Essai de module complexe sur les matériaux bitumineux GB et ESG

L'essai de gel 1D sur bicouche vise à caractériser le décollement des couches sous l'effet de la propagation du front de gel (cf. section 3.5).

L'essai de module complexe vise à caractériser la rigidité du mélange ESG10 à l'état sec, puis à l'état saturé (Essai de module complexe).

Les résultats de ces essais seront utilisés d'une part pour guider le protocole expérimental mis en œuvre sur l'essai à échelle réelle, d'autre part pour mener des modélisations en appui de l'interprétation des observations expérimentales faites au cours de cette expérimentation.

Les résultats de l'ensemble de ces essais seront consignés dans le prochain rapport.



Figure 24. Essais de laboratoire menés à l'IFSTTAR sur les matériaux de la fosse expérimentale



Figure 25. Essai de saturation gravitaire ; évolution du taux de saturation en fonction du temps (essai encore en cours à la date de rédaction de ce rapport)

# 5 Rappel sur les caractéristiques de la fosse expérimentale

La fosse expérimentale est située dans le garage de recherche du département de génie civil et de génie des eaux de l'Université Laval (Figure 26). La configuration du garage est prévue de façon à ce que le simulateur climatique et de véhicules lourds soit positionné directement au-dessus de la fosse. Les systèmes de chaussées expérimentales sont construits dans la fosse, lorsque le simulateur est déplacé temporairement.

La fosse expérimentale possède les caractéristiques suivantes :

- Dimensions : 2 m x 6 m x 2 m (Largeur x Longueur x Profondeur), soit 24 m<sup>3</sup>. Les dimensions de la fosse sont adaptées aux caractéristiques techniques et aux dimensions du simulateur. Par exemple, la longueur de la fosse (6 m) a été établie à partir de la capacité maximale du simulateur en termes de longueur de planche d'essai.
- Rampe d'approche de 6 m de longueur pour faciliter l'accès de la machinerie (Figure 26);
- Drainage et injection d'eau au bas de la fosse. Cette caractéristique permet de notamment contrôler la hauteur d'eau dans le système de chaussée. Le point d'injection et de drainage est situé à une extrémité de la fosse. Afin de s'assurer de la distribution uniforme de l'eau dans la fosse, une couche de pierre nette 10-14 mm d'environ 200 à 250 mm est typiquement mise en place au fond de la fosse (Figure 27). Le niveau d'eau est contrôlé automatiquement par un capteur de pression électronique.
- Possibilité de collecte indépendante des eaux de percolation dans la chaussée. L'eau drainée peut être recueillie de façon indépendante dans un bassin de sédimentation situé en dessous du niveau inférieur de la fosse. Cette caractéristique présente un intérêt spécifique pour, par exemple, l'étude de la migration de contaminants aux travers des couches du système de chaussées ou de la composition chimique des lixiviats ayant migrés dans la structure.
- Circuit fermé de liquide de conditionnement thermique dans la dalle de béton du bas de la fosse pour le contrôle de la température et du gradient thermique. Le simulateur

permet de contrôler la température appliquée en surface du système de chaussée, alors que la fosse est équipée pour effectuer le contrôle de la température en base. Pour ce faire, deux compresseurs de contrôle thermique -1 à -10 °C de 7,46 kW sont utilisés. Un circuit fermé de tuyauterie préalablement encastré dans le béton lors de la coulée. Ces outils permettent d'assurer un contrôle de température en base de la fosse variant entre près de 30 °C (chauffage du système par frottement) à -10 °C.

- Zone d'accès à la façade latérale de la fosse pour faciliter l'instrumentation et le contrôle.
- Fosse divisible en deux sur la longueur pour augmenter la productivité et diminuer les coûts



Figure 26. a) Fosse expérimentale et rampe d'accès; b) Vue de dessus de la fosse



Figure 27. Utilisation de pierre nette au fond de la fosse



Figure 28. Unités de conditionnement thermique pour la dalle de béton au bas de la fosse

À la Figure 27, il doit également être noté qu'un système de coordonnées est utilisé pour référencer tous les instruments, couches et essais en X (transversal), Y (longitudinal, direction de roulement du chariot du simulateur) et Z (profondeur). Le point de référence en X=0, Y=0 et Z=0 est montré sur la figure. La direction Y est orientée vers la porte du garage.

# 6 Excavation de l'ancienne chaussée

La chaussée expérimentale utilisée pour le projet de l'hiver 2019, pour le compte de la Chaire i3C, a été excavée en octobre 2019. La chaussée excavée était constituée de 100 mm de GB20, 250 mm de MG20 et 450 mm de MG112, pour une épaisseur de 800 mm. Le sol d'infrastructure, qui est conservé pour ce projet, est un sable silteux (SM). L'excavation a été effectuée jusqu'à une profondeur de 825 mm (Z=-825 mm) et remanié sur une profondeur additionnelle d'environ 150 mm, tel que montré à la Figure 29. Le sol. Ceci a été fait afin d'excaver le matériel contaminé par les activités d'excavation (mélange entre les diverses couches de matériaux) et de réinitialiser l'endommagement du sol d'infrastructure.



Figure 29. Excavation de l'ancienne chaussée jusqu'à une profondeur Z=-825 mm

# 7 Construction

Le remplissage de la fosse a été effectué avec un tracteur hydraulique (Figure 30). Les matériaux de chaussées ont préalablement été entrés à l'intérieur du garage afin de les protéger des intempéries climatiques. Les matériaux ont été placés et étendus dans la fosse à la pelle et au râteau (Figure 31) afin d'obtenir des couches le plus uniforme possible. Chaque couche de matériaux de chaussée a été mise en œuvre par sous-couche. La sous-fondation et la fondation ont été mis en œuvre en deux sous-couches. La recompaction de la partie supérieure du sol d'infrastructure a été effectuée en une seule couche.



Figure 30. Remplissage de la fosse avec le tracteur hydraulique



Figure 31. Mise à niveau des couches avec des pelles et un râteau

### 7.1 Compactage

La densification des couches de sol et de matériaux granulaires a été effectuée avec deux principaux outils, soit une plaque vibrante Bomag BPR 35/60 ayant un pouvoir de compaction de 40 kN et une marteau vibrant Hilti TE-1000 AVR équipé d'une plaque de 300 mm (Figure 32 et Figure 33). La plaque vibrante a été utilisée de façon générale sur la surface des matériaux dans la fosse. Pour sa part, le marteau vibrant a été utilisé pour certains endroits où la plaque vibrante n'avait pas accès, par exemple dans les coins de la fosse ou près de certains instruments.



Figure 32. Compactage à la plaque vibrante



Figure 33. Compactage au marteau vibrant utilisé près des instruments ou dans les secteurs non accessibles pour la plaque vibrante

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

Pour les couches d'enrobé, les matériaux ont été livrés avec un camion chauffant, ce qui a permis de conserver les matériaux dans des conditions optimales au niveau de la température. Le camion a déversé les matériaux par secteur au-dessus de la surface de la fosse et les matériaux bitumineux ont été étendus au râteau (Figure 34). Une couche de GB20 a été utilisée en couche de base, et un ESG10 en couche de surface. Chaque couche a été compactée en seule couche. Un rouleau vibrant lisse à deux cylindres de 40 po a été utilisé pour compacter les matériaux bitumineux (Figure 35), et une plaque vibrante a été utilisée pour faire du compactage près des extrémités de la fosse (Figure 36). Il doit être noté que le rouleau compacteur a été essentiellement utilisé sans vibration pour la mise en œuvre du GB20 et du ESG10.



Figure 34. Épandage de l'enrobé bitumineux à la surface – Exemple de la pose du ESG10 sur le GB20



Figure 35. Compactage des couches d'enrobé au rouleau



Figure 36. Compactage des extrémités de la fosse avec une plaque vibrante

## 7.2 Collage du bi-couche

Une couche de collage entre le GB20 et le ESG10 a été appliquée sur la surface de la couche de base. Le produit appliqué est une émulsion Supercol H de type CSS-1h, dont les caractéristiques peuvent être trouvées à l'annexe B. La surface de GB20 à couvrir était de 13,911625 m<sup>2</sup>. Cette surface comprend la zone d'environ 1,1 m supplémentaire en direction longitudinale.

Le produit a été mis en œuvre au rouleau. Afin d'assurer une bonne homogénéité du taux de pose, une quantité de 6,8 L a été séparée en quatre sous-parties volumiques égales (exemple à la Figure 37) et chacune a été étendue sur le ¼ de la longueur à couvrir longitudinalement. Cette quantité a été calculée à partir du taux de pose résiduel visé, soit 0,3 L/m<sup>2</sup>, et le pourcentage de bitume dans l'émulsion (61,9%).

Le taux de pose résiduel réellement obtenu est de 0,303 L/m<sup>2</sup> et le résultat final est montré à la Figure 38.



Figure 37. Mise en œuvre de la couche de liaison en sous-sections entre les deux couches d'enrobé



Figure 38. Émulsion bitumineuse mise en œuvre à la surface du GB20

## 7.3 Stratigraphie et épaisseur des couches

La profondeur finale du sommet de chacune des couches a été mesurée, en utilisant la surface du béton (Z=0 mm) comme référence. Une grille de coordonnées fixe, tel qu'illustrée à la Figure 39, a été utilisée pour la mesure des profondeurs. La Figure 40 illustre les processus de mesure des profondeurs.

Sept points transversaux ont été considérés, soit en X=250, 500, 750, 1000, 1250, 1500 et 1750 mm.

Onze lignes transversales ont été considérées, soit en Y= 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, et 5500 mm. Pour les couches d'enrobés, des mesures ont été ajoutées en Y=6000, 6500 et 7000 mm, parce que la zone supplémentaire longitudinale, en dehors de la zone principale de la fosse, permettait de le faire.



Figure 39. Grille de coordonnées utilisée pour la mesure des profondeurs

Les coordonnées de mesures considérées sont, pour le sol d'infrastructure et la sous-fondation (49 points) :

- X = 250, 500, 750, 1000, 1250, 1500, 1750 mm

- Y = 500, 1500, 2500, 3000, 3500, 4500, 5500 mm

Les coordonnées de mesures considérées sont, pour la fondation (77 points) :

- X = 250, 500, 750, 1000, 1250, 1500, 1750 mm

- Y = 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500 mm

Les coordonnées de mesures considérées sont, pour le GB20 et le ESG10 (98 points) :

- X = 250, 500, 750, 1000, 1250, 1500, 1750 mm

- Y = 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000 mm



Figure 40. Mesure des profondeurs par rapport à Z=0 mm

#### DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

Les mesures finales ont été prises suite à la densification et au profilage finaux. Le Tableau 2 présente le sommaire statistique des mesures de profondeur et la conversion en épaisseur des couches. Les moyennes et écarts-types ont été mesurés pour un nombre de points de mesures *N*. Près de la surface (fondation et revêtement), le nombre de point a été augmenté et les profils finaux ont été travaillés plus minutieusement afin d'avoir un contrôle plus précis des épaisseurs sur les couches ayant une importance structurale plus grande. Ceci est notamment observable au niveau des écarts-types, plus faibles près de la surface. La stratigraphie moyenne finale obtenue est 68 mm ESG10, 77 mm GB20, 234 mm MG20, 474 mm MG112. En moyenne, la surface de la couche de roulement est en dépression de 6,5 mm par rapport au niveau de la dalle de béton, ce qui est en accord avec les observations visuelles de la surface finale. Les données du Tableau 2 présentent également les épaisseurs moyennes calculées sur la partie centrale de la surface d'essai, c'est-à-dire pour Y allant de 1000 à 5000 mm et X allant de 500 à 1500 mm. Ces valeurs peuvent être davantage pertinentes pour les calculs structuraux, étant donné qu'elles sont davantage centrées sur la zone d'essai et qu'elles excluent notamment les effets de bords, où les épaisseurs peuvent avoir été biaisées par des difficultés de mise en place.

|                |    | Profondeur |      | Épaisseur |      | Épaisseur (centre)** |      |
|----------------|----|------------|------|-----------|------|----------------------|------|
|                | Ν  | Moy. (Z)   | É-T  | Moy.      | É-T  | Moy.                 | É-T  |
|                |    | (mm)       | (mm) | (mm)      | (mm) | (mm)                 | (mm) |
| ESG10          | 98 | -6,5       | 4,9  | 68        | 4,9  | 70                   | 3,7  |
| GB20           | 98 | -74,3      | 4,0  | 77        | 4,0  | 77                   | 3,4  |
| Fondation      | 77 | -151,6     | 3,8  | 234       | 4,0  | 235                  | 3,5  |
| Sous-Fondation | 49 | -385,7     | 6,9  | 474       | 6,9  | 475                  | 7,2  |
| Sol d'infra.   | 49 | -859,4     | 12,0 | 841       | 12,0 | 844                  | 8,3  |
| Pierre 14-10*  |    | -1700      |      | 300       |      | 300                  |      |
| Total          |    |            |      | 1994      |      | 2001                 |      |

Tableau 2. Mesures de profondeurs et d'épaisseurs des couches lors de la construction

\*Profil non mesuré, épaisseur approximative

\*\*Épaisseur calculée pour 500 ≤ X ≤ 1500 mm et 1000 ≤ Y ≤ 5000 mm

Afin d'apprécier de façon plus générale la mise en œuvre des couches sur toute la surface de la fosse, les mesures de profondeur ont été utilisées afin de faire une interpolation spatiale par krigeage, tel que présenté aux figures Figure 41 à Figure 45. Cette technique permet d'apprécier la distribution des profondeurs de chaque couche, et notamment d'identifier les points hauts et les points bas dans chaque profil, ainsi que les tendances spatiales.



Figure 41. Profil du ESG10 obtenu de l'interpolation par krigeage



Figure 42. Profil du GB20 obtenu de l'interpolation par krigeage



Figure 43. Profil du MG20 obtenu de l'interpolation par krigeage



Figure 44. Profil du MG112 obtenu de l'interpolation par krigeage



Figure 45. Profil du sol d'infrastructure obtenu de l'interpolation par krigeage

## 8 Caractérisation des matériaux

#### 8.1 Propriétés des matériaux et essais de caractérisation

Dans le cadre de ce projet, deux couches d'enrobé bitumineux ont été mises en œuvre. Le mélange du GB20 est fabriqué avec quatre constituants granulaires, dont du granulat bitumineux recyclés (20%). La formule du ESG10 est un mélange de trois classes granulaires. Cette formule ne contient pas de matériaux recyclés. Dans les deux cas, le bitume utilisé est du 58H-34. Le Tableau 3 présente les formules utilisées pour chaque mélange. Les données complètes de formulation des enrobés et les caractéristiques du bitume se trouvent à l'annexe C.

Tableau 3. Granulométries des formules d'enrobé bitumineux utilisés

|           | Tamis (mm) |     |     |    |    |     |      |      |       |       |      |
|-----------|------------|-----|-----|----|----|-----|------|------|-------|-------|------|
|           | 28         | 20  | 14  | 10 | 5  | 2.5 | 1.25 | 0.63 | 0.315 | 0.160 | 0.08 |
| GB20 (%)  | 100        | 98  | 78  | 57 | 39 | 26  | 19   | 14   | 9     | 7     | 5,8  |
| ESG10 (%) | 100        | 100 | 100 | 97 | 60 | 41  | 29   | 22   | 16    | 9     | 7,5  |

Des essais de caractérisation de base ont aussi été effectués sur le sol et les matériaux granulaires. Les courbes granulométriques ainsi que certains indices associés à la distribution de la taille des grains, soient le pourcentage passant le tamis 5 mm (%P<sub>5mm</sub>) et le pourcentage de particules passant le tamis de 0,08 mm (%Fines), sont rassemblés à la Figure 46 et au Tableau 4. Le Tableau 4 regroupe également les résultats des essais proctor modifiés, qui ont permis d'obtenir la masse volumique sèche maximale  $\rho_{dmax}$  et la teneur en eau optimale w<sub>opt</sub>, ainsi que les valeurs des limites d'Atterberg pour le sol d'infrastructure. L'annexe D regroupe les résultats des essais de caractérisation disponibles.



Figure 46. Distribution de la taille des grains pour les matériaux granulaires et le sol d'infrastructure

| rubicuu 4. culuciensullon uu sol et ues muteriuux gr |      |       |      |  |  |  |  |  |
|------------------------------------------------------|------|-------|------|--|--|--|--|--|
|                                                      | MG20 | MG112 | SM   |  |  |  |  |  |
| $ ho_{dmax}$ (kg/m <sup>3</sup> )                    | 2245 | 2057  | 2170 |  |  |  |  |  |
| w <sub>opt</sub> (%)                                 | 6,9  | 8,8   | 6,9  |  |  |  |  |  |
| %P <sub>5mm</sub>                                    | 52   | 62    | 72   |  |  |  |  |  |
| %Fines                                               | 4,1  | 3,3   | 24   |  |  |  |  |  |
| w∟ (%)                                               | -    | -     | 15,6 |  |  |  |  |  |
| WP                                                   | -    | -     | np   |  |  |  |  |  |

Tableau 4. Caractérisation du sol et des matériaux granulaires

#### 8.2 Déflectomètre portable

Des essais au déflectomètre portable (LWD) ont été effectués suite à la compaction finale des couches de sols et de matériaux granulaires. Cet outil, tel que montré à la Figure 47, permet de déterminer le module élastique de surface ( $E_{LWD}$ ) des couches en appliquant la théorie de Boussinesq. Pour réaliser l'essai, une masse est laissée tomber sur une plaque de chargement, créant une courte impulsion de contrainte d'environ 20 ms. Un géophone situé sous la plaque de chargement permet d'obtenir la déflexion dans le massif de sol engendrée par la contrainte en surface. L'Équation 1 utilisée est

$$E_{LWD} = \frac{2(1-\mu^2)\sigma_0 a}{d_0}$$
 Équation 1

dans laquelle a est le rayon de la plaque de chargement (150 mm),  $\sigma_0$  est la contrainte de surface,  $\mu$  est le coefficient de poisson (0,35) et d<sub>0</sub> est la déflexion mesurée sous la plaque. Il doit être rappelé que les principales hypothèses de la théorie de Boussinesq sont considérées comme valides pour cette analyse (milieu continu, homogène, isotrope, élasticité linéaire).

Trois essais par couches de sols ou de matériaux granulaires ont été réalisés, la position des points de mesure est présentée à la Figure 48. Le positionnement des essais était restreint, dans une certaine mesure, par la présence des capteurs dans les couches. Chaque essai a consisté en trois chutes initiales de la masse sur la plaque, pour la hauteur de chute identifiée, suivie de trois autres chutes dont les mesures ont été conservées. Les contraintes de surface ont été sélectionnées afin de prendre en compte les limites de l'appareil (hauteur maximale de chute, hauteur minimale pour obtenir un signal adéquat) et les caractéristiques du système de la chaussée en considérant un cas de chargement type. Ainsi, des contraintes visées de 60, 80 et 100 kPa, ont été choisies pour le sommet du sol d'infrastructure, de la sous-fondation et de la fondation, respectivement.


Figure 47. Essai au LWD sur les couches mises en œuvre – Exemple de la sous-fondation



Figure 48. Position des points de mesure pris avec le déflectomètre portable

Le Tableau 5 présente les résultats obtenus au déflectomètre portable. Des modules élastiques de surface (E<sub>LWD</sub>) de 126, 113 et 110 MPa ont été obtenus pour la fondation, sous-fondation et le sol d'infrastructure, respectivement. Il doit être noté que le fait que certaines couches soient relativement minces (ex : fondation) implique que la mesure du module peut être influencée par la rigidité des couches inférieures.

| Matériau | Х    | Y    | Z    | $d_0$ | $\sigma_0$ | ELWD  | E <sub>LWD</sub> (moy.) | E <sub>LWD</sub> (É-T) |
|----------|------|------|------|-------|------------|-------|-------------------------|------------------------|
|          | (mm) | (mm) | (mm) | (µm)  | (kPa)      | (MPa) | (MPa)                   | (MPa)                  |
| INFRA    | 1400 | 3300 | -860 | 157   | 65.2       | 109   |                         |                        |
| INFRA    | 600  | 4500 | -860 | 154   | 65.4       | 112   | 110.7                   | 1.2                    |
| INFRA    | 600  | 2100 | -860 | 156   | 65.7       | 111   |                         |                        |
| MG112    | 850  | 1220 | -386 | 227   | 84.7       | 98    |                         |                        |
| MG112    | 740  | 2700 | -386 | 173   | 84.5       | 129   | 113.0                   | 15.4                   |
| MG112    | 900  | 4400 | -386 | 197   | 83.6       | 112   |                         |                        |
| MG20     | 1400 | 2600 | -152 | 216   | 100.2      | 122   |                         |                        |
| MG20     | 950  | 1100 | -152 | 185   | 97.9       | 139   | 126.4                   | 11.4                   |
| MG20     | 700  | 3900 | -152 | 220   | 98.5       | 118   |                         |                        |

Tableau 5. Résultats des essais au déflectomètre portable

# 8.3 Compacité couches non liées

Des mesures de compacité au nucléodensimètre (TROXLER) ont été prises suite au profilage et à la compaction finale des couches de sols et de matériaux granulaires. Pour chaque couche, quatre points de mesure ont été considérés. La position de chaque point de mesure, illustrée à la Figure 49, prend en compte les spécificités du système et la présence des instruments enfouis dans les couches. Les points de mesure ont été concentrés le plus possible dans la zone transversale centrale, ainsi que sur le 4 m central dans la direction longitudinale.



Figure 49. Position des points de mesures au nucléodensimètre pour les couches de matériaux granulaires et le sol d'infrastructure

Le Tableau 6 présente le sommaire des résultats collectés. En prenant en compte les résultats de la caractérisation, des degrés de compacité de 97, 99 et 96 % ont été obtenus pour les couches de sol d'infrastructure, sous-fondation et fondation, respectivement, en référence à la valeur de masse volumique sèche maximale (proctor modifié, Tableau 4). Le Tableau 6 regroupe les informations sur la position des points de mesures en X, Y et Z, la masse volumique humique  $\rho_{h}$ , la masse volumique sèche  $\rho_{s}$ , ainsi que la teneur en eau *w*.

L'annexe E regroupe les rapports d'essais réalisés au nucléodensimètre pour les sols et les matériaux granulaires.

| Matériau | Х    | Y    | Z    | $ ho_{h}$          | $\rho_{\text{d}}$  | W   |
|----------|------|------|------|--------------------|--------------------|-----|
|          | (mm) | (mm) | (mm) | kg m <sup>-3</sup> | kg m <sup>-3</sup> | (%) |
| INFRA    | 700  | 3800 | -860 | 2226               | 2096               | 6.2 |
| INFRA    | 1250 | 3300 | -860 | 2181               | 2069               | 5.4 |
| INFRA    | 780  | 2700 | -860 | 2168               | 2065               | 5   |
| INFRA    | 1250 | 2200 | -860 | 2226               | 2111               | 5.4 |
|          |      |      |      | Moy.               | 2085               | 5.5 |
|          |      |      |      | É-T                | 22                 | 0.5 |
| MG112    | 770  | 4160 | -386 | 2069               | 2022               | 2.3 |
| MG112    | 520  | 2830 | -386 | 2163               | 2109               | 2.6 |
| MG112    | 1420 | 2300 | -386 | 2087               | 2037               | 2.5 |
| MG112    | 980  | 1250 | -386 | 2045               | 1996               | 2.4 |
|          |      |      |      | Moyenne            | 2041               | 2.5 |
|          |      |      |      | ET                 | 48                 | 0.1 |
| MG20     | 900  | 4700 | -152 | 2197               | 2121               | 3.6 |
| MG20     | 780  | 4050 | -152 | 2212               | 2140               | 3.4 |
| MG20     | 580  | 2100 | -152 | 2239               | 2182               | 2.6 |
| MG20     | 1220 | 1360 | -152 | 2218               | 2151               | 3.1 |
|          |      |      |      | Moyenne            | 2149               | 3.2 |
|          |      |      |      | ET                 | 26                 | 0.4 |

Tableau 6. Résultats des mesures de masse volumique au nucléodensimètre prises sur les couches de matériau granulaires et de sols

# 8.4 Compacité des enrobés

Des essais au nucléodensimètre ont été effectués en surface du GB20 et en surface du ESG10. Cinq et dix points de mesures ont été utilisés pour la surface du GB20 et du ESG10, respectivement. Il doit être noté que les cinq positions sur le GB20 ont été réutilisées pour les mesures sur le ESG10. Il doit aussi être précisé que 12 points de mesures complémentaires ont été relevés en surface du ESG10, cependant avec un nucléodensimètre différent, ce qui a conduit à un biais entre la première série de mesure et la deuxième.

La Figure 49 présente les différents emplacements de mesures utilisés pour les mesures au nucléodensimètre. Il est possible d'y observer la concordance entre les points de mesures pour le GB20 et certains points du ESG10. Les deux séries de mesures sur e ESG10 sont identifiées comme

ESG10#1 et ESG10#2. L'annexe F montre les emplacements des mesures tel que documentés par l'équipe technique du Ministère. Deux points sont à noter : 1. L'emplacement #10 (faisant partie de la série de mesures ESG10#1) n'a pas de coordonnées en X et Y; 2. Le système de coordonnées (en X) est différent de celui utilisé dans ce rapport, les coordonnées ont été ajustées pour la suite de l'analyse.

Il doit aussi être précisé que les emplacements 1, 2, 4 et 5 ont fait l'objet de carottage afin de déterminer la masse volumique des couches en laboratoire. Cette détermination a notamment permis d'établir un facteur de correction à appliquer aux valeurs de nucléodensimètre obtenues par mesure indirecte.



Figure 50. Position des mesures au nucléodensimètre sur les couches d'enrobés

Les mesures ont été recueillies par transmission indirecte (GB20 et ESG10). Cependant, un point de mesure a aussi été pris en transmission directe (ESG10 seulement) pour déterminer un facteur de correction préliminaire. Le résultat cette calibration est qu'une réduction de 10 kg m<sup>-3</sup> doit être appliquée à la valeur obtenue par la méthode indirecte. Les résultats bruts mesurés au nucléodensimètre par la méthode indirecte sans correction sont regroupés au Tableau 7 pour les deux couches d'enrobés bitumineux. Pour chaque emplacement, cinq mesures ont été prises (M1 à M5) afin d'obtenir une moyenne.

|         |    | Х    | Y    | M1       | M2       | M3       | M4       | M5       | Moy.     |
|---------|----|------|------|----------|----------|----------|----------|----------|----------|
|         |    | (mm) | (mm) | (kg m⁻³) |
| GB20    | 1  | 1162 | 715  | 2291     | 2283     | 2259     | 2321     | 2285     | 2288     |
|         | 2  | 1615 | 1431 | 2397     | 2361     | 2407     | 2424     | 2378     | 2393     |
|         | 3  | 1074 | 5226 | 2498     | 2468     | 2536     | 2470     | 2426     | 2480     |
|         | 4  | 1507 | 6460 | 2452     | 2318     | 2387     | 2393     | 2422     | 2394     |
|         | 5  | 681  | 6429 | 2433     | 2454     | 2425     | 2458     | 2497     | 2453     |
|         |    |      |      |          |          |          |          | Moy.     | 2402     |
|         |    |      |      |          |          |          |          | É-T      | 75       |
| ESG10#1 | 1  | 1162 | 715  | 2404     | 2371     | 2408     | 2386     | 2377     | 2389     |
|         | 2  | 1615 | 1431 | 2401     | 2397     | 2396     | 2418     | 2389     | 2400     |
|         | 3  | 1074 | 5226 | 2360     | 2371     | 2382     | 2363     | 2368     | 2369     |
|         | 4  | 1507 | 6460 | 2360     | 2375     | 2370     | 2413     | 2385     | 2381     |
|         | 5  | 681  | 6429 | 2269     | 2299     | 2307     | 2312     | 2316     | 2301     |
|         | 6  | 1113 | 1514 | 2434     | 2455     | 2452     | 2430     | 2421     | 2438     |
|         | 7  | 1104 | 2883 | 2329     | 2327     | 2321     | 2320     | 2317     | 2323     |
|         | 8  | 591  | 4283 | 2305     | 2288     | 2296     | 2287     | 2295     | 2294     |
|         | 9  | 1123 | 3712 | 2261     | 2254     | 2256     | 2260     | 2267     | 2260     |
|         | 10 | NA   | NA   | 2331     | 2333     | 2332     | 2344     | 2347     | 2337     |
|         |    |      |      |          |          |          |          | Moy.     | 2349     |
|         |    |      |      |          |          |          |          | É-T      | 56       |
| ESG10#2 | 1  | 1600 | 500  | 2333     | 2329     | 2308     | 2320     | 2383     | 2335     |
|         | 2  | 500  | 500  | 2245     | 2203     | 2271     | 2207     | 2354     | 2256     |
|         | 3  | 400  | 1500 | 2227     | 2223     | 2244     | 2231     | 2236     | 2232     |
|         | 4  | 1150 | 2550 | 2428     | 2410     | 2399     | 2440     | 2397     | 2415     |
|         | 5  | 400  | 2400 | 2322     | 2327     | 2327     | 2324     | 2326     | 2325     |
|         | 6  | 1600 | 2200 | 2303     | 2259     | 2274     | 2298     | 2316     | 2290     |
|         | 7  | 1050 | 3800 | 2205     | 2182     | 2210     | 2180     | 2182     | 2192     |
|         | 8  | 620  | 3000 | 2108     | 2131     | 2140     | 2133     | 2134     | 2129     |
|         | 9  | 1550 | 3600 | 2248     | 2265     | 2254     | 2257     | 2272     | 2259     |
|         | 10 | 1750 | 5300 | 2279     | 2323     | 2294     | 2271     | 2250     | 2283     |
|         | 11 | 1050 | 4600 | 2257     | 2267     | 2265     | 2268     | 2287     | 2269     |
|         | 12 | 500  | 5500 | 2261     | 2245     | 2254     | 2243     | 2251     | 2251     |
|         |    |      |      |          |          |          |          | Moy.     | 2270     |
|         |    |      |      |          |          |          |          | É-T      | 72       |

Tableau 7. Mesures brutes au nucléodensimètre sur les couches d'enrobés

Pour des méthodes de mesures identiques sans correction, les valeurs mesurées avec le nucléodensimètre utilisé pour les douze mesures ESG10#2 ont un biais qui semble généralisé lorsque les valeurs moyennes sont consultées par rapport aux valeurs de la campagne ESG10#1. Il doit d'ailleurs être rappelé que ces dernières peuvent, par ailleurs, être corrigées en utilisant la

mesure de la masse volumique des essais de laboratoire pour les carottes recueillies aux points 1, 2, 4 et 5 (ESG10#1). Ainsi, en utilisant les valeurs de la campagne ESG10#1 comme référence, les valeurs mesurées lors de la campagne ESG10#2 peuvent être d'abord corrigées en utilisant les points #9 (ESG10#1) et #7 (ESG10#2). En effet, selon le Tableau 7 et la Figure 49, ces deux points de mesure sont très près l'un de l'autre. Il peut être assumé en première approximation que les mesures devraient être très similaires. L'écart entre le point #7 (ESG10#2) et le point #9 (ESG10#1) et de -73 mm en X, et de 88 mm en Y, et l'écart en diagonale est de 115 mm. En prenant comme hypothèse que la mesure devrait être identique, il est constaté que le point #7 (ESG10#2) est moins dense que le point #9 (ESG10#1) de -68 kg m<sup>-3</sup>. Cette valeur, utilisée comme biais entre les deux appareils, sera utilisée comme facteur de correction entre les nucléodensimètres utilisés pour corriger à la hausse les données collectées lors de la campagne de mesure ESG10#2.

Ainsi, en termes de correction de masse volumique, les données collectées pour la campagne ESG10#1 doivent être corrigées en fonction du résultat de l'analyse des 4 carottes (CR-1, CR-2, CR-3 et CR-4) en laboratoire, qui se trouvent à l'annexe G. Le même exercice doit être effectué pour le GB20. La correction suggérée pour les mesures au nucléodensimètre sur la base des résultats de laboratoire, tel que montrée au Tableau 8, est de +27,6 et +82,8 kg m<sup>-3</sup> pour le ESG10 et le GB20, respectivement.

|         | Nucléodens | simètre | Labora     | atoire  |
|---------|------------|---------|------------|---------|
|         | Point      | kg/m³   | Carottes   | kg/m³   |
| ESG10#1 | 1          | 2389.2  | CR-1       | 2413    |
|         | 2          | 2400.2  | CR-2       | 2385    |
|         | 4          | 2380.6  | CR-3       | 2400    |
|         | 5          | 2300.6  | CR-4       | 2383    |
|         | Moyenne:   | 2367.65 | Moyenne:   | 2395.25 |
|         |            |         | Correction | +27.6   |
| GB20    | 1          | 2287.8  | CR-1       | 2435    |
|         | 2          | 2393.4  | CR-2       | 2439    |
|         | 4          | 2394.4  | CR-3       | 2490    |
|         | 5          | 2453.4  | CR-4       | 2496    |
|         | Moyenne:   | 2382.25 | Moyenne:   | 2465    |
|         |            |         | Correction | +82.75  |

Tableau 8. Facteurs de correction de la masse volumique au nucléodensimètre par comparaison avec les valeurs de laboratoire

Pour leur part, les mesures collectées pour la campagne ESG10#2 doivent, en plus, être bonifiées d'une valeur de 68 kg m<sup>-3</sup> (facteur associé au biais estimé pour le deuxième appareil). Le Tableau 9 fait le sommaire des valeurs corrigées, en plus de présenter les valeurs de vides (Va) calculés à partir de la densité maximale de chaque formule. La Figure 51 présente les vides interstitiels interpolés sur la surface de la fosse en utilisant les 21 points de mesures disponibles (un point de mesure au nucléodensimètre n'avait pas de coordonnées spatiales lors de la campagne ESG10#1). La moyenne globale des Va est de 8,52%. Il doit cependant être noté que cette valeur est significativement influencée par le nombre non négligeable de mesures prises lors de la campagne ESG10#2, dont les coordonnées se situent en majorité dans la zone Y<3000 mm. L'interpolation spatiale montre que cette zone est plus dense que les autres. Ceci est probablement dû au fait que la vibration a été utilisée dans cette zone pour quelques passes de rouleau compacteur. Il est aussi constaté que le secteur 4500>Y>3000 mm, où sont situés plusieurs capteurs dans les couches d'EB (voir section « instrumentation » plus loin dans ce rapport), est généralement caractérisé par des Va de 9% ou plus. Il doit être rappelé que l'atteinte de ce seuil de 9%, préférablement de 10%, a été préalablement identifiée en laboratoire comme étant une teneur en vides permettant d'obtenir un degré de saturation d'environ 45% de l'EB de surface par faible charge gravitaire.

|         |    | Х    | Y    | M1                    | M2                    | M3                    | M4                    | M5                    | Moy.                  | Va-moy |
|---------|----|------|------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------|
|         |    | (mm) | (mm) | (kg m <sup>-3</sup> ) | (%)    |
| GB20    | 1  | 1162 | 715  | 2374                  | 2366                  | 2342                  | 2404                  | 2368                  | 2371                  | 9.84   |
|         | 2  | 1615 | 1431 | 2480                  | 2444                  | 2490                  | 2507                  | 2461                  | 2476                  | 5.82   |
|         | 3  | 1074 | 5226 | 2581                  | 2551                  | 2619                  | 2553                  | 2509                  | 2562                  | 2.54   |
|         | 4  | 1507 | 6460 | 2535                  | 2401                  | 2470                  | 2476                  | 2505                  | 2477                  | 5.78   |
|         | 5  | 681  | 6429 | 2516                  | 2537                  | 2508                  | 2541                  | 2580                  | 2536                  | 3.54   |
|         |    |      |      |                       |                       |                       |                       | Moy.                  | 2484                  | 5.50   |
|         |    |      |      |                       |                       |                       |                       | É-T                   | 74                    | 2.81   |
| ESG10#1 | 1  | 1162 | 715  | 2432                  | 2399                  | 2436                  | 2414                  | 2405                  | 2417                  | 6.77   |
|         | 2  | 1615 | 1431 | 2429                  | 2425                  | 2424                  | 2446                  | 2417                  | 2428                  | 6.35   |
|         | 3  | 1074 | 5226 | 2388                  | 2399                  | 2410                  | 2391                  | 2396                  | 2396                  | 7.56   |
|         | 4  | 1507 | 6460 | 2388                  | 2403                  | 2398                  | 2441                  | 2413                  | 2408                  | 7.10   |
|         | 5  | 681  | 6429 | 2297                  | 2327                  | 2335                  | 2340                  | 2344                  | 2328                  | 10.19  |
|         | 6  | 1113 | 1514 | 2462                  | 2483                  | 2480                  | 2458                  | 2449                  | 2466                  | 4.87   |
|         | 7  | 1104 | 2883 | 2357                  | 2355                  | 2349                  | 2348                  | 2345                  | 2350                  | 9.33   |
|         | 8  | 591  | 4283 | 2333                  | 2316                  | 2324                  | 2315                  | 2323                  | 2322                  | 10.44  |
|         | 9* | 1123 | 3712 | 2289                  | 2282                  | 2284                  | 2288                  | 2295                  | 2287                  | 11.77  |
|         | 10 | NA   | NA   | 2359                  | 2361                  | 2360                  | 2372                  | 2375                  | 2365                  | 8.77   |
|         |    |      |      |                       |                       |                       |                       | Moy.                  | 2377                  | 8.31   |
|         |    |      |      |                       |                       |                       |                       | É-T                   | 56                    | 2.14   |
| ESG10#2 | 1  | 1600 | 500  | 2429                  | 2425                  | 2404                  | 2416                  | 2479                  | 2430                  | 6.25   |
|         | 2  | 500  | 500  | 2341                  | 2299                  | 2367                  | 2303                  | 2450                  | 2352                  | 9.29   |
|         | 3  | 400  | 1500 | 2323                  | 2319                  | 2340                  | 2327                  | 2332                  | 2328                  | 10.20  |
|         | 4  | 1150 | 2550 | 2524                  | 2506                  | 2495                  | 2536                  | 2493                  | 2510                  | 3.16   |
|         | 5  | 400  | 2400 | 2418                  | 2423                  | 2423                  | 2420                  | 2422                  | 2421                  | 6.62   |
|         | 6  | 1600 | 2200 | 2399                  | 2355                  | 2370                  | 2394                  | 2412                  | 2386                  | 7.97   |
|         | 7* | 1050 | 3800 | 2301                  | 2278                  | 2306                  | 2276                  | 2278                  | 2287                  | 11.76  |
|         | 8  | 620  | 3000 | 2204                  | 2227                  | 2236                  | 2229                  | 2230                  | 2225                  | 14.18  |
|         | 9  | 1550 | 3600 | 2344                  | 2361                  | 2350                  | 2353                  | 2368                  | 2355                  | 9.16   |
|         | 10 | 1750 | 5300 | 2375                  | 2419                  | 2390                  | 2367                  | 2346                  | 2379                  | 8.23   |
|         | 11 | 1050 | 4600 | 2353                  | 2363                  | 2361                  | 2364                  | 2383                  | 2364                  | 8.79   |
|         | 12 | 500  | 5500 | 2357                  | 2341                  | 2350                  | 2339                  | 2347                  | 2346                  | 9.49   |
|         |    |      |      |                       |                       |                       |                       | Moy.                  | 2365                  | 8.76   |
|         |    |      |      |                       |                       |                       |                       | F-T                   | 72                    | 2 7 7  |

Tableau 9. Mesures corrigées pour la masse volumique au nucléodensimètre

\*Points utilisés pour établir un facteur de correction pour l'appareil de mesure (les coordonnées sont très rapprochées)



Figure 51. Interpolation spatiale par krigeage des vides interstitiels dans le ESG10

## 8.4.1 Mesure de la compacité par la prise de masse du camion

Une estimation des vides a aussi été effectuée par pesée du camion. À l'arrivée du véhicule, la masse sur chacun des essieux a été enregistrée. Elle a ensuite été reprise suite à l'épandage du ESG10 sur la surface à paver. La différence de masse totale est la masse qui a été mise sur la surface de la fosse. Le Tableau 10 fait la synthèse des masses mesurées avant et après mise en œuvre sur chaque essieu et côté du camion. La Figure 52 présente la mesure de la masse avec une balance à essieux.

|              |        |                  | Masse (kg)                              |              |       |  |  |  |
|--------------|--------|------------------|-----------------------------------------|--------------|-------|--|--|--|
|              | Côté   | Essieu arrière 2 | Essieu arrière 1                        | Essieu avant | Total |  |  |  |
| Avant pavage | Gauche | 3240             | 3260                                    | 2050         | 17310 |  |  |  |
|              | Droite | 3100             | 3580                                    | 2080         |       |  |  |  |
| Après pavage | Gauche | 2715             | 2760                                    | 1930         | 15085 |  |  |  |
|              | Droite | 2690             | 3100                                    | 1890         |       |  |  |  |
|              |        | Μ                | Masse étendue (soustraction des totaux) |              |       |  |  |  |

Tableau 10. Pesée du camion lors de la mise en œuvre du ESG10



Figure 52. Pesée des essieux du camion

La surface à couvrir avec le ESG10 a été estimée à 13,911625 m<sup>2</sup>. Tel que présenté au Tableau 2, la couche de ESG10 a une épaisseur finale de 67,9 mm en moyenne. Ainsi, il est possible de calculer que le pourcentage de vides (%Va) en utilisant comme données : Épaisseur (H) = 0.0679 m, Surface (A) = 13.911625 m<sup>2</sup>, Masse étendue (M) = 2225 kg et Densité maximale (Dmm) = 2600. L'Équation 2 est utilisée pour le calcul du pourcentage de vides. Celle-ci est définie par

$$%V_a = 100 - 100 \times \left(\frac{M/(H \times A)}{D_{mm} \times 0.997044}\right)$$

Équation 2

et permet d'obtenir un pourcentage de vides calculé de 9,1%.

# 8.5 Récapitulatif des Va

Le Tableau 11 présente une synthèse des vides interstitiels calculés selon les trois approches considérées dans cette section. Il doit être mentionné que la méthode de laboratoire est considérée comme base de référence. Néanmoins, il est constaté qu'une variation allant de 7,9 % à 9,1 % a été obtenue entre les méthodes.

|        | ubicuu 11. necupitului jues viues obtenus pur trois methodes uuns les couches a emobe |                  |             |                  |       |  |  |  |  |  |  |
|--------|---------------------------------------------------------------------------------------|------------------|-------------|------------------|-------|--|--|--|--|--|--|
|        |                                                                                       | GB20             |             | ESG10            |       |  |  |  |  |  |  |
|        | Laboratoire                                                                           | Nucléodensimètre | Laboratoire | Nucléodensimètre | Pesée |  |  |  |  |  |  |
| Va (%) | 6,53                                                                                  | 5,50             | 7,89        | 8,52             | 9,14  |  |  |  |  |  |  |

Tableau 11. Récapitulatif des vides obtenus par trois méthodes dans les couches d'enrobé

# 9 Instrumentation

À toutes les étapes de la construction de la fosse, des instruments de mesures ont été installés dans les couches de sols, matériaux granulaires et enrobés bitumineux. De façon générale, les instruments ont été positionnés et sélectionnés afin de mesurer les contraintes, déformations, teneur en eau et température dans les différentes couches, aux endroits pertinents, en prenant en compte diverses considérations pratiques et limitations associées à l'environnement de la fosse.

À titre de référence pour les prochaines sections, la Figure 54 représente un schéma de l'ensemble des instruments mis en place dans la chaussée expérimentale, à l'exception des jauges de déformation dans l'enrobé bitumineux, dont la position sera détaillée dans une section ultérieure dans ce rapport. La figure permet de rassembler, notamment, l'information sur la position des instruments, le numéro de série/capteur et sur la stratigraphie.

Lors de la lecture des sections suivantes, portant sur les divers instruments installés dans la section de chaussée expérimentale, le lecteur est prié de se référer à la Figure 53 pour compléter l'information qui sera présentée.



Figure 53. Position des différents instruments à l'exception des jauges de déformation dans l'enrobé

#### 9.1 Thermistances

Des thermistances de modèle Littelfuse PR222J2 ont été installées sur toute la profondeur des couches de sol et de matériaux granulaires. Le Tableau 12 présente la position des thermistances dans le massif de la chaussée. Celles-ci sont positionnées au centre de la fosse, à raison de trois thermistances par couche. L'équation de calibration standard Steinhart-Hart est utilisée pour la conversion des mesures. L'installation des thermistances est présentée à la Figure 54. Comme le sol d'infrastructure a été conservé du projet précédent, et que les anciennes thermistances ont été endommagées lors de la déconstruction, une excavation a été effectuée au centre de la fosse jusqu'au niveau du sommet de la couche de pierre nette (Figure 54a). La thermistance la plus profonde a été installée sur le géotextile par-dessus la pierre nette (Figure 54b). La Figure 54c montre l'installation d'une thermistance dans le sol d'infrastructure. Près des thermistances, du matériau passant le tamis 5 mm a été utilisé afin de protéger les capteurs. Tout au long du processus d'installation des thermistances, le sol et les matériaux granulaires ont été compactés dans le secteur des capteurs. Notamment, l'assise des thermistances a été compactées jusqu'à la profondeur désirée. Par la suite, lorsque la thermistance a été installée, une compaction manuelle a été effectuée dans le secteur de l'instrument et l'équipement de compactage mécanique a été utilisé au-dessus des instruments lorsqu'un recouvrement d'environ 150 mm était en place.

|       | X (mm) | Y (mm) | Z (mm) | Numéro |
|-------|--------|--------|--------|--------|
| INFRA | 1000   | 3000   | -1700  | 7      |
|       | 1000   | 3000   | -1325  | 4      |
|       | 1000   | 3000   | -950   | 3      |
| MG112 | 1000   | 3000   | -810   | 10     |
|       | 1000   | 3000   | -620   | 8      |
|       | 1000   | 3000   | -430   | 5      |
| MG20  | 1000   | 3000   | -352   | 1      |
|       | 1000   | 3000   | -260   | 6      |
|       | 1000   | 3000   | -165   | 2      |



Figure 54. Installation des thermistances dans le sol et les matériaux granulaires, a) excavation dans le sol d'infrastructure, b) Positionnement de la thermistance au bas de la fosse, c) Installation des thermistances dans le sol

Des thermistances (modèle YSI 44033) ont aussi été installées dans la couche d'enrobé bitumineux afin d'obtenir un profil thermique détaillé de cette couche. Deux chapelets de cinq thermistances chacun ont été insérés dans des trous percés sur environ 150 mm de profondeur dans l'enrobé. Le diamètre des trous est de 10 mm. La Figure 55 et la Figure 56 présentent le chapelet de thermistances, le trou d'installation, ainsi que l'instrument installé. De la colle epoxy a été utilisée pour combler le trou dans lequel a été inséré le chapelet de thermistances.



Figure 55. Chapelet de thermistances



Figure 56. Chapelet de thermistances installé dans l'enrobé bitumineux

Le positionnement des thermistances dans l'enrobé a été sujet à certaines contraintes. La configuration du capteur fait en sorte que les fils sortent du chapelet à la verticale. Il a donc fallu installer les chapelets en dehors de la zone d'action des pneus. De plus, en raison de la présence de nombreux câbles d'instruments dans le pavage entre pour 3000 < Y < 4700 mm, ce secteur a été évité. Néanmoins, en direction Y, la position de chaque chapelet a été choisie afin que la moyenne des positions longitudinales soit environ centrée sur la zone des capteurs de déformation dans l'enrobé. Le Tableau 13 rassemble les coordonnées des thermistances installées dans l'enrobé bitumineux. Celles-ci sont espacées de 30 mm verticalement. La configuration permet d'avoir, notamment, une thermistance positionnée environ à l'interface entre les deux couches d'enrobé.

| Chapelet #1 |      |     | elet #2 | Profo                  | Profondeur |  |  |
|-------------|------|-----|---------|------------------------|------------|--|--|
| Х           | Y    | Х   | Y       | Z <sub>rel</sub> (mm)* | Z (mm)**   |  |  |
|             |      |     |         | -10                    | -16.5      |  |  |
|             |      |     |         | -40                    | -46.5      |  |  |
| 1530        | 4700 | 460 | 2450    | -70                    | -76.5      |  |  |
|             |      |     |         | -100                   | -106.5     |  |  |
|             |      |     |         | -130                   | -136.5     |  |  |

| $I u \mu e u u I J I F U J I U U I U E J I U \mu e e e u e u e u e u e u e u e u e u e$ |
|-----------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------|

\*Profondeur relative par rapport à la surface de l'enrobé

\*\* Profondeur absolue estimée à partir de la profondeur moyenne de la surface de l'enrobé par rapport à la surface du béton

L'annexe H fait le sommaire de la calibration des chapelets de thermistances.

### 9.2 Cellules de contrainte

Des cellules électriques de contraintes de marque Roctest (modèle TPC) ont été installées dans le sol et dans les couches granulaires. Les cellules ont un diamètre de 229 mm. Des cellules d'une capacité de 210 kPa et 105 kPa ont été utilisées. Les cellules avec une plus forte capacité ont été utilisées plus près de la surface. Une cellule de contrainte verticale a été positionnée au milieu de chaque couche de matériau granulaire, en plus d'une supplémentaire à l'interface entre la fondation et la sous-fondation. Dans le sol d'infrastructure, la cellule de contrainte verticale est

positionnée environ 75 mm sous la surface. Cet emplacement correspond environ à la miprofondeur des capteurs de déformations qui sont placés dans le sol (discuté plus loin dans ce rapport). Cela permet de faire une estimation de la rigidité en associant la contrainte et la déformation à un même horizon dans un matériau donné.

Pour l'installation des capteurs de contraintes, la couche dans laquelle le capteur doit être inséré a d'abord été mise en œuvre. Par la suite, une excavation locale (Figure 57) a été effectuée afin de mettre en place les cellules. Une attention particulière a été portée à ce que l'assise du capteur soit au niveau et bien densifiée. Une fine couche de matériau passant le tamis de 5 mm a été utilisée sous et par-dessus les cellules de contraintes. Le niveau de chaque capteur a été vérifié avant de remplir l'excavation (Figure 58). Le matériau a été compacté manuellement dans le premiers 150 mm au-dessus du capteur, et du compactage mécanisé a été utilisé par la suite.



Figure 57. Excavations locales pour l'installation des cellules de contraintes



Figure 58. Mise à niveau des cellules de contrainte

Les cellules de contraintes sont toutes positionnées transversalement à approximativement X=1000 mm. Le Tableau 14 présente le sommaire des cellules de contraintes verticales utilisées, ainsi que leur position, identification et capacité.

| Matériau   | X (mm) | Y (mm) | Z (mm) | #SN         | Axe          | Capacité |
|------------|--------|--------|--------|-------------|--------------|----------|
| INFRA      | 980    | 3380   | -935   | 078F1800006 | Vertical     | 15 psi   |
| MG112      | 1000   | 3329   | -612   | 078F17003   | Vertical     | 30 psi   |
| MG112      | 1020   | 1830   | -630   | 078F17004   | Longitudinal | 30 psi   |
| MG112      | 1000   | 1100   | -625   | 078F180004  | Transversal  | 15 psi   |
| MG112-MG20 | 980    | 2620   | -360   | 078F180009  | Vertical     | 30 psi   |
| MG20       | 980    | 3280   | -250   | 078F1800009 | Vertical     | 30 psi   |

Tableau 14. Position et identification des cellules de contrainte dans la chaussée expérimentale

Selon le plan d'instrumentation initial, trois capteurs de contrainte verticale ( $\sigma_1$ ) devaient être installés. Finalement, suite aux opérations de construction, un total de six cellules a été mis en place. Pour des besoins expérimentaux dépassant le cadre de cette étude, il doit être précisé que des cellules de contraintes transversales ( $\sigma_2$ ) et longitudinales ( $\sigma_3$ ) ont aussi été installées dans la sous-fondation. Il n'est pas prévu d'en faire l'analyse dans le cadre de ce projet.

# 9.3 Déflectomètre de surface et accéléromètre

La réponse globale de la structure de chaussée est évaluée à l'aide d'un déflectomètre de surface et d'un accéléromètre (PCB piezotronics 393B31). Il est probable qu'un décollement de l'interface et de la perte de solidarité entre les deux couches d'enrobé puisse conduire à un changement dans la réponse globale de la chaussée, soit dans l'amplitude des réponses ou dans le signal. Ces deux méthodes de mesure ont été installées notamment pour effectuer ce type de détection et pour faire l'évaluation de la condition structurale de la chaussée. Il est aussi possible d'obtenir le bassin de déflexion sous la charge roulante. Les variations d'accélération devraient également pouvoir être convertis en déplacement vertical.

Tel que montré à la Figure 59, le déflectomètre de surface consiste en un potentiomètre fixé sur une plaque métallique servant de couvercle à une tête de mesure insérée dans un trou de carottage dans l'enrobé. Le trou de carottage est de 63,5 mm. Une tige de référence est ancrée et fixe tout au fond de la fosse. L'extrémité de la tige est accessible au centre de la tête de mesure. La tête de mesure est quant à elle étanche et fixé sur l'enrobé avec de la colle époxy. Le design de la tête de mesure a été prévu afin d'injecter la colle, très liquide, sur tout le pourtour de la tête de mesure dans l'objectif de s'assurer de l'étanchéité puisque de l'eau sera utilisée en surface de l'enrobé.

Le déflectomètre de surface est positionnée en X=1000 mm et Y=2200 mm.



Figure 59. Déflectomètre de surface, a) Tête de mesure métallique collée, b) Potentiomètre fixé sur le couvercle

L'accéléromètre est également inséré dans un trou de carottage de 63,5 mm. Dans ce cas-ci, l'instrument est positionné sur la surface du gravier retravaillée, recompactée et nivelée. La Figure 60 présente le capteur et son insertion dans la chaussée. Le capteur est inséré et figé dans de la paraffine liquide fondue à environ 60 °C. Le trou de carottage a d'abord été chauffé et la paraffine liquide y a été versée. Le capteur a ensuite immédiatement été inséré dans le liquide. Suite au refroidissement, le capteur se retrouve fixé dans l'enrobé et le trou devient alors étanche.

L'accéléromètre est positionné en X=1000 mm et Y=2600 mm.



Figure 60. a) Accéléromètre PCB393B31, b) Insertion de l'instrument dans le trou de carottage

### 9.4 Teneur en eau

Dans l'objectif de mesurer la teneur en eau dans le sol et les matériaux granulaires, deux types d'instruments ont été implantés dans la chaussée, soit deux sondes Decagon EC-5 et une sonde multiniveaux de type ProfileProbe PR6 (DeltaT devices). Ces instruments seront utilisés pour mesurer les variations relatives de la teneur en eau dans les couches de sol et matériaux granulaires. Dans les deux cas, leur positionnement a été prévu en fonction des principaux points d'infiltration par lesquels l'eau appliquée sur la surface de l'enrobé pourrait s'infiltrer sous les couches bitumineuses. Ces points critiques sont les jonctions latérales entre l'enrobé et les parois de la fosse, ainsi que les instruments positionnés au centre de la chaussée en direction transversale, par exemple le déflectomètre de surface. Ainsi, les sondes de mesure de la teneur en eau (Decagon) sont positionnées approximativement à X=500 et X=1500 mm, soit la position transversale médiane entre les points critiques. Dans le cas de la sonde multiniveaux ProfileProbe, le positionnement devait aussi être hors du champ d'action des roues. Les Figure 61 et Figure 62 présentent l'installation des capteurs.



Figure 61. Installation de la sonde Decagon dans une excavation locale à la mi-couche dans la fondation

Dans le cas des deux sondes Decagon, elles ont été implantées dans deux excavation locales. Du matériau passant le tamis de 5 mm a été utilisé autour de la sonde afin de la protéger. Pour la sonde multiniveaux ProfileProbe, celle-ci doit être insérée dans un tube de Kevlar préalablement implanté dans la structure de chaussée (Figure 62). Six capteurs sont placés sur la sonde afin d'obtenir un profil vertical de teneur en eau (Figure 63). Le Tableau 15 fait le sommaire du positionnement des capteurs de teneurs en eau.



Figure 62. Tube d'insertion pour la sonde multiniveaux ProfileProbe



*Figure 63. Capteurs de teneur en eau multiniveaux ProfileProbe (PrPr)* 

|              | X (mm) | Y (mm) | Z (mm)                              | #Série         |
|--------------|--------|--------|-------------------------------------|----------------|
| ProfileProbe | 1540   | 3800   | -250, -350, -450, -550, -750, -1150 |                |
| Decagon #1   | 1350   | 2800   | -250                                | SN12633-04-858 |
| Decagon #2   | 650    | 2800   | -250                                | SN#2           |

Tableau 15. Position des capteurs de teneur en eau

# 9.5 Capteurs de déformation verticale dans le sol et les matériaux granulaires

Des capteurs de déformation verticale ont été installés dans le sol et les matériaux granulaires. Pour la couche de sol, le capteur a été positionné de façon à ce que le plateau du dessus du capteur soit au sommet de la couche de sol d'infrastructure. Pour les matériaux granulaires, les capteurs ont été positionnés de façon à ce que le centre du capteur soit positionné au centre de la couche. La Figure 64 présente une photo du type de capteurs utilisé, et la Figure 65 une présentation schématique des capteurs.



Figure 64. Capteur de déformation verticale



Figure 65. Schéma des capteurs de déformation verticale dans le sol et les matériaux granulaires

Ces capteurs sont fabriqués à l'Université Laval par l'équipe de recherche. Les capteurs consistent en une tige de plastique (PVC) de 15 mm de diamètre et 150 mm de longueur, dont chaque extrémité est filetée afin de fixer des plateaux en aluminium sur les parties supérieure et inférieure. Les plateaux d'aluminium ont une épaisseur de 12,69 mm et un diamètre de 100 mm. La tige de plastique est amincie au centre et une section plate est utilisée pour coller une jauge de déformation. L'amincissement est utilisé afin d'amplifier le signal de la jauge de déformation.

Selon le plan d'instrumentation initial, il était prévu d'installer trois capteurs de déformation verticale, à raison d'un capteur par couche de sol ou de matériau granulaire. Pour des besoins de recherche et développement pour ces capteurs, un total de treize jauges ont été installées, toutes pour des mesures dans l'axe vertical. Ces capteurs diffèrent par les différentes capacités des jauges de mesure collées sur la partie centrale de l'instrument, ainsi que par le diamètre de la zone amincie au centre de la tige de plastique (7 mm et 10 mm ont été utilisés).

Les jauges de déformation verticale sont toutes positionnées transversalement à approximativement à X=1000 mm. Le Tableau 16 présente le sommaire de l'information pertinente est lien avec l'installation des capteurs de déformation verticale. La longueur L<sub>0</sub> est utilisée comme référence pour le calcul de la déformation. Cette dernière est obtenue suite aux

mesures prises lors de l'installation, notamment  $D_{eff}$ , qui correspond au niveau de serrage réel in situ pouvant être appliqué sur le plateau supérieur. La valeur de L<sub>0</sub> est alors obtenue par

$$L_0 = 150 - 2 \times 12.69 + D_{eff}$$

Équation 3

dans laquelle D<sub>eff</sub> est en mm.

| granulaires |      |      |      |             |          |           |        |                     |
|-------------|------|------|------|-------------|----------|-----------|--------|---------------------|
| Matériau    | Х    | Y    | Z    | #ID         | Axe      | $D_{eff}$ | Lo     | *Z <sub>jauge</sub> |
|             | (mm) | (mm) | (mm) |             |          | (mm)      | (mm)   | (mm)                |
| INFRA       | 1010 | 1690 | -845 | A19-1       | Vertical | 3.94      | 128.56 | -922                |
| INFRA       | 1000 | 2640 | -830 | A19-2       | Vertical | 3.03      | 127.65 | -907                |
| INFRA       | 1010 | 3820 | -860 | A19-3       | Vertical | 4.54      | 129.16 | -937                |
| INFRA       | 990  | 4220 | -867 | A19-4       | Vertical | 2.75      | 127.37 | -943                |
| MG112       | 950  | 2650 | -555 | KFEL10-1A1B | Vertical | 5.65      | 130.27 | -633                |
| MG112       | 980  | 3800 | -560 | KFEM10-1A1B | Vertical | 3.88      | 128.5  | -637                |
| MG112       | 990  | 4150 | -560 | KFEM7-1A1B  | Vertical | 2.7       | 127.32 | -636                |
| MG112       | 1000 | 4600 | -545 | KFEL7-1A1B  | Vertical | 4.51      | 129.13 | -622                |
| MG20        | 980  | 1450 | -185 | KFEL10-2A2B | Vertical | 3.78      | 128.4  | -261.89             |
| MG20        | 1000 | 1700 | -195 | A19-5       | Vertical | 2.79      | 127.41 | -271.395            |
| MG20        | 980  | 3740 | -185 | KFEL7-2A2B  | Vertical | 4.76      | 129.38 | -262.38             |
| MG20        | 980  | 4195 | -190 | KFEM10-2A2B | Vertical | 3.72      | 128.34 | -266.86             |
| MG20        | 1000 | 4450 | -190 | KFEM7-2A2B  | Vertical | 3.22      | 127.84 | -266.61             |

Tableau 16. Positon, identification et propriétés des capteurs de déformation verticale dans le sol et les matériaux

\*Profondeur Z de la jauge de déformation collée au centre du capteur

Les capteurs ont tous été calibrés en appliquant différents niveaux de charge verticale, pour lesquels le déplacement absolu (en mm) du plateau de chargement supérieur a été mesuré. Ce déplacement est associé à la lecture de la jauge de déformation collée au centre du capteur. L'annexe I regroupe l'ensemble des calibrations effectuées pour ces capteurs.

En ce qui concerne l'installation, les capteurs sont installés dans des excavations locales, en prenant soin de mettre au niveau et de compacter adéquatement l'assise du capteur, faite de

matériau passant le tamis 5 mm. Le sol est adéquatement recompacté dans le secteur du capteur avec de l'équipement adapté, en prenant soin que la jauge et les câbles soient entourés de matériau tamisé au tamis de 5 mm.



Figure 66. Excavation locale pour l'installation des capteurs de déformation



Figure 67. Capteurs de déformation verticale installés dans le sol d'infrastructure

# 9.6 Capteurs de déformation longitudinales et transversales dans l'enrobé bitumineux

La mesure des déformations dans le système bi-couche d'enrobé bitumineux est l'élément central de ce projet de recherche. Ainsi, un nombre important de capteurs de déformation a été installé à divers horizons dans le bi-couche, dans les directions longitudinales (Y) et transversales (X). Les capteurs utilisés sont des KM-HAS (TML) (Figure 68 and Figure 69). Ces capteurs ont une longueur de référence de 100 mm et un diamètre de 17 mm pour le corps central du capteur. Le bi-couche est constitué d'une couche de base en GB20 et d'une couche de surface en ESG10. Les capteurs ont été positionnés à la base du revêtement, soit au bas de la couche de base (GB20), au sommet de la couche de base (GB20), ainsi que à la base de la couche de surface (ESG10). Un total de quatorze capteurs a été mis en place. Tableau 17 présente les sommaire des informations pertinentes sur les capteurs de déformation implantés dans les couches d'enrobé. Les capteurs

ont tous été installés dans le secteur 3500 < Y < 4700 mm, et sous chacune des roues du jumelé, approximativement, ce qui correspond à X=780 mm (axe 1) et 1135 mm (axe 2). Pour les capteurs installés au niveau des fonds de couches, ces positions sont la meilleure estimation de la position transversale finale des capteurs, car il n'est pas possible de mesurer leur position suite à la mise en œuvre.

| Matériau | Х*   | Υ*   | Z**    | #ID       | Axe          | Horizon |
|----------|------|------|--------|-----------|--------------|---------|
|          | (mm) | (mm) | (mm)   |           |              |         |
| GB20     | 780  | 3525 | -131.5 | EKZ180390 | Longitudinal | Base    |
| GB20     | 1135 | 4025 | -133.5 | EKZ180391 | Longitudinal | Base    |
| GB20     | 780  | 4025 | -131.5 | EKZ180392 | Transversal  | Base    |
| GB20     | 1135 | 4525 | -131.5 | EKZ180393 | Transversal  | Base    |
| GB20     | 817  | 3757 | -91.5  | EKZ180234 | Longitudinal | Sommet  |
| GB20     | 1182 | 4227 | -92.5  | EKZ180339 | Longitudinal | Sommet  |
| GB20     | 842  | 4747 | -92.5  | EKZ180389 | Longitudinal | Sommet  |
| GB20     | 817  | 4252 | -91.5  | EKZ180238 | Transversal  | Sommet  |
| GB20     | 1177 | 4757 | -90.5  | EKZ180338 | Transversal  | Sommet  |
| ESG10    | 780  | 3525 | -63.5  | EKZ180232 | Longitudinal | Base    |
| ESG10    | 1135 | 4025 | -63.5  | EKZ180229 | Longitudinal | Base    |
| ESG10    | 780  | 4525 | -66.5  | EKZ180233 | Longitudinal | Base    |
| ESG10    | 780  | 4025 | -65.5  | EKZ180231 | Transversal  | Base    |
| ESG10    | 1135 | 4525 | -61.5  | EKZ180230 | Transversal  | Base    |

Tableau 17. Positions et informations sur les capteurs de déformation dans les couches d'enrobé

\*Les positions X et Y correspondent au centre (en plan) du capteur

\*\* La position Z correspond au centre du capteur

#### STRAIN TRANSDUCER KM-HAS for asphalt pavement





https://ase.au.dk/fileadmin/www.ase.au.dk/Filer/Laboratorier og vaerksteder/Instrument Depotet/Udstyr/Strain gauges/TML Strain Gauge Catalog 2017.pdf

Figure 68. Schéma des jauges TML



Figure 69. Jauges TML utilisées pour la mesure des déformations dans les couches d'enrobé

Les capteurs ont été installés en se référant aux guides de bonnes pratiques proposé par le manufacturier et sur l'expérience d'installation pour ce type de capteurs à l'Université Gustave Eiffel. Tel que présenté à la Figure 70 et à la Figure 71, pour les capteurs installés au bas d'une couche (GB20 ou ESG10), les jauges ont été posées et référencées sur un lit de matériau tamisé chaud, légèrement enfoncées dans le lit et recouvertes de matériau tamisé chaud. Par la suite, le matériau entourant le capteur a été compacté manuellement à l'aide d'une plaque de compactage.



Figure 70. Installation des capteurs TML à la base de la couche de GB20



Figure 71. Installation des capteurs TML à la base de la couche de ESG10

Pour les capteurs situés au sommet de la couche de base en GB20, il a été nécessaire d'insérer des moules répliquant la forme des capteurs (Figure 72). Ces moules ont été positionnés sur le GB20 après qu'une passe de compacteur ait été effectuée. Après avoir enfoncé les moules dans le GB20 aux bonnes positions, le compactage s'est poursuivi normalement (Figure 73). Il doit être noté que les moules bougeaient un peu lors du passage du compacteur. Ainsi, les positions finales relevées ne sont pas toujours directement sur les distances transversales prévues (Tableau 17). Suite au refroidissement partiel du pavage, les moules ont été retirés (Figure 74).


Figure 72. Moules de forme des jauges TML, a) vue de côté, b) vue de dessus



Figure 73. Moules de forme des TML lors du compactage du GB20



Figure 74. a) Retrait des moules au sommet de la couche de base, b) Cinq empreintes de TML au sommet de la couche de base

En vue d'installer et de fixer les jauges TML au sommet du GB20, il a aussi été nécessaire de tracer des cavités permettant d'accommoder les câbles dans le GB20. Ces traits ont été exécutés avec un marteau mécanique muni d'une pointe permettant de trancher l'enrobé (Figure 75a). De la colle siliconée a été utilisée pour combler les cavités une fois les câbles mis en place. Les empreintes ont également été brossée avec un outil pneumatique (Figure 75b). Cette étape a permis de maximiser l'exposition des granulats dans l'empreinte, ce qui permet de maximiser l'adhésion entre les jauges TML et l'enrobé. Finalement, les jauges TML ont été mises en place et collées avec de la colle epoxy (Figure 75c). Suite à la prise de la colle, la surface de la colle a été brossée afin de maximiser l'adhésion avec les couches susjacentes.



Figure 75. a) Traçage des cavités pour les câbles, b) Nettoyage et brossage des empreintes pour maximiser l'adhésion de la colle avec l'asphalte, c) Mise en place des jauges avec de la colle epoxy

Les Figure 76 et Figure 77 présentent les positions finales des jauges TML implantées dans les deux couches d'enrobé bitumineux.



Figure 76. Position des TML sur chaque horizon, a) à la base du GB20 (vert), b) sommet de la couche de GB20 (bleu), c) base de la couche de ESG10 (rouge)



Figure 77. Positionnement 3D des jauges TML dans les couches d'enrobé bitumineux

# 10 État des instruments

L'état de fonctionnement des instruments a été vérifié pendant et suite à la construction. Au moment d'écrire ce rapport, un seul capteur semble endommager et inutilisable. Il s'agit de la thermistance 5, implantée dans la partie supérieure de la couche de sous-fondation.

## 11 Essais sur la fosse

#### 11.1 Essais au déflectomètre à masse tombante (FWD)

Suite à la construction et l'instrumentation de la fosse, des essais au déflectomètre à masse tombante (FWD) ont été effectué afin d'obtenir une première quantification de la réponse de la structure de chaussée lorsque soumise à des charges. Les essais ont été réalisés avant le positionnement du simulateur au-dessus de la fosse. Trois points de mesure ont été faits, tous en X = 1000 mm, à des positions longitudinales de Y = 2000, 3000 et 4000 mm. Des niveaux de charge de 27, 40, 53 et 71 kN ont été appliqués. La Figure 78 présente l'appareil FWD utilisé, un PRIMA2100, positionné au-dessus de la fosse. Lors des essais, la température dans le pavage a été mesurée comme étant égale à 18,5 °C. Une correction a été effectuée pour le niveau de charge.



Figure 78. Appareil FWD positionné au-dessus de la fosse en X=1000 mm et Y=2000 mm

Il doit être précisé que l'appareil de l'Université Laval a été calibré pour ce projet en utilisant l'appareil du Ministère des Transports, récemment entretenu et calibré. Des essais comparatifs ont été effectués sur une dalle de béton intérieure. Trois points de mesures ont été effectués, et les essais ont été répétés trois fois pour chaque point de mesure. L'analyse des résultats a mené à la conclusion qu'une dérive existe dans les lectures de la cellule de charge sur l'appareil de l'Université Laval. Cette conclusion a été établie puisque le ratio des lectures entre les géophones pour une même charge et une même distance était toujours semblable. Ceci porte à croire que le biais est donc au niveau de la cellule de charge. Un facteur de multiplication de 0,86 doit être appliqué aux lectures des géophones de l'appareil de l'Université Laval afin d'obtenir un bassin de déflexion similaire à celui de l'appareil du Ministère.

Les résultats des essais corrigés pour l'appareil sont introduits à la Figure 79 et au Tableau 18. Il est possible de constater que les bassins sont généralement répétables en progressant longitudinalement. La variabilité des résultats, exprimée en termes de coefficient de variation, est inférieure à 5% dans tous les cas, et égale à 2,6% en moyenne pour toutes les positions et charges confondues. Une légère augmentation des déflexions est tout de même notée en progression longitudinale (Y croissant). Elle peut être notamment attribuée au fait que la densité de la couche de surface tend à être moins grande en progressant de Y=2000 mm à Y=4000 mm (Figure 51), conduisant potentiellement à une moins grande rigidité. Il n'est pas possible de tracer des observations similaires pour les couches de sol ou de matériaux granulaires (Tableau 6).

|               | Μ     | loyenne | (micron | s)    | Coef. Variation (%) |       |       |       |  |
|---------------|-------|---------|---------|-------|---------------------|-------|-------|-------|--|
| Distance (mm) | 27 kN | 40kN    | 53 kN   | 71 kN | 27 kN               | 40 kN | 53 kN | 71 kN |  |
| 0             | 243   | 358     | 483     | 647   | 4.8                 | 3.9   | 3.3   | 4.8   |  |
| 200           | 191   | 281     | 377     | 504   | 4.0                 | 2.9   | 2.0   | 4.0   |  |
| 300           | 154   | 228     | 306     | 410   | 2.7                 | 2.0   | 1.0   | 3.1   |  |
| 450           | 113   | 168     | 226     | 303   | 2.1                 | 1.4   | 0.9   | 2.2   |  |
| 600           | 80    | 121     | 164     | 221   | 1.1                 | 1.7   | 1.5   | 1.3   |  |
| 900           | 46    | 70      | 96      | 129   | 2.1                 | 2.1   | 2.4   | 1.5   |  |
| 1200          | 31    | 47      | 64      | 87    | 1.0                 | 1.1   | 1.7   | 0.7   |  |
| 1500          | 25    | 38      | 52      | 70    | 3.5                 | 3.5   | 3.4   | 3.0   |  |
| 1800          | 22    | 34      | 46      | 62    | 4.1                 | 4.0   | 4.1   | 3.7   |  |

Tableau 18. Résultats des essais de déflexion



Figure 79. Résultats des essais FWD, a) Bassins de déflexion moyens pour les quatre niveaux de charge et les trois emplacements longitudinaux, b) Bassin de déflexion moyen, relation déflexion-force et modules de surface

Pour le chargement de 40 kN, le Tableau 19 présente quelques indices et paramètres pouvant être tirés du bassin de déflexion moyen. Notamment, en utilisant la méthode de Rohde (1994), il est possible de déterminer le nombre structural de la chaussée ainsi que le module du sol d'infrastructure, respectivement de 5,4 et 137 MPa. Notamment, la grande rigidité du sol d'infrastructure SM utilisé est en accord avec d'autres travaux de la Chaire i3C (Badiane et al., 2016). Les valeurs de rigidité du sol et du nombre structural montrent une bonne capacité structurale et sont supportées par les autres indices de courbure et de déflexion, car ceux-ci tendent également à montrer que la structure de chaussée est globalement forte et compétente, pour les conditions lors de la réalisation des essais. DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES – COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

| rabicaa 15. meerpre         |        | assin de dejiexion moyen à 10 km    |
|-----------------------------|--------|-------------------------------------|
| Paramètre                   | Valeur | Note                                |
| E <sub>infra</sub> (MPa)    | 137    | Approche de Rohde (1994)            |
| SN                          | 5,4    | Approche de Rohde (1994)            |
| SCI (microns)               | 112    | Rigide (Grenier 2006)               |
| BDI (microns)               | 92     | Moyen (Grenier 2006)                |
| BCI (microns)               | 8      | Très Bon (Michalak & Scullion 1995) |
| d <sub>1500</sub> (microns) | 33     | Rigide (Grenier 2006)               |

Tableau 19. Interprétation du bassin de déflexion moyen à 40 kN

#### 11.2 Essais AMAC

L'essai AMAC est utilisé pour mesuré l'adhésion entre les couches d'enrobé. Il a été réalisé selon la norme LC25-010 à deux endroits sur le bi-couche mis en œuvre dans le cadre de ce projet. Afin d'exécuter l'essai AMAC, la foreuse du Ministère des Transports du Québec a été utilisée (Figure 80). Cette remorque est équipée d'un mat amovible sur lequel est monté une carotteuse. Pour réaliser l'essai, un carottier de de 75 mm a été utilisé. Le carottage est effectué jusqu'à une profondeur suffisante permettant de traverser l'interface de collage entre les deux couches d'enrobé bitumineux. Dans le cas de ce projet, le carottage a été effectué jusqu'à une profondeur de 85 mm. Selon le Tableau 2, cette profondeur serait environ de 15 à 18 mm sous l'interface.



Figure 80. Foreuse du Ministère des Transports du Québec

Tel que montré à la Figure 81, l'essai AMAC consiste en l'insertion d'un anneau de serrage dans le trait de carottage, suivi d'une traction verticale en utilisant un dispositif hydraulique. Une cellule de charge permet de mesurer la traction tout au long de l'essai. Le serrage entre l'anneau et la couche de surface en enrobé bitumineux est constamment réajusté lors de l'essai afin d'éviter le glissement de l'anneau sur les parois de l'enrobé dans le trait de carottage. Le suivi de la force verticale conduit typiquement en la mesure d'une contrainte maximale, suivi d'une chute significative, ce qui est associé à la rupture de l'interface. La réalisation de l'essai de traction prend environ une minute. Le résultat de l'essai AMAC est la contrainte maximale mesurée lors de l'essai. La Figure 82 présente le résultat du décollement des couches d'enrobé bitumineux. Il est possible d'y observer une cassure très nette sur l'interface, résultat typique lors de la réalisation de cet essai.



```
Figure 81. Équipement de l'essai AMAC
```



Figure 82. Résultat du décollement du bi-couche obtenu lors de la réalisation de l'essai AMAC

Deux essais AMAC ont été réalisés sur la fosse d'essai. Les résultats sont présentés au Tableau 20. Des valeurs de 546 et 378 kPa ont été obtenues (moyenne de 462 kPa). Étant donné la température de l'interface (T<sub>interf.</sub>), la correction de température mentionnée dans la norme est négligeable. Le Ministère considère l'adhésion adéquate si la valeur de traction maximale corrigée est supérieure à 200 kPa, et les couches sont considérées parfaitement liées pour une valeur supérieure à 400 kPa. Étant donné les valeurs obtenues lors des essais, il a été choisi de s'en tenir à seulement deux points de mesures. L'adhésion entre les deux couches d'enrobé est jugée comme étant très satisfaisante pour les besoins du projet.

Le journal des essais est présenté à l'annexe J.

DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES -COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

| rubicuu 20. me | Surrais des essu      | 15 / 11/1/ 10           |                           |        |        |                                             |
|----------------|-----------------------|-------------------------|---------------------------|--------|--------|---------------------------------------------|
|                | T <sub>air</sub> (°C) | T <sub>surf.</sub> (°C) | T <sub>interf.</sub> (°C) | X (mm) | Y (mm) | $\sigma_{\scriptscriptstyle \sf max}$ (kPa) |
| Point 1        | 16,2                  | 15,4                    | 16,6                      | 1070   | 6600   | 546                                         |
| Point 2        | 16,5                  | 15,3                    | 16,3                      | 490    | 1050   | 378                                         |

Tableau 20. Résultats des essais AMAC

## 12 Protocole d'essais

Le protocole d'essais pour la réalisation du projet a été discuté et redéfinie en 2019-2020. Le Tableau 21 présente un résumé de l'approche retenue. Des détails sur la température de la surface (T<sub>surf</sub>), de l'interface (T<sub>interf</sub>), sur la charge axiale sur le demi-essieu (Q), sur la pression des pneus (P) et sur les conditions de la surface, sont retrouvées. Il doit être noté qu'à ce stade de l'expérience, tous les moments où des charges seront appliquées, le nombre de répétitions sera limité, l'objectif étant de faire une caractérisation représentative de la réponse pour les conditions expérimentales lors d'une phase considérée. De plus, lors des phases de cycles thermiques impliquant des chargements, les chargements seront appliqués régulièrement (autant que possible) durant la progression des températures.

Le protocole proposé est divisé en 30 phases (P). De façon générale, l'étude se décompose en sept megaphase (MP) :

- A. Préparation et conditionnement;
- B. Cycles thermiques initiaux sans chargement;
- C. Réponse initiale à 20 °C;
- D. Réponse initiale à 5 °C;
- E. Réponse initiale à -10°C;
- F. Saturation partielle du ESG10;
- G. Cycles de gel et dégel partiellement saturé;

DURABILITÉ DES MATÉRIAUX ET DES STRUCTURES DE CHAUSSÉES SOUS L'EFFET DU TRAFIC ET DES CONDITIONS CLIMATIQUES – COMPORTEMENT DES MATÉRIAUX BITUMINEUX VIS-À-VIS DES CYCLES DE GEL ET DE DÉGEL – TOME II

| MP | Ρ  | Nom                       | T <sub>surf</sub> (°C) | Tinterf. (°C) | Q (kN) | p (kPa) | Cond. surface |
|----|----|---------------------------|------------------------|---------------|--------|---------|---------------|
| Α  | 1  | Préparation               | amb.                   |               | 0      |         | sèche         |
|    | 2  | Initiation                | libre                  | 20            | 0      |         | sèche         |
|    | 3  | Profils initiaux          | libre                  | 20            | 0      |         | sèche         |
| В  | 4  | Transitions 20 °C à 5 °C  | libre                  | 5             | 0      |         | sèche         |
|    | 5  | Cycles thermiques (x5)    | libre                  | 5 à -10       | 0      |         | sèche         |
|    | 6  | Transition 5 °C -20 °C    | libre                  | 20            | 0      |         | sèche         |
| С  | 7  | Réponse initiale (20 °C)  | libre                  | 20            | 40     | 560     | sèche         |
|    | 8  | Réponse initiale (20 °C)  | libre                  | 20            | 50     | 700     | sèche         |
|    | 9  | Réponse initiale (20 °C)  | libre                  | 20            | 65     | 800     | sèche         |
|    | 10 | Repos pour transition     | libre                  | 20            | 0      |         | sèche         |
| D  | 11 | Transition 20 °C - 5 °C   | libre                  | 5             | 0      |         | sèche         |
|    | 12 | Profils                   | libre                  | 5             | 0      |         | sèche         |
|    | 13 | Réponse initiale (5 °C)   | libre                  | 5             | 40     | 560     | sèche         |
|    | 14 | Réponse initiale (5 °C)   | libre                  | 5             | 50     | 700     | sèche         |
|    | 15 | Réponse initiale (5 °C)   | libre                  | 5             | 65     | 800     | sèche         |
| Е  | 16 | Transition 5 °C -10 °C    | libre                  | -10           | 0      |         | sèche         |
|    | 17 | Profils                   | libre                  | -10           | 0      |         | sèche         |
|    | 18 | Réponse initiale (-10 °C) | libre                  | -10           | 40     | 560     | sèche         |
|    | 19 | Réponse initiale (-10 °C) | libre                  | -10           | 50     | 700     | sèche         |
|    | 20 | Réponse initiale (-10 °C) | libre                  | -10           | 65     | 800     | sèche         |
|    | 21 | Retour à 5 °C             | libre                  | 5             | 0      |         | sèche         |
|    | 22 | Profils avant mouillage   | libre                  | 5             | 0      |         | sèche         |
| F  | 23 | Mouillage                 | libre                  | 5             | 0      |         | Mouillée      |
| G  | 24 | Descente gel humide       | libre                  | -10           | 50     | 700     | Mouillée      |
|    | 25 | Profils après gel         | libre                  | -10           | 0      |         |               |
|    | 26 | Dégel                     | libre                  | 5             | 50     | 700     | Mouillée      |
|    | 27 | Profils après dégel       | libre                  | 5             | 0      |         |               |
|    | 28 | Mouillage                 | libre                  | 5             | 0      |         | Mouillée      |
|    | 29 | Cyclage gel-dégel - 50 kN | libre                  | 5 à -10       | 50     | 700     | Mouillée      |
|    | 30 | Cyclage gel-dégel - 65 kN | libre                  | 5 à -10       | 65     | 800     | Mouillée      |

#### Tableau 21. Protocole pour les essais

Tel que discuté dans le premier rapport (Bilodeau & Doré, 2019), des essais sont effectués sur la chaussée dont la surface est sèche, et par la suite la couche d'enrobé de surface est exposée à l'eau afin d'en augmenter la saturation. La saturation sera effectuée en deux temps. Premièrement, un bassin d'eau sera créé sur la partie centrale de la fosse. La charge appliquée d'eau sera d'environ 25 à 50 mm. Durant cette phase d'exposition, l'évolution de la saturation sera suivie avec un appareil de mesure de la constante diélectrique fourni par l'Université Gustave Eiffel. Par la suite, des passages de roues à charge faible seront appliqués sur la surface

constamment humidifiée, afin de forcer et pomper l'eau à l'intérieur des pores du ESG10. Le niveau de saturation atteint sera mesuré avec l'appareil de constante diélectrique.

Par ailleurs, suite à la réalisation d'essais de réponse sur la chaussée en conditions de gel et dégel sur la chaussée sèche et humide, un essai d'endommagement accéléré sera effectué. Le protocole détaillé de cet essai n'a pas encore été défini.

Les essais doivent démarrer en mars 2020.

### 13 Conclusion

Un projet de collaboration entre l'UGE, l'Université Laval et le Ministère des Transports portant sur les effets des cycles de gel et dégel sur les systèmes bicouches d'enrobés bitumineux a été initié en 2018. Il fait suite aux travaux de thèse de Vu (2017) réalisés à l'UGE. Ce projet prévoit notamment la réalisation d'une phase expérimentale avec un simulateur climatique et de véhicules lourds qui permet d'appliquer des cycles de gel et dégel à l'enrobé, tout en effectuant des sollicitations de charge roulante. Une analyse approfondie des mesures expérimentales est confiée à un étudiant au postdoctorat rattaché à l'UGE.

Ce second rapport d'étape présente la problématique identifiée pour le projet, la revue de la littérature, les premiers essais de laboratoire effectués dans la phase préparatoire au projet en simulateur, la construction de la fosse expérimentale, l'instrumentation et le protocole d'essais défini par le comité de projet. Après la construction de la planche expérimentale à l'automne 2019, les essais intensifs doivent démarrer en mars 2020. Néanmoins, l'auscultation préliminaire de la chaussée et des instruments montre un retour très positif du processus de construction. Au moment d'écrire ce rapport, la première mégaphase du protocole a été entreprise, avec les premières simulations thermiques en conditions sèches. Le prochain livrable rassemblera le traitement de l'ensemble de l'information recueillie sur la chaussée expérimentale lorsqu'elle sera soumise plus intensivement aux combinaisons de sollicitations thermiques et mécaniques, et conditions sèche et partiellement saturées.

### 14 Références

- Alarm. (2010). Annual Local authority road maintenance survey. *Asphalt Industry Alliance, Publication Embargo*, 20.
- Badiane, M., El Youssoufy, A., Doré, G., & Bilodeau, J.-P. (2016). Effet des charges en période de restriction des charges. *Rapport Final GCT-2016-01, Ministère Des Transports Du Québec*, 101.
- Bilodeau, J.-P., & Doré, G. (2019). Durabilité des matériaux et des structures de chaussées sous l'effet du traffic et des conditions climatiques – Comportement des enrobés bitumineux vis-à-vis des cycles de gel et dégel. *Rapport de Recherche Pour Le Compte Du Ministère Des Transports Du Québec*, 57.
- Ghosh, D., Turos, M., Hartman, Marcella, H., Milavitz, R., & Le, J. L. (2018). Pothole Prevention and Innovative Repair. *Final Report CTS #2016007, Minnesota Local Road Research Board, Minnesota Department of Transportation, St-Paul, Minnesota, April,* 129.
- Grenier, S. (2006). Analyse dynamique du déflectomètre à masse tombante. *Thèse de Doctorat, Université Laval, Québec, Canada*.
- Hecht, F. (2012). New development in freefem ++. 20(3), 251–265. https://doi.org/10.1515/jnum-2012-0013
- Huet, C. (1963). Etude par une méthode d'impédance du comportement viscoélastique des matériaux hydrocarbonés. *Thèse de Docteur Ingénieur, Faculté Des Sciences de l'Université de Paris*.
- Jenks, C. W., Jencks, C. F., Harrigan, E. T., Adcock, M., Delaney, P. E., & Freer, H. (2011). A Manual for Design of Hot-Mix Asphalt with Commentary. National Academies Press. https://doi.org/10.17226/14524

- Komba, J., Maharaj, A., & Paige-Green, P. (2010). Potholes: Technical Guide to their Causes, Identification, and Repair. In CSIR Built Environment, Stellenbosch, South Africa. https://doi.org/10.1080/17533170500406104
- Lamothe, S., Perraton, D., & Benedetto, H. Di. (2017). Degradation of hot mix asphalt samples subjected to freeze-thaw cycles and partially saturated with water or brine.
  *Road Materials and Pavement Design*, 18(4), 849–864.
  https://doi.org/10.1080/14680629.2017.1286442
- Lamothe, S., Perraton, D., & Di Benedetto, H. (2015). Contraction and expansion of partially saturated hot mix asphalt samples exposed to freeze-thaw cycles. *Road Materials and Pavement Design*, 16(2), 277–299. https://doi.org/10.1080/14680629.2014.990917
- Mauduit, V., Mauduit, C., Vulcano-Greullet, N., Coulon, N., Hammoum, F., David, H., Kerzreho, J. P., Piau, J. M., & Chabot, A. (2013). Dégradation subite des enrobés bitumineux par période de gel/dégel: Analyse de cas de terrain et recherche exploratoire en laboratoire. *Bulletin Des Laboratoires Des Ponts et Chaussees, 279,* 47–63.
- Michalak, C. H., & Scullion, T. (1995). MODULUS 5.0: User's Manual. In *Texas Transportation Institute, Texas A&M University, College Station Texas Research Report 1987–1*.
- Özgan, E., & Serin, S. (2013). Investigation of certain engineering characteristics of asphalt concrete exposed to freeze–thaw cycles. *Cold Regions Science and Technology*, *85*, 131–136. https://doi.org/10.1016/j.coldregions.2012.09.003
- Pan, P., Wu, S., Hu, X., Wang, P., & Liu, Q. (2017). Effect of freezing-thawing and ageing on thermal characteristics and mechanical properties of conductive asphalt concrete. *Construction and Building Materials*, 140, 239–247. https://doi.org/10.1016/j.conbuildmat.2017.02.135

- Pandarias, D. (2010). Dégâts occasionnés au réseau routier national durant l'hiver 2009-2010. *Rapport Ministériel DIT-MARRN*, 56.
- Rohde, G. T. (1994). Determining pavement structural number from FWD testing. *TRB* 73rd Annual Meeting, Preprint No.940351, Transportation Research Board, Washington, D.C., 1448, 61–68.
- Terrel, R. L., & Al-Swailmi, S. (1993). The Role of Pessimum Voids Concept in Understanding Moisture Damage to Asphalt Concrete Mixtures. *Transportation Research Record: Journal of the Transportation Research Board*, 1386, 31–37.
- Tremblay, M. (2006). Étude de la fréquence des événements météorologiques précurseurs des nids-de-poule: le Québec un cas particulier? *Retrieved from Http://Ptaff.ca/Routes\_du\_quebec/, Consulted December 2010.*
- Vu, V. T. (2017). Etude expérimentale et numérique du comportement au gel et au dégel des enrobés bitumineux partiellement satures-Application à l'interprétation de dégradations subites de chaussées bitumineuses en période hivernale. Thèse de Doctorat, Ecole Centrale de Nantes.
- Vu, V. T., Chupin, O., Piau, J., & Hammoum, F. (2017). Étude expérimentale et numérique du comportement de l'enrobé bitumineux partiellement saturé en eau à température variable. 23ème Congrès Français de Mécanique, 10.
- Vu, V. T., Chupin, O., Piau, J., & Hammoum, F. (2020). FE modelling of wet asphalt structures undergoing frost –Towards an explanation of winter potholes. International Journal of Pavement Engineering, Manuscript submitted for publication. https://doi.org/10.1080/1478643YYxxxxxxx
- Vu, V. T., Chupin, O., Piau, J., Hammoum, F., & Bouron, S. (2018). Experimental study and modeling of the behavior of partially saturated asphalt concrete under freezing condition. *Construction and Building Materials, 163,* 169–178. https://doi.org/10.1016/j.conbuildmat.2017.12.070

118

 Xu, H., Guo, W., & Tan, Y. (2015). Internal structure evolution of asphalt mixtures during freeze–thaw cycles. *Materials & Design*, *86*, 436–446. https://doi.org/10.1016/j.matdes.2015.07.073

# Annexe A

# Algorithme de calcul thermo-mécanique semi-couplé



## Annexe B

Propriétés de l'émulsion

|                                                 |                                |                                                            | 1000                   |                                    |                      |                 |           |
|-------------------------------------------------|--------------------------------|------------------------------------------------------------|------------------------|------------------------------------|----------------------|-----------------|-----------|
| Les Industries N                                | IcAsphalt Mée                  |                                                            |                        |                                    | N° d                 | e bibel de      | Interison |
| USINE:                                          | SI-Hyacinth <del>a</del>       |                                                            |                        |                                    | L                    |                 |           |
| INF                                             | ORMATION                       | NS GÉNÉRA                                                  | LES                    |                                    | EXPÉDI               | TION            |           |
| Identification du ta                            | oficare et le lier             | u ce febrication                                           | 20                     | Norm He constan de                 |                      | 1993(64)        |           |
| Identification du di<br>Les Industries I        | McAsphalt Ité<br>McAsphalt Ité | ie - St-Hyacinth<br>Iou de distribution<br>e - St-Hyacinth | 18                     | Non du transad                     |                      |                 |           |
| Ispe de <u>produit</u><br>Supercol H            | Béservoir<br>EC3-303           | 2019-09-25                                                 | N° de los<br>LOT149928 | <u>N<sup>a</sup> ce la citanie</u> | Date charge<br>i mmg | emeni<br>  aaaa |           |
|                                                 | ESSAIS                         |                                                            | RÉSULTATS              | Spécif                             | ications             | F.              |           |
| Cate d'essais                                   | 1                              | <del>ال</del>                                              | 2019-09-25             | Mia.                               | Max.                 | Mét             | hode d'es |
| Viscoste Saybel, i                              | urol à 25°C (s)                | No.                                                        | 40                     | 20                                 | 103                  | A               | 5 M 07450 |
| Résid i de cirkit-ru                            | 30 milu 2% G                   | affenaD <sub>7</sub> S (%)                                 | 67.9                   | 40.0                               | (-)-                 | A               | STM Deuse |
| Hule du distitat ra                             | 0                              |                                                            | 61.9                   | 57.0                               |                      | A               | STM DARD: |
| Ghairð à 64°C (kP                               | 2)                             |                                                            | 195                    | 1.00                               | 3.0                  | 4               | STM D599. |
| -                                               | 1000                           |                                                            | 1.00                   | 1.00                               | 3.50                 | 2               | LC 25-012 |
| Type Jémulson                                   |                                |                                                            | Collegiant             | 04710                              |                      | -               |           |
| Notes:                                          | 10 10 (S. C. S. S.             | and and the second                                         | Cationique             | CATIC                              | NIQUE                | A               | STM D241  |
| 10/Stot is températue<br>0.1052 Distantion d'un | Air Nerto pulla len            | pérature de la chause                                      | i acres exclesion en   | TEMPÉRAT                           | URE DUTILIBATI       | IDN RECO        | MMANDEE   |
| tinus de cure de l'écul                         | NUT DEUTINE MADONY             | st. L'utilisation d'un su                                  | Al stuble wat          |                                    | Min                  | male            | Almain    |
|                                                 | AUTORI                         | SATION                                                     |                        | Ententente                         |                      | 250             | - Staxin  |
| Préparé per                                     | - and the second second        | Acprouvé par                                               |                        | Application                        |                      | C-G             | 80 0      |
| A. Lanothe                                      | 2019-09-25                     | D. Voghel                                                  | 2019-09-26             | Airambani                          |                      | 0°C             | 86.0      |
|                                                 | E                              | SPACE RÉSER                                                | RVÉ AU MINIS           | TÉRE DES TRA                       | NSPORTS              | -0              |           |
| Nom de l'échantrior                             | neur                           |                                                            | -                      | Date d'échantiliene                | 332                  | -               |           |

104 2073-04-06

.



US WOUSTRIES Mod Service Inte 1905, zvenie Duplesis, Sant Hyasimhe (Guebeci J28 155 Télépopleur : sau /sta-402

ISD 9001/1401), 0+645 12001 AASH" 0 418

## Annexe C

Caractéristiques des enrobés et du bitume



FORMULE DE MÉLANGE

#### ENROBÉS BITUMINEUX

| REGION SINTRA INC. | BML QC     | SITE : | 28 Usine d'enrob St-Jean Chrysostome 034 |                   |  |  |
|--------------------|------------|--------|------------------------------------------|-------------------|--|--|
| DATE               | 2019-04-03 | TYP    | E de MÉLANGE :                           | GB-20             |  |  |
| CODE de PRODUIT :  | 18248C110  | No.    | de la FORMULE :                          | 18R20GB2058H341A1 |  |  |
| CODE INTERNE :     | 5803248C   | т      | YPE de BITUME :                          | PG 58H-34         |  |  |

Remarque : Si l'enrobé liède est utilisé, la lechnique sera par bitume moussé et le code interne sera 58032480. Les facteurs de corrections au four à ignition ont été réalisés à 480°C

Ancien no.formule: 3418GB205834R20 modifié en 2019, essai à l'orniéreur valide. Numéro de la source 3475-0028

|        |     |        |                                  |     |     | GRAN | ULAT | S (% | Passa | nt)  |       |       |       |       |        |        |       |      |
|--------|-----|--------|----------------------------------|-----|-----|------|------|------|-------|------|-------|-------|-------|-------|--------|--------|-------|------|
| CLASSE | ID  | Ű      | ORIGINE                          | 28  | 20  | 14   | 10   | 5    | 2,5   | 1,25 | 0,630 | 0,315 | 0,160 | 0,080 | %      | Dgb    | Dga   | %Abs |
|        |     | 1      |                                  |     |     |      |      |      |       |      |       |       |       |       |        | 8      |       |      |
| 2<br>  |     | )<br>J |                                  | 8   | 8   | 5    |      |      |       |      |       |       |       |       | 2<br>2 | 2      |       |      |
|        |     | 0      |                                  |     |     |      |      |      |       |      |       |       |       |       |        |        | ]     |      |
|        |     |        |                                  |     |     |      |      |      |       |      |       |       |       |       |        |        |       |      |
|        |     | Ú      |                                  | 15  | 10  |      |      |      |       |      |       |       |       |       | 22     | 5<br>1 |       |      |
|        |     | 1      |                                  |     |     |      |      |      |       |      |       |       |       |       |        | -      |       |      |
| 0-10   | GBR |        | 28 Usine d'enrob St-Jean-Chrys   | 100 | 100 | 100  | 97   | 75   | 57    | 45   | 34    | 22    | 12    | 6,8   | 20,0   | 2,680  | 2,710 | 0,00 |
| 10-20  | PC  | j.     | 28 Carrière St-Flavien (Ray-Car) | 100 | 93  | 50   | 13   | 3    | 2     | 2    | 2     | 1     | 1     | 1     | 47,2   | 2,857  | 2,952 | 1,14 |
| 5-10   | PC  |        | 28 Carrière St-Flavien (Ray-Car  | 100 | 100 | 100  | 91   | 8    | 4     | 3    | 2     | 2     | 2     | 1,1   | 9,5    | 2,865  | 2,973 | 1,28 |
| 0-5    | CPC | î.     | 28 Carrière St-Flavien (Ray-Car) | 100 | 100 | 100  | 100  | 93   | 61    | 40   | 28    | 20    | 15    | 11    | 23,3   | 2,809  | 2,913 | 1,41 |
|        |     |        | COMBINÉ                          | 100 | 97  | 76   | 57   | 39   | 27    | 20   | 14    | 10    | 7     | 4,5   | 100,0  | 2,809  | 2,893 | 0,99 |
|        |     |        | FORMULE                          | 100 | 98  | 78   | 57   | 39   | 26    | 19   | 14    | 9     | 7     | 5,8   |        |        |       |      |
|        |     |        | EXIGENCES MINIMUM                | 100 | 95  | 67   | 52   | 35   |       |      |       |       | 6     | 3,0   |        |        |       |      |
|        |     |        | EXIGENCES MAXIMUM                | 100 | 100 | 90   | 75   | 50   |       |      |       |       |       | 8.0   |        |        |       |      |

|                                             | CARAC | TÉRIS | TIQUES de |
|---------------------------------------------|-------|-------|-----------|
| TOTAL GRANULOMÉTRIQUE                       | 3     | 53    | 8         |
| % de BITUME                                 | 4,    | 35    |           |
| % de VIDES                                  | 3     | ,0    |           |
| V.A.M.                                      | 1:    | 2,9   | 1         |
| PBI ENROBÉS LC                              | 4,    | 35    |           |
| DENSITÉ EFFECTIVE                           | 2,1   | 842   |           |
| % de BITUME EFFECTIF                        | 3,    | 95    |           |
| % V.A.M. COMBLÉ par le BITUME               | 7     | 6,7   | 1         |
| TYPE de BITUME (PG) UTILISÉ en FORMULATION  | PG    | 8-34  |           |
| DENSITÉ du BITUME                           | 1,0   | 020   |           |
| SURFACE SPÉCIFIQUE TOTALE                   | 4,    | 80    | 1         |
| FILM de BITUME                              | 8,    | 41    | 8         |
| Facteur de correction, EXTRACTION, IGNITION | 0,19  | 0,55  | 1         |
| INDICE de COMPACTIBILITÉ                    |       |       | 1         |
|                                             |       |       |           |

| FORMULATION à la PCG |      |         |     |  |  |  |  |
|----------------------|------|---------|-----|--|--|--|--|
| NOMBRE de GIRATIONS  | 10   | 120     | 200 |  |  |  |  |
| % de VIDES           | 16,1 | 6,2     | 4,7 |  |  |  |  |
| EXIGENCES            | ≥11  | 4.0-7.0 | ≥2  |  |  |  |  |

| ESSAI à l'ORNIÉREUR |      |      |       |  |  |  |
|---------------------|------|------|-------|--|--|--|
| Nombre de cycles    | 1000 | 3000 | 30000 |  |  |  |
| ORNIÉRAGE en %      |      | 1    | 4,4   |  |  |  |
| EXIGENCES MAX       | -    | (H)  | ≤10%  |  |  |  |

| la FORMULE                     |       |
|--------------------------------|-------|
| STABILITÉ                      |       |
| DÉFORMATION                    |       |
| DENSITÉ BRUTE                  | 2,559 |
| DENSITÉ MAXIMALE               | 2,637 |
| VBE du PBI ENROBÉS LC          | 10,2  |
| ÉPAISSEUR MINIMUM de POSE (mm) | 80,0  |
| TAUX de POSE MINIMAL (kg/m.c.) | 197   |
| TENUE à L'EAU                  |       |
| ESSAI CPP                      | 0,50  |
| PBA                            | 0,42  |
| BITUME / TG                    | 1.23  |

| FORMULE ave              |      |     |
|--------------------------|------|-----|
| ADDITIF UTILISÉ          | GBR  | BAR |
| % d'ADDITIF              | 20,0 |     |
| % DE BITUME de L'ADDITIF | 3.85 |     |

| Présentée par: | Hugo Lacasse B. | Vérifiée par : | Hugo Lacasse B. |  |
|----------------|-----------------|----------------|-----------------|--|
|                |                 |                |                 |  |
| _              |                 |                |                 |  |

50 50



### FORMULE DE MÉLANGE

#### ENROBÉS BITUMINEUX

| REGION SINTRA INC. | BML QC     | SITE : | 28 Usine d'enrob St-Jean Chrysostome 034 |                   |  |  |
|--------------------|------------|--------|------------------------------------------|-------------------|--|--|
| DATE               | 2019-05-13 | TYP    | E de MÉLANGE :                           | ESG-10            |  |  |
| CODE de PRODUIT :  | 18028C110  | No. (  | de la FORMULE :                          | 18R0ESG1058H341A1 |  |  |
| CODE INTERNE :     | 5803028C   | Т      | YPE de BITUME :                          | PG 58H-34         |  |  |

Remarque : Si l'enrobé tiède est utilisé, la technique sera par bitume moussé et le code interne sera 5803028Q. Les facteurs de corrections au four à ignition ont été réalisés à 480°C Ancien no.tormule: 3418ESG10R0 modifié en 2019, essai à l'ornièreur valide. No de la source 3475-0028 pierre de Ray-Car, No de la source sable naturel 3474-0154.

| т.,    | GRANULATS (% Passant) |    |                                 |        |     |     |          |    |     |      |       |       |       |       |       |       |       |      |
|--------|-----------------------|----|---------------------------------|--------|-----|-----|----------|----|-----|------|-------|-------|-------|-------|-------|-------|-------|------|
| CLASSE | ID                    | Ű  | ORIGINE                         | 28     | 20  | 14  | 10       | 5  | 2,5 | 1,25 | 0,630 | 0,315 | 0,160 | 0,080 | %     | Dgb   | Dga   | %Abs |
|        |                       | 1  |                                 |        |     |     |          |    |     |      |       |       |       |       |       |       |       |      |
| 8<br>8 |                       | Î  |                                 |        |     |     | 1        |    |     |      |       |       |       |       | 8     | 8     |       |      |
|        |                       | Ű. |                                 | 2<br>2 |     |     | <u> </u> |    |     |      |       |       |       |       |       |       |       |      |
|        |                       |    |                                 |        |     |     |          |    |     |      |       |       |       |       |       |       |       |      |
|        |                       | Ű. |                                 |        |     |     |          |    |     |      |       |       |       |       |       |       |       |      |
| -      |                       | 0  |                                 |        | -   |     |          |    |     |      |       |       |       |       |       |       |       |      |
|        |                       |    |                                 |        |     |     |          |    |     |      |       |       |       |       |       |       |       |      |
| 0-5    | SN                    | Ŭ. | 28 Banc Vachon St-Lambert       | 100    | 100 | 100 | 100      | 97 | 93  | 90   | 86    | 70    | 23    | 3     | 7,5   | 2,632 | 2,681 | 0,72 |
| 5-10   | PC                    | ļ. | 28 Carrière St-Flavien (Ray-Car | 100    | 100 | 100 | 91       | 8  | 4   | 3    | 2     | 2     | 1,5   | 1,1   | 40,0  | 2,865 | 2,973 | 1,28 |
| 0-5    | CPC                   | Î  | 28 Carrière St-Flavien (Ray-Car | 100    | 100 | 100 | 100      | 93 | 61  | 40   | 28    | 20    | 15    | 11    | 52,5  | 2,809 | 2,913 | 1,41 |
|        |                       |    | COMBINÉ                         | 100    | 100 | 100 | 96       | 59 | 41  | 29   | 22    | 17    | 10    | 6,5   | 100,0 | 2,817 | 2,918 | 1,31 |
|        |                       |    | FORMULE                         | 100    | 100 | 100 | 97       | 60 | 41  | 29   | 22    | 16    | 9     | 7,5   |       |       |       |      |
|        |                       |    | EXIGENCES MINIMUM               | 100    | 100 | 100 | 92       | 52 |     |      |       |       |       | 4,0   |       |       |       |      |
|        |                       |    | EXIGENCES MAXIMUM               | 100    | 100 | 100 | 100      | 65 |     |      |       |       |       | 10,0  |       |       |       |      |

|                                             | CARACTERIS         |
|---------------------------------------------|--------------------|
| TOTAL GRANULOMÉTRIQUE                       | 482                |
| % de BITUME                                 | <mark>5,3</mark> 6 |
| % de VIDES                                  | 2,6                |
| V.A.M.                                      | 14,5               |
| PBI ENROBÉS LC                              | 5,36               |
| DENSITÉ EFFECTIVE                           | 2,867              |
| % de BITUME EFFECTIF 4                      |                    |
| V.A.M. COMBLÉ par le BITUME 8               |                    |
| TYPE de BITUME (PG) UTILISÉ en FORMULATION  | PG 58-34           |
| DENSITÉ du BITUME                           | 1,020              |
| SURFACE SPÉCIFIQUE TOTALE                   | 6,66               |
| FILM de BITUME                              | 7,38               |
| Facteur de correction, EXTRACTION, IGNITION | 0,21 0,40          |
| INDICE de COMPACTIBILITÉ                    |                    |

| FORMULATION à la PCG |      |         |     |  |  |  |  |
|----------------------|------|---------|-----|--|--|--|--|
| NOMBRE de GIRATIONS  | 10   | 80      | 200 |  |  |  |  |
| % de VIDES           | 14,0 | 5,6     | 3,4 |  |  |  |  |
| EXIGENCES            | ≥11  | 4.0-7.0 | ≥2  |  |  |  |  |

| ESSAI à l'ORNIÉREUR |      |      |       |  |  |  |  |
|---------------------|------|------|-------|--|--|--|--|
| Nombre de cycles    | 1000 | 3000 | 30000 |  |  |  |  |
| ORNIÉRAGE en %      | 4,3  | 6    |       |  |  |  |  |
| EXIGENCES MAX       | ≤10% | ≤15% |       |  |  |  |  |

| QUE | S de la FORMULE                |       |
|-----|--------------------------------|-------|
|     | STABILITÉ                      |       |
|     | DÉFORMATION                    |       |
|     | DENSITÉ BRUTE                  | 2,546 |
|     | DENSITÉ MAXIMALE               | 2,613 |
|     | VBE du PBI ENROBÉS LC          | 12,2  |
|     | ÉPAISSEUR MINIMUM de POSE (mm) | 40,0  |
|     | TAUX de POSE MINIMAL (kg/m.c.) | 97    |
|     | TENUE à L'EAU                  |       |
|     | ESSAI CPP                      | 0,50  |
|     | PBA                            | 0,63  |
|     | BITUME / TG                    | 1,11  |

| additif utilisé     |       |   | GBR | BAR |
|---------------------|-------|---|-----|-----|
| % d'ADDITIF         |       | 3 |     |     |
| % DE BITUME de L'AD | DITIF |   |     |     |

| Remarques : |  |  |
|-------------|--|--|
|             |  |  |



PG 58H-34

ATTESTATION DE CONFORMITÉ BITUMES

| Les Industries McAsphalt Ilée<br>USINE: Bécancour                                                                                         |                                               |                                          | N' de biliet de liscason<br>250 - 2014 | 2536                                                                                                           |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--|
| RENSEIGNEMENTS GÉN                                                                                                                        | RAUX                                          | RECOMMANDATIO                            | ON DES TEMPÉRAT                        | URES D'UTILISATIC                                                                                              |  |
| Nom du tabicismi et lieu de fabrication                                                                                                   |                                               |                                          | Minimale                               | Maxim.sie                                                                                                      |  |
| kes industries McAsphalt Isoa                                                                                                             | Bécencour                                     | Entreposage                              | 140 °C                                 | 175 °C                                                                                                         |  |
| Lieud'eutorocare et d'exodoition                                                                                                          | percenterat                                   |                                          |                                        |                                                                                                                |  |
| Las Industrias McAshait Inda                                                                                                              | D.S. and an article of the                    | Malayana A chasel                        | 166.77                                 | 170 °C                                                                                                         |  |
| Classe de neclimmance                                                                                                                     | New commercial                                | annanenge a ruada                        | 100 0                                  | 100.0                                                                                                          |  |
| PG SSV.34                                                                                                                                 | 00 584.34                                     |                                          |                                        |                                                                                                                |  |
| Numéro du lot                                                                                                                             | Date de fabrication                           | -                                        |                                        | Ť                                                                                                              |  |
| 07150498                                                                                                                                  | 2019.10.20                                    | RÉCULTA                                  | TE DES ESSAIS DE A                     | ONTROIE                                                                                                        |  |
| DECLUTIVE DEF SECUR DE CADA                                                                                                               | 2019-10-20                                    | NCJULIA                                  | IS DESESSAIS DE                        | Contribute                                                                                                     |  |
| RESULTATS DES ESSAIS DE CARA                                                                                                              | CIERISATION                                   | Date des exan de contre                  | o'e                                    | 2019 10 21                                                                                                     |  |
| Galeia a URAS de caractérisation                                                                                                          | 7019-13-21                                    | Gr/sn 5 (Pa) (b turne d'                 | arigina)                               | 2.01                                                                                                           |  |
| o yan o jaraj jakane a orginej<br>Tempini jakane da tempini jakane i T. (175)                                                             | 1.43                                          | Wedne de rig eno 5,360                   | (MPa)                                  | 29.4                                                                                                           |  |
| Minnedia Brock Cold 3, 93550 (0.5.2)                                                                                                      | 0.605                                         | Ferre (100)                              | weble her ditte                        | 0.75                                                                                                           |  |
| Viscosite Brockfuld & 155 (19-4)                                                                                                          | 0.000                                         | Complaisance non-recouvrable Mr12 pcra   |                                        | 50.1                                                                                                           |  |
| Point d'éslair (°C)                                                                                                                       | 296                                           | Régnoss élastique R., Pát                |                                        | 67.7                                                                                                           |  |
| Stabilite austockage (*C)***                                                                                                              | 0,6                                           | adverse surveyer ditte                   |                                        |                                                                                                                |  |
| 186 movement (C)***                                                                                                                       | 56.B                                          | Numéro et nom de la rer                  | strale of enothing                     |                                                                                                                |  |
| Tendur en condres (%)                                                                                                                     | 0.00                                          | St-Je                                    | - Chrysostan                           | 11                                                                                                             |  |
| Masse volumique à 25°C (g/cm <sup>1</sup> )                                                                                               | 1.019                                         | Transporteur ()                          |                                        |                                                                                                                |  |
| Massa volumque à 15°C (s/cm²)                                                                                                             | 1.025                                         | NR40                                     | ji†                                    |                                                                                                                |  |
| Entobgage (Exidue) (%)                                                                                                                    | 5/0                                           | N° de la cli a ce<br>444 - 15 2019-10-29 |                                        | Quantité Mree                                                                                                  |  |
| Module de rigidité S <sub>e</sub> (60) (MP4)                                                                                              | 142                                           |                                          |                                        | 58970                                                                                                          |  |
| Prote m <sub>c</sub> (b())                                                                                                                | 0.457                                         |                                          | NOTES                                  | den e la compañía de |  |
| Variation de masse au RTFOT (%)                                                                                                           | -0,820                                        | 0.000.007                                | 1.25                                   | 1.741                                                                                                          |  |
| Température de l'essai MSCR (*C)                                                                                                          | 5B                                            | 1 13 34 2019 17                          | Ч                                      | 165-C<br>5.T                                                                                                   |  |
| Constaisance non-resourable Jro <sub>3 2</sub> (kPa <sup>1</sup> )                                                                        | 0.75                                          |                                          | 25-210                                 |                                                                                                                |  |
| Compl. nov recouvrable diff. Inr <sub>ue</sub> (%)                                                                                        | 50.7                                          | 220-2014                                 | ( n vy                                 |                                                                                                                |  |
| Réponse élastique R <sub>12</sub> (%)                                                                                                     | 62.2                                          | 6 V40                                    |                                        | -0 011                                                                                                         |  |
| Température basie de caractérisation (T <sub>u</sub> ) (°C)                                                                               | -34.7                                         | 1ANY 3                                   |                                        | 28,115                                                                                                         |  |
|                                                                                                                                           | REMAR                                         | QUES                                     |                                        | 112.245.01 - 100                                                                                               |  |
| Co bitume est conforme à PG 58-34.<br>*** Résultat de stabilité au stockage du lot pré<br>Le resultat de ce lot est disponible sur demand | selon la norme MTC<br>cédent LOT150366.<br>e. | 1 4101 2015-12-15.                       |                                        |                                                                                                                |  |
| Préparé par                                                                                                                               | Date                                          | Approuvé par                             |                                        | Date                                                                                                           |  |
| A. Lamothe                                                                                                                                | 2019-10-22                                    | S. Menad                                 |                                        | 2019-10-72                                                                                                     |  |
| ESP                                                                                                                                       | ACE RÉSERVE AU MINI                           | STERE DES TRANSPOR                       | ITS                                    |                                                                                                                |  |
| N° du canizat                                                                                                                             |                                               | Soumis par (organisme                    | e de contrôle)                         |                                                                                                                |  |
| Prélevé par                                                                                                                               | Date                                          | À l'usace de laberateir                  | p                                      |                                                                                                                |  |
|                                                                                                                                           |                                               | condition and a second second            | N                                      |                                                                                                                |  |
| 9" du réservair à la centrale d'enrobage                                                                                                  | Températuro                                   | 1                                        |                                        | Date de réception                                                                                              |  |



LES INDUSTIES MAASPHALT ILEE 7905, avenue Duplessis, Saint-Hyacinthe (Cu6boc) J2R 155 Téléphone : 450 796-2691 Télécopieur 450 796-4302 <u>www.mcasphall.com</u> ISO 9005/14001, Ordas 18001 AASETO R18

Binager - 2019-08-30

## Annexe D

# Caractérisation du sol et des matériaux granulaires



BNQ 2501-025 BNQ 2560-040

### Analyse granulométrique

| Projet: Simulateur            | Forage No.                          |
|-------------------------------|-------------------------------------|
| Client:                       | Localisation:                       |
| Provenance:                   | Prélevé par:                        |
| Nature de l'échantillon: MG20 | Prélevé le:                         |
| Usage prévu: Terrain naturel  | Matériau: 🗖 Densifié 🗖 Non-densifié |

|                           | gr      | %     |                        |                       |                      |
|---------------------------|---------|-------|------------------------|-----------------------|----------------------|
| Masse totale du sable:    | 6162.6  | 52.4  | Module de fir          | nesse: <5mm:          | <10mm:               |
| Masse total de la pierre: | 5590.5  | 47.6  | d <sub>10</sub> : 0.23 | d <sub>30</sub> : 1.1 | d <sub>60:</sub> 7.3 |
| Masse totale du sol:      | 11753.1 | 100.0 | C.U.: 31.79            | C.C.: 0.72            | S.U.: -              |

| Tamis<br>B.N.Q. | Retenu<br>(gr) | % Retenu<br>Séparé | % Passant<br>Combiné | Exigence<br>B.N.Q. | Lavage                |             |
|-----------------|----------------|--------------------|----------------------|--------------------|-----------------------|-------------|
| 112 mm          | -              | 8 <del></del>      |                      | 1.5                | Masse initiale: (gr)  | 411         |
| 80 mm           |                | (1 <u>2</u> )      | 1                    |                    | Masse final: (gr)     | 379.9       |
| 56 mm           | -              | 2                  |                      | 2                  | Passant 80 um: (gr)   | 31.9        |
| 40 mm           | -              | -                  | -                    |                    | Teneur e              | m eeu       |
| 31,5 mm         | -              | -                  |                      |                    | Teneure               | ii cau      |
| 20 mm           | 120.1          | 1.02               | 98.98                | 14                 | 🗖 Éch. Humide         | □ Naturelle |
| 14 mm           | 2042.1         | 17.37              | 81.60                |                    | Sol hum. + tare (gr)  |             |
| 10 mm           | 1507.8         | 12.83              | 68.77                | 1                  | Sol sec + tare (gr)   |             |
| 5 mm            | 1920.5         | 16.34              | 52.43                |                    | Masse de l'eau (gr)   |             |
| Tamis           | Retenu         | % Retenu           | % Passant            | Exigence           | Masse de la tare (gr) |             |
| B.N.Q.          | Cumulatif (gr) | Séparé             | Combiné              | B.N.Q.             | Masse sol sec (gr)    |             |
| 2,5 mm          | 81.4           | 19.81              | 42.05                | 3 <b>-</b>         | Teneur en eau (%)     |             |
| 2,0 mm          |                |                    |                      |                    | Conformité            | de l'essai  |
| 1,25 mm         | 156.7          | 18.32              | 32.44                | 1 <del></del>      | Masse total avant     |             |
| 630 um          | 237.3          | 19.61              | 22.16                | ÷                  | essai (gr)            | 11798.4     |
| 315 um          | 310.5          | 17.81              | 12.82                |                    | Perte au tamisage     | Max.2,0%    |
| 160 um          | 354.4          | 10.68              | 7.22                 | 141                | >5mm. (%)             | 0.38        |
| 80 um           | 379            | 5.99               | 4.08                 |                    | Perte au tamisage     | Max.0,3%    |
| PLAT            | 379.8          | 0.19               | 3.98                 | 1.5                | <5mm. (%)             | 0.03        |

| Remarque:    |                                         |       |            |
|--------------|-----------------------------------------|-------|------------|
|              |                                         |       |            |
| Analysé par: | Jesus David Cruz Sanchez /Maria F Baron | Date: | 13/10/2019 |





BNQ 2501-025 BNQ 2560-040

### Analyse granulométrique

| Projet: Simulateur             | Forage No.                          |
|--------------------------------|-------------------------------------|
| Client:                        | Localisation:                       |
| Provenance:                    | Prélevé par:                        |
| Nature de l'échantillon: MG112 | Prélevé le:                         |
| Usage prévu: Terrain naturel   | Matériau: 🗖 Densifié 🗖 Non-densifié |

|                           | gr      | %     |                        |                        |                      |
|---------------------------|---------|-------|------------------------|------------------------|----------------------|
| Masse totale du sable:    | 19297   | 62.2  | Module de fir          | nesse: <5mm:           | <10mm:               |
| Masse total de la pierre: | 11710.8 | 37.8  | d <sub>10</sub> : 0.17 | d <sub>30</sub> : 0.45 | d <sub>60:</sub> 4.1 |
| Masse totale du sol:      | 31007.8 | 100.0 | C.U.: 24.12            | C.C.: 0.29             | S.U.: -              |

| Tamis<br>B.N.Q. | Retenu<br>(gr) | % Retenu<br>Séparé | % Passant<br>Combiné | Exigence<br>B.N.Q. | Lavage                |             |
|-----------------|----------------|--------------------|----------------------|--------------------|-----------------------|-------------|
| 112 mm          | =              | -                  | 177                  | -                  | Masse initiale: (gr)  | 424.1       |
| 80 mm           | -              | 8 <u>1</u>         | -                    | 2                  | Masse final: (gr)     | 403.0       |
| 56 mm           | -              |                    | 1                    | 2 <u>1</u>         | Passant 80 um: (gr)   | 21.1        |
| 40 mm           | 696.7          | 2.25               | 97.75                |                    | Teneur e              | D 2011      |
| 31,5 mm         | 1198.6         | 3.87               | 93.89                | -                  | Tenedre               | ii cau      |
| 20 mm           | 2606.6         | 8.41               | 85.48                | 1-1                | 🗖 Éch. Humide         | □ Naturelle |
| 14 mm           | 2192.7         | 7.07               | 78.41                | -                  | Sol hum. + tare (gr)  |             |
| 10 mm           | 1781.1         | 5.74               | 72.67                | -                  | Sol sec + tare (gr)   |             |
| 5 mm            | 3235.1         | 10.43              | 62.23                |                    | Masse de l'eau (gr)   |             |
| Tamis           | Retenu         | % Retenu           | % Passant            | Exigence           | Masse de la tare (gr) |             |
| B.N.Q.          | Cumulatif (gr) | Séparé             | Combiné              | B.N.Q.             | Masse sol sec (gr)    |             |
| 2,5 mm          | 40.5           | 9.55               | 56.29                | -                  | Teneur en eau (%)     |             |
| 2,0 mm          |                |                    |                      |                    | Conformité            | de l'essai  |
| 1,25 mm         | 86             | 10.73              | 49.61                |                    | Masse total avant     |             |
| 630 um          | 160.4          | 17.54              | 38.70                |                    | essai (gr)            | 31493.86    |
| 315 um          | 275.6          | 27.16              | 21.79                |                    | Perte au tamisage     | Max.2,0%    |
| 160 um          | 363.1          | 20.63              | 8.95                 | -                  | >5mm. (%)             | 1.54        |
| 80 um           | 401.4          | 9.03               | 3.33                 | -                  | Perte au tamisage     | Max.0,3%    |
| PLAT            | 401.98         | 0.14               | 3.25                 |                    | <5mm. (%)             | 0.25        |

| Remarque:    |                                         |       |            |  |
|--------------|-----------------------------------------|-------|------------|--|
|              |                                         |       |            |  |
| Analysé par: | Jesus David Cruz Sanchez /Maria F Baron | Date: | 13/10/2019 |  |

### Courbe granulométrique





Essai Proctor

| Projet: Simu | ılateur     |        |  |
|--------------|-------------|--------|--|
| Provenance:  |             |        |  |
| Description: | MG20        |        |  |
|              | Méthode uti | lisée: |  |
| A B          | С           | D      |  |
| A B          | С           | D      |  |

|        | Proctor      |         |
|--------|--------------|---------|
| Normal |              | Modifié |
| 25     | Coups/couche | 56      |
| 3      | couches      | 5       |
| 2.49   | kg-marteau   | 4.54    |
| 30.5   | cm-chûte     | 45.7    |



| % Humidité                                 | 4%                        | 6%         | 8%          | 10%         | 14%      |  |
|--------------------------------------------|---------------------------|------------|-------------|-------------|----------|--|
| Masse du moule + sol humide (g)            | 11160.6                   | 11410.90   | 11510.40    | 11526.40    | 11459.90 |  |
| Masse du moule (g)                         | 6482.1                    | 6482.10    | 6484.00     | 6489.40     | 6484.40  |  |
| Masse du sol humide (g)                    | 4678.5                    | 4928.8     | 5026.4      | 5037.0      | 4975.5   |  |
| Volume du moule 2095.93cm3                 | 2095.9                    | 2095.93    | 2095.93     | 2095.93     | 2095.93  |  |
| Masse volumique humide (g/cm³)             | 2.23                      | 2.35       | 2.40        | 2.40        | 2.37     |  |
| Masse volumique humide (kg/m³)             | 2232.18                   | 2351.61    | 2398.17     | 2403.23     | 2373.89  |  |
| Numéro de la tare                          | 777.0                     | C-06       | 3           | 1           | 6        |  |
| Masse de la tare + sol humide (g)          | 5034.6                    | 5180.60    | 7877.80     | 5743.00     | 6237.4   |  |
| Masse de la tare + sol sec (g)             | 4860.5                    | 4917.8     | 7557.1      | 5388.3      | 5881.4   |  |
| Masse de la tare (g)                       | 363.8                     | 261.5      | 2869.2      | 689.3       | 1282.7   |  |
| Masse de l'eau net (g)                     | 174.1                     | 262.8      | 320.7       | 354.7       | 356.0    |  |
| Masse de sol sec (g)                       | 4496.7                    | 4656.3     | 4687.9      | 4699.0      | 4598.7   |  |
| Teneur en eau (%)                          | 3.9%                      | 5.6%       | 6.8%        | 7.5%        | 7.7%     |  |
| Masse volumique sèche (kg/m <sup>3</sup> ) | 2149.0                    | 2226.0     | 2244.6      | 2234.6      | 2203.3   |  |
| Teneur en eau optimale:                    | 6.90%                     | Analysé pa | Jesus David | Cruz Sanche | Z        |  |
| Masse volumique maximale sèche 2           | 244.7(kg/m <sup>3</sup> ) | Date:      | 13/10/2019  |             |          |  |


BNQ 2560-065

# DENSITÉ RELATIVE ET ABSORPTION DU GRANULAT FIN

| Projet: SIMULATEUR            | Forage No.:  |  |
|-------------------------------|--------------|--|
| Client: JEAN-PASCAL           | Profondeur:  |  |
| Provenance:                   | Prélevé par: |  |
| Nature de l'échantillon: MG20 | Prélevé le:  |  |

| Pycnomètre no: H M | lasse du pycnomètre | 189.2 | g |
|--------------------|---------------------|-------|---|
|--------------------|---------------------|-------|---|

| A) Masse dans l'air de la prise d'essai s | séché à l'étuve (110°C)        | 456.2 | g |
|-------------------------------------------|--------------------------------|-------|---|
| B) Masse du pycnomètre rempli d'eau       | 682.2                          | g     |   |
| C) Masse du pycnomètre contenant l'éc     |                                |       |   |
| rempli d'eau jusqu'au trait de jauge      | 973.3                          | g     |   |
| (sous le ménisque)                        | à <u>23</u> °C                 |       |   |
| Masse du granulat fin «saturé et          |                                | 460   | a |
| superficiellement sec»                    | (500g ou g )                   | 400   | g |
| Densité brute                             | $\frac{A}{B + 500,0 - C}$      | 2.70  |   |
| Densité brute (SSS)                       | 500<br>B + 500,0 - C           | 2.72  |   |
| Densité apparente                         | <u>A</u><br>B+A-C              | 2.76  |   |
| Absorption                                | $\frac{500,0-A}{A} \times 100$ | 0.83  | % |
|                                           |                                |       |   |

| Remarque:               |                  |  |
|-------------------------|------------------|--|
|                         |                  |  |
|                         |                  |  |
| Analysé par: Jesus Cruz | Date: 23-11-2019 |  |



BNQ 2560-067

# DENSITÉ RELATIVE ET ABSORPTION DU GROS GRANULAT

| Projet: SIMULATEUR            | Forage No.:  |  |
|-------------------------------|--------------|--|
| Client: JEAN - PASCAL         | Profondeur:  |  |
| Provenance:                   | Prélevé par: |  |
| Nature de l'échantillon: MG20 | Prélevé le:  |  |

| A) Masse de l'agrégat séché à l'étuve (110°C)                                                                                                                               |                             | 3556.3               | g  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------|----|
| B) Masse de l'agrégat saturé dans l'air                                                                                                                                     |                             | 3586.8               | g  |
| C) Masse de l'agrégat pesé dans l'eau                                                                                                                                       |                             | 2241.9               | g  |
| D) Température de l'eau (23,0 ± 1,7°C)                                                                                                                                      |                             | 24                   | °C |
|                                                                                                                                                                             |                             |                      |    |
| 1) Densité relative brute (Bulk)                                                                                                                                            | A<br>B-C                    | 2.64                 |    |
| <ol> <li>Densité relative brute (Bulk)</li> <li>Densité relative brute (Bulk) de<br/>l'échantillon saturé mais sec en surface</li> </ol>                                    | A<br>B-C<br>B<br>B-C        | 2.64<br>2.67         |    |
| <ol> <li>Densité relative brute (Bulk)</li> <li>Densité relative brute (Bulk) de<br/>l'échantillon saturé mais sec en surface</li> <li>Densité relative apparent</li> </ol> | A<br>B-C<br>B-C<br>A<br>A-C | 2.64<br>2.67<br>2.71 |    |

| Remarque:               |                  |  |
|-------------------------|------------------|--|
|                         |                  |  |
|                         |                  |  |
| Analysé par: Jesus Cruz | Date: 16-01-2020 |  |



BNQ 2560-067

# DENSITÉ RELATIVE ET ABSORPTION DU GROS GRANULAT

| Projet: SIMULATEUR             | Forage No.:  |  |
|--------------------------------|--------------|--|
| Client: JEAN - PASCAL          | Profondeur:  |  |
| Provenance:                    | Prélevé par: |  |
| Nature de l'échantillon: MG112 | Prélevé le:  |  |

| A) Masse de l'agrégat séché à l'étuve (110°C)                                         | 6415.6 | g  |
|---------------------------------------------------------------------------------------|--------|----|
| B) Masse de l'agrégat saturé dans l'air                                               | 6462.9 | g  |
| C) Masse de l'agrégat pesé dans l'eau                                                 | 4027   | g  |
| D) Température de l'eau (23,0 ± 1,7°C)                                                | 24     | °C |
| 1) Densité relative brute (Bulk) A<br>B-C                                             | 2.63   |    |
| 2) Densité relative brute (Bulk) de B<br>l'échantillon saturé mais sec en surface B-C | 2.65   |    |
| 3) Densité relative apparent A<br>A-C                                                 | 2.69   |    |
| 4)Absorption B-A                                                                      | 0.74   | %  |

| Remarque:               |                  |  |
|-------------------------|------------------|--|
|                         |                  |  |
|                         |                  |  |
| Analysé par: Jesus Cruz | Date: 16-01-2020 |  |

# Annexe E

# Essais de nucléodensimètre sur le sol et les matériaux granulaires

| Fransports.        |
|--------------------|
| Mobriste durable   |
| et Electrification |

# Détermination du degré de compacité d'un sol ou d'un matériau Québec Es Es granulaire à l'aide d'un nucléodensimètre (LC 22-003)

Nole : ce famulaire peut aussi s'appliquer dans le cas d'une masse volumique sèche maximale étable à l'aide d'une planche de réference. Dans ce cas, certains résultats provenant du V-2746 doixent être rehansachts dans le présent formulaire.

| Dossier MTMDET-                                                                                     | 1                                                                                                                     | Information générale Dossier MTMDET-Laboratoire   |                                                                    |                                                                    |                                                                                                                | Dossier du laboratoire  |                     |                     |                     |                       |                |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|---------------------|---------------------|---------------------|-----------------------|----------------|
| Entrepreneur Surveilant-<br>Jean-Pa                                                                 |                                                                                                                       |                                                   |                                                                    | t-Organisme<br>ascal Bilodeau                                      |                                                                                                                |                         | Route<br>Fosse      |                     | Municip<br>Québ     | alité<br>Jec          |                |
|                                                                                                     |                                                                                                                       | a contract                                        |                                                                    |                                                                    | Information                                                                                                    | spécifiqu               |                     |                     |                     |                       |                |
| Matériau granulain<br>MG-20                                                                         | e (calibre)                                                                                                           |                                                   |                                                                    | Autre matér                                                        | iau                                                                                                            | 200-2002                |                     | Usage               |                     |                       |                |
| Nom et numéro de                                                                                    | la source                                                                                                             |                                                   |                                                                    |                                                                    | Municipalité                                                                                                   | e (source)              | ( <u></u>           |                     |                     |                       |                |
|                                                                                                     |                                                                                                                       | - 30                                              |                                                                    | 1022125                                                            | and a second |                         |                     | 200 200             | 201 - AAM281 (1982) |                       |                |
| Numéro de lot                                                                                       | uméro de lot Couche de                                                                                                |                                                   |                                                                    | Epaisseur moyenne (mm) Superficie (m <sup>2</sup> )<br>n           |                                                                                                                |                         | Localisa            | Localisation du lot |                     |                       |                |
|                                                                                                     | (                                                                                                                     |                                                   |                                                                    |                                                                    | Nucleode                                                                                                       | naimétre                |                     | I Museline          | 40.000              |                       |                |
| Travler                                                                                             |                                                                                                                       |                                                   |                                                                    | 2411 b                                                             |                                                                                                                |                         |                     | Numero<br>0022      | de sene             |                       |                |
| Troxier                                                                                             |                                                                                                                       |                                                   |                                                                    | 3411-0                                                             |                                                                                                                |                         |                     | 8022                |                     |                       |                |
| Méthode pour MVma                                                                                   | ax 🗌 Pland                                                                                                            | he de ré                                          | férence                                                            | Proctor n                                                          | nëthode A                                                                                                      | Proclor me              | thode 8 🗌 Pr        | octor métho         | de C                |                       |                |
| Masse volumique me                                                                                  | azimale sèche (MVma                                                                                                   | <b>z</b> )                                        | % reters                                                           | u tamia 5 mm                                                       | (Pr) <sup>p</sup>                                                                                              |                         |                     |                     | Densité bri         | ute du gros gra       | nulat (D)      |
|                                                                                                     | Kg/m <sup>3</sup>                                                                                                     | 1                                                 | % разза                                                            | ent ternis 5 mm                                                    | n (100-Pr=Sr)                                                                                                  |                         |                     | 1                   | 1.5                 |                       |                |
| Masse volumique sé<br>(MV <sub>c</sub> ) Formule 1                                                  | che corrigée à 0% de                                                                                                  | pierre                                            |                                                                    |                                                                    | Kgím <sup>a</sup>                                                                                              | Teneur                  | en eau optimale (   | Wase)               | \$                  |                       |                |
| Facteur de correction (pour le % de pierre) (Fc)<br>Formule 2                                       |                                                                                                                       |                                                   |                                                                    |                                                                    |                                                                                                                | Correcti                | on de la teneur er  | n eau (fadeu        | ar K, formulaire    | (, formulaire V-2335) |                |
| Valeurs référentielles                                                                              | ètre)                                                                                                                 | Densle<br>0.5%                                    |                                                                    |                                                                    |                                                                                                                | Humidite<br>0.7%        |                     |                     |                     |                       |                |
| HANTIER                                                                                             |                                                                                                                       |                                                   |                                                                    | 0.500                                                              |                                                                                                                | the second second       |                     | and and             | SHARMON A           | 2                     | 0.5            |
| Date de l'essai (Annéi                                                                              | e-Mois-Jour)                                                                                                          |                                                   |                                                                    | 20                                                                 | 19-10-31 2                                                                                                     | 019-10-                 | 31 2019-10          | -31 201             | 9-10-31             |                       | - 8            |
| Numero de l'échantilo                                                                               | on (analyse granulomé                                                                                                 | itique)                                           | 5                                                                  |                                                                    | 1                                                                                                              | 2                       | 3                   | 18 .                | 4                   |                       | - 3            |
| Voie, rempe ou aube                                                                                 |                                                                                                                       |                                                   | 1                                                                  |                                                                    | Fosse                                                                                                          | Fosse                   | Foss                | e f                 | osse                |                       | 8              |
| Chainage                                                                                            |                                                                                                                       |                                                   |                                                                    |                                                                    | 35                                                                                                             |                         | 10                  | 12                  |                     |                       | 3              |
| Distance de la bordur                                                                               | e (m) 🗌 Gauche 🗍 I                                                                                                    | Droite (                                          | TCL                                                                |                                                                    |                                                                                                                |                         | - 10                | 18                  |                     | }                     | 12             |
| Elévation                                                                                           |                                                                                                                       |                                                   |                                                                    |                                                                    | and a                                                                                                          |                         | 1 com               | - 18 L              | E                   |                       | 3              |
| Profondeur de l'essai                                                                               | (mm)                                                                                                                  |                                                   |                                                                    |                                                                    | 200                                                                                                            | 200                     | 200                 | 18 3                | 200                 |                       | - X            |
| Masse volumique hu                                                                                  | mide (MVH-mar) (Ka                                                                                                    | (m²)                                              |                                                                    | 1.1.1                                                              | 2197                                                                                                           | 2212                    | 2239                | )                   | 2218                |                       | 3              |
| Quantité d'eau du mu                                                                                | atérieu (Mana) (Kalm                                                                                                  | 19)                                               |                                                                    |                                                                    | 76                                                                                                             | 72                      | 57                  | 1 8 1               | 67                  | }                     | 2              |
| Masse volumique sé                                                                                  | che (MVS                                                                                                              | 14                                                |                                                                    | 2                                                                  | 2121                                                                                                           | 2140                    | 2181                | 1 2 2               | 2151                |                       | 8              |
| Teneur en cau fe                                                                                    | -1051                                                                                                                 |                                                   |                                                                    |                                                                    | 3.6                                                                                                            | 3.4                     | 2.6                 | 1 3 3               | 3.1                 | }                     | 8              |
| % releau tamis 5 mm                                                                                 | du matériou ou sculté                                                                                                 | Pres                                              |                                                                    |                                                                    | 8                                                                                                              |                         |                     | 12                  |                     |                       | 8              |
| Masse volumique séc                                                                                 | he maximale a alleind                                                                                                 | ine (MM)                                          | (Kalmi) Fe                                                         | amule 3                                                            | 1                                                                                                              |                         | 38                  | 13                  |                     |                       | 2              |
| Degré de compacilé o                                                                                | iblenu (% Compacité)                                                                                                  | Formula                                           | 4                                                                  |                                                                    |                                                                                                                |                         |                     |                     |                     |                       | 2              |
| Degré de compacilé n                                                                                | ninimal exige                                                                                                         |                                                   |                                                                    |                                                                    | 90,0% 95.09                                                                                                    | 6 98,0%                 | 95% 98%             | 100%                | Planche ) 🕅         | Autre% n/v            | 60             |
| ORMULES                                                                                             |                                                                                                                       |                                                   |                                                                    |                                                                    |                                                                                                                |                         |                     |                     |                     |                       |                |
| 1 Masse voluntique se                                                                               | èche comigée à D% de ok                                                                                               | eme                                               | 2 Fadeur d                                                         | ie correction (pa                                                  | ur ie % de plerre)                                                                                             | 3 Masse vo              | sumique seche mea   | imale à atlein      | de' de              | Degré de comp         | ecité obtenu"  |
| MVc = MVmex                                                                                         | (9 x Pr x D) x 100                                                                                                    |                                                   | Fo                                                                 | = MVmax -                                                          | MVc                                                                                                            | M                       | V = (Fc X Powerse)  | + MVo               | % Compe             | cité = MV3            | Scherter x 1   |
| (100                                                                                                | HPr)                                                                                                                  |                                                   |                                                                    | Pr                                                                 | Section 20                                                                                                     |                         | ou MV = MVm         | 100                 | 0/53223             | 1000                  | WV             |
| Pour l'essai avec<br>en % reteru Pr).<br>Valeur provenan<br>Selon l'article 7.1<br>•Si P chantier > | cénergie de compacta<br>Pour une planche de r<br>t de l'appareil nucléod<br>I de la méthode LC 22<br>50% : MV = MVmax | ige modi<br>eference<br>ensimete<br>-003<br>•Si F | fiée (Proch<br>e : donnée<br>re (mesure<br><sup>o</sup> chantier - | or) : donnée p<br>provenant du<br>en chantier).<br>- Pr > 5% : éte | vovenant du rap<br>V-2746.<br>sblir une nouvelk                                                                | port d'essai<br>e MVmax | ou de l'attestation | t de conform        | ilė (ne pas out     | alier de convert      | irle % pessant |
| Formulaire prépar                                                                                   | épar                                                                                                                  |                                                   | 121-252                                                            | 10                                                                 |                                                                                                                |                         | 65                  | 27 . 28             |                     |                       | 198724         |

| Nom<br>Francis Lemay | Signature | Organisme<br>MTQ | Date (Know Main-Joar)<br>2019-11-01 |
|----------------------|-----------|------------------|-------------------------------------|
| Approuvé par         |           |                  |                                     |
| Nom                  | Signature | Organisme        | Date (Acobs-Mais-Joar)              |
|                      | 6         |                  | 18                                  |

Ministère des Transports, de la Mobilité durable et de l'Électrification des transports

V-2009 (2016-07)

| -         |         |       |
|-----------|---------|-------|
| Transp    | DVTES,  |       |
| Mobili    | té du   | rable |
| ot Éloc   | triffe. | noire |
| Acres des |         | -     |

Québec EX EX granulaire à l'aide d'un nucléodensimètre (LC 22-003)

Nole : ce formulaire peut aussi s'appliquer dans le cas d'une masse volumique sèche maximale étable à l'aide d'une planche de réference. Dans ce cas, certains résultats provenant du V-2746 doixent être retenanceits dans le présent formulaire.

| Dossier MTMDET-Entrepr                                                                                                                           | eneur                                                                                            | Dos                                                                                 | Informatic<br>sier MTMDET-Laborat                                                                               | o <b>n général</b> e<br>Ioire | i                                                    | Dossier d                       | u laboratoire                                                                                                    | 0                                |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------|
| Entrepreneur                                                                                                                                     | St.<br>Je                                                                                        | iveilant-Organi<br>ean-Pascal                                                       | sme<br>Bilodeau - U Lav                                                                                         | ral                           | Route<br>Fosse                                       |                                 | Municipal<br>Québe                                                                                               | ité<br>C                         | 2                              |
| Malériau granulaire (calibr                                                                                                                      | e)                                                                                               | Autr                                                                                | Information<br>e matériau                                                                                       | spécifique                    | •/                                                   | Usage                           |                                                                                                                  |                                  |                                |
| Nom et numéro de la sour                                                                                                                         | ce                                                                                               |                                                                                     | Municipalité                                                                                                    | e (source)                    | 1                                                    |                                 |                                                                                                                  |                                  |                                |
| Numéro de lot Co                                                                                                                                 | uche de<br>demiers mm sou                                                                        | s fondation                                                                         | Epaisseur moyenne                                                                                               | (mm) Su                       | iperficie (m²)                                       | Localisat                       | ion du lot                                                                                                       |                                  |                                |
| Marque<br>Troxler                                                                                                                                |                                                                                                  | Mod<br>34                                                                           | Nucléode<br>éle<br>11-b                                                                                         | nsimétre                      |                                                      | Numéro d<br>9822                | le série                                                                                                         |                                  |                                |
| DONNÉES                                                                                                                                          | dariate.                                                                                         |                                                                                     | 2000                                                                                                            | 12                            |                                                      |                                 |                                                                                                                  |                                  |                                |
| Méthode pour MV max                                                                                                                              | Plenche de                                                                                       | référence 🔲 l                                                                       | Proctor méthode A                                                                                               | Proctor met                   | hode 8 🗌 Pr                                          | octor méthod                    | e C                                                                                                              |                                  |                                |
| Masse volumique maximale s                                                                                                                       | èche (MVmax)<br>Kaimi                                                                            | % reteru tam                                                                        | is 5 mm (Pr) <sup>1</sup><br>nis 5 mm (100-Pr=Sr)                                                               |                               |                                                      |                                 | Densilë brute                                                                                                    | du gros granu                    | let (D)                        |
| Masse volumique sèche com<br>(MN <sub>c</sub> ) Formule 1                                                                                        | gée à 0% de pierre                                                                               |                                                                                     | Kg/m <sup>3</sup>                                                                                               | Tencure                       | n eau optimale (i                                    | Mard                            |                                                                                                                  | 8                                |                                |
| Facteur de correction (pour le 1<br>Formule 2                                                                                                    | % de pierre) (Fc)                                                                                |                                                                                     |                                                                                                                 | Correctio                     | n de la teneur er                                    | eeu (facleur                    | K, formulaire V                                                                                                  | -2335)                           |                                |
| Valeurs référentielles (R) (Cal                                                                                                                  | libration in situ du n                                                                           | ucléodensimètre)                                                                    | 8                                                                                                               | Densite<br>0.6%               |                                                      | 1                               | Humidite<br>1.2%                                                                                                 |                                  |                                |
| CHANTIER                                                                                                                                         |                                                                                                  |                                                                                     |                                                                                                                 |                               |                                                      | and the second                  |                                                                                                                  |                                  |                                |
| Dele de l'essai (Année-Mois-Jo                                                                                                                   | sur}                                                                                             |                                                                                     | 2019-10-21 2                                                                                                    | 019-10-2                      | 21 2019-10                                           | -21 2019                        | 9-10-21                                                                                                          |                                  | 8 - B                          |
| Numero de l'échantilion (analy                                                                                                                   | se granulométrique                                                                               | 1                                                                                   | 1                                                                                                               | 2                             | 3                                                    | - 18 - Ju                       | 4                                                                                                                |                                  | 8 8                            |
| Voie, rampe ou aube                                                                                                                              |                                                                                                  | - Part                                                                              | Fosse                                                                                                           | Fosse                         | Fosse                                                | e Fi                            | osse                                                                                                             |                                  | 8 /                            |
| Chainage                                                                                                                                         |                                                                                                  |                                                                                     |                                                                                                                 |                               | - 32                                                 | 18                              | 8                                                                                                                |                                  | S - 8                          |
| Distance de la bordure (m)                                                                                                                       | Gaushe Droite                                                                                    | CL CL                                                                               |                                                                                                                 |                               | -38                                                  | - 18                            | 8                                                                                                                |                                  | 8 8                            |
| Élévation                                                                                                                                        |                                                                                                  |                                                                                     | S. march                                                                                                        | 1-000                         | 38 comme                                             | 18                              | sam B                                                                                                            |                                  | 8 8                            |
| Profondeur de l'essai (mm)                                                                                                                       |                                                                                                  |                                                                                     | 200                                                                                                             | 200                           | 200                                                  | 1                               | 200                                                                                                              |                                  | 8 8                            |
| <sup>1</sup> Masse volumique humide (M                                                                                                           | Vitigenier) (Kg/m²)                                                                              |                                                                                     | 2226                                                                                                            | 2181                          | 2168                                                 | 2                               | 226                                                                                                              |                                  |                                |
| <sup>1</sup> Quantité d'eau du matériau (N                                                                                                       | Accester) (Kalm?)                                                                                |                                                                                     | 130                                                                                                             | 112                           | 104                                                  |                                 | 115                                                                                                              |                                  | 3                              |
| <sup>1</sup> Masse volumique seche (MVS                                                                                                          | Science) (Kajim <sup>2</sup> )                                                                   |                                                                                     | 2096                                                                                                            | 2069                          | 2065                                                 | 2                               | 111                                                                                                              |                                  | 3                              |
| <sup>1</sup> Teneur en cau (wowder) (% )                                                                                                         |                                                                                                  |                                                                                     | 6.2                                                                                                             | 5.4                           | 5.0                                                  | 10 13                           | 5.4                                                                                                              |                                  | 5                              |
| % relenu tamis 5 mm du mater                                                                                                                     | iou ousculté (P <sub>ctant</sub>                                                                 | »).                                                                                 |                                                                                                                 |                               | 12                                                   | 18                              | 8                                                                                                                |                                  | 1                              |
| Masse volumique sèche maxin                                                                                                                      | nale à atleindre (M                                                                              | /) (Kg/m <sup>2</sup> ) Formul                                                      | e 3                                                                                                             |                               |                                                      | - 18                            | 6                                                                                                                |                                  | S                              |
| Degré de compacité obtenu (%                                                                                                                     | Compacile) Form                                                                                  | vie 4                                                                               | in a second s |                               | and have seen as                                     | Second Second                   | and the second |                                  |                                |
| Degré de compacité minimal es                                                                                                                    | xigė                                                                                             |                                                                                     | 90,0% 95,0%                                                                                                     | 6 🗌 98,0%                     | 95% 98%                                              | 100% (P                         | lanche ) 🔟 Au                                                                                                    | he% n/v                          |                                |
| FORMULES<br>1 Masse volumique sèche conig<br>MVc = <u>MVmax</u> - (9 x Pr x)<br>(100-Pr)                                                         | yéc é 0% de plove<br>D) x 100                                                                    | 2 Facteur de cor<br>Fo=_1                                                           | rection (pour le % de pierre)<br>AVmax - MVo<br>Pr                                                              | 3 Masse vol<br>Mi             | unlique sèche max<br>/= (Fc X Pawser)<br>ou MV = MVm | imele å sticindr<br>+ MVc<br>ax | e* 4 0<br>% Compecilie                                                                                           | legré de compec<br>é =MVSa<br>MV | të obtenu"<br>veter x 100<br>/ |
| Pour l'essai avec energie<br>en % retenu Pr). Pour une     Valeur provenant de l'app     Selon l'article 7.1 de la m     Si P chantier > 50% : M | de compactage mo<br>planche de referer<br>areil nucléodensim<br>éthode LC 22-003<br>V = MVmax ◆S | difiee (Prodor) : (<br>ice : donnée prov<br>ébe (mesure en d<br>i P chantier – Pr : | donnée provenant du rap<br>enant du V-2746.<br>hanšer).<br>• 5% : établir une nouvell                           | port d'essai o<br>e MVmax     | ou de l'attestation                                  | de conformit                    | é (ne pas ouble                                                                                                  | er de convertir i                | e % pessant                    |
| Formulaire préparé par                                                                                                                           |                                                                                                  | 61222 - 10                                                                          |                                                                                                                 |                               | - 206                                                | - 215<br>- 215                  |                                                                                                                  | 2.0                              | av - 3                         |
|                                                                                                                                                  |                                                                                                  |                                                                                     |                                                                                                                 |                               |                                                      |                                 |                                                                                                                  |                                  |                                |

Organis MTQ Guillaume Villeneuve 2019-10-21 Approuvé par Signature Organisme Date (Arete

Ministère des Transports, de la Mobilité durable et de l'Électrification des transports

V-2009 (2018-07)

| Fransports,        |  |
|--------------------|--|
| Mobriste durahie   |  |
| et Electrification |  |

# Motivité durable des transports Est Est Université du chébec Est Est Est Est université d'un sol ou d'un matériau granulaire à l'aide d'un nucléodensimètre (LC 22-003)

Nole : ce formulaire peut aussi s'appliquer dans le cas d'une masse volumique sèche maximale étable à l'aide d'une planche de réference. Dans ce cas, certains résultab provenant du V-2746 doixent être retranscrits dans le présent formulaire.

| Dossier MTMDET-Entrepreneur                                                                                                                                                                                          |                                                                                           | Informatio<br>Informatio<br>Informatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n générale<br>oire             |                    | Dossier du          | laboratoire                                                                                                    |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|
| Entrepreneur                                                                                                                                                                                                         | Surveilant-Orga<br>Jean-Pasca                                                             | urveilant-Organisme<br>ean-Pascal Bilodeau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                | Route<br>Fosse     |                     | Municipalité<br>Québec                                                                                         |                          |
|                                                                                                                                                                                                                      |                                                                                           | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | spécifique                     | 6                  |                     | Constant and the second                                                                                        |                          |
| Matériau granulaire (calibre)                                                                                                                                                                                        | AL                                                                                        | tre matériau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510 - 41174                    |                    | Usage               |                                                                                                                |                          |
| Nom et numéro de la source                                                                                                                                                                                           |                                                                                           | Municipalité                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (source)                       |                    |                     |                                                                                                                |                          |
| (0.00) - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00                                                                                                      | 80                                                                                        | mana analimi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | in star                        | 0000000            | 200-20000           | district.                                                                                                      |                          |
| Numero de lot Couche (<br>150 demiers mm so                                                                                                                                                                          | de<br>Sus fondation                                                                       | Epaisseur moyenne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (mm) Sup                       | perficie (m²)      | Localisation        | n du lot                                                                                                       |                          |
| Lineur                                                                                                                                                                                                               | 1.00                                                                                      | Nucleode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | naimetre                       |                    | L blumore de        |                                                                                                                |                          |
| Troyler                                                                                                                                                                                                              | 24                                                                                        | 111_b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |                    | 0922                | serie                                                                                                          |                          |
| ONNEES                                                                                                                                                                                                               |                                                                                           | 1110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |                    | OULL                |                                                                                                                |                          |
| Méthode pour MVmax Planche d                                                                                                                                                                                         | le référence                                                                              | Proctor méthode A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Proclor meth                   | ode 8 🛛 Pr         | octor méthode (     | 2                                                                                                              |                          |
| Masse volumique maximale sèche (MVmax)                                                                                                                                                                               | % reternu ta                                                                              | mis 5 mm (Pr) <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |                    |                     | Densité brute du                                                                                               | gros grenulat (D)        |
| Kgimi                                                                                                                                                                                                                | % pessant                                                                                 | tamis 5 mm (100-Pr=Sr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                |                    | 100                 |                                                                                                                |                          |
| Masse volumique sèche corrigée à 0% de pier<br>(MV <sub>c</sub> ) Formule 1                                                                                                                                          | re                                                                                        | Kgíma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Teneur en                      | eau optimale (     | M <sub>et</sub> t)  |                                                                                                                | \$                       |
| Facteur de correction (pour le % de pierre) (Fc)<br>Formule 2                                                                                                                                                        |                                                                                           | Correction de la teneur en eau (facteur K, formulaire V-2335)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                | 5)                 |                     |                                                                                                                |                          |
| Valeurs référentielles (R) (Calibration in situ du                                                                                                                                                                   | aleurs référentielles (R) (Calibration in situ du nucléodensimètre)                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Densilé Humidilé<br>0.6% 0.97% |                    |                     |                                                                                                                |                          |
| HANTIER                                                                                                                                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |                    | and an and a second | Verser of                                                                                                      | 00                       |
| Date de l'essai (Année-Mois-Jour)                                                                                                                                                                                    |                                                                                           | 2019-10-25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 019-10-2                       | 5 2019-10          | -25 2019-           | 10-25                                                                                                          | 8                        |
| Numero de l'échantillon (analyse granulométriq                                                                                                                                                                       | ue)                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                              | 3                  | 4                   | 8 8                                                                                                            | 3                        |
| /oie, rampe ou aube                                                                                                                                                                                                  | 2240                                                                                      | Fosse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fosse                          | Foss               | e Fos               | ise                                                                                                            | 1                        |
| Shainage                                                                                                                                                                                                             |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 12                 | 12                  | 8                                                                                                              | 3                        |
| Distance de la bordure (m) 🗌 Gauche 🦳 Droi                                                                                                                                                                           | te 🗂 CL                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 38                 | - 18                | 8                                                                                                              | 8                        |
| Elévation                                                                                                                                                                                                            |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-100530                       | B warne            | - 13 - marco        | an B                                                                                                           | 3                        |
| Profondeur de l'essai (mm)                                                                                                                                                                                           |                                                                                           | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                            | 200                | 20                  | 0                                                                                                              | 8                        |
| Masse volumique humide (MVH prester) (Kg/m <sup>2</sup> )                                                                                                                                                            | iii                                                                                       | 2069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2163                           | 2087               | 20                  | 45                                                                                                             | 3                        |
| Quantité d'eau du matérieu (Movenire) (Koj/m?)                                                                                                                                                                       |                                                                                           | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 54                             | 50                 | 4                   | 9                                                                                                              | 8                        |
| Masse volumique sèche (MVSchenier) (Kg/m²)                                                                                                                                                                           |                                                                                           | 2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2109                           | 2037               | 19                  | 96                                                                                                             | 8                        |
| Teneur en eau (wowder) (% )                                                                                                                                                                                          |                                                                                           | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6                            | 2.5                | 2.                  | 4                                                                                                              | 3                        |
| & relenu tamis 5 mm du matérieu ousculté (P <sub>a</sub>                                                                                                                                                             | (win)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 18                 | 12                  | ŝ                                                                                                              | 8                        |
| llasse volumique sèche maximale à alleindre (                                                                                                                                                                        | MV) (Kg/m <sup>2</sup> ) Form                                                             | ule 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 38                 | 13                  | 8                                                                                                              |                          |
| Jegré de compacilé oblenu (% Compacilé) For                                                                                                                                                                          | mule 4                                                                                    | and the second sec |                                | Bernard            | and mount           | an an an Albana an A | and the                  |
| Jegré de compacilé minimal exigé                                                                                                                                                                                     |                                                                                           | 90,0% 95,0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 98,0%                          | 95% 98%            | 100% (Plan          | iche ) 🗹 Aubre?                                                                                                | s n/v                    |
| ORMULES                                                                                                                                                                                                              |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 15                 | 100                 |                                                                                                                |                          |
| 1 Masse volumique sèche configée à D% de pierre                                                                                                                                                                      | 2 Facteur de c                                                                            | prection (pour le % de plerre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 Masse volu                   | mique sèche mex    | imale à atteindre"  | 4 Degré                                                                                                        | de compecité oblenu"     |
| MVc = MVmax - (9 x Pr x D) x 100                                                                                                                                                                                     | Fe=                                                                                       | MVmax - MVc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MV                             | = (Fc X Powerse)   | + MVa               | % Compecité =                                                                                                  | MVScherter x 10          |
| (100-Pr)                                                                                                                                                                                                             | 0.0758                                                                                    | Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14                             | ou MV = MVm        | 50                  | 574-065-04-05-05-05-05-05-05-05-05-05-05-05-05-05-                                                             | MV                       |
| Pour l'essai avec énergie de compactage<br>en % reteru Pr). Pour une planche de refer<br>Valeur provenant de l'apparei nucléoidens<br>Selon l'article 7.1 de la méthode LC 22-00<br>esi P chantier > 50% IMV = [Mmax | modifiée (Proctor)<br>rence : donnée pro<br>imètre (mesure en<br>3<br>•Si P chantier – Pr | : donnée provenant du rap<br>ovenant du V-2746.<br>: chantier).<br>: > 5% : établir une pouvelir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | port d'essai ou<br>• MVmax     | u de l'attestation | de conformité (     | ne pas oublier de                                                                                              | : convertir le % passant |
| Formulaire préparé par                                                                                                                                                                                               |                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | 60                 | 27 . 28             |                                                                                                                | 201024                   |

| Nom           | Signature              | Organisme | Date (Anne-Mais-Joar)  |
|---------------|------------------------|-----------|------------------------|
| Francis Lemay |                        | MTQ       | 2019-10-25             |
| Approuvé par  | the data of the second |           |                        |
| Nom           | Signature              | Organisme | Date (Armon-Main-Jour) |
|               |                        |           | 18                     |

Ministère des Transports, de la Mobilité durable et de l'Électrification des transports

V-2009 (2016-07)

# Annexe F

# Essais de nucléodensimètre sur les couches d'enrobé

| Densities (ight") oblemues avec un nucléodensimèlne |      |            |      |
|-----------------------------------------------------|------|------------|------|
| Emplooement                                         | Co   | uche de bo | 56   |
|                                                     | 2291 | 2283       | 2259 |
|                                                     | 2321 | 2285       |      |
| -                                                   | 239T | 2361       | 2407 |
|                                                     | 2424 | 2378       |      |
| ្ន                                                  | 2498 | 2468       | 2535 |
|                                                     | 247D | 2426       |      |
| 2 N                                                 | 2452 | 23IB       | 2387 |
|                                                     | 2393 | 2422       |      |
| -                                                   | 2433 | 2454       | 2425 |
| ° [                                                 | 2458 | 2497       |      |

| Densities (ig  | seureido ("mi | evec un nucléos | ensimètre |
|----------------|---------------|-----------------|-----------|
| Emplacement    | Cour          | che de auri     | ace       |
|                | 24D4          | 2371            | 2408      |
|                | 2386          | 2377            |           |
|                | 2401          | 2397            | 2396      |
| - * F          | 248           | 2389            | c.        |
|                | 2360          | 2371            | 2362      |
| 3              | 2363          | 2368            |           |
| . î            | 2360          | 2375            | 2370      |
| 4              | 2413          | 2385            | 00000000  |
| 2 <sup>6</sup> | 2269          | 2299            | 2307      |
| <u>s</u> –     | 23/2          | 2316            | C         |
|                | 2434          | 2455            | 2452      |
| 5              | 2430          | 2421            |           |
|                | 2329          | 2327            | 2321      |
| 37 F           | 2320          | 2317            |           |
| 10             | 2305          | 2288            | 2296      |
| 8              | 2287          | 2295            |           |
|                | 2261          | 2254            | 2256      |
| 3              | 2260          | 2267            |           |
|                | 233           | 2333            | 2332      |
|                | 2344          | 2347            | 63933     |

Note: L'emplacement «10 n'a pas été mesuré donc înexistant sur le plan.

Г



Porté dé garagé

2

| Densités (kg/m3) obtenues avec un nucléodensimètre |      |            |      |  |
|----------------------------------------------------|------|------------|------|--|
| Emplacement                                        | Co   | uche de ba | se   |  |
| 14. s.                                             | 2291 | 2283       | 2259 |  |
|                                                    | 2321 | 2285       |      |  |
|                                                    | 2397 | 2361       | 2407 |  |
| 2                                                  | 2424 | 2378       | 1.1  |  |
|                                                    | 2498 | 2468       | 2536 |  |
| 3                                                  | 2470 | 2426       |      |  |
|                                                    | 2452 | 2318       | 2387 |  |
| 4                                                  | 2393 | 2422       |      |  |
| -                                                  | 2433 | 2454       | 2425 |  |
| 5                                                  | 2458 | 2497       |      |  |

| Emplacement | Coud | he de surt | face |
|-------------|------|------------|------|
|             | 2404 | 2371       | 2408 |
|             | 2386 | 2377       |      |
| 2           | 2401 | 2397       | 2396 |
| 2           | 2418 | 2389       |      |
| 7           | 2360 | 2371       | 2382 |
| 5           | 2363 | 2368       |      |
|             | 2360 | 2375       | 2370 |
| 4           | 2413 | 2385       |      |
| -           | 2269 | 2299       | 2307 |
| 2           | 2312 | 2316       |      |
|             | 2434 | 2455       | 2452 |
|             | 2430 | 2421       |      |
| 7           | 2329 | 2327       | 2321 |
| 1           | 2320 | 2317       |      |
|             | 2305 | 2288       | 2296 |
| 0           | 2287 | 2295       |      |
|             | 2261 | 2254       | 2256 |
| 3           | 2260 | 2267       |      |
| 10          | 2331 | 2333       | 2332 |
|             | 2344 | 2347       |      |

Note: L'emplacement #10 n'a pas été mesuré donc inexistant sur le plan.



Ľ

Porte de garage

# Annexe G

# Analyse en laboratoire des vides interstitiels des carottes recueillies sur la planche expérimentale

| Paransports       Del Fermina fion do Pourcen face de<br>Vides et de la compacité dans les<br>Enrobés à CHAUD compactés<br>FS-34-S4-200       Page 1 de 1<br>Révision : 2<br>Date : 2018-06-12 | Transports<br>Québec 22 63<br>Direction des natienaux d'infrastructure<br>Secteur Francés | DÉTERMINATION DU POURCENTAGE DE<br>VIDES ET DE LA COMPACITÉ DANS LES<br>ENROBÉS À CHAUD COMPACTÉS<br>FS-34-S4-200 | Page 1 de 1<br>Révision : 2<br>Date : 2018-06-12 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|

| Numéro de laboratoire | Numéro de projet | Numéro de contrat |
|-----------------------|------------------|-------------------|
|                       | S4-18-047        |                   |

|                                                     |       | Numéros des échantillons                                                                                       |            |            |
|-----------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------|------------|------------|
|                                                     |       | CR1 ESG-10                                                                                                     | CR2 ESG-10 | CR3 ESG-10 |
| Masse sèche (g)                                     | Α     | 2836,2                                                                                                         | 2858,1     | 2632,9     |
| Masse dans l'eau (g)                                | В     | 1672,3                                                                                                         | 1683,9     | 1550,6     |
| Masse SSS (g)                                       | С     | 2847,8                                                                                                         | 2882,4     | 2647,8     |
| Température de l'eau (T°C) < <note 1="">&gt;</note> | 1.000 | 24,9                                                                                                           | 24,9       | 24,9       |
| Facteur de correction < <note 2="">&gt;</note>      | D     | 1,000026                                                                                                       | 1,000026   | 1,000026   |
| Densité brute                                       | E     | 2,413                                                                                                          | 2,385      | 2,400      |
| Densité maximale                                    | F     | 2,600                                                                                                          | 2,600      | 2,600      |
| % des vides réel                                    | G     | 7,2                                                                                                            | 8,3        | 7,7        |
| % de compacité                                      |       | 92,8                                                                                                           | 91,7       | 92,3       |
| Movenne de la compacité (%)                         |       | I and the second se | 92.3       |            |

Note 1 : l'essai doit être effectué à 25 ± 3°C

Note 2 : voir le tableau 1 à la page 7 de 8 de la méthode d'essai LC 26-040

## Calcul de la densité brute (E) et du % des vides (G)

## Notes

| 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | La densité maximale de 2,600 a été fournie |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $(\Delta)$ $(F)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | verbalement par l'entrepreneur suite à un  |
| $E = \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + $ | contrôle interne la veille des travaux     |
| (C-B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2,613 sur la formule).                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |

| Equipements                        |                            | Point de vérification (PV)                |   |    |
|------------------------------------|----------------------------|-------------------------------------------|---|----|
| Balance : 3996 Thermomètres : 1786 |                            | Ecart maximal admissible répétabilité (r) |   |    |
| Bains : 3475                       | Pompe (circulateur) : 2921 |                                           | С | NC |
|                                    |                            | r <= 0.035                                | V |    |

| Réduction d'échantillon          |  |
|----------------------------------|--|
| Inquartation                     |  |
| Diviseur d'échantillon           |  |
| Echantillons obtenues par sciage |  |

| Echantillons préparés par: |                      |
|----------------------------|----------------------|
| Nombre de coups/face:      |                      |
| Essai effectue par:        | Jean-Simon St-Gelais |
| Date de l'essai:           | 2020-01-13           |

Direction des matériaux d'infrastructures

Parc tech ogique du Québec Métropolitain, 2700, rue Einstein, Québec, (QC) G1P 3W8 Tél.: (418) 644-0181 Télécopleur (Fax): (418) 646-6692

| Transports<br>Québec 23 23<br>Director des materioux d'infrastructure<br>Secteur Intenses | DÉTERMINATION DU POURCENTAGE DE<br>VIDES ET DE LA COMPACITÉ DANS LES<br>ENROBÉS À CHAUD COMPACTÉS<br>FS-34-S4-200 | Page 1 de 1<br>Révision : 2<br>Date : 2018-06-12 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|

| Numéro de laboratoire | Numéro de projet | Numéro de contrat |
|-----------------------|------------------|-------------------|
|                       | S4-18-047        |                   |

|                                                     |      | Numéros des échantillons |     |
|-----------------------------------------------------|------|--------------------------|-----|
|                                                     |      | CR4 ESG-10               |     |
| Masse sèche (g)                                     | Α    | 2781,9                   |     |
| Masse dans l'eau (g)                                | В    | 1626,8                   |     |
| Masse SSS (g)                                       | С    | 2794,0                   |     |
| Température de l'eau (T°C) < <note 1="">&gt;</note> | 1.00 | 24,9                     |     |
| Facteur de correction < <note 2="">&gt;</note>      | D    | 1,000026                 |     |
| Densité brute                                       | E    | 2,383                    |     |
| Densité maximale                                    | F    | 2,600                    |     |
| % des vides réel                                    | G    | 8,3                      |     |
| % de compacité                                      |      | 91,7                     |     |
| Movenne de la compacité (%)                         |      | 1                        | 917 |

Note 1 : l'essai doit être effectué à 25 ± 3°C

Note 2 : voir le tableau 1 à la page 7 de 8 de la méthode d'essai LC 26-040

# Calcul de la densité brute (E) et du % des vides (G)

## Notes

|                          |                                                 | La densité maximale de 2,600 a été fournie |
|--------------------------|-------------------------------------------------|--------------------------------------------|
| $( \Delta )$             | (F)                                             | verbalement par l'entrepreneur suite à un  |
| $E = \frac{\Lambda}{*D}$ | $G = \left  1 - \frac{L}{2} \right  * 100$      | contrôle interne la veille des travaux     |
| - (C-B)                  | $\left( \begin{array}{c} F \end{array} \right)$ | (2,613 sur la formule).                    |
| < /                      |                                                 |                                            |

| Equipements                        |                            | Point de vérification (PV)                |   |    |
|------------------------------------|----------------------------|-------------------------------------------|---|----|
| Balance : 3996 Thermomètres : 1786 |                            | Ecart maximal admissible répétabilité (r) |   |    |
| Bains : 3475                       | Pompe (circulateur) : 2921 |                                           | С | NC |
|                                    |                            | r <= 0.035                                | V |    |

| Réduction d'échantillon          |  |
|----------------------------------|--|
| Inquartation                     |  |
| Diviseur d'èchantillon           |  |
| Echantillons obtenues par sciage |  |

| Echantillons préparés par: |                      |
|----------------------------|----------------------|
| Nombre de coups/face:      |                      |
| Essai effectué par:        | Jean-Simon St-Gelais |
| Date de l'essai:           | 2020-01-13           |

Direction des matériaux d'infrastructures

Parc tech ogique du Québec Métropolitain, 2700, rue Einstein, Québec, (QC) G1P 3W8 Tél.: (418) 644-0181 Télécopleur (Fax): (418) 646-6692

| Transports<br>Québec 22 23<br>Direction des matériaux d'infrastructure<br>Sacteur Enrobas | DÉTERMINATION DU POURCENTAGE DE<br>VIDES ET DE LA COMPACITÉ DANS LES<br>ENROBÉS À CHAUD COMPACTÉS<br>FS-34-S4-200 | Page 1 de 1<br>Révision : 2<br>Date : 2018-06-12 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|

| Numéro de laboratoire | Numéro de projet | Numéro de contrat |
|-----------------------|------------------|-------------------|
|                       | S4-18-047        |                   |

|                                                     |       | Numéros des échantillons |           |           |
|-----------------------------------------------------|-------|--------------------------|-----------|-----------|
|                                                     |       | CR1 GB-20                | CR2 GB-20 | CR3 GB-20 |
| Masse sèche (g)                                     | A     | 2857,3                   | 2326,0    | 3018,4    |
| Masse dans l'eau (g)                                | В     | 1710,6                   | 1373,9    | 1819,3    |
| Masse SSS (g)                                       | С     | 2884,1                   | 2327,5    | 3031,4    |
| Température de l'eau (T°C) < <note 1="">&gt;</note> | 12000 | 24,9                     | 24,9      | 24,9      |
| Facteur de correction < <note 2="">&gt;</note>      | D     | 1,000026                 | 1,000026  | 1,000026  |
| Densité brute                                       | E     | 2,435                    | 2,439     | 2,490     |
| Densité maximale                                    | F     | 2,637                    | 2,637     | 2,637     |
| % des vides réel                                    | G     | 7,7                      | 7,5       | 5,6       |
| % de compacité                                      |       | 92,3                     | 92,5      | 94,4      |
| Movenne de la compacité (%)                         |       | Î                        | 93.1      |           |

Note 1 : l'essai doit être effectué à 25 ± 3°C

Note 2 : voir le tableau 1 à la page 7 de 8 de la méthode d'essai LC 26-040

# Calcul de la densité brute (E) et du % des vides (G)

Notes

$$\mathbf{E} = \left(\frac{\mathbf{A}}{\mathbf{C} - \mathbf{B}}\right) * \mathbf{D} \qquad \mathbf{G} = \left(1 - \frac{E}{F}\right) * 100$$

|                | Equipements                | Point de vér      | ification (P | V)           |
|----------------|----------------------------|-------------------|--------------|--------------|
| Balance : 3996 | Thermomètres : 1786        | Ecart maximal adm | issible repe | tabilitė (r) |
| Bains : 3475   | Pompe (circulateur) : 2921 | r <= 0,035        | С            | NC           |
|                |                            |                   |              | X            |

| Réduction d'échantillon          |  |
|----------------------------------|--|
| Inquartation                     |  |
| Diviseur d'échantillon           |  |
| Echantillons obtenues par sciage |  |

| Echantillons préparés par: |                      |
|----------------------------|----------------------|
| Nombre de coups/face:      |                      |
| Essai effectué par:        | Jean-Simon St-Gelais |
| Date de l'essai:           | 2020-01-13           |

Direction des matériaux d'infrastructures

Parc technologique du Québec Métropolitain, 2700, rue Einstein, Québec, (QC) G1P 3W8 Tél.: (418) 644-0181 Télécopieur (Fax): (418) 646-6692

| Transports<br>Québec 23 23<br>Direction des matériaux d'infrastructure<br>Sactaur Enrobes | DÉTERMINATION DU POURCENTAGE DE<br>VIDES ET DE LA COMPACITÉ DANS LES<br>ENROBÉS À CHAUD COMPACTÉS<br>FS-34-S4-200 | Page 1 de 1<br>Révision : 2<br>Date : 2018-06-12 |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|

| Numéro de laboratoire | Numéro de projet | Numéro de contrat |
|-----------------------|------------------|-------------------|
|                       | S4-18-047        |                   |

|                                                     |      | Numéros des échantillons |  | ntillons |
|-----------------------------------------------------|------|--------------------------|--|----------|
|                                                     |      | CR4 GB-20                |  |          |
| Masse sèche (g)                                     | A    | 2542,2                   |  |          |
| Masse dans l'eau (g)                                | В    | 1545,1                   |  |          |
| Masse SSS (g)                                       | С    | 2563,5                   |  |          |
| Température de l'eau (T°C) < <note 1="">&gt;</note> | 1200 | 24,9                     |  |          |
| Facteur de correction < <note 2="">&gt;</note>      | D    | 1,000026                 |  |          |
| Densité brute                                       | E    | 2,496                    |  |          |
| Densité maximale                                    | F    | 2,637                    |  |          |
| % des vides réel                                    | G    | 5,3                      |  |          |
| % de compacité                                      |      | 94,7                     |  |          |
| Movenne de la compacité (%)                         |      | 94,7                     |  |          |

Moyenne de la compacité (%) Note 1 : l'essai doit être effectué à 25 ± 3°C

Note 2 : voir le tableau 1 à la page 7 de 8 de la méthode d'essai LC 26-040

# Calcul de la densité brute (E) et du % des vides (G)

Notes

$$\mathbf{E} = \left(\frac{\mathbf{A}}{\mathbf{C} - \mathbf{B}}\right)^* \mathbf{D} \qquad \mathbf{G} = \left(1 - \frac{E}{F}\right)^* 100$$

| E                                   | quipements          | Point de vér      | ification (P | ′V)    |
|-------------------------------------|---------------------|-------------------|--------------|--------|
| nce : 3996                          | Thermomètres : 1786 | Ecart maximal adm | issible repe | tabili |
| s : 3475 Pompe (circulateur) : 2921 |                     |                   | C            | T      |
|                                     |                     | 1 <= 0,035        | X            | 1      |

| Réduction d'échantillon          |  |
|----------------------------------|--|
| Inquartation                     |  |
| Diviseur d'échantillon           |  |
| Echantillons obtenues par sciage |  |

ala

| Echantillons préparés par: |                      |
|----------------------------|----------------------|
| Nombre de coups/face:      |                      |
| Essai effectué par:        | Jean-Simon St-Gelais |
| Date de l'essai:           | 2020-01-13           |

tė (r) NC

Direction des matériaux d'infrastructures

Parc technologique du Québec Métropolitain, 2700, rue Einstein, Québec, (QC) G1P 3W8 Tél.: (418) 644-0181 Télécopleur (Fax): (418) 646-6692

# Annexe H

Calibration des chapelets de thermistances

| Calibration  | chapelet d   | e thermista | ances |       |       |        |       |       |       |       |
|--------------|--------------|-------------|-------|-------|-------|--------|-------|-------|-------|-------|
|              |              |             |       |       | BARRE | ETTE 1 |       |       |       |       |
| Référence    | 20 mm        | ∆t          | 50mm  | Δt    | 80mm  | ∆t     | 110mm | Δt    | 140mm | ∆t    |
| 10.06        | 9.9          | -0.16       | 10    | -0.06 | 9.9   | -0.16  | 10    | -0.06 | 9.9   | -0.16 |
| 9.04         | 8.9          | -0.14       | 9     | -0.04 | 8.9   | -0.14  | 9     | -0.04 | 8.9   | -0.14 |
| 8.02         | 7.9          | -0.12       | 7.9   | -0.12 | 7.9   | -0.12  | 7.9   | -0.12 | 7.9   | -0.12 |
| 7.04         | 6.9          | -0.14       | 7     | -0.04 | 6.9   | -0.14  | 7     | -0.04 | 6.9   | -0.14 |
| 6.03         | 5.9          | -0.13       | 6     | -0.03 | 5.9   | -0.13  | 6     | -0.03 | 5.9   | -0.13 |
| 5            | 4.9          | -0.1        | 4.9   | -0.1  | 4.9   | -0.1   | 5     | 0     | 4.9   | -0.1  |
| 4.02         | 3.9          | -0.12       | 4     | -0.02 | 3.9   | -0.12  | 4     | -0.02 | 3.9   | -0.12 |
| 3.02         | 3            | -0.02       | 3     | -0.02 | 2.9   | -0.12  | 3     | -0.02 | 2.9   | -0.12 |
| 2.02         | 2            | -0.02       | 2     | -0.02 | 2     | -0.02  | 2     | -0.02 | 2     | -0.02 |
| 1.01         | 1            | -0.01       | 1     | -0.01 | 1     | -0.01  | 1     | -0.01 | 1     | -0.01 |
| 0.89         | 0.9          | 0.01        | 0.9   | 0.01  | 0.9   | 0.01   | 0.9   | 0.01  | 0.9   | 0.01  |
| 0.81         | 0.8          | -0.01       | 0.8   | -0.01 | 0.8   | -0.01  | 0.8   | -0.01 | 0.8   | -0.01 |
| 0.71         | 0.7          | -0.01       | 0.7   | -0.01 | 0.7   | -0.01  | 0.7   | -0.01 | 0.7   | -0.01 |
| 0.6          | 0.6          | 0           | 0.6   | 0     | 0.6   | 0      | 0.6   | 0     | 0.6   | 0     |
| 0.51         | 0.5          | -0.01       | 0.5   | -0.01 | 0.5   | -0.01  | 0.5   | -0.01 | 0.5   | -0.01 |
| 0.39         | 0.4          | 0.01        | 0.4   | 0.01  | 0.4   | 0.01   | 0.4   | 0.01  | 0.4   | 0.01  |
| 0.31         | 0.3          | -0.01       | 0.3   | -0.01 | 0.3   | -0.01  | 0.3   | -0.01 | 0.3   | -0.01 |
| 0.19         | 0.2          | 0.01        | 0.2   | 0.01  | 0.2   | 0.01   | 0.2   | 0.01  | 0.2   | 0.01  |
| 0.1          | 0.1          | 0           | 0.1   | 0     | 0.1   | 0      | 0.1   | 0     | 0.1   | 0     |
| 0.00         | 01           | 0 00        | 01    | 0.02  | 01    | 0 00   | 01    | 0.02  | 01    | 0.02  |
| -0.08        | -0.1         | -0.02       | -0.1  | -0.02 | -0.1  | -0.02  | -0.1  | -0.02 | -0.1  | -0.02 |
| -0.18        | -0.2         | -0.02       | -0.2  | -0.02 | -0.2  | -0.02  | -0.2  | -0.02 | -0.2  | -0.02 |
| -0.20        | -0.5         | -0.04       | -0.2  | 0.08  | -0.5  | -0.04  | -0.5  | -0.04 | -0.5  | -0.04 |
| -0.38        | -0.4         | -0.02       | -0.4  | -0.02 | -0.4  | -0.02  | -0.4  | -0.02 | -0.4  | -0.02 |
| -0.55        | -0.5         | 0.03        | -0.5  | 0.03  | -0.5  | 0.03   | -0.5  | 0.03  | -0.5  | 0.03  |
| -0.7         | -0.7         | 0           | -0.7  | 0     | -0.7  | 0      | -0.7  | 0     | -0.7  | 0     |
| -0.78        | -0.8         | -0.02       | -0.8  | -0.02 | -0.8  | -0.02  | -0.8  | -0.02 | -0.8  | -0.02 |
| -0.95        | -0.9         | 0.05        | -0.9  | 0.05  | -0.9  | 0.05   | -0.9  | 0.05  | -0.9  | 0.05  |
| -1.01        | -1           | 0.01        | -1    | 0.01  | -1    | 0.01   | -1    | 0.01  | -1    | 0.01  |
| -1.98        | -2           | -0.02       | -2    | -0.02 | -2    | -0.02  | -2    | -0.02 | -2    | -0.02 |
| -2.98        | -3           | -0.02       | -3    | -0.02 | -3    | -0.02  | -3    | -0.02 | -3    | -0.02 |
| -4           | -3.9         | 0.1         | -4    | 0     | -3.9  | 0.1    | -4    | 0     | -4    | 0     |
| -4.96        | -4.9         | 0.06        | -5    | -0.04 | -4.9  | 0.06   | -5    | -0.04 | -5    | -0.04 |
| -6.01        | -5.9         | 0.11        | -6    | 0.01  | -5.9  | 0.11   | -6    | 0.01  | -6    | 0.01  |
| -7           | -6.9         | 0.1         | -7    | 0     | -6.9  | 0.1    | -7    | 0     | -7    | 0     |
| -7.95        | -7.9         | 0.05        | -8    | -0.05 | -7.9  | 0.05   | -8    | -0.05 | -8    | -0.05 |
| -9.03        | -8.9         | 0.13        | -9    | 0.03  | -8.9  | 0.13   | -9    | 0.03  | -9    | 0.03  |
| -9.99        | -9.9         | 0.09        | -10   | -0.01 | -9.9  | 0.09   | -10   | -0.01 | -10   | -0.01 |
|              |              |             |       |       |       |        |       |       |       |       |
| Variation en | tre 10 et -1 | 10C         |       |       |       |        |       |       |       |       |
| Δt MAX       |              | 0.13        |       | 0.06  |       | 0.13   |       | 0.05  |       | 0.05  |
| Δt MIN       |              | -0.16       |       | -0.12 |       | -0.16  |       | -0.12 |       | -0.16 |
| Variation en | tre 1 et -1  | С           |       |       |       |        |       |       |       |       |
| Δt MAX       |              | 0.05        |       | 0.06  |       | 0.05   |       | 0.05  |       | 0.05  |
| Δt MIN       |              | -0.04       |       | -0.02 |       | -0.04  |       | -0.04 |       | -0.04 |
|              |              |             |       |       |       |        |       |       |       |       |

| Calibration  | chapelet d  | e thermista | ances |       |       |        |       |       |       |       |
|--------------|-------------|-------------|-------|-------|-------|--------|-------|-------|-------|-------|
|              |             |             |       |       | BARRE | ETTE 2 |       |       |       |       |
| Référence    | 20 mm       | ∆t          | 50mm  | Δt    | 80mm  | Δt     | 110mm | Δt    | 140mm | Δt    |
| 10.06        | 10          | -0.06       | 10    | -0.06 | 10    | -0.06  | 10    | -0.06 | 10    | -0.06 |
| 9.04         | 9           | -0.04       | 9     | -0.04 | 9     | -0.04  | 9     | -0.04 | 8.9   | -0.14 |
| 8.02         | 8           | -0.02       | 8     | -0.02 | 7.9   | -0.12  | 7.9   | -0.12 | 7.9   | -0.12 |
| 7.04         | 7           | -0.04       | 7     | -0.04 | 7     | -0.04  | 7     | -0.04 | 7     | -0.04 |
| 6.03         | 6           | -0.03       | 6     | -0.03 | 6     | -0.03  | 6     | -0.03 | 6     | -0.03 |
| 5            | 5           | 0           | 5     | 0     | 5     | 0      | 4.9   | -0.1  | 5     | 0     |
| 4.02         | 4           | -0.02       | 4     | -0.02 | 4     | -0.02  | 4     | -0.02 | 4     | -0.02 |
| 3.02         | 3           | -0.02       | 3     | -0.02 | 3     | -0.02  | 3     | -0.02 | 2.9   | -0.12 |
| 2.02         | 2           | -0.02       | 2     | -0.02 | 2     | -0.02  | 2     | -0.02 | 2     | -0.02 |
| 1.01         | 1           | -0.01       | 1     | -0.01 | 1     | -0.01  | 1     | -0.01 | 1     | -0.01 |
| 0.89         | 0.9         | 0.01        | 0.9   | 0.01  | 0.9   | 0.01   | 0.9   | 0.01  | 0.9   | 0.01  |
| 0.81         | 0.8         | -0.01       | 0.8   | -0.01 | 0.8   | -0.01  | 0.8   | -0.01 | 0.8   | -0.01 |
| 0.71         | 0.7         | -0.01       | 0.7   | -0.01 | 0.7   | -0.01  | 0.7   | -0.01 | 0.7   | -0.01 |
| 0.6          | 0.6         | 0           | 0.6   | 0     | 0.6   | 0      | 0.6   | 0     | 0.6   | 0     |
| 0.51         | 0.5         | -0.01       | 0.5   | -0.01 | 0.5   | -0.01  | 0.5   | -0.01 | 0.5   | -0.01 |
| 0.39         | 0.4         | 0.01        | 0.4   | 0.01  | 0.4   | 0.01   | 0.4   | 0.01  | 0.4   | 0.01  |
| 0.31         | 0.3         | -0.01       | 0.3   | -0.01 | 0.3   | -0.01  | 0.3   | -0.01 | 0.3   | -0.01 |
| 0.19         | 0.2         | 0.01        | 0.2   | 0.01  | 0.2   | 0.01   | 0.2   | 0.01  | 0.2   | 0.01  |
| 0.1          | 0.1         | 0           | 0.1   | 0     | 0.1   | 0      | 0.1   | 0     | 0.1   | 0     |
| 0            | 0           | 0           | 0     | 0     | 0     | 0      | 0     | 0     | 0     | 0     |
| -0.08        | -0.1        | -0.02       | -0.1  | -0.02 | -0.1  | -0.02  | -0.1  | -0.02 | -0.1  | -0.02 |
| -0.18        | -0.2        | -0.02       | -0.2  | -0.02 | -0.2  | -0.02  | -0.2  | -0.02 | -0.2  | -0.02 |
| -0.26        | -0.2        | 0.06        | -0.2  | 0.06  | -0.2  | 0.06   | -0.3  | -0.04 | -0.3  | -0.04 |
| -0.38        | -0.4        | -0.02       | -0.4  | -0.02 | -0.4  | -0.02  | -0.4  | -0.02 | -0.4  | -0.02 |
| -0.53        | -0.5        | 0.03        | -0.5  | 0.03  | -0.5  | 0.03   | -0.5  | 0.03  | -0.5  | 0.03  |
| -0.6         | -0.6        | 0           | -0.6  | 0     | -0.6  | 0      | -0.6  | 0     | -0.6  | 0     |
| -0.7         | -0.7        | 0.02        | -0.7  | 0 00  | -0.7  | 0 00   | -0.7  | 0 00  | -0.7  | 0.02  |
| -0.78        | -0.8        | -0.02       | -0.8  | -0.02 | -0.8  | -0.02  | -0.8  | -0.02 | -0.8  | -0.02 |
| -0.95        | -0.9        | 0.05        | -0.9  | 0.05  | -0.9  | 0.05   | -0.9  | 0.03  | -0.9  | 0.03  |
| -1.01        | -1          | 0.01        | -1    | 0.01  | -1    | 0.01   | -1    | 0.01  | -1    | 0.01  |
| -1.90        | -2          | -0.02       | -2    | -0.02 | -2    | -0.02  | -2    | -0.02 | -2    | -0.02 |
| -2.56        | -3          | -0.02       | -3.0  | -0.02 | -2.0  | -0.02  | -3    | -0.02 | -30   | -0.02 |
| -4 96        | -4          | -0.04       | -5.5  | -0.04 | -3.5  | 0.1    | -4    | -0.04 | -5.5  | -0.04 |
| -6.01        | -6          | 0.04        | -5.9  | 0.04  | -5.9  | 0.00   | -6    | 0.04  | -5    | 0.04  |
| -7           | -7          | 0.01        | -6.9  | 0.11  | -7    | 0.11   | -7    | 0.01  | -69   | 0.01  |
| -7 95        | -8          | _0.05       | -7.9  | 0.1   | -79   | 0.05   | -8    | -0.05 | -79   | 0.1   |
| -9.03        | -9          | 0.03        | -8.9  | 0.03  | -8.9  | 0.03   | -9    | 0.03  | -9    | 0.03  |
| -9.99        | -10         | -0.03       | -9.9  | 0.15  | -9.9  | 0.10   | -10   | -0.01 | -99   | 0.03  |
| 5.55         | 10          | 0.01        | 5.5   | 0.05  | 5.5   | 0.05   | 10    | 0.01  | 5.5   | 0.05  |
| Variation en | tre 10 et - | 100         |       |       |       |        |       |       |       |       |
|              |             | 0.06        |       | 0.13  |       | 0.13   |       | 0.05  |       | 01    |
|              |             | -0.06       |       | -0.06 |       | -0.12  |       | -0.12 |       | -0.14 |
| Variation en | tre 1 et -1 | C           |       | 1.00  |       |        |       |       |       |       |
| Δt MAX       |             | 0.06        |       | 0.06  |       | 0.06   |       | 0.05  |       | 0.05  |
| Δt MIN       |             | -0.02       |       | -0.02 |       | -0.02  |       | -0.04 |       | -0.04 |

# Annexe I

# Calibration des haltères de déformation verticale



|            | PREI                                   | PREMIER      |           |          | XIEME                 | TROISIEME |          |                       |
|------------|----------------------------------------|--------------|-----------|----------|-----------------------|-----------|----------|-----------------------|
| X_Value    | X_Value Untitled Canal 1 (Arith. Mean) |              |           | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) |
| 0          | 0.0004                                 | -1659.8332   | 0         | 0.0004   | -1801.55497           | 0         | 0.0002   | -1868.467641          |
| 24.223386  | -0.0003                                | -1654.60879  | 10.104578 | -0.0443  | -3100.4935            | 7.376422  | -0.0446  | -3170.508269          |
| 45.303591  | -0.0454                                | -2937.948929 | 16.191926 | -0.0818  | -4409.379536          | 13.087749 | -0.0822  | -4504.40374           |
| 57.17627   | -0.0829                                | -4250.01391  | 20.864193 | -0.1176  | -5732.264708          | 19.488114 | -0.1183  | -5819.574792          |
| 63.735646  | -0.1186                                | -5560.763993 | 26.656525 | -0.152   | -7040.687964          | 25.400453 | -0.1532  | -7138.461794          |
| 72.02412   | -0.1532                                | -6893.725517 | 33.024889 | -0.1862  | -8356.958428          | 31.4718   | -0.1872  | -8454.686896          |
| 81.951688  | -0.1884                                | -8222.202392 | 39.672269 | -0.2202  | -9726.066829          | 37.056119 | -0.2201  | -9767.5609            |
| 90.416172  | -0.2217                                | -9545.900085 | 46.263646 | -0.2529  | -11015.53673          | 43.392482 | -0.2522  | -11060.83735          |
| 101.454803 | -0.2551                                | -10885.94029 | 52.448    | -0.2841  | -12283.51157          | 48.720787 | -0.2845  | -12364.48121          |
| 134.887715 | -0.2896                                | -12340.44815 | 58.848366 | -0.3157  | -13567.97459          | 53.952085 | -0.3154  | -13631.67808          |
| 146.375372 | -0.3202                                | -13579.99341 | 66.047778 | -0.3466  | -14858.67188          | 58.816364 | -0.3449  | -14838.77251          |
| 158.984094 | -0.3512                                | -14871.28706 |           |          |                       |           |          |                       |





Lecture du capteur



Lecture du capteur

0

-4000

-8000

-12000

-16000

MOYENNE 38030.8



|       | PREMIE | R     |           | DEU      | XIEME                 | TROISIEME |          |                      |  |
|-------|--------|-------|-----------|----------|-----------------------|-----------|----------|----------------------|--|
| #REF! | #REF!  | #REF! | X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean |  |
| #REF! | #REF!  | #REF! | 0         | 0.0012   | -1338.84763           | 0         | 0.0008   | -1391.656192         |  |
| #REF! | #REF!  | #REF! | 3.784216  | -0.0597  | -2645.54685           | 5.94434   | -0.0608  | -2674.013149         |  |
| #REF! | #REF!  | #REF! | 9.95957   | -0.1094  | -3945.333389          | 10.464599 | -0.1112  | -3994.995612         |  |
| #REF! | #REF!  | #REF! | 15.303875 | -0.1558  | -5262.315237          | 15.064862 | -0.1562  | -5284.203029         |  |
| #REF! | #REF!  | #REF! | 20.504173 | -0.1997  | -6550.107679          | 19.560119 | -0.1998  | -6569.002736         |  |
| #REF! | #REF!  | #REF! | 26.088492 | -0.239   | -7796.649966          | 24.800418 | -0.2388  | -7811.886973         |  |
| #REF! | #REF!  | #REF! | 30.895767 | -0.276   | -9056.0265            | 29.120666 | -0.2752  | -9082.94702          |  |
| #REF! | #REF!  | #REF! | 36.592093 | -0.3114  | -10327.43485          | 34.343965 | -0.3104  | -10334.96974         |  |
| #REF! | #REF!  | #REF! | 40.816335 | -0.3458  | -11543.36333          | 38.624209 | -0.3449  | -11582.95083         |  |
| #REF! | #REF!  | #REF! | 46.584665 | -0.3801  | -12799.87649          | 43.840508 | -0.379   | -12839.29477         |  |
| #REF! | #REF!  | #REF! | 53.880082 | -0.415   | -14062.92169          | 49.83285  | -0.4121  | -14053.23071         |  |



154



| PREMIER   |          |                       |           | DEU      | XIEME                 | TROISIEME |          |                       |
|-----------|----------|-----------------------|-----------|----------|-----------------------|-----------|----------|-----------------------|
| X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) |
| 0         | -0.0011  | 517.594346            | 0         | 0.0004   | 356.631378            | 0         | 0.0003   | 269.090546            |
| 7.624436  | -0.0558  | -590.173683           | 9.200526  | -0.0539  | -747.955608           | 7.791446  | -0.0548  | -871.20508            |
| 13.479771 | -0.0964  | -1702.766251          | 16.463942 | -0.0954  | -1920.719595          | 14.047803 | -0.0961  | -2031.263203          |
| 22.416282 | -0.1343  | -2883.108242          | 23.392338 | -0.1341  | -3100.243408          | 19.551118 | -0.1339  | -3204.578888          |
| 31.743815 | -0.1711  | -4072.956228          | 29.19267  | -0.1697  | -4270.480381          | 26.479515 | -0.171   | -4409.800159          |
| 38.128181 | -0.2061  | -5234.275393          | 34.935998 | -0.2047  | -5454.557189          | 32.215843 | -0.2063  | -5573.35879           |
| 43.304477 | -0.2407  | -6409.038253          | 40.544319 | -0.2394  | -6639.015451          | 40.455314 | -0.2412  | -6782.789369          |
| 48.279761 | -0.2749  | -7591.576438          | 45.840622 | -0.2737  | -7835.888505          | 47.73573  | -0.2747  | -7954.638999          |
| 53.495059 | -0.3087  | -8792.977587          | 50.743903 | -0.3056  | -9012.278912          | 53.32005  | -0.3071  | -9111.235851          |
| 58.040319 | -0.341   | -10018.61149          | 56.096209 | -0.3368  | -10200.85635          | 58.91937  | -0.3359  | -10309.19158          |
| 62.864595 | -0.3722  | -11241.47761          | 61.53652  | -0.3584  | -11380.18182          | 65.087723 | -0.3679  | -11482.31442          |







MOYENNE 32641.9



|           | PRE      | MIER                  |           | DEU      | XIEME                 | TROISIEME |          |                       |
|-----------|----------|-----------------------|-----------|----------|-----------------------|-----------|----------|-----------------------|
| X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) |
| 0         | 0.0015   | -1240.307537          | 0         | 0.0002   | -1126.888487          | 0         | 0.0014   | -1371.313618          |
| 10.935626 | -0.0443  | -2359.890525          | 11.575662 | -0.0461  | -2259.256674          | 7.920453  | -0.0451  | -2496.774702          |
| 20.735186 | -0.0845  | -3571.379376          | 20.703184 | -0.0877  | -3505.578312          | 15.479885 | -0.0859  | -3703.345148          |
| 28.199613 | -0.1222  | -4787.675602          | 29.927711 | -0.1264  | -4755.257586          | 22.744301 | -0.1247  | -4929.881967          |
| 36.399082 | -0.1581  | -6015.93374           | 40.535318 | -0.1636  | -6010.234176          | 31.279789 | -0.1615  | -6172.612062          |
| 45.783618 | -0.1935  | -7248.954786          | 50.967915 | -0.1992  | -7264.605253          | 44.119524 | -0.1972  | -7436.732563          |
| 55.191157 | -0.2282  | -8475.105962          | 64.199672 | -0.2353  | -8549.361207          | 53.968087 | -0.2313  | -8641.347653          |
| 66.415799 | -0.2631  | -9725.759316          | 74.383255 | -0.2696  | -9810.660493          | 64.247675 | -0.2658  | -9889.76373           |
| 77.039406 | -0.2971  | -10965.23698          | 83.095753 | -0.3035  | -11064.59779          | 75.120296 | -0.3002  | -11148.46423          |
| 88.176044 | -0.3306  | -12195.79693          | 91.367226 | -0.336   | -12291.76692          | 86.071923 | -0.3334  | -12368.50052          |
| 99.951717 | -0.3647  | -13456.68718          | 101.47981 | -0.3695  | -13558.37768          | 102.08684 | -0.3677  | -13657.74509          |







Lecture du capteur

MOYENNE 34011.6



| KFEL7-1A  |          |                      |           |          |                      |           |          |                      |  |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|--|
|           | PREM     | MIER                 |           | DEU      | XIEME                | TROISIEME |          |                      |  |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |  |
| 0         | 0.0001   | -4926.148529         | 0         | 0.0002   | -4866.936413         | 0         | 0.0003   | -4870.533829         |  |
| 5.152295  | -0.0593  | -6360.635643         | 6.376365  | -0.057   | -6272.175469         | 5.297303  | -0.0582  | -6273.66478          |  |
| 8.487486  | -0.1125  | -7811.273633         | 10.199584 | -0.1078  | -7736.239983         | 9.945569  | -0.1096  | -7733.569783         |  |
| 12.41571  | -0.1598  | -9155.785064         | 14.287817 | -0.1513  | -9099.544644         | 15.288875 | -0.1557  | -9104.832828         |  |
| 16.991972 | -0.2038  | -10485.54991         | 19.544118 | -0.1954  | -10398.24243         | 19.921139 | -0.1987  | -10395.07907         |  |
| 20.656182 | -0.2448  | -11857.16986         | 23.520345 | -0.2343  | -11727.67656         | 25.049433 | -0.2386  | -11730.28304         |  |
| 24.232386 | -0.2819  | -13104.85936         | 27.703585 | -0.2713  | -13008.24706         | 29.793704 | -0.2861  | -13047.45913         |  |
| 28.254616 | -0.3242  | -14446.69471         | 33.119895 | -0.3105  | -14389.69282         | 34.184955 | -0.3162  | -14315.90021         |  |
| 31.943827 | -0.359   | -15590.07177         | 37.544147 | -0.3468  | -15682.10826         | 38.769217 | -0.3537  | -15633.02828         |  |
| 35.584035 | -0.3965  | -16858.40661         | 41.240359 | -0.3834  | -16951.17061         | 43.337479 | -0.3924  | -16894.33353         |  |
| 39.232244 | -0.433   | -18115.57585         | 45.143582 | -0.4212  | -18245.54252         | 46.953685 | -0.4282  | -18140.45225         |  |



MOYENNE 31518



| KFEL7-1B  |          |                      |           |          |                      |           |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
|           | PRE      | MIER                 | 1         | DEU      | XIEME                | TROISIEME |          |                      |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | -0.0019  | 545.553412           | 0         | 0.0003   | 245.155388           | 0         | 0.0002   | 211.125916           |
| 6.943397  | -0.0649  | -703.706884          | 7.823447  | -0.0649  | -1028.937658         | 5.047289  | -0.0691  | -1164.707347         |
| 12.103693 | -0.1175  | -2042.229454         | 11.503658 | -0.116   | -2393.597105         | 8.775502  | -0.1186  | -2531.005822         |
| 17.055975 | -0.1653  | -3477.785596         | 15.503887 | -0.1619  | -3814.642848         | 12.58372  | -0.1636  | -3918.996647         |
| 22.168268 | -0.208   | -4868.406468         | 18.600064 | -0.203   | -5179.69329          | 15.599893 | -0.2112  | -5380.15934          |
| 27.823592 | -0.2478  | -6224.574441         | 22.639295 | -0.2418  | -6537.725529         | 18.664068 | -0.2472  | -6678.753719         |
| 32.791876 | -0.2852  | -7603.768287         | 27.671583 | -0.2803  | -7922.33553          | 22.007259 | -0.284   | -8036.211746         |
| 37.904168 | -0.3233  | -9015.362382         | 31.671811 | -0.3195  | -9334.96434          | 25.911482 | -0.3244  | -9423.500182         |
| 41.855394 | -0.3609  | -10369.77657         | 35.416026 | -0.3572  | -10665.04197         | 29.647696 | -0.3642  | -10795.00279         |
| 46.111638 | -0.402   | -11764.02881         | 39.063234 | -0.3964  | -11996.0764          | 33.135895 | -0.4023  | -12103.25986         |
| 49.679842 | -0.4394  | -13100.99034         | 43.239473 | -0.4335  | -13310.45578         | 36.664097 | -0.438   | -13395.60452         |



MOYENNE 32237



| PREMIER   |          |                      |           | DEUX     | KIEME                | TROISIEME |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0002   | -1415.938441         | 0         | 0.0001   | -1371.330709         | 0         | 0.0001   | -1344.980188         |
| 5.519316  | -0.038   | -2107.145372         | 8.768502  | -0.0377  | -2064.36155          | 5.895337  | -0.0396  | -2086.320614         |
| 10.14358  | -0.0704  | -2814.090267         | 12.984743 | -0.0701  | -2769.625777         | 9.119522  | -0.0725  | -2809.772071         |
| 14.575833 | -0.1006  | -3539.414741         | 17.167982 | -0.1006  | -3497.507282         | 12.775731 | -0.1026  | -3554.785789         |
| 19.544118 | -0.1307  | -4229.195455         | 20.920197 | -0.1298  | -4178.568941         | 16.423939 | -0.1332  | -4241.669736         |
| 24.375394 | -0.1604  | -4914.372117         | 24.4724   | -0.1598  | -4831.843152         | 19.560119 | -0.1612  | -4890.111745         |
| 28.84765  | -0.1881  | -5580.530567         | 28.224614 | -0.1869  | -5577.094583         | 23.127323 | -0.1901  | -5580.115594         |
| 33.167897 | -0.2159  | -6247.246681         | 32.15984  | -0.2152  | -6213.245842         | 26.759531 | -0.2183  | -6268.921966         |
| 37.520146 | -0.2437  | -6939.358776         | 35.824049 | -0.244   | -6895.650876         | 29.951713 | -0.2462  | -6927.66887          |
| 41.687384 | -0.2703  | -7573.572948         | 40.456314 | -0.2703  | -7539.57473          | 33.623923 | -0.2726  | -7572.158943         |
| 46.951685 | -0.2977  | -8217.751851         | 45.208586 | -0.2962  | -8180.315493         | 37.568149 | -0.2995  | -8231.057281         |



MOYENNE 23267.1



KFEM10-1B

## CALIBRATION

|           | PREM     | VIER                 |           | DEUX     | XIEME                |           | TROISIEME |                      |  |  |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|-----------|----------------------|--|--|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled  | Strain (Arith. Mean) |  |  |
| 0         | 0.0003   | -5480.518362         | 0         | 0.0002   | -5497.405738         | 0         | 0.0001    | -5498.653129         |  |  |
| 6.729385  | -0.0753  | -5875.663939         | 6.552374  | -0.0854  | -5896.395545         | 6.9924    | -0.1007   | -5906.752293         |  |  |
| 12.161695 | -0.1108  | -6191.614374         | 9.976571  | -0.1237  | -6183.43728          | 11.352649 | -0.1374   | -6185.349738         |  |  |
| 16.505944 | -0.1434  | -6624.421083         | 13.608778 | -0.1525  | -6619.942877         | 15.063861 | -0.1652   | -6643.242127         |  |  |
| 20.737186 | -0.1668  | -7050.619725         | 17.223985 | -0.1775  | -7100.485047         | 18.728071 | -0.1905   | -7128.535484         |  |  |
| 25.465456 | -0.1909  | -7539.27654          | 21.776246 | -0.2016  | -7596.928003         | 23.120322 | -0.2138   | -7624.6663           |  |  |
| 29.641695 | -0.2139  | -8025.08231          | 26.064491 | -0.2245  | -8092.13854          | 26.368508 | -0.2365   | -8111.976138         |  |  |
| 33.449913 | -0.2366  | -8512.93398          | 30.112722 | -0.2446  | -8579.897079         | 29.840707 | -0.259    | -8597.85023          |  |  |
| 37.545147 | -0.2549  | -9009.979202         | 33.119894 | -0.2606  | -9060.701176         | 33.423912 | -0.2774   | -9086.508378         |  |  |
| 41.393367 | -0.2676  | -9510.195281         | 37.280132 | -0.2756  | -9545.772492         | 37.152125 | -0.2984   | -9581.283486         |  |  |
| 46.969687 | -0.2902  | -10044.90735         | 42.432427 | -0.299   | -10064.87368         | 40.728329 | -0.3108   | -10093.64804         |  |  |



MOYENNE 16149.1



| KFEL10-1B |          |                      |           |          |                      |           |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
|           | PREMIER  |                      |           | DEU      | XIEME                | TROISIEME |          |                      |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | -0.0001  | 888.627483           | 0         | 0.0002   | 894.918786           | 0         | 0.0001   | 872.371938           |
| 7.375422  | -0.0378  | 217.525069           | 5.712327  | -0.0372  | 179.308483           | 5.361307  | -0.037   | 153.090656           |
| 11.863678 | -0.0704  | -489.438984          | 8.864507  | -0.0689  | -524.78884           | 8.39348   | -0.0687  | -566.848592          |
| 15.7279   | -0.1005  | -1200.550162         | 12.255701 | -0.0991  | -1233.327744         | 11.585663 | -0.0984  | -1272.204554         |
| 19.727128 | -0.1301  | -1894.177811         | 15.943912 | -0.1286  | -1973.126747         | 15.113864 | -0.1274  | -2001.008765         |
| 24.231386 | -0.1601  | -2609.911576         | 19.632123 | -0.1563  | -2663.138608         | 18.433054 | -0.1564  | -2697.567416         |
| 28.007602 | -0.187   | -3311.50859          | 23.240329 | -0.1832  | -3356.210378         | 21.945255 | -0.1837  | -3408.394758         |
| 34.279961 | -0.215   | -4015.798959         | 26.720528 | -0.2123  | -4083.734528         | 24.953427 | -0.2086  | -4099.248001         |
| 39.095236 | -0.2426  | -4723.833771         | 30.41574  | -0.2382  | -4761.130809         | 28.153611 | -0.2365  | -4797.662306         |
| 42.911454 | -0.2691  | -5419.330355         | 34.175955 | -0.2618  | -5452.579216         | 32.097836 | -0.2638  | -5521.414197         |
| 49.223815 | -0.2956  | -6138.749427         | 37.94417  | -0.288   | -6182.214443         | 35.801048 | -0.2893  | -6206.449316         |





Lecture du capteur





MOYENNE 24558.2



| KFEM7-1A   | KFEM7-1A PREMIER DEUXIEME TROISIEME  |              |           |                                    |              |           |                                                    |              |  |  |  |  |
|------------|--------------------------------------|--------------|-----------|------------------------------------|--------------|-----------|----------------------------------------------------|--------------|--|--|--|--|
| X Value    | X Value Untitled Strain (Arith Mean) |              |           | Value Untitled Strain (Arith Mean) |              |           | IRUISIENIE<br>X Value Untitled Strain (Arith Mean) |              |  |  |  |  |
| 0          | 0.0004                               | -359.93847   | 0         | 0.0015                             | -472.198561  | 0         | 0.0008                                             | -445.985208  |  |  |  |  |
| 12.671725  | -0.059                               | -1768.568974 | 9.488543  | -0.0542                            | -1948.319998 | 9.479542  | -0.0557                                            | -1953.705735 |  |  |  |  |
| 21.248215  | -0.0993                              | -3113.104665 | 16.599949 | -0.0946                            | -3326.38525  | 17.167982 | -0.0983                                            | -3424.20155  |  |  |  |  |
| 30.359736  | -0.138                               | -4525.653462 | 22.800304 | -0.1331                            | -4761.705131 | 24.063376 | -0.136                                             | -4817.099271 |  |  |  |  |
| 43.423483  | -0.1761                              | -5967.470687 | 28.799647 | -0.1712                            | -6237.738271 | 31.791818 | -0.1734                                            | -6236.985887 |  |  |  |  |
| 57.312278  | -0.2131                              | -7405.850807 | 35.232015 | -0.2072                            | -7629.187323 | 40.311306 | -0.2117                                            | -7766.842089 |  |  |  |  |
| 67.583866  | -0.2484                              | -8776.554396 | 41.25636  | -0.2423                            | -9011.859067 | 48.503774 | -0.2464                                            | -9128.882111 |  |  |  |  |
| 77.599438  | -0.2794                              | -10176.83631 | 50.455886 | -0.2777                            | -10426.69566 | 57.863309 | -0.2812                                            | -10517.94346 |  |  |  |  |
| 86.271935  | -0.3076                              | -11556.84996 | 65.263733 | -0.3126                            | -11893.04023 | 66.775819 | -0.3153                                            | -11931.33266 |  |  |  |  |
| 95.767478  | -0.3308                              | -13010.0676  | 72.832166 | -0.3419                            | -13208.37119 | 77.423429 | -0.3481                                            | -13390.4544  |  |  |  |  |
| 105.856055 | -0.3522                              | -14481.70086 | 80.744618 | -0.3725                            | -14581.22718 | 85.415885 | -0.3785                                            | -14717.6998  |  |  |  |  |







MOYENNE 38843.6



KFEM7-1B

## CALIBRATION

| PREMIER   |          |                      | DEUXIEME  |          |                      | TROISIEME |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0001   | -5259.775195         | 0         | 0.0008   | -5358.873863         | 0         | 0.0008   | -5172.510169         |
| 6.911395  | -0.0549  | -6570.491749         | 9.552547  | -0.0585  | -6737.177394         | 7.33642   | -0.0573  | -6462.062851         |
| 13.519773 | -0.0976  | -8040.210509         | 15.184869 | -0.0996  | -8200.264856         | 14.527831 | -0.1015  | -7877.546975         |
| 23.448341 | -0.1378  | -9561.974667         | 20.536175 | -0.1383  | -9711.447337         | 22.576291 | -0.1422  | -9291.702821         |
| 36.096065 | -0.1765  | -11085.72746         | 26.584521 | -0.1761  | -11212.73193         | 30.24773  | -0.1822  | -10710.11104         |
| 51.983974 | -0.2146  | -12618.95374         | 30.496745 | -0.2123  | -12672.99894         | 37.472143 | -0.222   | -12128.48177         |
| 63.238617 | -0.2503  | -14091.39072         | 38.664212 | -0.2485  | -14163.54852         | 41.384367 | -0.2576  | -13519.99233         |
| 71.456087 | -0.2849  | -15601.47483         | 45.048577 | -0.2842  | -15615.29448         | 47.367709 | -0.2955  | -14890.55729         |
| 78.375483 | -0.3197  | -17020.41912         | 51.000917 | -0.318   | -17061.96472         | 50.847908 | -0.3303  | -16269.25181         |
| 85.567894 | -0.3534  | -18501.31224         | 56.288219 | -0.3512  | -18478.8605          | 54.936142 | -0.3643  | -17686.01059         |
| 92.680301 | -0.3878  | -20001.86716         | 61.71253  | -0.3849  | -19934.30856         | 60.16044  | -0.3994  | -19136.28644         |



MOYENNE 37887.6



| (FEM10-1A |          |                      |             |          |                      |                                         |          |                      |  |  |  |
|-----------|----------|----------------------|-------------|----------|----------------------|-----------------------------------------|----------|----------------------|--|--|--|
| PREMIER   |          |                      | 1007012.018 | DEU      | KIEME                | 100000000000000000000000000000000000000 | TROI     | SIEME                |  |  |  |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value     | Untitled | Strain (Arith. Mean) | X_Value                                 | Untitled | Strain (Arith. Mean) |  |  |  |
| 0         | 0        | -1888.038466         | 0           | 0.0002   | -1869.728496         | 0                                       | 0.0004   | -1893.768445         |  |  |  |
| 7.808447  | -0.0569  | -2332.320657         | 5.327305    | -0.0685  | -2303.567629         | 5.536316                                | -0.0493  | -2345.206439         |  |  |  |
| 12.192698 | -0.0962  | -2817.643962         | 10.151581   | -0.1086  | -2776.552754         | 9.26453                                 | -0.088   | -2825.041413         |  |  |  |
| 16.751958 | -0.1271  | -3292.563978         | 13.727785   | -0.139   | -3260.486126         | 12.951741                               | -0.1182  | -3314.17759          |  |  |  |
| 20.112151 | -0.1539  | -3774.330269         | 17.712013   | -0.1664  | -3743.850075         | 16.527946                               | -0.1459  | -3787.404125         |  |  |  |
| 24.136381 | -0.1795  | -4248.258827         | 25.047433   | -0.1911  | -4233.851809         | 20.032146                               | -0.171   | -4267.493989         |  |  |  |
| 28.168612 | -0.2043  | -4745.70832          | 29.031661   | -0.2135  | -4723.932265         | 24.248387                               | -0.195   | -4759.354455         |  |  |  |
| 32.111837 | -0.2284  | -5243.467326         | 33.03989    | -0.2364  | -5221.891902         | 27.775589                               | -0.2187  | -5253.129917         |  |  |  |
| 35.832049 | -0.2531  | -5753.786689         | 36.53609    | -0.2518  | -5706.824784         | 31.359794                               | -0.2425  | -5754.80853          |  |  |  |
| 40.232301 | -0.2774  | -6235.515478         | 40.335307   | -0.2753  | -6208.006271         | 36.272075                               | -0.2683  | -6261.933888         |  |  |  |
| 43.976515 | -0.3011  | -6727.336137         | 44.399539   | -0.2992  | -6707.775314         | 40.73633                                | -0.2925  | -6749.979172         |  |  |  |



MOYENNE 17111.4



KFEM10-2B

## CALIBRATION

| PREMIER   |          |                          | DEUXIEME  |          |                      | TROISIEME |          |                      |
|-----------|----------|--------------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean)     | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0001   | 595.156692               | 0         | 0.0007   | 593.950579           | 0         | 0.0023   | 531.991072           |
| 3.449197  | -0.073   | 14.137883                | 3.103178  | -0.0752  | -44.348529           | 5.008286  | -0.1076  | -56.68562            |
| 7.881451  | -0.1618  | -509.753628              | 6.247357  | -0.1646  | -529.012058          | 8.232471  | -0.1926  | -515.139972          |
| 11.36165  | -0.2378  | -675.603973              | 9.247529  | -0.2414  | -620.98528           | 11.663667 | -0.271   | -611.155026          |
| 15.137866 | -0.2994  | -935.791739              | 12.335705 | -0.2993  | -980.227146          | 15.351878 | -0.3239  | -1052.476171         |
| 18.849078 | -0.3457  | -1398.500875             | 15.415882 | -0.3421  | -1435.927099         | 18.456056 | -0.3654  | -1511.570582         |
| 22.305275 | -0.3867  | -1851.219452             | 18.464056 | -0.3814  | -1883.951897         | 21.568233 | -0.4024  | -1939.339343         |
| 26.873537 | -0.4276  | -2298.893934             | 21.304218 | -0.4198  | -2305.125921         | 25.448455 | -0.4436  | -2364.968353         |
| 30.665754 | -0.4717  | -2713.383056             | 24.247387 | -0.4624  | -2708.151236         | 28.774646 | -0.4827  | -2770.032409         |
| 34.160954 | -0.5078  | -3114.110198             | 27.727586 | -0.4979  | -3115.698126         | 32.295847 | -0.5163  | -3159.077544         |
| 37.849164 | -0.5159  | -3517. <del>9</del> 6402 | 32.223843 | -0.516   | -3519.720014         | 38.384195 | -0.5332  | -3566.635287         |



MOYENNE 7424.55



| PREMIER   |          |                       |           | DEU      | XIEME                 | TROISIEME |          |                       |
|-----------|----------|-----------------------|-----------|----------|-----------------------|-----------|----------|-----------------------|
| X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) | X_Value   | Untitled | Canal 1 (Arith. Mean) |
| 0         | 0.0003   | -1173.770513          | 0         | 0.0002   | -1289.377471          | 0         | 0.0005   | -1473.89029           |
| 10.552604 | -0.0546  | -2245.707879          | 5.671325  | -0.0554  | -2394.932538          | 7.279417  | -0.0528  | -2576.201892          |
| 19.544118 | -0.0906  | -3351.488433          | 12.039689 | -0.0909  | -3519.333323          | 12.247701 | -0.089   | -3715.254336          |
| 26.592521 | -0.1231  | -4453.637192          | 19.024088 | -0.1245  | -4666.236289          | 17.199984 | -0.1226  | -4855.067839          |
| 33.334907 | -0.1546  | -5550.560659          | 25.503459 | -0.1565  | -5786.56412           | 21.912253 | -0.1545  | -5983.594335          |
| 40.928341 | -0.1854  | -6643.721886          | 32.559863 | -0.188   | -6908.554374          | 27.44757  | -0.1853  | -7090.063254          |
| 46.760674 | -0.2164  | -7761.859628          | 40.016289 | -0.2176  | -8018.724808          | 32.807877 | -0.2153  | -8203.558658          |
| 54.144097 | -0.2472  | -8863.023609          | 48.24776  | -0.2476  | -9110.161072          | 38.28019  | -0.2451  | -9305.409948          |
| 60.344451 | -0.2792  | -9967.655872          | 54.504118 | -0.2765  | -10197.24999          | 42.943456 | -0.2742  | -10380.69426          |
| 65.783762 | -0.3108  | -11061.70587          | 60.423456 | -0.3061  | -11290.29369          | 47.303706 | -0.3028  | -11445.98             |
| 72.800164 | -0.3439  | -12224.34578          | 67.919885 | -0.3367  | -12414.32102          | 51.92797  | -0.332   | -12527.37962          |







MOYENNE 34011



| KFEL7-2A  |          |                      |           |          |                      |           |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| PREMIER   |          |                      | DEUXIEME  |          |                      | TROISIEME |          |                      |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0007   | 3517.054389          | 0         | 0.0013   | 3231.686222          | 0         | 0.0002   | 211.125916           |
| 10.367593 | -0.0611  | 2235.728423          | 9.08752   | -0.0614  | 1977.601746          | 5.047289  | -0.0691  | -1164.707347         |
| 24.583406 | -0.1047  | 830.290381           | 18.376051 | -0.1017  | 597.707305           | 8.775502  | -0.1186  | -2531.005822         |
| 32.423854 | -0.1409  | -566.600739          | 25.663468 | -0.138   | -870.696053          | 12.58372  | -0.1636  | -3918.996647         |
| 41.44837  | -0.1772  | -2067.007707         | 32.927884 | -0.1731  | -2348.226535         | 15.599893 | -0.2112  | -5380.15934          |
| 49.879853 | -0.2113  | -3548.711295         | 40.256303 | -0.2069  | -3806.924911         | 18.664068 | -0.2472  | -6678.753719         |
| 57.552292 | -0.2439  | -4966.008866         | 48.60678  | -0.2395  | -5238.876168         | 22.007259 | -0.284   | -8036.211746         |
| 66.822822 | -0.2777  | -6402.257139         | 56.904255 | -0.2716  | -6616.555489         | 25.911482 | -0.3244  | -9423.500182         |
| 78.192472 | -0.3112  | -7838.774103         | 64.247675 | -0.3038  | -7974.111215         | 29.647696 | -0.3642  | -10795.00279         |
| 87.335995 | -0.3428  | -9146.144887         | 72.400141 | -0.336   | -9317.362299         | 33.135895 | -0.4023  | -12103.25986         |
| 98.279621 | -0.3758  | -10523.14507         | 83.22376  | -0.3675  | -10649.95244         | 36.664097 | -0.438   | -13395.60452         |



MOYENNE 36902.4



| KFEL7-2B  |          |                      |           |          |                      |           |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| PREMIER   |          |                      | DEUXIEME  |          |                      | TROISIEME |          |                      |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0097   | -3083.914121         | 0         | -0.0016  | -2847.456952         | 0         | 0.0011   | -2857.256903         |
| 9.520545  | -0.0557  | -4274.194506         | 9.231528  | -0.0555  | -4226.147793         | 45.99063  | -0.0516  | -4153.717192         |
| 19.224099 | -0.097   | -5796.487327         | 15.887908 | -0.0954  | -5765.536602         | 53.616066 | -0.0931  | -5664.309986         |
| 26.672525 | -0.1329  | -7242.630311         | 23.639352 | -0.1317  | -7239.646299         | 61.255503 | -0.1283  | -7199.811658         |
| 35.376023 | -0.1685  | -8718.685159         | 31.623809 | -0.1663  | -8678.323379         | 69.655984 | -0.1632  | -8643.731668         |
| 42.560434 | -0.2017  | -10084.05353         | 40.511317 | -0.2001  | -10118.38986         | 77.767448 | -0.1973  | -10058.79978         |
| 50.287876 | -0.2342  | -11455.40189         | 47.687727 | -0.2319  | -11474.72467         | 84.991861 | -0.2292  | -11450.55169         |
| 58.160326 | -0.2667  | -12842.0013          | 55.24016  | -0.2642  | -12851.1361          | 93.559351 | -0.2616  | -12853.31591         |
| 65.464744 | -0.2986  | -14219.95689         | 64.927713 | -0.2961  | -14241.43097         | 101.27979 | -0.2931  | -14209.6111          |
| 72.760161 | -0.3303  | -15591.07416         | 72.544149 | -0.3274  | -15599.74472         | 110.67933 | -0.3249  | -15599.0346          |
| 81.240646 | -0.362   | -16956.96573         | 87.784021 | -0.3607  | -17063.73097         | 140.38403 | -0.3607  | -17172.28943         |



MOYENNE 40231.9



| KFEL10-2A | KFEL10-2A |                      |           |          |                      |           |          |                      |  |  |  |
|-----------|-----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|--|--|--|
|           | PREMIER   |                      |           | DEU      | XIEME                |           | TROI     | SIEME                |  |  |  |
| X_Value   | Untitled  | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |  |  |  |
| 0         | 0.0012    | -6770.775492         | 0         | 0.0011   | -6707.962431         | 0         | 0.0016   | -6704.428487         |  |  |  |
| 9.111521  | -0.0325   | -7250.34064          | 9.135523  | -0.0328  | -7199.403279         | 8.823504  | -0.0327  | -7193.110648         |  |  |  |
| 17.263988 | -0.064    | -7685.387798         | 15.999915 | -0.0645  | -7632.663563         | 17.536003 | -0.0654  | -7628.731792         |  |  |  |
| 23.815362 | -0.0924   | -8207.549171         | 22.784303 | -0.0925  | -8163.80937          | 26.271502 | -0.0921  | -8164.301315         |  |  |  |
| 30.783761 | -0.1176   | -8789.001446         | 28.871652 | -0.1171  | -8752.753061         | 34.199956 | -0.1177  | -8765.801968         |  |  |  |
| 37.895168 | -0.1412   | -9391.1076           | 35.400025 | -0.1411  | -9350.547477         | 41.376366 | -0.1407  | -9354.763018         |  |  |  |
| 44.415541 | -0.1639   | -9973.788523         | 42.407426 | -0.1638  | -9945.629252         | 48.719787 | -0.1634  | -9944.780508         |  |  |  |
| 51.015918 | -0.1863   | -10560.47099         | 49.095808 | -0.186   | -10534.77749         | 56.088208 | -0.1857  | -10537.2066          |  |  |  |
| 58.295334 | -0.2085   | -11147.48795         | 56.008204 | -0.2078  | -11116.75852         | 62.951601 | -0.2074  | -11116.4779          |  |  |  |
| 65.471745 | -0.23     | -11731.17387         | 62.631582 | -0.2291  | -11697.21605         | 69.367968 | -0.2287  | -11689.54009         |  |  |  |
| 73.871225 | -0.2504   | -12325.98393         | 76.520377 | -0.2506  | -12337.03827         | 77.45543  | -0.2508  | -12292.20895         |  |  |  |



MOYENNE 22768.7


### CALIBRATION

| KFEL10-2B |          |                      | -         |          |                      |           |          |                      |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
|           | PREM     | VIER                 |           | DEUX     | KIEME                |           | TROI     | SIEME                |
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0029   | -691.515988          | 0         | 0.0009   | -794.246355          | 0         | 0.0011   | -883.071789          |
| 10.583605 | -0.0304  | -1095.403379         | 12.151695 | -0.0315  | -1196.205939         | 8.335476  | -0.0325  | -1280.21598          |
| 18.896081 | -0.0565  | -1499.360962         | 20.600178 | -0.0587  | -1598.280083         | 14.503829 | -0.0612  | -1684.142915         |
| 27.407568 | -0.0877  | -1912.331443         | 28.599636 | -0.0897  | -2012.266304         | 21.016202 | -0.0907  | -2093.060785         |
| 36.224072 | -0.1138  | -2324.020286         | 41.240359 | -0.1155  | -2423.40967          | 27.647581 | -0.1185  | -2543.016127         |
| 44.382538 | -0.1383  | -2743.01486          | 49.415826 | -0.1395  | -2852.585798         | 34.863994 | -0.1404  | -2940.209642         |
| 52.688014 | -0.1622  | -3177.35557          | 56.928256 | -0.1623  | -3275.988627         | 41.488373 | -0.1631  | -3370.750089         |
| 60.615467 | -0.1853  | -3614.397757         | 64.607695 | -0.1855  | -3725.562221         | 48.407769 | -0.1856  | -3805.916513         |
| 67.855881 | -0.2061  | -4065.756889         | 71.576094 | -0.2081  | -4164.086114         | 56.216215 | -0.2086  | -4268.348772         |
| 75.159299 | -0.2224  | -4517.251434         | 79.168528 | -0.2257  | -4629.478405         | 63.095609 | -0.2297  | -4703.307996         |
| 85.591896 | -0.2347  | -5002.206626         | 86.391941 | -0.2371  | -5081.898278         | 70.368024 | -0.2505  | -5166.788304         |

Valeur reference Valeur reference Valeur reference 0 -0.4 -0.2 -0.4 -0.2 0 -0.4 -0.2 0 Lecture du capteur 0 0 du capteur -4000 -4000 Lecture . -8000 -8000 y = 17572x - 494.17 $R^2 = 0.9826$  $\begin{array}{l} y = 17551x - 568.85 \\ R^2 = 0.9849 \end{array}$ y = 17178x - 665.5 $R^2 = 0.9911$ 

0

-4000

-8000

Lecture du capteur

MOYENNE 17433.7



KFEM7-2A

### CALIBRATION

|           | PRE      | MIER                 |           | DEUX     | KIEME                |           | TROI     | SIEME                |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0018   | -3910.10971          | 0         | 0.0022   | -3371.253914         | 0         | 0.0029   | -3331.571054         |
| 6.904395  | -0.0449  | -4787.329632         | 7.832448  | -0.0416  | -4264.062984         | 10.071576 | -0.042   | -4236.029201         |
| 13.623779 | -0.0836  | -5735.39694          | 14.656838 | -0.081   | -5221.64283          | 15.231872 | -0.0811  | -5178.324517         |
| 20.000144 | -0.119   | -6671.695086         | 20.096149 | -0.1171  | -6125.182589         | 21.080206 | -0.1193  | -6078.673086         |
| 27.206556 | -0.1547  | -7467.764304         | 27.384566 | -0.1543  | -6914.231174         | 27.375566 | -0.1555  | -6839.354924         |
| 34.007945 | -0.1899  | -8139.333492         | 33.967943 | -0.188   | -7598.525378         | 33.551919 | -0.1908  | -7564.645158         |
| 40.976344 | -0.2252  | -8752.513118         | 39.480258 | -0.2211  | -8283.961502         | 39.440256 | -0.2239  | -8300.704479         |
| 48.231759 | -0.2589  | -9362.533784         | 45.27259  | -0.2542  | -8995.633758         | 47.359709 | -0.2563  | -9031.081672         |
| 55.352166 | -0.2864  | -9950.127942         | 50.782905 | -0.2864  | -9729.200624         | 53.160041 | -0.2876  | -9792.254353         |
| 61.959544 | -0.3113  | -10570.15175         | 56.704244 | -0.3148  | -10518.26318         | 59.248389 | -0.3177  | -10603.25624         |
| 69.279963 | -0.3431  | -11311.84475         | 62.672585 | -0.3461  | -11339.85339         | 65.39174  | -0.3472  | -11435.00612         |



MOYENNE 22186.6



KFEM7-2B

### CALIBRATION

|           | PREM     | VIER                 |           | DEU      | XIEME                |           | TROI     | SIEME                |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.0002   | 3262.305385          | 0         | 0.0014   | 2820.878564          | 0         | 0.0004   | 3016.217092          |
| 3.408195  | -0.0456  | 2401.8518            | 5.863335  | -0.0455  | 2021.866488          | 2.832162  | -0.0461  | 2136.599325          |
| 7.223413  | -0.0861  | 1441.653391          | 8.703498  | -0.0856  | 1020.915548          | 5.543317  | -0.0878  | 1144.248441          |
| 11.00763  | -0.1252  | 431.837804           | 11.479657 | -0.1245  | -8.995985            | 8.03946   | -0.127   | 109.229269           |
| 13.591777 | -0.1628  | -719.45523           | 14.303818 | -0.1619  | -1108.214602         | 10.879622 | -0.1654  | -1032.515574         |
| 17.431997 | -0.1985  | -1863.869856         | 17.447998 | -0.1961  | -2242.542617         | 13.959799 | -0.1997  | -2154.572007         |
| 20.752187 | -0.231   | -2988.294516         | 20.800189 | -0.2289  | -3333.985699         | 16.911967 | -0.2325  | -3290.024452         |
| 24.327392 | -0.2636  | -4131.073296         | 25.447455 | -0.263   | -4524.390613         | 19.880137 | -0.264   | -4406.15732          |
| 27.535575 | -0.2951  | -5249.846994         | 28.911654 | -0.2934  | -5584.158606         | 23.367337 | -0.2952  | -5513.628827         |
| 30.887767 | -0.3265  | -6367.362396         | 32.087835 | -0.3222  | -6638.659779         | 27.071548 | -0.3257  | -6625.006176         |
| 34.26396  | -0.3564  | -7485.177779         | 46.463657 | -0.3608  | -8000.114548         | 35.240016 | -0.361   | -7887,503447         |



MOYENNE 30796.4



KFEM10-2A

### CALIBRATION

|           | PREM     | VIER                 |           | DEUX     | XIEME                |           | TROI     | SIEME                |
|-----------|----------|----------------------|-----------|----------|----------------------|-----------|----------|----------------------|
| X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) | X_Value   | Untitled | Strain (Arith. Mean) |
| 0         | 0.001    | -7642.549127         | 0         | 0.0001   | -7701.783542         | 0         | 0.0006   | -7888.001448         |
| 3.200183  | -0.0695  | -7984.966815         | 6.543374  | -0.0902  | -7981.51901          | 3.176182  | -0.0835  | -7935.889756         |
| 6.399366  | -0.1486  | -7909.497946         | 11.415653 | -0.1779  | -7931.305068         | 6.736385  | -0.1705  | -8053.996118         |
| 10.391594 | -0.2186  | -8281.466583         | 15.815905 | -0.2539  | -8342.008533         | 10.272588 | -0.2435  | -8493.258053         |
| 13.327762 | -0.2753  | -8678.516037         | 19.784132 | -0.3151  | -8798.178267         | 13.256758 | -0.2942  | -8928.013251         |
| 17.111979 | -0.3229  | -9090.839642         | 23.679354 | -0.3611  | -9275.333243         | 16.351935 | -0.3346  | -9382.441763         |
| 20.704184 | -0.3662  | -9542.002975         | 26.951541 | -0.4005  | -9787.839955         | 19.40811  | -0.3731  | -9930.048351         |
| 24.271388 | -0.4066  | -10035.15303         | 30.791761 | -0.4404  | -10353.17339         | 22.536289 | -0.4114  | -10468.59707         |
| 28.119608 | -0.4536  | -10581.80958         | 34.743987 | -0.4857  | -10915.39433         | 25.920483 | -0.4528  | -11007.82485         |
| 31.81582  | -0.4917  | -11121.42052         | 38.184184 | -0.524   | -11456.30239         | 29.512688 | -0.4896  | -11541.62664         |
| 35.160011 | -0.5238  | -11664.64053         | 42.927455 | -0.5512  | -12038.02835         | 34.103951 | -0.5214  | -12097.83329         |



MOYENNE 7964.12

## Annexe J

# Essais AMAC

| , e      |
|----------|
| õ        |
| -        |
| ē        |
| ō        |
| S        |
| Ö        |
| -S       |
| ă        |
| 0        |
| 0        |
| ŝ        |
| -        |
| 9        |
| It       |
| ē        |
| F        |
| 0        |
| 2        |
| <u></u>  |
| -        |
| ä        |
| 0        |
| ü        |
| ō        |
| 4        |
| <u>a</u> |
| C        |
| p        |
| e        |
| 3        |
| S        |
| Je       |
|          |

| Date:         | 23 november 2019 | Technicien:  |
|---------------|------------------|--------------|
| inicipalité : | Ste-tech         | Technicien : |
| Route :       | Umivits faval    | Technicien : |

|        |        | 1gr    |
|--------|--------|--------|
| lei    | trut   | ta.110 |
| Laitel | Brille | TZabi  |
| Jocen  | 1185 7 | ledias |
| 12     | H.     | 0      |

~

| voie N S E O voie |          | 01:35 | Air   |         | 10        | Carottage | Contraint | e maximale | Commentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|---------|-----------|-----------|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 01:35 |       | Surface | Interface | (mm)      | psi       | MPa        | Soumalian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 k 4 3 2 6 7 4 3 2 7 6 7 7 4 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 0/:0  | 10.01 | 15.4    | 166       | 75        |           | 546        | Paces dans 1 why be 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| w 4 m 0 ν 0 q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          | 0/:0  |       |         |           |           |           |            | and the second sec |
| 4 6 5 5 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |       | 16.5  | 15.3    | 16.3      | 75        |           | 378        | Cusse dans Instantare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |       |         |           |           |           |            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9 2 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 8 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ∞ σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Service and an and an and and a service and |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |       |       |         |           |           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Remarques: Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ottage a | 25    | mm    | 000 1   | 40 B      | ssai a    | le An     | Mac        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

J1(04)/28 ~:559P

