Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'autoroute 20 est à Val-Alain

MATÉRIAUX ET INFRASTRUCTURES

ÉTUDES ET RECHERCHES EN TRANSPORT

Québec 🚟

EXPERTISE SUR L'ÉTAT DU BÉTON ET DES BARRES D'ARMATURE EN PRFV DU PONT P-11591 SITUÉ SUR L'AUTOROUTE 20 EST À VAL-ALAIN

Rapport d'expertise

Demandé par : M. Guy Tremblay, ing., M. Sc. A, directeur Direction du laboratoire des chaussées Ministère des Transports, de la Mobilité durable et de l'Électrification des transports

> Relevés et essais réalisés par : Michaël Arsenault, t.t.p. Dave Brindle, t.t.p. Pascale Larouche, t.t.p. Marc-Antoine Loranger, ing. jr Claude Nazair, ing. Secteur liants hydrocarbonés et chimie

Rapport rédigé par : Marc-Antoine Loranger, ing. jr Claude Nazair, ing. Secteur béton Service des matériaux d'infrastructures Direction du laboratoire des chaussées Ministère des Transports, de la Mobilité durable et de l'Électrification des transports

N/Dossier SMI : MC-15-008/BC-15-095 Québec, le 18 janvier 2016 La présente étude a été réalisée à la demande du ministère des Transports, de la Mobilité durable et de l'Électrification des transports.

Collaborateurs

Ministère des Transports, de la Mobilité durable et de l'Électrification des transports*

Christine Duchesne, chimiste, M. Sc., Direction des matériaux d'infrastructures Sébastien Galipeau, ing., Direction générale des structures

© Gouvernement du Québec, ministère des Transports, de la Mobilité durable et de l'Électrification des transports, 2017 ISBN 978-2-550-78919-2 (PDF)

Dépôt légal – 2017

Bibliothèque et Archives nationales du Québec

Tous droits réservés. La reproduction de ce document par procédé mécanique ou électronique, y compris la microreproduction, et sa traduction, même partielles, sont interdites sans l'autorisation écrite des Publications du Québec.

* Le ministère des Transports du Québec a changé de nom le 28 janvier 2016 et est devenu le ministère des Transports, de la Mobilité durable et de l'Électrification des transports.

FICHE ANALYTIQUE

Titre et sous-titre du rapport	Numéro du rapport MTMDET					
Expertise sur l'état du béton et des barres d'armature	RTQ-17-01					
a Val-Alain	Date de publication du rapport (année-mois)					
	2017-0)6				
Titre du projet de recherche	Numéro du dossier	Numéro du projet				
Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'autoroute 20 est à Val-Alain	MC-15-008/BC-15-095	Sans objet				
Responsables de recherche	Date du début de la recherche	Date de fin de la recherche				
Marc-Antoine Loranger et Claude Nazair	2015-07-13	2016-01-18				
Auteurs du rapport						
Marc-Antoine Loranger et Claude Nazair						
Chargés de projet, direction	Coût total de l'étude					
Marc-Antoine Loranger Direction générale du laboratoire des chaussées Claude Nazair Direction générale du laboratoire des chaussées	15 000	\$				
Étude ou recherche réalisée par (nom et adresse de l'organisme)	Étude ou recherche financée par (nom et	adresse de l'organisme)				
Direction des matériaux d'infrastructures – Secteur béton Direction générale du laboratoire des chaussées Ministère des Transports, de la Mobilité durable et de l'Électrification des transports 2700, rue Einstein Québec (Québec) G1P 3W8	Direction des matériaux d'infrastructures – Secteur béton Direction générale du laboratoire des chaussées Ministère des Transports, de la Mobilité durable et l'Électrification des transports 2700, rue Einstein Québec (Québec) G1P 3W8					

Problématique

Le ministère des Transports, de la Mobilité durable et de l'Électrification des transports (MTMDET) utilise des armatures en polymère renforcé de fibres (PRF) pour la construction des ponts depuis plus de 15 ans. Ces armatures ont l'avantage de ne pas être sensibles à la corrosion comparativement aux barres d'armature en acier conventionnel. Néanmoins, l'utilisation de barres d'armature en matériaux composites comporte encore aujourd'hui plusieurs inconnues, notamment en ce qui concerne la durabilité de celles-ci. Plusieurs études de vieillissement accélérées ont été réalisées par la communauté scientifique afin de prédire la durée de vie de ces barres. Toutefois, la durabilité des barres d'armature en PRF lorsqu'elles sont exposées aux conditions environnementales réelles demeure pour le moment peu documentée. À cet effet, une expertise a été réalisée par le ministère des Transports en juillet 2015 sur la structure P-11591 située sur l'autoroute 20 en direction est, à Val-Alain. Cette structure, où l'on trouve la présence d'armature en polymères renforcés de fibres de verre (PRFV) sur la totalité de la dalle mince et des glissières de sécurité, a été construite en 2004 et est bien documentée. Par conséquent, ce projet représentait le meilleur cas pour étudier la durabilité des barres d'armature en PRFV au MTMDET.

Objectifs

Ce rapport présente les résultats de l'étude de performance sur la durabilité des armatures en PRFV du pont P-11591 situé à Val-Alain. Au moment où l'expertise a été conduite, la structure avait 11 ans de vie depuis sa mise en service.

Méthodologie

Au total, trois carottes de béton ont été prélevées au niveau de la glissière de sécurité du côté sud-est du pont P-11591. Deux d'entre elles contenaient des barres d'armature en PRFV (5 barres d'armature en PRFV dans une et 3 barres d'armature en PRFV dans l'autre). Les 8 échantillons de PRFV ont par la suite été extraits de ces deux carottes de béton. Diverses techniques d'analyse ont été utilisées afin de déterminer les propriétés physico-chimiques et d'étudier la microstructure des échantillons de PRFV prélevés (spectrométrie à fluorescence X, spectroscopie IRTF, microscopie électronique à balayage, calorimétrie différentielle à balayage, spectroscopie RMN à l'état solide, etc.).

Plusieurs essais ont également été effectués sur le béton des carottes prélevées afin de mieux caractériser l'environnement adjacent aux barres d'armature en PRFV.

Résultats et recommandations

Les résultats de cette étude démontrent que les barres d'armature en PRFV du pont P-11591 ne présentent pas de signe de détérioration avancée après 11 ans de mise en service. Toutefois, les conclusions reposent seulement sur des analyses physico-chimiques des échantillons prélevés. À l'avenir, il serait important d'étudier le comportement mécanique à long terme des barres d'armature en PRFV de la structure, et ce, à l'aide de méthodes qui restent à expérimenter. De plus, il serait pertinent d'évaluer l'état de la structure et de ses constituants après 25 ans de mise en service, de manière à mieux prédire son comportement à long terme.

Mots clés	Nombre de pages	Nombre de références	Langue du document
PRFV, polymères renforcés de fibres de verre, matériaux composites, barres d'armature, pont,		bibliographiques	🛛 Français
glissière de sécurité, durabilité, conditions environnementales réelles, propriétés physico-	103	6	Anglais
chimiques.			Autre (spécifier) :

TABLE DES MATIÈRES

1. Mandat	9
2. Mise en contexte	9
3. Localisation de la structure1	1
4. Échantillons 1	1
4.1 Béton	1 2
5. Protocoles d'essais14	4
5.1 Protocole d'essais sur le béton	4 5
6. Résultats des essais et discussions1	6
6.1 Essais sur le béton 1 6.1.1 Résistance à la compression 1 6.1.2 Teneur en ions chlorure 1 6.1.3 Absorption et vides d'air 1 6.1.4 Détermination des paramètres des vides dans le béton de ciment (L-Barre) 1 6.1.5 Perméabilité aux ions chlorure 1 6.1.6 Observations pétrographiques 1 6.2 Essais physico-chimiques sur PRFV 1 6.2.1 Surface effective 1 6.2.2 Densité 1 6.2.3 Absorption d'eau 2 6.2.4 Taux de cure 2 6.2.5 Température de transition vitreuse (Tg) 2 6.2.6 Taux de fibres 2 6.2.7 Porosité 2 6.2.8 Spectrométrie par fluorescence X (FRX) 2 6.2.9 FTIR 2 6.2.10 Spectroscopie RMN à l'état solide 2 6.2.11 Microscopie électronique à balayage (MEB/EDS) 2	6667 8889999012335579
7. Conclusion	\$7
8. Références	39

LISTE DES FIGURES

Figure 1 :	Plan de localisation de la structure P-11591 11
Figure 2 :	Localisation des carottes 12
Figure 3 :	Échantillons de barres d'armature en PRFV provenant des carottes de béton C1 et C3 13
Figure 4 :	Mécanisme de dégradation de barres d'armature en PRFV en solution alcaline
Figure 5 :	Photos avant et après les essais de porosité des barres MC-15-008-1, MC-15-008-3 et MC-15-005-5
Figure 6 :	FTIR de la barre droite MC-15-008-2
Figure 7 :	FTIR de la barre courbe MC-15-008-4 27
Figure 8 :	Spectres RMN 13C en phase solide des échantillons de barres en PRFV de la structure P-11591 28
Figure 9 :	Image au MEB d'une vue générale de la coupe transversale de l'échantillon MC-15-008-6 (barre courbe)
Figure 10 :	Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-6 (barre courbe) et spectre EDS des fibres de verre et de la matrice
Figure 11 :	Interface béton-composite de l'échantillon MC-15-008-6 (barre courbe)
Figure 12 :	Vue générale au MEB de la barre MC-15-008-7 (barre droite) 34
Figure 13 :	Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-7 (barre droite) et spectre EDS des fibres de verre et de la matrice
Figure 14 :	Interface béton-composite de l'échantillon MC-15-008-7 (barre droite)

LISTE DES TABLEAUX

Tableau 1 : Essais à réaliser sur les carottes de béton	. 14
Tableau 2 : Essais à réaliser sur les barres d'armature en PRFV	.15
Tableau 3 : Caractéristiques du béton des glissières coulées en place	.16
Tableau 4 : Résultats des essais d'absorption d'eau	. 21
Tableau 5 : Résultats des essais de taux de cure	.21
Tableau 6 : Résultats des essais de température de transition vitreuse	.22
Tableau 7 : Résultats des essais de taux de fibres	.23
Tableau 8 : Composition chimique des fibres de verre (par FRX)	25

ANNEXES

ANNEXE A – PLANS DE CONSTRUCTION DE LA STRUCTURE P-11591.40
ANNEXE B – DESCRIPTION VISUELLE DES CAROTTES
ANNEXE C – SCHÉMA DE LOCALISATION DES CAROTTES 49
ANNEXE D – CERTIFICAT DE CONFORMITÉ DES BARRES D'ARMATURE EN PRFV 51
ANNEXE E – FORMULE DE MÉLANGE ET CARACTÉRISTIQUE DU BÉTON53
ANNEXE F – RAPPORT EXAMEN PÉTROGRAPHIQUE68
ANNEXE G – RÉSULTATS DES ESSAIS
ANNEXE H – RAPPORT D'ANALYSE PAR SPECTROSCOPIE DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DU ¹³ C EN PHASE SOLIDE
ANNEXE I – PHOTOGRAPHIES MEB

1. MANDAT

Une expertise sur l'état des barres d'armature en polymères renforcés de fibres de verre (PRFV) du pont P-11591, situé sur l'autoroute 20 est dans la municipalité de Val-Alain, a été réalisée par l'équipe technique du Secteur béton du Service des matériaux d'infrastructures (SMI) à la demande de M. Guy Tremblay, directeur du laboratoire des chaussées. Cette structure a été construite en 2004.

Ce mandat consiste à évaluer les propriétés physico-chimiques des barres d'armature en PRFV présentes dans la glissière de sécurité orientée du côté sud-est du pont P-11591 (plans de la structure disponibles à l'annexe A). Le béton en place dans cette partie de l'ouvrage a également été caractérisé afin d'en évaluer sa durabilité. Pour ce faire, l'équipe technique du SMI a réalisé le 13 juillet 2015 une inspection sommaire de l'état de surface de la glissière de sécurité, en plus de prélever trois carottes de béton, soit deux carottes contenant des barres d'armature en PRFV de même qu'une carotte de béton sain. Cette expertise a été effectuée en collaboration avec la Direction des structures (DS). À cet effet, M. Sébastien Galipeau, ing. à la DS, était présent lors du prélèvement des carottes de béton.

2. MISE EN CONTEXTE

L'utilisation de matériaux composites au sein d'ouvrages d'art est encore relativement récente au ministère des Transports, de la Mobilité durable et de l'Électrification des transports (MTMDET). Selon l'information disponible, il appert que le premier projet du MTMDET incorporant de l'armature composite en PRFV a eu lieu en 1992 au niveau de la portion médiane (côté aval) des glissières de sécurité du pont Médéric-Martin (P-15641).

À cet effet, l'équipe technique du secteur béton du SMI a procédé, le 31 octobre 2013, à une inspection sommaire de l'état de surface des glissières de sécurité du pont Médéric-Martin en plus de prélever quelques carottes de béton contenant des échantillons de barres d'armature en PRFV. Une étude exhaustive sur l'état de vieillissement des barres d'armature en PRFV a par la suite été effectuée par le SMI. L'étude conclut que les échantillons prélevés présentaient plusieurs signes de détérioration tels que la présence de fissurations, de décollement au niveau de l'interface fibres-matrice et des fibres de verre endommagées. Toutefois, il faut noter que les procédés de fabrication de même que les constituants des PRFV ont considérablement évolué depuis 1992, notamment pour ce qui est de la résine polymère. Des analyses réalisées par spectroscopie RMN au début de l'année 2015 ont permis de déterminer que la matrice polymère des armatures composites du pont

Médéric-Martin était à base de polyester. À notre connaissance, le MTMDET spécifie depuis le début des années 2000 l'utilisation d'une résine à base de vinylester pour des raisons de durabilité. En effet, plusieurs études ont démontré que les PRFV à base de résine polyester sont nettement moins durables que les PRFV à base de résine vinylester.

À la suite des conclusions de l'étude réalisée par le SMI sur les armatures en PRFV du pont Médéric-Martin (N/Dossier SMI : MC-14-013/BC-13-118), la Direction du laboratoire des chaussées et la Direction des structures ont jugé opportun de reconduire une nouvelle étude, mais cette fois-ci sur des armatures en PRFV à base de vinylester. À cet effet, la structure P-11591 située sur l'autoroute 20 est, à Val-Alain, représentait un cas idéal pour les raisons suivantes :

- premier tablier de pont en béton au Canada entièrement renforcé de barres d'armature en PRFV (Benmokrane, El-Salakawy, El-Gamal, & Goulet, 2007);
- 2) glissières de sécurité du pont également entièrement renforcées de barres d'armature en PRFV;
- 3) matrice polymère à base de vinylester pour l'ensemble des barres d'armature en PRFV de la structure;
- 4) structure très bien documentée et réalisation du projet en collaboration avec le milieu de recherche universitaire (Université de Sherbrooke);
- 5) projet le plus ancien dont les échantillons d'origine sont toujours disponibles pour analyses en laboratoire;
- 6) opportunité intéressante d'étudier l'état des barres d'armature en PRFV après 11 ans de mise en service et d'en comparer les résultats avec des échantillons « référence » prélevés en 2004 par le SMI lors de la construction de la structure.

3. LOCALISATION DE LA STRUCTURE

Le pont P-11591 est situé sur l'autoroute 20 est au-dessus de la rivière Henri dans la municipalité de Val-Alain (voir figure 1). Il s'agit d'un pont à poutres en acier construit en 2004 et muni de deux voies de circulation. La structure a une longueur totale de 57,6 m et une largeur totale de 12,6 m. Le débit de circulation journalier moyen annuel (DJMA) est de 24 200 véhicules, dont près de 25 % sont des camions (Transports Québec, 2014).

Figure 1 – Plan de localisation de la structure P-11591

4. ÉCHANTILLONS

4.1 Béton

Au total, trois carottes (C1, C2 et C3) ont été prélevées au niveau de la glissière du côté sud-est du pont P-11591 et les fiches de description visuelle de celles-ci se trouvent à l'annexe B. Le plan de localisation des carottes se trouve quant à lui à l'annexe C.

À noter que les carottes C1 et C3 avaient un diamètre de 150 mm, et la carotte C2, de 100 mm. Les carottes C1 et C3 ont été volontairement prélevées à des endroits où des fissures verticales étaient visibles à la surface de la glissière et où des barres d'armature en PRFV avaient été localisées initialement à l'aide d'un géoradar de modèle Hilti PS 1000 (voir figure 2).

Figure 2 – Localisation des carottes

La carotte C1 contenait cinq barres d'armature en PRFV tandis que la carotte C3 en contenait trois.

4.2 PRFV

Les barres d'armature en PRFV ont été fabriquées par l'entreprise Pultrall inc., localisée à Thetford Mines. Le certificat de conformité des barres d'armature se trouve à l'annexe D. On trouve dans cet ouvrage deux types de barres, soit les barres droites (longitudinales # 5) et les barres courbes (verticales # 5 et # 6). Les recouvrements théoriques des barres d'armature en PRFV sont de

75 mm. Les recouvrements mesurés à partir des carottes de béton sont de 65 mm pour la carotte C1 et de 70 mm pour la carotte C3.

Des essais physico-chimiques ont été réalisés sur les échantillons MC-15-008-1 à MC-15-008-7 (voir figure 3). Les échantillons MC-15-008-1 à MC-15-008-5 provenaient de la carotte de béton C1. Les échantillons MC-15-008-6 et MC-15-008-7 provenaient quant à eux de la carotte de béton C3. Un échantillon supplémentaire (MC-15-008-8) contenu dans la carotte de béton C3 a été conservé pour référence future. Le détail des armatures prélevées (types de barres et diamètres) est disponible à l'annexe B.

La figure 3 permet de constater visuellement une différence de couleur entre les barres droites (grisâtre) et les barres courbes (verdâtre). De plus, la quantité de grains de sable constatée sur les barres courbes au niveau de l'enrobage est nettement inférieure à celle des barres droites.

Figure 3 – Échantillons de barres d'armature en PRFV provenant des carottes de béton C1 et C3

5. PROTOCOLES D'ESSAIS

5.1 Protocole d'essais sur le béton

En ce qui a trait aux carottes de béton prélevées, les essais ont été réalisés selon les normes suivantes :

•	Résistance à la compression de carottes de béton	CAN/CSA A23.2-14C
• • • •	Absorption et vides perméables dans le béton durci Perméabilité aux ions chlorure Teneur en ions chlorure soluble à l'acide (totaux) Distribution du réseau de bulles d'air (L-Barre) Analyse pétrographique	ASTM C 642 ASTM C 1202 AASHTO T-260 ASTM C457 CSA A23.2-15A ASTM C295

Le tableau 1 ci-contre résume les essais effectués sur chacune des trois carottes prélevées.

Tableau 1: Essais à réaliser sur les carottes de béton

	C1	C2	C3
Résistance à la compression		✓	
Absorption et vides d'air	✓		✓
Perméabilité aux ions chlorure	✓	✓	✓
Teneur en ions chlorure	~	✓	~
L-Barre	\checkmark		
Analyse pétrographique	~		

5.2 Protocole d'essais physico-chimiques sur PRFV

Le tableau 2 résume les essais physico-chimiques réalisés sur les barres d'armature en PRFV contenues dans les carottes de béton prélevées.

Les essais physico-chimiques ont été réalisés selon les normes suivantes :

Surface effective	ACI 440.3R,
	méthode B.1
Densité	ASTM D792
Absorption d'eau	ASTM D570
Température de transition vitreuse	ASTM D3418
Taux de cure	CSA S807-10
Taux de fibres	ASTM D2584
Porosité	ASTM D5117
Spectroscopie	FTIR, méthode SMI
Spectrométrie	FRX LC 31-305
MEB/EDS*	

* L'observation d'échantillons sous microscopie électronique à balayage (MEB) couplé à un système « energy dispersive X-ray spectrometry » (EDX ou EDS) ne fait référence à aucune norme. Les observations ont été réalisées au Laboratoire de microanalyse du département de géologie et de génie géologique de l'Université Laval.

Tableau 2 : Essais à réaliser sur les barres d'armature en PRFV

	Types de barres	ф	Carot te de béton	Den sité	Abs orp. eau	Тg	Taux de cure	Taux de fibres	Taux de vides	F T I R	R M N	F R X	M E B
MC-15-	Courbe	#6	C1			1	1	1	1			~	
MC-15-	Course	#0	01			•	•	•	•			v	
008-2	Droite	#5	C1	~	~			~		\checkmark		\checkmark	
MC-15- 008-3	Droite	#5	C1			~	~		~				
MC-15- 008-4	Courbe	#5	C1	~	~			~		~		~	
MC-15- 008-5	Courbe	#5	C1			~	~		~				
MC-15- 008-6	Courbe	#6	C3	~	~						~		~
MC-15- 008-7	Droite	#5	C3			~	~	~			~	~	~
MC-15- 008-8	Droite	#5	C3	Éc	chantillo	on sup	plément	aire pour	référence	e fu	ture		

6. RÉSULTATS DES ESSAIS ET DISCUSSIONS

6.1 Essais sur le béton

Un mélange typique de béton pour ouvrages d'art a été utilisé pour les glissières coulées en place de la structure P-11591. Ce mélange répondait aux caractéristiques d'un béton à haute performance de type XIII comme spécifié par la norme 3101 du *Tome VII – Matériaux* du ministère des Transports, de la Mobilité durable et de l'Électrification des transports. Le tableau 3 présente les principales caractéristiques de ce mélange. De plus, la formule de mélange et les caractéristiques du béton d'origine sont disponibles pour référence à l'annexe E.

Tableau 3 :	Caractéristiques	du	béton	des	glissières	coulées
en place						

Résistance @ 28 jours (MPa)	Calibre des granulats (mm)	Dosage en liant GUb-SF (kg/m ³)	Ratio eau/liant	Affaissement (mm)	Teneur en air (%)
50	5-14	410	0,38	170 ± 30	5-8

6.1.1 Résistance à la compression

Cet essai est une caractéristique fondamentale du béton. Un essai de résistance à la compression a été réalisé sur la carotte C2. Préalablement à l'essai, l'échantillon fut conditionné par immersion pendant 40 à 48 heures comme exigé par la norme CAN/CSA A23.2-14C puisque les glissières de béton de la structure P-11591 sont exposées à l'humidité.

La résistance à la compression obtenue sur la carotte C2 est de 59,9 MPa. Ainsi, la résistance à la compression du béton des glissières de sécurité de la structure P-11591 est conforme aux caractéristiques prévues et est comparable aux valeurs mesurées en 2004 (voir annexe E). En effet, la valeur dépasse largement la résistance minimale de 50 MPa exigée à l'époque du bétonnage de la structure en 2004.

6.1.2 Teneur en ions chlorure

Les glissières de sécurité d'ouvrages d'art sont des éléments particulièrement exposés aux ions chlorure, et ce, pour plusieurs raisons. D'une part, elles sont constamment soumises aux chlorures provenant des éclaboussures de sels de déglaçage à la suite de passages répétés de véhicules routiers et des opérations de déneigement. D'autre part, les glissières ne sont généralement pas hydrofugées à l'aide d'enduits ou de membranes imperméabilisantes, ce qui laisse donc la voie libre à la migration d'ions chlorure au sein du béton. Il est reconnu que les ions chlorure favorisent la corrosion des barres d'armature en acier. Toutefois, dans le cas des barres d'armature en PRFV, il est admis par le milieu scientifique et industriel que celles-ci ne sont pas affectées par les chlorures provenant des sels de déglaçage en raison de leur nature non métallique. Malgré tout, des teneurs en ions chlorure ont été réalisées sur les trois carottes prélevées dans le cadre de cette expertise afin de documenter les caractéristiques du béton. Le prélèvement de la poudre de béton pour ces essais s'est effectué dans le sens longitudinal des carottes. Pour les carottes C1 et C3, celles-ci ont été prélevées dans des plans de fissuration verticale apparents à la surface des glissières exposées au trafic (voir annexe B). Pour la carotte C2, les teneurs en ions chlorure ont été mesurées du côté non exposé des glissières à titre comparatif.

Pour la carotte C1, la teneur en ions chlorure varie de 0,60 % (dans les premiers 12,5 mm) à 0,039 % (entre 25 et 50 mm). Dans le cas de la carotte C2, la teneur en ions chlorure varie de 0,33 % (dans les premiers 12,5 mm) à 0,028 % (entre 25 et 38 mm). Quant à la carotte C3, la teneur en ions chlorure varie de 0,38 % (dans les premiers 12,5 mm) à 0,021 % (entre 25 et 50 mm). Les analyses effectuées permettent de constater que les teneurs en ions chlorure sont légèrement plus élevées dans la carotte C1, ce qui pourrait s'expliquer par la présence d'un plan de fissuration plus important à cet endroit.

6.1.3 Absorption et vides d'air

L'essai d'absorption est un indicateur de l'absorption et de la perméabilité du béton. Les valeurs obtenues sont, entre autres choses, des indicateurs du rapport eau/liant du mélange de béton, et par le fait même de la qualité de celui-ci. L'essai est réalisé selon les normes CAN/CSA A23.2-11C et ASTM C 642. L'article 11 de la norme CAN/CSA A23.2-11C évoque une précision de 0,5 % pour l'absorption, de 1 % pour les vides perméables ainsi que de 20 kg/m³ pour la masse volumique.

Les résultats d'absorption après immersion des carottes C1 et C3 sont respectivement de 5,0 % et de 4,0 %. Selon le Manuel d'entretien des structures, un béton ayant un taux inférieur à 6,5 % est jugé de « qualité acceptable ». Le béton utilisé dans le cadre des glissières du pont de Val-Alain est bien en deçà de la limite acceptable et est par conséquent de qualité adéquate du point de vue de ce critère. Quant au volume des vides perméables, il est de 12,1 % pour la carotte C1 et de 9,7 % pour la carotte C3. Par expérience, ces valeurs peuvent être considérées comme étant satisfaisantes.

Avec la méthode d'essai CSA A23.2-11C, il a aussi été possible d'évaluer la masse volumique du béton à surface saturée sèche (SSS). À noter que les masses volumiques SSS obtenues sur les carottes C1 et C3 permettent d'approximer la masse volumique du béton frais. La masse volumique SSS obtenue pour la carotte C1 fut de 2348 kg/m³ comparativement à 2459 kg/m³ pour la carotte C3. Ces valeurs sont conformes aux types de béton recherché

pour les ouvrages d'art du MTMDET et indiquent un respect des dosages théoriques minimaux des différents ingrédients lors de la mise en place du béton (voir annexe E).

6.1.4 Détermination des paramètres des vides dans le béton de ciment (L-Barre)

Une distribution du réseau de bulles d'air adéquate est une caractéristique essentielle pour assurer une bonne durabilité d'un béton. Les exigences actuelles du CCDG, du Tome VII et de la norme CSA A23.1 spécifient qu'aucun résultat individuel ne doit être supérieur à 260 µm et que la moyenne du facteur d'espacement ne doit pas être supérieure à 230 µm. Toutefois, le *Tome VII – Matériaux* du MTMDET mentionne que dans le cas d'un béton de type XIII, le facteur d'espacement peut être supérieur à 230 µm à la sortie de la pompe pourvu qu'il soit inférieur ou égal à 325 µm. De plus, la teneur en air du béton durci doit être supérieure ou égale à 3,0 %.

L'essai a été réalisé sur une plaquette rectangulaire prélevée dans le sens transversal de la carotte C1, donc selon le sens de la mise en place du béton lors de la coulée. Le facteur d'espacement obtenu est de 307 µm, tandis que la teneur en air du béton durci est 5,9 %. À partir de l'information obtenue, les glissières du pont ont été coulées avec un mélange de béton de type XIII pompé. Par conséquent, le facteur d'espacement est conforme aux exigences actuelles du Tome VII du MTMDET puisqu'il est en deçà de 325 µm.

6.1.5 Perméabilité aux ions chlorure

La perméabilité aux ions chlorure est un essai qui permet de quantifier la performance d'un béton en ce qui a trait à la résistance à la pénétration des ions chlorure. Des essais de perméabilité aux ions chlorure ont été réalisés sur les carottes de béton C1, C2 et C3. Les résultats des essais varient de 266 à 664 coulombs, ce qui équivaut à un indice de perméabilité très faible selon la classification en vigueur dans la norme d'essai ASTM C 1202. Le béton des glissières de la structure P-11591 se conforme donc à l'exigence actuelle de 1000 coulombs de la norme 3101 du tome VII.

6.1.6 Observations pétrographiques

Une expertise a été réalisée par Englobe pour le compte du MTMDET afin de déterminer la nature pétrographique des granulats présents dans la carotte de béton C1. Le rapport détaillé des observations pétrographiques se retrouve à l'annexe F. Les conclusions suivantes ont été obtenues :

- Les granulats grossiers de la carotte de béton C1 se composent de particules concassées de basalte vert et rouge.
- Le granulat fin de la carotte de béton C1 se compose d'un sable de nature quartzo-feldspathique.
- Le béton de la carotte C1 ne présente aucun indice de détérioration.

Selon les informations obtenues par la Direction territoriale de Chaudière-Appalaches la source de gros granulats provenait de la carrière Ray-Car et le sable de la gravière de Beauce (voir annexe E).

6.2 Essais physico-chimiques sur PRFV

Les résultats des sections 6.2.1 à 6.2.9 sont présentés de façon synthétisée au sein des rapports CI-028-15, CI-115-15, CI-116-15 et CI-115-17 se retrouvant à l'annexe G.

Pour les barres d'armature droites des glissières de la structure P-11591, les résultats sont comparés à ceux obtenus sur les barres droites dites de « référence ». Les barres droites « référence » ont été entreposées au SMI depuis 2004, mais aucun essai physico-chimique n'avait été réalisé sur cellesci avant 2015. Ces barres ont le même diamètre que les barres prélevées de la structure P-11591 et sont issues du même lot de fabrication. Les résultats complets des essais physico-chimiques des barres droites « référence » sont disponibles à l'annexe G au sein du rapport CI-028-15 (numéro des échantillons : MC -15-001). Il est important de noter qu'aucun cadre normatif n'existait au moment de la fabrication des barres d'armature en PRFV utilisées dans la structure, bien que des guides sur ce type de matériau étaient disponibles (ACI 440.3R-04 et ISIS Canada Research Network). Conséquemment, la comparaison des résultats avec les exigences de la norme CSA S807-10 Specification for fibre-reinforced polymers n'est qu'à titre indicatif. En ce qui concerne les résultats des barres d'armature courbes des glissières de la structure P 11591, ceux-ci n'ont pu être comparés à des barres courbes « référence », faute d'échantillons disponibles.

6.2.1 Surface effective

La surface effective des barres droites « référence » est de 201,51 mm². Ce résultat correspond à la moyenne obtenue sur trois échantillons de 200 mm de longueur. En comparaison, la surface effective nominale des barres droites « référence » est de 197,93 mm².

Aucun résultat de surface effective n'est disponible pour les barres d'armature droites et courbes de la structure P-11591 puisque les longueurs des échantillons prélevées n'étaient pas suffisantes.

6.2.2 Densité

La masse volumique moyenne des échantillons de barres droites de la structure P-11591 de même que des barres droites « référence » est de 2,05 g/mL. La masse volumique moyenne des échantillons de barres courbes de la structure P-11591 est de 1,86 g/mL. La masse volumique des barres droites est donc supérieure aux barres courbes, ce qui s'explique par la teneur en fibre plus élevée dans le cas des barres droites (densité des fibres de verre plus grande que la densité de la matrice polymère).

6.2.3 Absorption d'eau

Le béton est un matériau relativement perméable à l'eau et est constitué d'une matrice interstitielle poreuse fortement alcaline. Le réseau poreux du béton influence le taux de diffusion des ions alcalins. Il est bien connu que l'exposition de barres d'armature en PRFV à l'eau et à une solution alcaline engendre une détérioration à long terme du matériau (Nishizaki & Meiarashi, 2002). Conséquemment, une barre de PRFV avec une absorption d'eau élevée risque d'avoir une dégradation accélérée dans le temps par rapport à une barre avec une plus faible absorption d'eau. Le mécanisme de dégradation typique des barres en PRFV en présence d'un milieu alcalin est illustré à la figure 4 (Won & et coll., 2008).

Figure 4 – Mécanisme de dégradation de barres d'armature en PRFV en solution alcaline

Essentiellement, lorsqu'une barre de PRFV est immergée en solution aqueuse et/ou alcaline, les ions alcalins et les molécules d'eau attaquent la matrice polymère lorsqu'ils sont absorbés par celle-ci, ce qui engendre de la délamination et de la fissuration dans la matrice du composite. Une réaction en chaîne s'ensuit. Il se crée alors un réseau poreux au sein du composite, laissant la voie libre à l'eau et aux agents chimiques, ce qui accélère de surcroît la dégradation du composite. Les pores ainsi créés permettent à l'eau et aux agents chimiques d'atteindre les fibres de verre. À partir de ce moment, les fibres de verre sont lessivées (par hydrolyse) ou endommagées (fissuration). Il s'en suit une forme de « corrosion » des fibres de verre non pas par un processus électrochimique comme pour l'acier, mais plutôt par une réaction d'hydrolyse des fibres causant alors des pertes au niveau de leur section transversale (Nishizaki & Meiarashi, 2002). Les performances mécaniques s'en trouvent donc affectées. Les résultats d'absorption d'eau des échantillons provenant de la structure P-11591 de même que ceux des échantillons « référence » sont présentés au tableau 4. Les résultats correspondent à la moyenne d'un triplicata d'échantillons pour chaque barre.

Échantillons	Types de barres	Absorption d'eau (%)		
MC-15-008-2	Droite	0,14		
MC-15-008-4	Courbe	0,08		
MC-15-008-6	Courbe	0,14		
MC-15-001	Droite « référence »	0,06		

Tableau 4 : Résultats des essais d'absorption d'eau

Les résultats d'absorption d'eau obtenus sur les échantillons de barres droites (MC-15-008-2) sont légèrement plus élevés que les résultats des échantillons de barres droites « référence » (MC-15-001).

À titre indicatif, les résultats d'absorption d'eau des barres droites (MC-15-008-2) et des barres courbes (MC-15-008-6) sont en deçà de la limite acceptable fixée par la norme CSA S807-10, soit \leq 0,25 % pour des barres classées D1 (haute durabilité).

En résumé, les résultats d'absorption d'eau obtenus sur les barres droites et courbes de la structure P-11591 sont faibles.

6.2.4 Taux de cure

Les résultats de taux de cure des échantillons provenant de la structure P-11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 5.

Échantillons	Types de barres	Taux de cure (%)		
MC-15-008-1	Courbe	95,1		
MC-15-008-3	Droite	97,8		
MC-15-008-5	Courbe	Entre 91,5 et 97,0		
MC-15-008-7	Droite	95,7		
MC-15-001	Droite « référence »	96,8		

Tableau 5 : Résultats des essais de taux de cure

^{*} Les valeurs de taux de cure obtenues par DSC (*Differential scanning calorimetry*) sont calculées à partir d'une enthalpie de polymérisation de la résine pure de 239 J/g pour les barres courbes et de 257 J/g pour les barres droites, soit les valeurs correspondant aux résines utilisées par Pultrall de nos jours. Ces valeurs sont utilisées pour les calculs faute de connaître les enthalpies de polymérisation des barres fabriquées pour la structure P-11591.

En ce qui concerne les échantillons de barres droites MC-15-008-3 et MC-15-008-7, aucune différence notable des valeurs de taux de cure n'est observable comparativement aux valeurs obtenues sur les échantillons de barres droites « référence » (MC-15-001).

Pour les échantillons de barres courbes MC-15-008-1 et MC-15-008-5, des courbes irrégulières ont été obtenues au DSC (*Differential scanning calorimetry*) pour des raisons qui n'ont pu être expliquées. Les essais ont été répétés plus d'une fois, mais ils se sont avérés peu concluants. Conséquemment, les valeurs de taux de cure présentent des variabilités importantes.

Trois échantillons sur quatre respecteraient l'exigence actuelle de la norme CSA S807-10, soit un taux de cure minimal de 95 % pour des barres classées D1 (haute durabilité).

6.2.5 Température de transition vitreuse (T_g)

Une baisse notable de la température de transition vitreuse d'un matériau composite est généralement attribuable à une dégradation chimique du matériau ou à une certaine plastification (ramollissement) de la résine causée par la présence d'humidité dans la matrice (les atomes des molécules d'eau rompent des liens moléculaires du polymère) (Benmokrane, Ali, Mohamed, Robert, & ElSafty, 2015) (Mufti, Onefrei, & et coll., 2007).

Les résultats des températures de transition vitreuse des échantillons provenant de la structure P-11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 6.

Échantillons	Types de barres	T _g (°C)
MC-15-008-1	Courbe	91
MC-15-008-3	Droite	120
MC-15-008-5	Courbe	Entre 84 et 106
MC-15-008-7	Droite	111
MC-15-001	Droite « référence »	117

Tableau 6 : Résultats des essais de température de transition vitreuse

^{*} Les températures de transition vitreuse sont obtenues par DSC (*Differential scanning calorimetry*) et sont calculées à mi-hauteur.

Les courbes de calorimétrie utilisées pour déterminer le taux de cure servent également à déterminer la température de transition vitreuse. Ainsi, les températures de transition vitreuse des échantillons de barres courbes MC-15-008-3 et MC-15-008-5 présentent des variabilités importantes dues encore une fois aux courbes irrégulières obtenues par DSC. Les faibles valeurs de température de transition vitreuse obtenues sur les barres courbes sont probablement attribuables aux procédés de fabrication de ce type de barres.

Pour ce qui est des échantillons de barres droites MC-15-008-3 et MC-15-008-7, aucune baisse substantielle des températures de transition vitreuse n'est observable par rapport aux températures de transition vitreuse obtenues pour les échantillons de barres droites « référence » (MC-15-001).

La norme CSA S807-10 exige une température de transition vitreuse minimale de 100 °C pour des barres classées D1 (haute durabilité). En ce sens, seules les barres droites satisferaient les exigences actuelles.

6.2.6 Taux de fibres

Les performances mécaniques des barres d'armature en PRFV sont largement imputables aux fibres de verre qui jouent un rôle de renfort au sein du composite, la matrice polymère jouant quant à elle un rôle plus marqué en ce qui concerne la cohésion du composite et la protection des fibres de verre par rapport aux agents agressifs.

Les résultats de teneur en fibres des échantillons provenant de la structure P 11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 7.

Échantillons	Types de barres	Taux de fibres (%)		
MC-15-008-1	Courbe	68,8		
MC-15-008-2	Droite	77,8		
MC-15-008-4	Courbe	70,8		
MC-15-008-7	Droite	77,7		
MC-15-001	Droite « référence »	78,6		

Tableau 7 : Résultats des essais de taux de fibres

Aucune différence notable n'est observable entre la teneur en fibres des échantillons de barres droites de la structure P-11591 et les échantillons de barres droites « référence ». Le taux de fibres est plus important dans le cas des barres droites (\approx 78 %) que dans le cas des barres courbes (\approx 71 %), ce qui est cohérent avec le fait que la densité des barres courbes est plus faible que celle des barres droites.

À titre indicatif, la norme CSA S807-10 exige une teneur en fibres minimale de 70 %.

6.2.7 Porosité

La présence de porosités dans un PRFV facilite le transport d'agents agressifs au cœur du composite et affaiblit la cohésion du matériau.

Des séries d'essais ont été réalisées sur les échantillons MC-15-008-1 (barre courbe), MC-15-008-3 (barre droite), MC-15-008-5 (barre courbe). Pour chaque série d'essais, trois échantillons consécutifs de 25 mm de long provenant d'une seule et même barre ont été trempés dans une solution de méthanol à 1 % de Fuchsine pendant une période de 15 min. Les porosités

des échantillons sont ensuite révélées par la montée de la solution (par capillarité) au sein de l'échantillon. La figure 5 montre les échantillons avant et après 15 min de trempage dans la solution.

La présence de cavités sur toute la longueur des échantillons MC-15-008-1 a été observée visuellement (voir première rangée figure 5). En raison du diamètre important de ces cavités (> 0,90 mm), la solution de trempage n'a pas traversé l'échantillon par capillarité malgré la présence de porosités évidente.

Figure 5 – Photos avant et après les essais de porosité des barres MC-15-008-1, MC-15-008-3 et MC-15-005-5

Pour l'échantillon MC-15-008-3 (voir deuxième rangée figure 5), aucune porosité n'a été observée. Par comparaison, au moins un point a été observé après 15 min de trempage dans la solution sur au moins un des triplicatas des échantillons de barres droites « référence » (MC-15-001).

Pour les échantillons MC-15-008-5, au moins un point a également été observé après 15 min de trempage dans la solution sur au moins un des triplicatas des échantillons (voir troisième rangée figure 5).

En conclusion, des vides plus importants sont observables sur les échantillons de barres courbes par rapport aux échantillons de barres droites. Étant donné l'absence de fissuration dans les échantillons et la géométrie des vides observés, les porosités des barres droites et courbes ont probablement été générées lors de la fabrication de celles-ci et non pas en raison d'une dégradation dans le temps du matériau.

6.2.8 Spectrométrie par fluorescence X (FRX)

Les compositions chimiques des fibres de verre des barres composites de la structure P-11591 de même que des barres « référence » ont été obtenues par spectrométrie par fluorescence X (FRX) et sont présentées au tableau 8.

	Types		Ca	Al ₂	Mg	Na ₂			Fe ₂		B ₂
Échan	de	SiO ₂	0	O ₃	Ō	0	K ₂ O	TiO ₂	O ₃	ZnO	O ₃
tillons	barres	%	%	%	%	%	%	%	%	%	%
MC-15-											
008-1	Courbe	54,0	22,8	13,7	0,32	0,89	0,07	0,53	0,27	< 0,01	7,3
MC-15-											
008-2	Droite	54,3	22,9	13,7	0,38	0,89	0,08	0,54	0,30	< 0,01	6,8
MC-15-											
008-4	Courbe	53,6	22,8	13,8	0,34	0,88	0,07	0,53	0,28	< 0,01	7,6
MC-15-											
008-7	Droite	53,8	22,9	13,8	0,39	0,91	0,10	0,54	0,31	< 0,01	7,1
MC-15-	Droite										
001	« réf. »	54,5	22,9	13,7	0,39	0,89	0,09	0,54	0,30	< 0,01	6,7

Tableau 8 : Composition chimique des fibres de verre (par FRX)

Les compositions chimiques obtenues pour les barres droites ainsi que pour les barres courbes sont similaires et s'apparentent à de la fibre de verre borosilicaté de type E. Cette classe de fibre de verre est couramment utilisée pour la fabrication de PRFV en raison de son applicabilité universelle et de son faible coût comparativement à d'autres types de fibres de renforcement (ex. : carbone et aramide).

6.2.9 FTIR

La spectroscopie FTIR est une technique d'analyse permettant d'obtenir une empreinte chimique de la résine polymère d'un PRFV.

La durabilité de la matrice d'un PRFV est majoritairement fonction de la nature chimique de la structure de sa chaîne polymère (Mufti, Onefrei, & et coll., 2007). Dans le cas d'une résine polyester ou encore vinylester, les liaisons les plus faibles de leur chaîne polymère sont les fonctions ester. L'environnement alcalin du béton favorise l'apparition de réactions d'hydrolyse des liaisons ester de la matrice polymère, causant alors des bris dans la chaîne polymère (Mufti, Onefrei, & et coll., 2007). Cette réaction d'hydrolyse endommage la résine et les propriétés mécaniques du PRFV (voir mécanisme de dégradation de la figure 4). À l'échelle macroscopique, l'apparition de fines fissures est également possible.

Figure 6 – FTIR de la barre droite MC-15-008-2

Le spectre FTIR de la barre droite identifiée MC-15-008-2 a été comparé au spectre FTIR d'une barre droite référence (MC-15-001-1) issue du même lot de fabrication (voir figure 6). Les deux spectres ne présentent aucune différence notable. Par conséquent, l'échantillon ne semble pas avoir subi de dégradation. En effet, les deux spectres ne présentent pas de différence en ce qui a trait à la plage de longueur d'onde s'étendant de 3000 cm⁻¹ à 3500 cm⁻¹, c'est-à-dire dans la région principalement associée à des bandes d'absorption infrarouge (IR) correspondant aux groupements hydroxyles (-OH). Un changement sur le plan du contenu en groupements hydroxyles est un indicateur de la présence de possibles réactions d'hydrolyse des liaisons ester de la chaîne polymère (Mufti, Onefrei, & et coll., 2007).

Figure 7 – FTIR de la barre courbe MC-15-008-4

Quant au spectre FTIR de la barre courbe identifié MC-15-008-4, celui-ci n'a pu être comparé au spectre FTIR d'une barre courbe référence (MC-15-001-1) faute d'échantillons (voir figure 7). Aucune conclusion ne peut en être tirée. Toutefois, le spectre FTIR obtenu servira à titre de référence future.

6.2.10 Spectroscopie RMN à l'état solide

Un mandat a été octroyé en septembre 2015 au département de chimie de l'Université Laval pour confirmer que les barres d'armature en PRFV de la structure P-11591 étaient composées d'une résine vinylester. L'analyse a été effectuée par spectroscopie de résonance magnétique nucléaire (RMN) du ¹³C en phase solide. Le rapport d'analyse transmis par l'Université Laval est inclus à l'annexe H. Ce dernier présente les résultats obtenus et la démarche scientifique utilisée aux fins de l'analyse.

L'étude a bel et bien permis de confirmer que la résine des barres d'armature en PRFV de la structure P-11591 était de type vinylester.

À noter que les flèches bleues de la figure 8 représentent les pics caractéristiques d'une résine de type vinylester.

Figure 8 – Spectres RMN 13C en phase solide des échantillons de barres en PRFV de la structure P-11591

6.2.11 Microscopie électronique à balayage (MEB/EDS)

La microscopie électronique à balayage (MEB) est une technique d'analyse permettant d'examiner en détail la microstructure d'une surface d'un échantillon. Dans le cas de barres d'armature en PRFV, l'observation au MEB permet de :

- 1) vérifier l'état des fibres de verre;
- 2) vérifier l'état de la matrice de polymère;
- 3) vérifier l'interface fibres-matrice;
- 4) vérifier l'interface béton-composite.

Préalablement aux observations effectuées au MEB, des sections transversales d'un échantillon d'une barre courbe (MC-15-008-6) et d'un échantillon d'une barre droite (MC-15-008-7) ont subi un traitement de surface à la suite d'un moulage dans une pastille d'époxy selon le protocole suivant :

- prépolissage à l'eau à une pression de 30 N avec un papier abrasif fait de SiC (carbure de silicium) # 220 à 300 tours/min pendant 1 min;
- prépolissage à l'eau à une pression de 30 N avec un papier abrasif fait de SiC (carbure de silicium) # 500 à 300 tours/min pendant 1 min;
- polissage avec un disque MD-Largo et une suspension diamantée DiaPro Allegro/Largo avec grains de 9 µm à une pression de 30 N à 150 tours/min pendant 5 min;
- 4) rinçage à l'eau à 150 tours/min;
- 5) polissage avec un disque MD-Dur et une suspension diamantée DiaPro Allegro/Dur avec grains de 3 µm à une pression de 25 N à 150 tours/min pendant 5 min;
- 6) rinçage à l'eau à 150 tours/min;
- polissage final avec un disque MD-Chem et une solution OP-U à une pression de 10 N à 150 tours/min pendant 1 min 30 s;
- 8) rinçage à l'eau à 150 tours/min.

La qualité des images obtenues au MEB de même que l'analyse en découlant est tributaire de la préparation de la surface. La technique d'analyse EDS (spectromètre couplé au MEB) a également été utilisée dans le cadre de cette étude pour des fins d'analyses élémentaires et de caractérisation chimique des échantillons. À noter que sur chacun des spectres EDS obtenus, des pics correspondant à de l'or (Au) et du palladium (Pd) sont observables. La présence de ces éléments est attribuable à la couche de métallisation d'Au/Pd résultant de la préparation des échantillons. Ce dépôt d'Au/Pd à la surface des échantillons a pour but de rendre la surface à analyser conductrice. Cette étape est primordiale pour réaliser les observations avec la microsonde électronique du MEB.

6.2.11.1 Échantillon MC-15-008-6 (barre courbe)

La figure 9 est une vue générale de l'échantillon MC-15-008-6. Trois porosités sont observables sur l'image. Ces porosités couvrent des sections variant d'environ 0,04 mm² à 0,14 mm² (porosités mesurées à l'aide du logiciel ImageJ). Une image MEB à fort grossissement (150X) d'une porosité de 0,14 mm² se retrouve à l'annexe I. Ces porosités sont probablement issues de la fabrication de la barre et ne sont pas à proprement parler des signes de détérioration.

La présence de porosité dans un échantillon a des conséquences sur les performances mécaniques (cohésion des fibres et de la matrice) et pourrait avoir un impact sur la durabilité à long terme du matériau.

De plus, la répartition des fibres n'est pas uniforme comme en témoigne l'image 9.

Figure 9 – Image au MEB d'une vue générale de la coupe transversale de l'échantillon MC-15-008-6 (barre courbe)

La figure 10 montre une image de l'échantillon MC-15-008-6 à fort grossissement (1000X). L'image a été obtenue avec le mode d'imagerie en électrons secondaires du MEB. Aucun signe de détérioration (fissuration, pertes de section des fibres de verre) n'est visible au niveau de la matrice et des fibres de verre. De même, l'interface fibres-matrice ne présente aucun décollement.

Figure 10 – Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-6 (barre courbe) et spectre EDS des fibres de verre et de la matrice

Des analyses EDS ont été effectuées sur les fibres de verre et sur la matrice polymère de l'échantillon MC-15-008-6 (voir figure 10). Le spectre obtenu pour les fibres de verre est typique de celles-ci et présente des pics caractéristiques de Si, de Ca, d'Al et d'O conformes à ce qui est attendu (voir section 6.2.8). Le spectre EDS de la matrice polymère présente quant à lui un pic caractéristique de C typique de ce que l'on retrouve dans le cas d'un polymère (squelette d'un polymère formé majoritairement de carbone).

La solution interstitielle du béton est fortement alcaline et est constitué principalement d'ions Na⁺, K⁺ et OH⁻ (Mufti, Onefrei, & et coll., 2007). Il est bien connu que les fibres de verre se dissolvent en présence d'une solution alcaline. Par conséquent, il est intéressant de vérifier à l'aide de spectrométrie EDS la présence d'ions alcalins (Na⁺, K⁺) dans la matrice, principalement au pourtour des fibres de verre. La spectrométrie EDS ne permet toutefois pas de détecter des éléments ou des ions plus légers que le sodium (Na) (Mufti, Onefrei, & et coll., 2007). Il est donc impossible de détecter l'anion hydroxyde, OH⁻.

Aucun pic de potassium (K) ou de sodium (Na) n'a été détecté à la suite des différentes analyses de spectrométrie EDS sur l'échantillon MC-15-008-6, et ce, tant au niveau de la matrice que du pourtour des fibres de verre. L'échantillon ne présente donc pas d'ions alcalins potentiellement nuisibles au matériau. De plus, aucun pic de Si n'a été détecté dans la matrice aux environs immédiats des fibres de verre. La présence de Si indiquerait le cas échéant, une certaine dissolution des fibres de verre.

Au niveau de l'interface béton-composite, un léger décollement variant entre 0,5 μ m et 25 μ m a été mesuré à l'aide du logiciel ImageJ (voir figure 11). Il est toutefois impossible de déterminer si ce décollement découle des conditions d'exposition de la barre (humidité et alcalinité du béton, cycles de gel-dégel, efforts mécaniques, etc.) ou s'il résulte plutôt de la coupe transversale de l'échantillon.

Figure 11 – Interface béton-composite de l'échantillon MC-15-008-6 (barre courbe)

6.2.11.2 Échantillon MC-15-008-7 (barre droite)

Figure 12 – Vue générale au MEB de la barre MC-15-008-7 (barre droite)

La figure 12 est une vue générale de l'échantillon MC-15-008-7. Contrairement à l'échantillon MC-15-008-6, l'échantillon MC-15-008-7 ne présentait aucune porosité visible.

Il est également possible d'observer une concentration de fibres de verre plus importante dans l'échantillon de barre droite comparativement à l'échantillon de barre courbe. Cette observation concorde avec les résultats obtenus à la section 6.2.6 (Taux de fibres).

La figure 13 montre une image à fort grossissement (1000X) de l'échantillon MC-15-008-7. L'image a été obtenue avec le mode d'imagerie en électrons secondaires du MEB. Aucun signe de détérioration (fissuration, pertes de section des fibres de verre) n'est visible au niveau de la matrice et des fibres de verre. De même, l'interface fibres-matrice ne présente aucun décollement. Certains éclats sont visibles sur les fibres de verre, mais ces derniers sont probablement issus de la découpe de l'échantillon et/ou de son polissage étant donné la nature fragile du matériau. De légers artefacts de polissage sont également visibles.

Figure 13 – Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-7 (barre droite) et spectre EDS des fibres de verre et de la matrice
Les spectres EDS des fibres de verre (pics de Si, de Ca, d'Al et d'O) et de la matrice (pic de C) sont conventionnels et présentent encore une fois des pics caractéristiques conformes à ce qui est attendu pour ces matériaux. Aucun ion alcalin (Na⁺, K⁺) n'a été détecté sur les spectres EDS de la matrice. En ce qui concerne l'anion hydroxyde OH⁻, ce dernier n'est pas détectable par EDS pour les raisons mentionnées précédemment.

Figure 14 – Interface béton-composite de l'échantillon MC-15-008-7 (barre droite)

Comparativement à l'échantillon MC-15-008-6 (barre courbe) où un décollement allant jusqu'à 25 µm a été constaté, un décollement minime d'au plus 2 µm est observable à certains endroits au niveau de l'interface bétoncomposite de l'échantillon de barre droite MC-15-008-7 (voir figure 14). De plus, l'enrobage de grains de sable en périphérie de la barre droite ne présente aucun décollement avec le composite. Cet enrobage est essentiel afin d'assurer une adhérence adéquate de la barre dans le béton.

Comme décrit à la section 4.2, l'enrobage de la barre droite semble avoir nettement plus de grains de sable que celle de la barre courbe. À cet effet, il est possible de présumer que l'adhérence des barres droites au béton devrait être supérieure à celle des barres courbes.

À noter que des images MEB supplémentaires des échantillons MC-15-008-6 et MC-15-008-7 sont disponibles à l'annexe I.

7. CONCLUSION

L'expertise portant sur les barres d'armature en PRFV du pont P-11591, situé sur l'autoroute 20 est à Val-Alain, a permis de faire ressortir les conclusions suivantes :

- Le béton des glissières ne présente aucun indice de détérioration.
- Les barres d'armature en PRFV droites et courbes ne présentaient aucun signe de détérioration après 11 ans de mise en service. Toutefois, les barres courbes montraient des porosités importantes probablement causées par leur mode de fabrication.
- Les propriétés physico-chimiques de barres droites en PRFV prélevées dans la structure ont été comparées à celles de barres droites

« référence » de 2004 provenant du même lot de fabrication et entreposé au SMI depuis la réalisation du projet. Il en est ressorti qu'aucun changement notable n'a été constaté. Quant aux propriétés physico-chimiques des barres courbes en PRFV prélevées dans la structure, celles-ci n'ont pu être comparées à des barres « référence » faute d'échantillon disponible. Toutefois, à partir des analyses réalisées, il n'y a pas lieu de croire que celles-ci ont subi une diminution de ces propriétés physico-chimiques.

- Des analyses réalisées par spectroscopie RMN au département de chimie de l'Université Laval ont permis de confirmer que les barres d'armature en PRFV de la structure étaient constituées d'une matrice à base de vinylester.
- Actuellement, il est impossible de corréler la dégradation au niveau physico-chimique avec la perte de performance mécanique des barres en PRFV. Cependant, puisque la structure a été instrumentée au moment de sa construction et que des essais de chargements statiques et dynamiques ont été réalisés avant sa mise en service (Benmokrane, El-Salakawy, El-Gamal, & Goulet, 2007), de nouveaux essais de chargement et de nouvelles collectes de données à partir de l'instrumentation déjà en place pourraient être envisagées afin d'étudier l'évolution du comportement structural de l'ouvrage.

En terminant, il n'y a pas lieu de croire sur la base de cette étude que les barres d'armature en PRFV à base d'une matrice de vinylester et de fibres de verre de la structure P-11591 présentent des risques de dégradation à court et moyen terme. À cet effet, il serait toutefois pertinent de reconduire une expertise similaire pour évaluer l'état de la structure et de ses constituants après 25 ans de mise en service, de manière à mieux prédire son comportement à long terme.

Tout en espérant que ces renseignements répondent à vos besoins, nous demeurons à votre entière disposition pour toute information ou toute interrogation suscitées à la lecture de ce document.

Marc-Antoine Loranger ing. jr

laude Nazair, ing.

Secteur béton Service des matériaux d'infrastructures

8. RÉFÉRENCES

- Benmokrane, B., Ali, A. H., Mohamed, H. M., Robert, M., & ElSafty, A. (2015, Août 5). Durability performance and service life of CFCC tendons exposed to elevated temperature and alkaline environment. *Journal of Composites for Construction*.
- Benmokrane, B., El-Salakawy, E., El-Gamal, S., & Goulet, S. (2007). Construction and testing of an innovative concrete bridge deck totally reinforced with glass FRP bars : Val-Alain bridge on highway 20 east. *Journal of Bridge Engineering*, 632-645.
- Mufti, A., Onefrei, M., & et coll. (2007). Field study of glass-fibre-reinforced polymer durability in concrete. *Canadian Journal of Civil Engineering*, 355-366.
- Nishizaki, S., & Meiarashi, I. (2002). Long-term deterioration of GFRP in water and moist environment. *Journal of composites for construction*, 21-27.
- Transports Québec. (2014). *Identification du pont*. Retrieved from Transports Québec: https://www.diffusion.mtg.gouv.gc.ca/ords/pos/f2p=122:53:0::NO:53:P5

https://www.diffusion.mtq.gouv.qc.ca/ords/pes/f?p=122:53:0::NO:53:P5 3_IDE_STRCT_0001:201212

Won, J.-P., & et coll. (2008). The effect of exposure to alkaline solution and water on the strength-porosity relationship of GFRP rebar. *Composites Part B: engineering*, 764-772.

ANNEXE A PLANS DE CONSTRUCTION DE LA STRUCTURE P-11591

ANNEXE B DESCRIPTION VISUELLE DES CAROTTES

Transports Québec BB Direction du Laboratoire des chaussées Service des matéfaux d'infrastructures Secteur béton	FS-34-S2b-072	Révision : 1 Date de révision : 2014-11-13		
Description v	visuelle (prélèvement de bét	on durci)		
Localisation : Pont de Val-Alain (auto Obstacle : Rivière Henri N° de structure : P-11591	oroute 20 est) N° au l N° de l Date d	aboratoire : BC-15-095 'échantillon : C1 'échantillonnage : 13 juil. 2015		
Échantillon (ϕ = 150 mm)	Côté exposé 7 au traffic 0 r Vide de compaction 10 mm de profondeur 265 280	is et notes générales nm Teneur ions Ct & absorption et vides perméables 50 mm mm Récupération armature 90 mm ions chiorure 140 mm mm Récupération armature 180 mm L-Barre 200 mm pétrographie 265 mm		
Description du forage Matériaux Enrobé bitumineux : Membrane : Glissière : Béton de réfection : Profondeur totale : Béton Description générale : Saine Adhérence B.B. / B.C. : N/A État de surface : Saine avec p verticale \$ 0, de la carotte Fissure / Délaminage : Longue fissu 0,1 mm sur p État des armatures : 2002 courbe à (PRFV) 150 droite à 1502 courbe à Réaction alcalis-granulats :	Épaisseur Desc N/A Teneu N/A Absor 265-280 mm Permé N/A L-Barr N/A Pétrog 265-280 mm L-Bar 265-280 mm Permé 265 mm Comm 80 et 155 mm vides g à 170 mm (porosité visible) tour de visuellement Ia carc	ription des essais r en ions chlorure ption et vides perméables abilité aux ions chlorure re praphie ats : r en ions chlorure : 0-12,5: 0,60 %; 0.15 % et 25-60: 0,039% ption et vides perméables : 5,0% et vides perméables : 12,1% babilité aux ions chlorure : 664 C re : 307 µm tentaires : noe de petites tâches blanches sur ace sciée de plusieurs granulats. te total (horizontal) et une dizaine de de compaction apparents au pour- a certaines armatures et au sein de titte de béton (photos BC-15-095)		
Préparé par : <u>Marc-Antoine Lorange</u> Approuvé par : <u>Claude Nazair, ing.</u>	r, ipg. jr	Date : 22 sept. 2015 Date : 17 déc. 2015		

Transports Québec 355 Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béron	FS-34-S2b-072			Révision : 1		
Description	visuelle (prélèvement	de béto	on durci)	101010001.20111110		
Localisation : <u>Pont de Val-Alain (auto</u> Obstacle : <u>Rivière Henri</u> N° de structure : P-11591	oroute 20 est)	Nº au la Nº de l' Date d'	aboratoire : échantillon : échantillonn	BC-15-095 C2 lage : 13 juil. 2015		
Échantillon (d = 100 mm)	Croqui	s et notes a	énérales			
	Côté exposé	0 m 190	mm Con	0 mm 10 mm 10 mm 180 mm 200 mm 250 mm is Cl		
Description du forage Matériaux Enrobé bitumineux : Membrane :	Épaisseur N/A N/A	Descr Essais Résista Perméa	ription de ance à la co abilité aux	ompression chlorure		
Béton de réfection : Poutre : Profondeur totale : Béton	295-305 mm N/A N/A 295-305 mm	Résulta Résista Permés	ats : ance à la co abilité aux i	ompression : 59,9 Mpa ions chlorure : 435 C		
Description générale : Saine Adhérence B.B. / B.C. : N/A		Teneur 0-12,5: 12,5-25 25-38:	r en ions ch 0,33% 5: 0,075% 0,028%	nlorure :		
État de surface : Saine Fissure / Délaminage : Aucune			Commentaires : Forage total (horizontal)			
État des armatures : partiel 15Ø droite à 190 mm (PRFV) Réaction alcalis-granulats : Aucune visuellement			Vides de compaction apparents Photos additionnelles dans BC-15-095 Présence de petites tâches blanches sur la surface sciée de plusieurs granulats.			
Préparé par : Marc-Antoine Lorange Approuvé par : Claude Nazair, ing. (r, ling. jr		1	Date : 22 sept. 2015 Date : 17 déc. 2015		

Transports Québec ::::: Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béto	FS-34-S2b-072	Révision : 1			
Description v	visuelle (prélèvement de bé	Date de révision : 2014-11-13			
Localisation : Pont de Val-Alain (auto Obstacle : Rivière Henri N° de structure : P-11591	oroute 20 est) Nº au Nº de Date d	laboratoire : <u>BC-15-095</u> l'échantillon : <u>C3</u> d'échantillonnage : 13 juil. 2015			
Échantillon (φ = 150 mm)	Crog	uis et notes générales			
	Côté exposé au traffic Caie en plastique → ↓ + 0 185 200 280	mm Teneur ions Cl absorption et vides perméables 60 mm mm Récupération armature 110 mm ions chlorure 160 mm perméabilité ions chlorure 210 mm perméabilité ions chlorure 260 mm			
Description du torage Matériaux Enrobé bitumineux : Membrane : Glissière : Béton de réfection : Poutre : Profondeur totale : Béton Description générale : Saine Adhérence B.B. / B.C. : N/A État de surface : Saine, fissure Fissure / Délaminage : Fissure / Délaminage : Fissure / Délaminage : Suide surface : 20Ø courbe à (PRFV) 15Ø droite à 15Ø courbe à Réaction alcalis-granulats :	Épaisseur Essait N/A Tenet N/A Absor 260-280 mm Permu N/A Tenet N/A Tenet N/A Tenet N/A Tenet 260-280 mm Prése 260-280 mm 12,5-25 Absor abs.: 260-280 mm prése 260-280 mm Permu 260-280 mm Isur Permu Prése apparente ≤ 0,1 mm Forag prése eure de l'échantillon 90 et 185 mm au poi 200 mm et dam visuellement Voir p	ription des essais 3: Tr en ions chlorure ption et vides perméables fabilité aux ions chlorure tats : a en ions chlorure : 0-12,5: 0,38%; a o,14%; 25-50: 0,021% et 50-56: 0,017% rption et vides perméables : 4,0% et vides perméables : 4,0% et vides perméables : 4,0% et vides perméables : 9,7% fabilité aux ions chlorure : 266 C nentaires : nce de petites tâches blanches sur face sciée de plusieurs granulats. e total (horizontal) nce de cales en plastique à 14 its te de vides de compaction apparents utour de certaines armatures, cales is la carotte de béton hotos dans BC-15-095			
Préparé par : <u>Marc-Antoine Lorange</u> Approuvé par : Claude Nazair. ing. [/]	(ing. jr	Date : 22 sept. 2015 Date : 17 déc. 2015			

ANNEXE C SCHÉMA DE LOCALISATION DES CAROTTES

ANNEXE D CERTIFICAT DE CONFORMITÉ DES BARRES D'ARMATURE EN PRFV

Certificat de conformité Pultrall 23-09-2004

Identification du renfort	Propriétés	Résultats 1	Résultets 2	Résultats 3	Résultets 4	Résultats 5	Moyenne	Écart Type (s)	Valeur garantie	Requis MTQ
	Résistance en traction (Mpa):	746	751	764	816	784	772	29	706	755
	Module d'young (Gps):	44	44	44	48	40	46	2,3	41	46
	Dosage en fibre (% massique):	78,6	78,7	78,2			79	0.3	78	
Armature droite V-Rod #5	Tg ("C):	120	117	114	116	106	115	5,0	103	
(lot 043006)	Absorption d'eau (%):	0,19	0,25	0,21	0,26	0,24	0,23	0,03	0,17	
	Dismètre effectif (mm):	16,0					16,0	n.e.	n.s.	
	Aire transversal (mm ²):	201,6					201,6	n.e.	n.e.	
	Circonférence effective (mm):	50,3					50,3	n.e.	n.a.	
	Résistance en traction (Mpe):	646	657	703	679	663	670	22,2	613	612
	Module d'young (Gps):	42	43	47	47	49	46	3,1	29	42
	Dosage en fibre (% massique):	78,4	78,5	78,5			78	0,1	78	
Armature droite V-Rod #6	тр ("С):	118	116	113	112	117	115	2,5	109	
(lot 042022)	Absorption d'eau (%):	0,3	0,29	0,28	0,29	0,26	0,28	0,02	0,25	
	Diamètre effectif (mm):	20,4					20,4	n. s .	n.s.	
	Aire transversal (mm ²):	325,7					325,7	n.a.	n.a.	
	Circonférence effective (mm):	64,0					64,0	n.e.	n.a.	
	Résistance en traction (Mpa):	488	478	479	474	474	479	5,7	465	400
	Dosage en fibre (% massique):	67,2	71,6	69,1			69,3	2,2	64	
	Тр ("С):	127	127	129	124	127	127	1,6	123	
section courbe	Absorption d'eau (%):	0,61	0,46	0,41	0,58	-0,04	0,40	0,26	0	
	Diamètre effectif (mm):	16,2					16,2	n.e.	n.a.	
	Aire transversal (mm ¹):	206,6					206,6	n.e.	n.a.	
	Circonférence effective (mm):	51,0					51,0	n.a.	n.a.	
	Résistance en traction (Mpa):	400	414	404	380	413	402	13,8	370	400
	Dosege en fibre (% messique):	67,1	67,4	70,0			65	1,6	64	
	тр ("С):	127	132	129	131	125	129	3,0	121	
section courbe	Absorption d'eau (%):		Idem armati	are courbe V-Rod #5 so	ction courbe		8.8.	n.e.	n.a.	
	Diemêtre effectif (mm):	19,4					19,4	n.e.	n.a.	
	Aire transversal (mm ²):	296,9					296,9	n.e.	n.a.	
	Circonférence effective (mm):	61,1					61,1	n.e.	n.a.	
Armature courbe V-Rod #5	Résistance en traction (Mpe):	896	861	895	881	762	859	56,0	732	540
section droite	Module d'young (Gpe):	42	33	31			36	5,8	23	42
Armsture courbe V-Rod #6	Résistance en traction (Mps):	846	882	883	865	879	871	15,7	834	530
section droite	Module d'young (Gps):	32	36	32	37		34	2,8	28	39
st å noter que le coefficient d'achérence. Le, est le même pour tous les types de rentort de Putral et qu'i respecte le requis du VTQ en maintenant une valeur de 0.6 max. En annexe, un document issu de recherche universitaire conduite à l'université de										

Il est à noter que le coefficient d'adhérence, $k_{\rm s}$ est Sherbrooke atteste de cette affirmation.

Bemard Drouin Directeur développement et procédé Brahim Benmokrane Professeur en gênie civil, Université de Sherbrooke

ANNEXE E FORMULE DE MÉLANGE ET CARACTÉRISTIQUE DU BÉTON

(aut 1 2475-04-0203			FORMULE					
	BEI	BETON DI ION CHEV	CIMEN /ALIER S	IT-USINE ST-NICOL	AS			•
(PE DE BETON	I	II I	IV	V	VII	X	XI	XIII
(PE DE CIMENT		Type 10E-SF	64	Type 10E-SF				Type 10E-SF
ESISTANCE EN COMPRESSION (MPA)		30		35				50
FFAISSEMENT (MM)		80		80				170
ENEUR EN AIR (%)		5à8		5à8				5 à 8
APPORT E/C		0,45		0,44	A			0.38
ALIBRE GRANULAT		BC 5-20		BC 5-20				BC 5-14
ESEAU BULLES D'AIR (MICRONS)		185		185				112
NNEE		2003		2003				2004
ASSE VOLUMIQUE (KG/M3)		2320		2295				2485
ASSE CIMENT (KG)		330		350	1			410
ASSE AJOUTS CIMENTAIRES (KG)		1						
ASSE EAU (KG)		150		150				155
ASSE GROS GRANULATS (KG)		1000		1000				1050
ASSE GRANULATS FINS (KG)		840		790				870
DENTIFICATION ADJUVANT 1						100 B	1	Ret. 100XR
UANTITE 1						1. S.		500ml
DENTIFICATION ADJUVANT 2		200-N		200-N				SPN
UANTITE 2		550ml		750 ml				6000ml
DENTIFICATION ADJUVANT 3		Micro-air	1. Sec. 1. Sec	Micro-Air				Micro-air
UANTITE 3		150ml		125 ml				145ml
NNEE		2004		2004				2004

1

CIMENT ET AJOUTS

	BET	ON DE CIN	AENT-US	ÏNE				
and the second	BETON	I CHEVALI	ER ST-NI	ICOLAS	5. 🦾	and the second		
PE DE BETON	4- 1 State 1	IV .	V	VI	VII	VIII	X	XIII
PE DE CIMENT	10E-SF	F	10E-SF					Type 10E-SF
OVENANCE	St-Basile	e	St-Basile					St-Basile
ENTIFICATION DE LA CIMENTERIE	Ciment Que	ebec Cim	ent Québec					Ciment Québec
'PE D'AJOUT CIMENTAIRE								
ASSE					1.00			
ROVENANCE								
FETS PREVUS							-	
INFE	2004		2004					2004

.....

GROS GRANULATS

В	BETON DE C	IMENT	-USINE			
- DET	ONCHEVA	LIED CT	NICOL	AC	ALL STORE DE	
DE1	ON CHEVA	LIEKSI	FINICOL	AS	and a second	a Plant
CALIBRE	BC 5-20	BC 5-14	BC 5-14	BC 2,5-10		exigences
PROVENANCE	Carrière Sartigan					
GRANULOMETRIE	C					
TAMIS 28 MM (% PASSANT)	100				10 P. 1	
TAMIS 20 MM (% PASSANT)	99					
TAMIS 14 MM (% PASSANT)	21				· · ·	
TAMIS 5 MM (% PASSANT)	2					
TAMIS 2,5 MM (% PASSANT)	. 1					
TAMIS 1,25 MM (% PASSANT)	8.7					
REACTIVITE-ALCALIS	NR 2003					MAX: C
LOS ANGELES	10,8					MAX: 50
MICRO DEVAL	10,2					MAX: 25
FRAGMENTATION (%)	100					MIN: 60
PARTICULES PLATES (%)	9,9					MAX: 25
PARTICULES ALLONGEES (%)	29,8					MAX: 45
PROPRETE (%)	0,69					MAX: 1,5
PARTICULES LEGERES (%)	0					MAX: 0,5
TENEUR MOTTES D'ARGILE (%)						MAX: 0,25
MgSO4 (%)	0,3					MAX: 12
MASSE VOLUMIQUE PILONNEE A SEC (KG/M3)	1612					
DENSITE RELATIVE BRUTE (SSS)	2,822					10 C
ABSORPTION (%)	0,49					
ANNEE	2003					

GRANULATS	FINS
-----------	------

	CITE VITEILICOL IV	nconno.
CALIBRE	BC 80microns-5 BC 80mi	crons-5 EXIGENCES GRANULO.
PROVENANCE	Grav. De Beauce	
GRANULOMETRIE (C/NC)	C	
TAMIS 10 MM (% PASSANT)	100	100
TAMIS 5 MM (% PASSANT)	99	95-100
TAMIS 2,5 MM (% PASSANT)	83	80-100
TAMIS 1,25 MM (% PASSANT)	66	50-90
TAMIS 630 MICRONS (% PASSANT)	48	25-65
TAMIS 315 MICRONS (% PASSANT)	25	10-35
TAMIS 160 MICRONS (% PASSANT)	7	2,0-10
MICRO DEVAL	20,7	MAX: 35
PARTICULES LEGERES (%)	0	MAX: 0,5
INDICE COLORIMETRIQUE	0	MAX: 3
PROPRETE (%)	2,7	MAX: 3
MODULE DE FINESSE	2,7	2,3 à 3,1
TENEUR EN MOTTES D'ARGILE (%)	0,7	MAX: 1
MgSO4 (%)	13,4	MAX: 12
MASSE VOLUMIQUE PILONNEE A SEC (KG/I	13)	and the second se
DENSITE RELATIVE BRUTE (SSS)	2,623	
ABSORPTION (%)	1,1	
ANNEE	2004	

...

bollier - - • 10'd 286 56-08-2004 10:04 a 1054, boul, Saint-loseph construction Quebec (Quebec) G2K GÉNIX Tél. : (418) 634-1807 Téléc. : (418) 628-3768 TRANSMISSION PAR TÉLÉCOPIEUR Date: 26-08-2004 Destinataire : MTQ Fax no. : (4(e) 839-7768 A l'attention de : Youn Bilacheau cc Pierre Roy Objet : Pont autoroute 20 et riv. Henri Val-Alain (3475-04-0203) Nombre de page(s), incluant celle-ci : 3 Bonjour, Vous trouverez si joint les résultes du réserve de bulle clair et des résulants en pour le bétou (ampression BHP Je vous avises que nous prévayours la tonner la culie axel dericin matin e The 27.08.284 STRUCTION GENIX INC tor

Gérant de chantier

Titulaire d'une licence délivrée en vertu de la loi sur le Bâtiment du Québec No. 8295-7168-21

r.

. .

•

1

ŧ

i

.....

CHE	TON	E-1 E88 ? I	<u>1-7</u> PRÉLE IAIS EN COL MAS	MPRESSIONSE VOLU	D'ÉCHANT I DN,CALCUI MIQUE	DE LA
USINE: 5	T-Dico	las	DATE	· 04-0	19-80	
PROJET: U	esai de	Connesso	NIR61.			2
ENDROIT :			N/Prol	eventent: D(209-6	5
Date du bétonne	. 04-	08-19			EXIGENCES	
Entrepreneur :			No ree	ette : BC	SOASE.	
Partie(s) betonni	HO(9) :		Cistor	de beton : f	0	
Desition and a state	attail new All M		Affelo	ement exigé :	628	
Dimension des é	prouvettes :10	0mm x 209mm	Agrica	t max. (mm) :	14-5	
Éprouvettee requ	es su lab. :		Chauff	age à l'usine :		
Common 1		Charlens	Line de décert	Line du antitu	Cinese de biller	L sertente en s
Carton ny		Citing and	8:35	9:05	50	14.5
Affaissement	Alt entraine %	Temp. béton	Temp amb.	Tamp. eat.	A.a.a./diaparter	Autres adleyan
180	rr/ •P	25.6	22			L
Eprouvettee no	Dete	Age de Fassel	Masse volumique	Charge (kg)	Nde. en compressio	Noyanne (MPg
	20/8					21.21
	22/8	3		· ·		30-1
	24/8	5				3216
	2 10	14				40.0
	~17	CALOULD				L
Manpa	de le mesure ave	c beton :	10			
	Manes de la	mesure :				
	Manage d	u b ill on :	19			51.000
	Coefficient de la	measure : _1	- Masses	volumique de beb	on:	kg/
	114	11		Masse volumiq	e Undorlque :	
	VIA	20				

ь, so ч 20'd %86 Aug-26-2004 08:58 AM Beton Chevalier Inc. 410 040 4431 0:01 902-80-92 CARACTÉRISTIQUES DU RÉSEAU DI : VIDES D'AIR ASTN C-437 MÉTHODE DE COMPTAGE PAR POINT I (méthode B) a de Outber (1927) Im. Cilent: Beton Chevaller Inc Dossier no: 74-3166 503 575, chemin de la Grande-Ligne Stonetham (Guébeo) Repport nos R04-224 GOA 1PQ A l'attention de monsieur Bernard Chevaller Date: 2004-08 28 CARACTERISTIQUES Identification Échantillon Laboratoire no: 801 Type: cylindre: 100 x 200 Essal de convenance Béton : 60 MPa SF Ech: 204-833, prél: 2004-8-19 Usine: 81-Nicolaa Réception; 2004-98-23 Dimension maximale du granulai : 14mm Projet: Dimensions des plaques: 100 mm X 100 mm REBULTATE Caraotáriatiques des áprouvettes Valeure calculées Pactour d'expet: ment (E) Longueur de traverse (T) 2448 mm Surface couverte 9180 mm³ Exigences: Nombre d'arrêt (S.) 1920 325 µm max. si BHP Teneur en sir (A) 5 5% Vides (n) 0.33 Surfsce volumique (a) 23.84 mm⁻¹ Valeur mesurde: 212 jum Rapport pâte/air (P/A) 6.03 REMARQUES Les deux plaques sont police et solége perpendiculairement à la surface Approuvé par Préparé par: \odot Santard, Loch. prine. Patrick Plamondon Date: 2(04-08-26 1311-02-07-068 22190 100-05 30-08 04 065

418-628-2211 FUB. NOT. OLE. INC.

bollies 动之言 pll. QUIL RETON (418) 848-1968 (418) 831-0004 (819) 364-8010 (418) 774-4747 (418) 332-2177 (418) 848-4431 HE VALIER NC. St-Nicola Princeville te Ligne, C Usine Beauceville G0A 4P0 Theford Mil (418) 848-4431 pieur : 3475-04-0203 **-**: Y Expéditeur : 0 1 1 0 Télécopie : 1-418-839-TTC Q Page(s) : Date: 04-09-20 Téléphone : A-Q ()Objet : trag ΛM Ø 0 Soumission 🔲 Liste de prix 🛛 Ouverture de compte 🗆 Réponse Confidentiel • Commentaires: 2 -F NUT 9% DN am 0 Res bonbado 1 mA uamen Λ <u>م</u> ging En cas de problème de transmission, veuillez nous en informer par téléphone au (418) 848-1966. 18.5 1 P.01 20-09-2004 11:43

SEP-27-2004 03:21 PM BETON CHEVALIER INC.

418 848 4431

INC. Virun Bilo darn. Refuise. / Herr 30 04109-30 (418) 848-1988 3475-24-0203 P.01

Usine Québec :	(418) 848-1986
Usine St-Nicolas :	(418) 831-0004
Usine Princeville :	(819) 364-6010
Usine Beauceville :	(418) 774-4747
Télécopleur :	(418) 848-4431

576, de la Grande Ligne, C.P. 219 Stoneham (Québec) GOA 4P0

Le 27 sept 2004

CONTRAT : Const. Génix inc. PROJET : Val-Alain

Madame, Monsieur,

Voici tel que demandé, la formule de mélange de béton préparé devant servir pour le projet mentionné en titre.

Béton: prise rapide

- résistance en compression à 28 jours	50 Mpa type 13
- rapport E/c	0.37
- affaissement	170 mm ± 30
- pourcentage d'air entraîné	548%
- calibre du granulat	5-14 mm

Mélange :

1 mètre cube : - ciment type 10 sf	410 kg					
- sable	870 kg					
- pierre	1 050 kg					
- 100 xr	500 ml					
- micro-air	165 ml					
- SPN	6000 ml					
-Eau	155					
- pozzotech 20	1500ml					
Fournisseurs :						
 ciment type 10 sf portiand 	Ciment Québec					
- adjuvants	Master Builders					
- agrégats Graviere de Beauce et Carrière Ray-Car						

Nous espérons le tout à votre entière satisfaction et vous prions d'agréer, l'expression de nos sentiments les mellieurs.

Par:

Benoit Lemelin, directeur de la production et des ventes

possien All-acal B

Saint-Romuald, le 17 décembre 2004

Monsieur Yvan Bilodeau, ing. Service des projets Direction Chaudière-Appalaches 1156, boul. de la Rive-Sud Saint-Romuald (Québec) G6W 5M6

ection de la Chaudière-Appalaches

OBJET : Rapport final - Lots en béton de ciment pour construction d'une structure Contrat no : 3475-04-0203 20 Route Municipalité Val-Alain : Lotbinière MRC Entrepreneur Construction Génix inc. 2 Béton Chevalier, St-Nicolas Fournisseur :

Monsieur,

4 4 4 4

Vous trouverez ci-jointe la compilation sous forme de lots des essais en résistance en compression en béton de ciment concernant la construction de la structure.

 Béton de type II (30 MPa) 	Lot 1 : PR = 1,00 PU
- Béton de type V (35 MPa)	Lot 1 : PR = 1,00 PU
- Béton de type XIII (50 MPa)	Lot 1 : PR = 1,00 PU
1	Lot 2 : PR = 1,00 PU

Espérant le tout à votre entière satisfaction, nous demeurons disponible pour de plus amples informations.

Salutations distinguées.

une Pierre Roy, TTPPS

Secteur Assurance de la qualité

/dc

c.c. : M. Robert Brochu, ing., chef du Service des projets M. Gilles Dussault, ing. Dossier contrat

p.j. 1156, boulevard de la Rive-Súd Saint-Romuald (Québec) G6W SM6 Téléphone : (418) 839-5581 Télécopieu : (418) 839-5581 www.mlq.gouv.qc.ca

7

Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'autoroute 20 est à Val-Alain

Que	éb	ec	C E2 E2 Rapport par lot									N°			Ш		÷.,	1			
trat				Projet			Route		-	Municipa	alité			Circonscription	électorale			Spécificatio	ns		
3475 sreneur	-04-0	203					Sous-tr	aitant 2	0		/al-Al: Fournis	ain	Lotbini	ère	Résist	ance spécifiée	Cal. granula	t % d'air	_^0	ement	
	Co	nstru	ction (n Génix inc.								Béton Ch	evalier		3	0 MPa	BC 5-20	5à8	8	0	
Écha	antillo	antillons Essais sur béton frais							Résistance er	compression	1	*	Ourorité reactionation	1							
N°	đ	Dat Ichantil	e Ionnage	% đair	AS	laissement mm	Tempé- rature C*	7 jrs	28 jrs	28 jrs	Moyenne à 28 jrs	Note	par l'échantilion (m ³)			Identification	et localisation des p	arties bétonnées	-		
03	04	1 08	is Jour 3 13	6.6		100	24	22.39	36.42	36.16	36.29		36.0	Semelle culée # 1 (ouest)							
04	0-	4 08	3 13	6.6		100	25	19.12	32.77	32.83	32.80		72.0	Semelle culé	e # 1 (oues	st)					
05	0-	4 08	3 20	6.2		110	23,4	22.67	38.19	38.58	38.39		40.0	Semelle culée # 2 (est)							
06	0	4 08	3 20	6.2		90	24.1	24.76	41.15	41.66	41,41		65.5	Semeile culée # 2 (est)							
		1									-										
				1.1				1.1	-				11 A.						÷		
		1	1							1											
		1		1								·									
			1																		
		1	1						,						100						
		1	1														1.1				
			Í.					1. A.													
										R	37.22		Quantité totale du lot	Transmis à							
ar d'accep	tation	(k) .	Nombre	e d'échan	illons	(n)	: Facter	ur d'ajustement	1	ď	3.621		213.5 m ³	Surveillant	Service de	s projets		Yvan Bilode	au, ing.		
k.	n	k	n	k	n	k l	r pour r	ésistance		R=	Résistance n	noyenr	ne mesurée du lot	1.1	Unité administra	ative		Représentant			
.99	7	31	13	47	19 20	55			1 A.	d=	Indice de dis	persion	n des échantillons du lot	Entrepreneur	Constructio	on Génix i	nc.	Harold Gia: Représentant	sson, ing.		
- 9	9	34	15.	50	20	57	. = R	37.22	Rt : Résista	nce movenne te	lérable			T Formisser	Béton Che	valier inc.		Michel Vall	he		
10	10	41	16	52	22	58	Rt	30.36						-	Nom			Représentant			
19	11	43	17	53	23	59	· . =	1,000	Rt = f'c +	$\left(\frac{\kappa \sigma}{100}\right)^{\kappa}$	t = <u>30</u> +	10	$\frac{x \ 3.621}{100}$ = $\frac{30.36}{30.36}$								
20	12	+5	18	34	24	00 I I				/		<u>`</u>		Note 1-	avons utilisé 1,	5 fc.	ion os superieure	a 1,516. Pour a	Calcul de la l		u nux, no
arques									Préparé par Assurance	de la qualité	Dominiqu	ie Lap	prise An Moi 04 11	s Jour 2.	La résistance o devrait pas être	de cet échanti payé. Ce rés	lon est inférieure à litat n'a pas été con	0,76 fc. Le bét sidéré pour le ca	in représenté : lout de la moye	ar cet éche nne du lot.	antilion
									Approuvé par Assurance	e de la qualité	Pierre Ro	v, ttp:	DS 04 11	s Jour	Le bélon est rel L'écart entre l	fusé et les trav les résultats	aux devraient être n de deux (2) spéci	esissanue cittique repris. imens de cet é	chantilon est	suphrieur	à 5 MF
									Unité adminis	trative	Représentai	it .		4	l'échantilion est échantilion est	t jugé délectu payée au prix	eux et sa valeur es unitaire.	t rejetée. La qu	antité de bétor	représent	ée par o
j9 (92-01)	MsOff	lce 97/c	ic																		BC-

Oué	be	c	81 192 82 184							Rapp	ort par lot			N°		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	V		1
rat Projet Route							Municipa	lité			Circonscription électorale Spécification				tions				
3475-04-0203 2					0			/al-Ala Fournis	3IN	Lotbini	ere	Résistance spéci	liée Cal. gra	nulat % d'air	Aftermer				
Construction Génix inc.											Béton Ch	evalier		35 MPa	BC 5	20 5à8	80 mm		
Echar	ntillor	15		Es	sais sur b	oéton fra	ais	F	Résistance en	compression		.							~~~~
N°	ďéc	Date hantilo	nnage	% ɗair	Affaissem mm	ent T ra	'empé- iture C*	7 jrs	28 jrs	28 jrs	Moyenne à 28 jrs	Note	par l'échantillon (m ³)	Identification et localisation des parties bétonnées					
1	An 04	Moin 07	10	5.6	80/	150	24	35.70	45.60		45.60		5.5	Drain côté nord et élévation joint pile unité # 3					
2	04	07	12	7.6	90		24.8	26.55	34.95	38.38	36.67	-	17.0	Consolidatio	n des culée	s#1 et#4,4 ^e Ra	ng		
			1																
		<u> </u>	<u> </u>			_													
		1	1										-						
	-	<u>_</u>	Ļ			-						-	······						
	+	<u> </u>	<u>I</u>					· · · ·				1							
,	-	ł	-									1							
	\vdash	r	1	-															
		1.	1																÷
		Ŀ	1								1.1								
۰.										R	41.14		Quantité totale du lot	Transmis à					
l'accepta	tion (k))	Nombre	d'échanti	lions (n)	E	Facteu	r d'ajustement	1	d	6.315		22.5 m ³	Surveillant	Service de	s projets	Yvan Bi	odeau, ing.	
<u>k</u>	n	k	n	k I	<u>1 k</u>		pour re	isistance	e	R=	Résistance n	noyenr	ne mesurée du lot		Unité administr	ative	Représenta	nt	
.88	r :	31	13	4/ 1	9 55					, a =	indice de dis	persion	1 des echanisions du lo	Entrepreneur	Nom	on Genix Inc.	Représenta	nt nt	
-9	9	38	15	50 2	1 57	Fr-	= R	41.14	Rt : Résistar	nce moyenne te	lérable	-		Fournisseur	Béton Che	valier inc.	Michel V	/allée	
10 1	0	41	16	52 2	2 58		Rt	29.44		(kd) 0	- 25 .	1 00	× 6 215 1 - 20 44		Nom		Représenta	nt	
19 1	1	43	17	53 2	3 59	5		1 000	Rt = f'c +	$\left(\frac{N_0}{100}\right)^n$	+		100						
26 1	2	45	18	54 2	4 60	1.1.	-	1,000				<u> </u>	100 /	* Note 1-	La résistance d avons utilisé 12	de cet échantilion est sup 5 fc.	érieure à 1,5 °c. Po	ur le calcul de la	moyenne du lo
ues									Assurance	de la qualité	Dominiqu	ie Lap	rise 04 11	s Jour 2-	La résistance o devrait pas être	te cet échantillon est infé payé. Ce résultat n'a pas	rieure à 0,76 fc. Le été considéré pour	béton représenté e calcul de la moy	par cet échanti renne du lot.
									Approuvé par Assurance	de la qualité	Pierre Ro	w the	An Mo	s Jour	La resistance n Le béton est re	toyenne du lot est inférieu fusé et les travaux deviaie	re à la résistance cr ent être repris. 2) eclécimente de r	tique (0,80 fc). et áchastillon ei	t mobileur à
									Unité administ	rative	Représentar	nt.		4	l'échantilon es échantilon est	t jugé défectueux et sa v payée au prix unitaire.	aleur est rejetée. L	a quantité de bét	on représentée
(92-01) N	IsOffic	e 97/d	3																

Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'autoroute 20 est à Val-Alain

Qué	bec 🖬 🖬						Rapp	ort par lot			N°			XIII 1		
1trat 3475-0	04-0203	Projet		Route	2	0	Municipa	alité \	/al-Ala	ain	Circonscription	n électorale ière	Résistance spé	Spécifica telfiée Cal. gra	nulat % d'air	Atoment
epreneur	preneur Sous-traitant Construction Génix inc.							, 		Béton Ch	nevalier		50 MPa	a Bc5á	a 14 5 à 8	170 mm
Échar	ntillons	Es	sais sur bétor	n frais		Résistance en	compression	1	-		<u> </u>					
N°	Date d'échantilionnage	% d'air	Affaissement	Tempé- rature C*	7 jrs	28 jrs	28 jrs	Moyenne à 28 jrs	Ncte	par l'échantilon (m ²)	Identification et localisation des parties bétonnées					
5-07	An Mois Jour 04 08 27	5.0	210	21	45,47	55,58	54,73	55,16		33	Murs Phase	1; axe 1				
5-08	04 08 31	6,2	190	19,3	26,59	41,03	41,81	41,42		1,0	Bloc d'assise	e # 1				
5-09	04 09 01	6,0	190	18	40,08	54,99	55,37	55,18		27	Mur de culée #2					
5-10	04 09 02	5,6	160	20,2	51,01	87,90	70,24	79,07		1,0	Assise culée # 2					
5-11	04 09 08	5,0	190	20,1	45,16	81,39	82,12	81,76		13	Mur en aile					
5-12	04 09 14	5,5	200	16,6	54,57	72,56	72,11	72,34		. 7	Mur en aile 2					
5-13	04 09 25	6,4	190	19,6	48,57	63,02	61,27	62,15		28,5	Diaphragme d'extrémité					
		-						·		· ·						
									1							
	1.1.1				1.1									1.1		
			1													
							R	63,87		Quantité totale du lot	Transmis à					
teur d'accepta	tion (k) Nombre n k n 7 31 13 8 34 14	d'échanti k 1 47 1 49 2	llons (n) n K 9 55 20 56	Facter pour n	ur d'ajustement ésistance		d R= d=	14,61 Résistance r Indice de dis	noyenr persior	110,5 m ² ne mesurée du lot n des échantillons du lot	Surveillant	Service de Unité administra Construction Nom	s projets ^{ative} on Génix inc.	Yvan Bil Représenta Harold C Représenta	odeau, ing. nt Giasson, ing.	
-9	9 38 15	50 2	1 57 F	r = <u>R</u>	63,87	Rt : Résista	nce moyenne to	plérable			Fournisseur	Béton Che	valier inc.	Michel \	/allée	
5 19 1	1 43 17	53 2	3 59	- =	1.000	Rt = f'c +	$\left(\frac{kd}{100}\right)^{R}$	t = <u>50</u> +	(<u></u>	$\frac{x \ 14.61}{100}$ = $\frac{54.53}{54.53}$	·			i topi oborno		
3 26 1	2 45 18	54 2	4 60 1	r-			()		` <u> </u>	, ,	* Note 1-	La résistance d avons utilisé 1,5	se cet échantilion est s 5 fc.	supérieure à 1,5 °c. Po	sur le calcul de la	moyenne du lot, nous
marques						Préparé par Assurance Unité adminisi Approuvé par Assurance Unité adminisi	de la qualité trative de la qualité trative	Dominiqu Représentar Pierre Ro Représentar	ue Lap nt oy, ttpp nt	An Moi 04 11 05 04 11	is Jour 1 10 3- is Jour 1 29 4-	La résistance o devrait pas être La résistance n Le béton est re L'écart entre l l'échantilion est échantilion est	de cet échantilion est in payé. Ce résultat n'a p noyenne du lot est inféri fusé et les travaux devr les résultats de deux t jugé défectueux et sa payée au prix unitaire.	ntérieure à 0,76 fc. Le pas été considéré pour feure à la résistance cr raient être repris. c (2) spécimens de c a valeur est rejetée. L	béton représenté le calcul de la moye tique (0,80 fc). xet échantillon est a quantité de béto	par cet échantilion ne anne du lot. supérieur à 5 MPa, n représentée par cet
1469 (92-01) N	AsOffice 97/dc	· .														BC-4

Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'autoroute 20 est à Val-Alain

Que	edec 📾 🖬						Rapp	ort par lot			N°	XIII		2	
it 3475.4	t Projet Route						Municip	alité	al-Ala	ain	Circonscription électorale	Résistance spécifiée	Spécifications		
reneur Sous-traitant								.	ournis	iseur Béton Ch	evalier	35 MPa	BC 5à14 5 à 8	170 mm	
E.L.						Déclateres							000000000000000000000000000000000000000		
-N ^o	Date d'échantilionnage	Kar % d°air	Affaissement mm	Tempé- reture C°	7 jrs	28 jrs	28 jrs	Moyenne à 28 jrs	* Note	Quantité représentée par l'échantilion (m ³)	Identification et localisation des parties bétonnées				
14	An Mois Jour 04 10 08	5.6	200	19	54.19	69.89	70.77	70.33		35	Dalle		-		
5	04 10 08	5.3	200	19.6	52.20	68.55	64.10	66.32		119	Dalle				
6	04 10 18	5.2	200	15.8	47.80	63.18	61.84	62.51		22	Dalle de transition et glissière sur le pont				
17	04 10 18	5.8	180	16.2	52.28	61.11	64.05	62.58	• • ;	67	Dalle de transition et glissière sur le pont				
18	04 10 21	6.2	200	18.6	44.25	61.48	61.47	61.48		15.5	Dalle de 3 m et glissière sur dalle de 6 m				
			-								· · · ·				
	1.1	2						· ·							
													-		
									ļ						
		L				· .									
		L				1.1	<u> </u>			Quantité totale du lat	Transmis A				
							ĸ	64.64							
r d'accepta	ation (k) Nombre	d'échanti	llons (n)	Facteu	r d'ajustement		d R=	3.673 Résistance m	oven	258.5 m ³	Surveillant Service de	es projets	Yvan Bilodeau, ing. Représentant		
ĸ	7 31 13	47 1	9 55	pour			d=	Indice de disp	persion	n des échantillons du lo	Entrepreneur Construct	ion Génix inc.	Harold Giasson, ing	1.	
-88	8 34 14 9 38 15	49 2 50 2	1 57 F	r = R .	64.64	Rt : Résista	nce moyenne te	dérable			Fournisseur Béton Chr	evalier inc.	Nepresentant Michel Vallée		
10	10 41 16	52 2	2 58	Rt	50.70	Rt = fc +	(_kd_) F	t = <u>50</u> +	19	x 3.673 = 50.70	Nom		Représentant		
26	12 45 18	54 2	4 60 F	r =	1,000		(100)		۱.	100	* Note 1- La résistance avons utilisé 1	de cet échantilion est supérieure	à 1,5 fc. Pour le calcul de	la moyenne du lot, i	
rques						Préparé par Assurance	de la qualité	Dominiqu	e Lao	orise 04 1	s Jour 2- La résistance devrait pas étr	de cet échantilion est inférieure à re pavé. Ce résultat n'a pas été co	à 0,76 fc. Le béton représer nsidéré pour le calcul de la m	té par cet échantillo ovenne du lot.	
						Unité adminis Approuvé par	trative	Représentan	t	An Mo	3- La résistance is Jour Le béton est n	moyenne du lot est inférieure à la plusé et les travaux devraient être	résistance critique (0,80 fc). repris.		
		'				Assurance Unité adminis	e de la qualité trative	Pierre Ro Représentan	y, ttp; t	ps 04 12	2 14 4 L'écart entre l'échantilion es	los résultats de deux (2) spéc st jugé défectueux et sa valeur et t payée au prix unifaire.	cimens de cet échantillon st rejetée. La quantilé de b	est supérieur à 51 éton représentée pa	
9 (92-01)	MsOffice 97/dc										,			в	

ANNEXE F RAPPORT EXAMEN PÉTROGRAPHIQUE

MINISTÈRE DES TRANSPORTS DU QUÉBEC

Examen pétrographique sur carotte de béton Structure P-11591 – Val-Alain

Rapport final

Date : Septembre 2015 N/Réf. : 072-P-0008136-0-01-501-IM-R-0003-00

englobecorp.com

Le 28 septembre 2015

Monsieur Marc-Antoine Loranger, ing. jr Ministère des Transports du Québec Secteur béton Service des matériaux d'infrastructure

Objet :	Examen pétrographique sur carotte de béton
	Structure P-11591 –Val-Alain
	Rapport final
	N/Réf.: 072-P-0008136-0-01-501-IM-R-0003-00

Monsieur,

Nous avons le plaisir de vous transmettre ci-joint le rapport final de l'examen pétrographique sur les carottes de béton de la structure P-11591 située à Val-Alain.

Nous espérons que les informations contenues dans ce rapport sauront vous être utiles. N'hésitez pas à communiquer avec nous pour toute question concernant cette étude.

Veuillez agréer, Monsieur, l'expression de nos sentiments les meilleurs.

EnGlobe nelle

Sofie Tremblay, géo. M. Sc Pétrographe et chargée de projet

ST/AM/vb

p.j.

MINISTÈRE DES TRANSPORTS DU QUÉBEC

Examen pétrographique sur carotte de béton Structure P-11591 Val-Alain

> Rapport final 072-P-0008136-1-01-501-IM-R-0003-00

Préparé par :

Sófie Frémblay, géo, M. Sc. Chargée de projet - Pétrographe N° de membre OGQ : 1776 Fremblay, géo, M. Sc. QUÉBEC

SOFIE TREMBLAY

1776

Approuvé par :

Alexis Mailloux, ing. Chef d'équipe - Expertise N° de membre OIQ : 143768

325, rue de l'Espinay, Québec (Québec) Canada G1L 2J2 - T 418.647.1402 F 648.9288 - info@englobecom.com

TABLE DES MATIÈRES

1	MANDAT1
	1.1 Limites de la caractérisation1
2	OBSERVATIONS PÉTROGRAPHIQUES
	2.1 Description générale du béton
3	CONCLUSION

FIGURES	
Figure 1 :	Plaque polie de la carotte C1
Figure 2 :	Microphotographies des granulats du béton4

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIN)

i

Propriété et confidentialité

« Ce document d'ingénierie est la propriété d'EnGlobe Corp. et est protégé par la loi. Ce rapport est destiné exclusivement aux fins qui y sont mentionnées. Toute reproduction ou adaptation, partielle ou totale, est strictement prohibée sans avoir préalablement obtenu l'autorisation écrite d'Englobe et de son Client.

Si des essais ont été effectués, les résultats de ces essais ne sont valides que pour l'échantillon décrit dans le présent rapport.

Les sous-traitants d'Englobe qui auraient réalisé des travaux au chantier ou en laboratoire sont dûment qualifiés selon la procédure relative à l'approvisionnement de notre manuel qualité. Pour toute information complémentaire ou de plus amples renseignements, veuillez communiquer avec votre chargé de projet. »

	REGISTRE	DES RÉVISIONS ET ÉMISSIONS
N° de révision	Date	Description de la modification et/ou de l'émission
0A	2015-09-25	Rapport pour commentaires
00	2015-09-28	Rapport final

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIN)

ii

1 MANDAT

Les services d'Englobe ont été retenus par le Ministère des Transports du Québec afin de réaliser un examen pétrographique sur une carotte de béton provenant de la structure P-11591 située à Val-Alain.

L'objectif de l'expertise est de déterminer la nature pétrographique des granulats présents dans le béton de la structure.

1.1 LIMITES DE LA CARACTÉRISATION

Les commentaires et observations de ce rapport sont basés sur l'analyse pétrographique effectuée selon les normes CSA A23.2-15A et ASTM C295. Toutes les identifications ont été faites au moyen de techniques de diagnostic visuelles normalisées et géologiques de base. Les conclusions sont donc une opinion professionnelle tenant compte des résultats d'un examen visuel, de l'expérience acquise par histoires de cas ainsi que de l'état actuel de la pratique. Il est à noter qu'aucune lame mince n'a été réalisée.

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIN)

1

2 OBSERVATIONS PÉTROGRAPHIQUES

2.1 DESCRIPTION GÉNÉRALE DU BÉTON

Les observations pétrographiques ont été réalisées sur la carotte C1. Pour réaliser les observations, l'échantillon a été taillé à l'aide d'une scie diamantée. Ensuite, la surface de la section obtenue a été graduellement polie à l'aide d'une polisseuse portative utilisant des disques dont les particules abrasives sont de plus en plus fines.

La section polie provenant de la carotte de béton prélevée sur la structure est présentée à la Figure 1.

Figure 1 : Plaque polie de la carotte C1

2

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIN)

Les granulats grossiers présents dans le béton se composent de particules concassées de roche de nature basaltique. La forme des particules est angulaire à subangulaire. Le diamètre maximal du gros granulat est de 14 mm. La couleur des particules est verte et rouge selon le niveau d'altération de l'hématite présente dans les granulats. La pierre contient fréquemment des amygdales remplis de calcite cristalline. La dureté des granulats est moyenne ($\approx 4 à 5^*$) et l'agencement des grains est cohésif (bonne ténacité). L'enrobage et la distribution des granulats dans le béton sont bons. La Figure 2 présente des microphotographies des granulats présents dans le béton.

Le granulat fin se compose d'un sable de nature quartzo-feldspathique. La forme des particules de sable est subarrondie à arrondie. Le diamètre maximal du sable est d'environ 5 mm. On retrouve parfois des particules de dimension supérieure.

La pâte de ciment a une couleur gris moyen laissant présager l'utilisation d'ajouts cimentaires dans le béton. Celle-ci présente quelques vides d'air uniformément répartis dont le diamètre maximal est d'environ 3 mm. Quelques vides de compaction d'une dimension maximale de 9 mm ont également été observés.

Aucun indice de détérioration n'a été observé dans le béton.

з

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON – STRUCTURE P-11591 (VAL-ALAIN)

Sur l'échelle de Mohs qui compte dix niveaux de dureté de 1=faible dureté (talc) à 10=grande dureté (diamant)

Figure 2 : Microphotographies des granulats du béton

4

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIM)

3 CONCLUSION

Les services d'Englobe ont été retenus par le Ministère des Transports du Québec afin de réaliser un examen pétrographique sur une carotte de béton provenant de la structure P-11591 située à Val-Alain.

L'objectif de l'expertise était de déterminer la nature pétrographique des granulats présents dans le béton de la structure.

Les granulats grossiers présents dans le béton se composent de particules concassées de basalte vert et rouge.

Le granulat fin se compose d'un sable de nature quartzo-feldspathique.

Aucun indice de détérioration n'a été observé dans le béton.

FIN DU RAPPORT

072-P-0008136-1-01-501-IM-R-0003-00 EXAMEN PÉTROGRAPHIQUE SUR CAROTTES DE BÉTON - STRUCTURE P-11591 (VAL-ALAIN)

5

ANNEXE G RÉSULTATS DES ESSAIS

Transports Québec	EE ED u Laboraloire des chaussée: matériaux d'Infrastructures	FS-35	i-S2b-034		Révision :	0
Sectaur bé	lon			D	ate de révision : 201	4-04-01
	Essais de l	ésistance à la CSA A2	compress 3.2-14C	sion (carotte	5)	
BC-	15-095			Date :	10 sept. 201	15
Détails Client : # client : Projet : Produit et résistar	nce spéficiée :					
Échantillons	culin	dro 🗔 Corol	to [7]			
Date et heure de Date et heure de Date de réception Lieu de prévelèm Cure :	coulée : prélèvement : ; ent :					
Résultats						
Identification	Date de	Diamètr	e Hauteur	Résistance à la compression	Masse volumique	Type de
C-2	2015-09-10	nd 100,85	177,92	59,9	2372	3
		Résistanc	a moyenne :	59,9	MPa	
Remarques :						
Préparé par :	Pascale Larouche	.t.p.		Approuvé par :	Nadia Pol	uliot, m

Page 1 de 1

Transports Québec 🖬 🛱 Sonice des Maldraus d'infractionaires Sociaus Liaitle hydrocantonies et Chimie	Rap Chlorure da	port d'essais ns le béton de ciment		FS-35-53-201 Révision : 2 Page 1 de 1 2015-03-23
Type d'échantillon :	Béton	Numéro du rapport :	CI109-15	
Client :		Provenance :	Val-Alain	
Bon de commande :		Numéro d'échantillon :	BC-15-095	
Échantillonneur :	Pascale Larouche	Date de réception :	2015-09-02	
Date d'échantillonnage :	2015-09-02	Analyste (s) :	Nadia Verret	Albert and

	AASHTO T 260	
Échantillon	Profondeur (mm)	Chlorure (%
BC-15-095 Carotte C-1	0-12,5	0,60
BC-15-095 Carotte C-1	12,5-25	0,15
BC-15-095 Carotte C-1	25-50	0,039
BC-15-095 Carotte C-2	0-12,5	0,33
BC-15-095 Carotte C-2	12,5-25	0,075
BC-15-095 Carotte C-2	25-38	0,028
BC-15-095 Carotte C-3	0-12,5	0,38
BC-15-095 Carotte C-3	12,5-25	0,14
BC-15-095 Carotte C-3	25-50	0,021
BC-15-095 Carotte C-3	50-56	0,017

Copie à : Pascale Larouche	Préparé par : Approuvé par :	Claudine Rousseau Cullen Julia
es résultats ne se rapportent qu'à l'échantilion sour le rapport est pour l'usage exclusif du client et ne p	Date : mis à l'essai. eut être reproduit, sinon en entier, sans la permis;	M.Sc., chimiste 2015-09-11
The factor of the second secon		GAETAN LECLER 90-088
anne trat Briti de se		2

	Qı	iébec 🛱 🛱	FS-35	-S2b-132	Rév	vision : 1
		Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béton			Date de ré	vision : 2015-03
Déte	erm	ination de la teneur en ea d'air dans	u, de la mas le béton, le CSA A23	se volumique, coulis ou le n .2-11C	, de l'absorpt nortier	ion et de
		BC-15-095		Date	: 8 s	ept. 2015
Dé Clie # cl Pro Pro Éc Dat Lieu	tail: ient : jet : duit : han e de e de u de	s Carottage P-11591 Val-Alain : tillons coulée : prélèvement : 2015-07-13 prélèvement : P-11591 Val-Alair	n	Âge de l'échantlik	on :	
Dá	sul	tats				
Re			1	٨	P	1 0
Re		#Laboratoire		A	B C3	c
	1-1	# Laboratoire Mo (Masse initiale		A C1 1246.1	B C3 1140.4	C
(6)	I - A-	# Laboratoire Mo (Masse initiale Masse sèche	•)	A C1 1246,1 1193,6	B C3 1140,4 1101,0	c
(6) ses	I - A- B-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme	e) ersion	A C1 1246,1 1193,6 1253,3	B C3 1140,4 1101,0 1144,8	C
Masses (g)	I - A- B- C-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après ébi	e) Insion	A C1 1246,1 1193,6 1253,3 1258,4	B C3 1140,4 1101,0 1144,8 1146,3	c
Masses (g)	I - A- B- C- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après ébi Masse dans l'eau après é	ersion ullition	A C1 1246,1 1193,6 1253,3 1258,4 724,6	B C3 1140,4 1101,0 1144,8 1146,3 680,8	C
Masses (g)	I - A- B- C- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après éb Masse dans l'eau après é Teneur en eau (%)	ersion	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6	
Masses (g)	I - A- B- C- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après éb Masse dans l'eau après é Teneur en eau (%) Absorption après immersi	ersion ullition ébullition ion (%)	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4 5,0	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6 4,0	
lis Masses (g)	I - A- B- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après éb Masse dans l'eau après é Teneur en eau (%) Absorption après immersion et é	e) ersion ullition bullition lon (%) ebullition (%)	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4 5,0 5,4	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6 4,0 4,1	
talculs Masses (g)	I - A- B- C- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après ébi Masse dans l'eau après é Teneur en eau (%) Absorption après immersion et é Masse volumique à sec (k	e) ersion ullition abullition lon (%) ebullition (%) eg/m³)	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4 5,0 5,4 2236	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6 4,0 4,1 2365	
Calculs Masses (g)	I - A- B- C-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après ébu Masse dans l'eau après é Masse dans l'eau après ébu Masse dans l'eau après ébu Masse dans l'eau après ébu Masse dans l'eau après ébu Masse volumique à sec (k Masse volumique après immers	ersion ullition bullition bon (%) isg/m³) sion (kg/m³)	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4 5,0 5,4 2236 2348	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6 4,0 4,1 2365 2459	
Calculs Masses (g)	I - A- B- C- D-	# Laboratoire Mo (Masse initiale Masse sèche Masse humide / imme Masse (SSS) après ébi Masse (SSS) après ébi Masse dans l'eau après ébi Masse dans l'eau après ébi Masse dans l'eau après ébi Masse dans l'eau après ébi Masse volumique après immersion et ébi Masse volumique après immers asse volumique après imm. et ébi	ersion ullition ébullition lon (%) ebullition (%) eg/m ³) eion (kg/m ³) sullition (kg/m ³)	A C1 1246,1 1193,6 1253,3 1258,4 724,6 4,4 5,0 5,4 2236 2348 2357	B C3 1140,4 1101,0 1144,8 1146,3 680,8 3,6 4,0 4,1 2365 2459 2463	

Page 1 de 1

	3: Q Te	25, rue de l'Espinay d'a uébec, G1L 232 éléphone: (418) 647-1402	ASTM C457 Procédu
Client : Ministère des Tr Projet : Laboratoire des laboratoire Endroit : Québec	ansports du Québec chaussées 2015 à 201	Dossier 18; Essais en Réf. clien Rapport :	: P-0008136-0-01-500 tt : 731667 n° : 21 Rév. 0 Page 1 de 1
	ÉCł	ANTILLONNAGE	
N° d'ech. LVM : 21		Date / heure de prélèvement	: 2015-07-13 à :
Nº d'ech. client : BC-15-095	(1	Prélevé par : le	client
Type d'echantillon : Carotte de	beton	Age à l'essai : 4	19 jours
Plaque sciées et polies - Dimension Position :	ns : 150 mm diam.	Endroit de prélèvement : P-;	11591; Val-Alain
	CARACTÉR	ISTIQUES DU MÉLANGE	
N° de formule	Fournisse	ur	Usine
Résistance à 28 jours	: MPa	Type ou classe de béton :	
Dimension maximale des granulats	: mm		
Liant (type, margue et provenance	e) :		
Adjuvants chimiques (types et sour	rces) : : Aucun		
Adjuvants chimiques (types et sour	rces) : : Aucun PARA	MÈTRES D'ESSAI	
Adjuvants chimiques (types et sour	rces) : : Aucun PARA	AMÈTRES D'ESSAI Exigences	Utilisés
Adjuvants chimiques (types et sour Latex (source) Surface (mm²)	rces) : : Aucun PARA	AMÈTRES D'ESSAI Exigences 7100 min.	Utilisés 11850
Adjuvants chimiques (types et sour Latex (source) Surface (mm ²) Longueur totale traversée (mm)	rces) : : Aucun PARA	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min.	Utilisés 11850 2398
Adjuvants chimiques (types et sour Latex (source) Surface (mm ²) Longueur totale traversée (mm) Nombre d'arrêts	rces) : : Aucun PARA	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min.	Utilisés 11850 2398 3200
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope	rces) : : Aucun PARA	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max.	Utilisės 11850 2398 3200 120 X
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT	rces) : : Aucun PARA TATS	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max.	Utilisés 11850 2398 3200 120 X IGENCES
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques	rces) : : Aucun PARA TATS Valeurs calculées	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max.	Utilisés 11850 2398 3200 120 X IGENCES © CSA A23.1
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Srossissement du microscope RÉSULT Caractéristiques Vâte	rces) : : Aucun PARA PARA TATS Valeurs calculées 29,4 %	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max.	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats	rces) : : Aucun PARA PARA TATS Valeurs calculées 29,4 % 64,7 %	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norm- Individuelle : < 260 µm Tome	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats Feneur en air (A)	rces) : : Aucun PARA PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 %	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norma Individuelle : < 260 µm Tous les types : < 230 µm Excentions :	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Srossissement du microscope RÉSULT Caractéristiques Dâte Granulats Feneur en air (A) Surface volumique (a)	rces) : : Aucun PARA PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹	Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Individuelle : < 260 µm	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats Teneur en air (A) Surface volumique (α) Facteur d'espacement (ī)	rces) : : Aucun PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹ 307 µm	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norma Individuelle : < 260 µm <u>Exceptions :</u> Type XIV-S et XVI-15 : < 300 Type XIV-S et XVI-15 : < 300 Type XIV-S et XVI-15 : < 300 Type XIV-C et XIV-R à la sortie	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm pe : ≤ 325 µm e da pompe : ≤ 260 µm
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope <u>RÉSULT</u> Caractéristiques Pâte Granulats Teneur en air (A) Surface volumique (α) Facteur d'espacement (ī)	rces) : : Aucun PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹ 307 µm	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norm Individuelle : < 260 µm Tome Tous les types : < 230 µm Exceptions : Type XIV-S et XVI-15 : < 300 Type XIV-S et XVI-15 : < 300 Type XIV-C et XIV-R à la sortie REMARQUES	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm npe : ≤ 325 µm e de la pompe : ≤ 260 µm
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats Teneur en air (A) Surface volumique (α) Facteur d'espacement (ī)	rces) : : Aucun PARA PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹ 307 µm	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norma Individuelle : < 260 µm Tous les types : < 230 µm Exceptions : Type XIV-S et XVI-15 : < 300 Type XIV-C et XIV-R à la sortie REMARQUES s par un représentant du client. La plaqu	Utilisés 11850 2398 3200 120 X IGENCES a CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm ape : ≤ 325 µm a de la pompe : ≤ 260 µm e a été prélevée horizontalement
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats Feneur en air (A) Surface volumique (α) Facteur d'espacement (ξ) e prélévement et le transport de l' ur la carotte.	rces) : : Aucun PARA PARA PARA PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹ 307 µm	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norma Individuelle : s 260 µm Tome Tous les types : s 230 µm Exceptions : Type XIV-S et XVI-15 : s 300 Type XIV-S et XVI-15 : s 300 Type XIV-S et XVI-15 : s 300 Type XIV-C et XIV-R à la sortie REMARQUES s par un représentant du client. La plaqu	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm pe : ≤ 325 µm e de la pompe : ≤ 260 µm e a été prélevée horizontalement Date :
Adjuvants chimiques (types et sour Latex (source) Surface (mm²) Longueur totale traversée (mm) Nombre d'arrêts Grossissement du microscope RÉSULT Caractéristiques Pâte Granulats Teneur en air (A) Surface volumique (α) Facteur d'espacement (ĩ) Patere spacement (ĩ)	rces) : : Aucun PARA PARA PARA PARA TATS Valeurs calculées 29,4 % 64,7 % 5,9 % 15,1 mm ⁻¹ 307 µm	AMÈTRES D'ESSAI Exigences 7100 min. 2286 min. 1350 min. 50X min 125X max. EXI Norma Individuelle : ≤ 260 µm Tome Tous les types : ≤ 230 µm Exceptions : Type XIV-5 et XVI-15 : ≤ 300 Type XIV-5 et XVI-5 : ≤ 300 Type XVI-5 et XVI-5 : ≤ 300 Type XVI-5 et XVI-5 : ≤ 300 Type XVI-5	Utilisés 11850 2398 3200 120 X IGENCES e CSA A23.1 Moyenne : ≤ 230 µm VII du MTQ µm pe : ≤ 325 µm e de la pompe : ≤ 250 µm e a été prélevée horizontalement Date : Date :

Transports Québec BE Sarica das matériaus d'infrastrutaires Saciaur Liants hydrocarbonés et Orien	-		ANALYSES	PHYSICO-	CHIMIQUES	S DES BA	RRES D'A	RMATUR	E EN M	ITÉRIAU	сомро	SITE			C1098-16	CTI026 15	C1036-15
Type d'échantillon :	Barre d'armatu	re en matéria	u composite						11			Numéro	Numéro de rappo	Numéro de rapport :	Numéro de rapport : Cl028-15	Numéro de rapport : CI028-15	Numéro de rapport : Cl028-15
Échantillonneur :	Dave Brindle											Numéro	Numéro de l'écha	Numéro de l'échantillon :	Numéro de l'échantillon : MC-15-0	Numéro de l'échantillon : MC-15-001	Numéro de l'échantillon : MC-15-001 Barre d
Envoyé par :	Secteur béton o	de ciment										Date d'é	Date d'échantillo	Date d'échantillonnage :	Date d'échantillonnage : 2015-02-	Date d'échantillonnage : 2015-02-20	Date d'échantillonnage : 2015-02-20
Analystc(s) :	Maria Neira, C	hristine Duc	hesne, Nadia	Verret								Date de Fournis	Date de réception Fournisseur :	Date de réception : Fournisseur :	Date de réception : 2015-02- Fournisseur : Pultrall	Date de réception : 2015-02-20 Fournisseur : Pultrall	Date de réception : 2015-02-20 Fournisseur : Pultrall
Identification	Masse volumique ¹⁾	Absortion d'eau ²⁾	Porosité 3) (Présence /	Tg ⁴⁾ ASTM	Cure ^{SI} CSA S807	Compos calcinati ASTN	ition par ion (% p/p) 1 D2584					Comp	Composition ch	Composition chimique I LC 31-305	Composition chimique FRX (%) LC31-305	Composition chimique FRX (%) LC 31-305	Composition chimique FRX (%) LC31-305
	(g / mL)	(%)	Absence)	(°C)	(%)	Fibre ⁶⁾	Résine 6)	2	0,	0 ₂ CaO	02 CaO Al2O3	O ₂ CaO Al ₂ O ₃ MgO	O ₂ CaO Al ₂ O ₃ MgO Na ₂ O	0 ₂ C ₈ O Al ₂ O ₃ MgO Na ₂ O K ₂ O	02 CaO Al2O3 MgO Na2O K2O TiO2	0 ₂ C ₂ O Al ₂ O ₃ MgO Na ₂ O K ₂ O TiO ₂ Fe ₂ O ₃	0 ₂ CaO Al ₂ O ₃ MgO Na ₂ O K ₂ O TiO ₂ Fe ₂ O ₃ ZnO
MC-15-001-1	2,06	0,05	ą	116	96,4	78,4	21,6	54	is.	.5 22,9	.5 22,9 13,7	5 22,9 13,7 0,39	5 22,9 13,7 0,39 0,89	5 22,9 13,7 0,39 0,89 0,09	5 22,9 13,7 0,39 0,89 0,09 0,54	5 22,9 13,7 0,39 0,89 0,09 0,54 0,30	5 22.9 13.7 0.39 0.89 0.09 0.54 0.30 <0.01
MC-15-001-2	2,05	0,06	Α	120	97,6	78,6	21,4										
MC-15-001-3	2,05	0,06	A	115	96,5	78,8	21,2										
2				1													
						T											
Moyenne	2,05	0,06		117	96,8	78,6	21,4										
Remarques après15 minutes dans une sc	s: 1) Masse volun olution 1% de fuchsi	nique mesurée ne basique dan	avec recouvr s le méthanol.	ement de sa 4) Tg : temp	able. 2) Mo pérature de tri	yenne d'un ansition vit	triplicata. reuse calcul	3) La Se à m	a me	a mention P s ii-hauteur.	a mention P signifie qu ii-hauteur. 5) Valeur	a mention P signifie qu'au moins 1i-hauteur. 5) Valeur calculée à p	a mention P signifie qu'au moins un point : il-hauteur. 5) Valeur calculée à partir d'une o	a mention P signifie qu'au moins un point a été obse a-hauteur. 5) Valeur calculée à partir d'une enthalpie d	 mention P signifie qu'au moins un point a été observé sur au i-hauteur. S) Valeur calculée à partir d'une enthalpie de polyméris 	a mention P signifie qu'au moins un point a été observé sur au moins un a-hauteur. 5) Valeur calculée à partir d'une enhalpie de polymérisation de la	nention P signifie qu'au moins un point a été observé sur au moins un des trip i-hauteur. 5) Valeur calculée à partir d'une enthalpie de polymérisation de la résine pun
Copie à :	Marc-Antoine	Loranger								Préparé	Préparé par :	Préparé par : Claudin	Préparé par : Claudine Roussea	Préparé par : Claudine Rousseau	Préparé par : Claudine Rousseau	Préparé par : Claudine Rousseau	Préparé par : Claudine Rousseau
Date :	2015-03-24									Approu	Approuvé par :	Approuvé par : 101	Approuvé par : / /	Approuvé par : /// / //	Approuvé par: /// , // /	Approuvé par : // , / / Smining Duches	Approuvé par : 00 , 0 Christine Duchesne

Servica des matérieux d'antestructure Secteur Liants hydrocarbonés el Chin	ii ii			- Theorem	Crimica			O D ANI								83	15-03-19
Type d'échantillon :	Barre d'annatu	re en matéria	au composite							N	méro de	rapport :	Ω	115-15			
Échantillonneur :	Mare-Antoine	Loranger								Z	méro de	l'échanti	llon : Mt	C-15-008	-16 B	arre cour	be
Envoyé par :	Secleur béton	de ciment								Da	te d'échs	ntillonna	ge: 20	15-09-25			
Analyste(s) :	Maria Neira, (hristine Due	chesne, Nadia	Verret						Da	te de réc	eption :	20	15-09-25			
										PO	urnisseu	2	Pu	Itrali			
Identification	Masse volumique ¹⁾	Absortion d'eau ²⁾	Porosité 3) (Prisence/	Tg 4) ASTM D3418	Cure 51 CSA S807	Composi calcinati ASTN	ition par on (% p/p) D2584				omposit	ion chimi LC 31-30	que FRO	(%)			
	(g/mL)	(%)	Absence)	3	(%)	Fibre 6)	Résine 6)	SiO1	CaO A	I2O2 N	1gO N	ia ₁ 0 H	(10 ·	FIO3 F	(e10)	ZnO	B101
MC-15-008-1			Voir remarque 8)	- 16	95,1	68,8	31,2	54,0	22,8	3.7 0	,32	0,89 0	,07	0,53	0,27	< 0,01	7,3
MC-15-008-6	1,84	0,14															
	-									-	-	-	_				
					T				-	-	-	+	-	-			
					T				+	-	+	-	+	+			
										-	-	_					
									-		-						
Banara IN Marra	1,07	0.17		1	100	0,00	21.00	D		-			-				
Remarques : 1) Masse dans une solution 1% de fu 6) % rapporté sans tenir c des cavités soient présent	volumique mesurée ichsine basique dans compte du sable, su les sur toute la long	avec recouvr e méthanol. 4 r les fibres no aeur de ces éc	ement de sable) Tg : températe n-lavées. 7) B chantillons, le	2) Moyer are de transit 20 ₃ : teneur colorant n'a	nne d'un trip tion vitreuse maximale e pas traverse	blicata. 3) I calculée à m stimée. 8) I é l'échantille	a mention i-hauteur. La présence on par capi	P signifie (5) Valeur c e de trous a llarité lors	qu'au moir alculée à p été obser de l'essui	is un point artir d'une e vée visuell de porosite	a été obs inthalpie d ement su en raiso	ervé sur av e polymérie r ces échar n du diamé	u moins u sation de l ntillons (v tre impoi	n des trip a résine pu oir photo tant de ce	licatas ap are de 239 s ci-jointe s cavités	rès 15 m J/g. (> 0,90 r	que am).
Copie à :	Marc-Antoine	Loranger						_	réparé pa	IT: Cla	udine Ro	Jusseau		ALL O	1		
Date :	2015-10-13	a .						>	pprouvé	par:	hun	tur	n	Con Con	Dudan	M.Sc. c	imist

	No CI /No. MC	Section	Masse ava	asse apr
	CI-115-15	GA	000	
	HC-15-008-6	6B	1 2	2
		6C		
		(
E.	and the second second	-		1
100	C/ 2 1	A P		
1 Sup				
	Contraction of Contraction	-		

	_		£	3	
Date/h		Section	Masi	TION	Massa après
	CI-115-15	6A			masse apres
	HC-15-008-6	6B	10	1	
		6C	A CONT		
			1 and	and the second	
				-	

Service des malériaux d'infrestructures Seclaur Liants hydrocarbonés et Chimie		•	NALYSES	PHYSICO	-CHIMIQL	JES DES	BARRE	S D'ARI	MATUR	E EN M	ATÉRIA	U COMP	OSITE			_	Page 1 de 1 Révision : 0 2015-03-19
Type d'échantillon :	Barre d'armatu	re en matéria	u composite								Numéro	de rappo	rt:	CI116-15			
Échantillonneur :	Marc-Antoine	Loranger		8							Numéro	de l'échs	untillon :	MC-15-0	08-2, 3, 7	Barre dro	vite
Envoyé par :	Secteur beton of	de ciment							6 9		Date d'é	chantillo	nnage :	2015-09-	25		
Analyste(s) :	Maria Neira, C	hristine Duch	esne, Nadia	Verret							Date de	réception		2015-09-	25		
										L	Fourniss	eur :		Pultrall			
Identification	Masse volumique 1)	Absortion d'eau ²⁾	Porosité 3)	Tg ⁴⁾ ASTM	Cure 5)	Compos calcinati	ition par on (% p/p)				Comp	usition ch	imique I 31-305	7RX (%)			
	ASTN D792 (g / mL)	ASTM D570 (%)	Absence)	(°C)	(%)	Fibre ⁶⁾	Résine ⁶⁾	SiO ₂	CaO	Al ₂ O ₃	MgO	Na ₂ O	К10	TiO ₁	Fe ₂ O ₃	ZnO	B ₂ O ₃ ³⁾
MC-15-008-2	2,05	0,14				77,8	22,2	54,3	22,9	13,7	0,38	68,0	80,0	0,54	0.30	< 0,01	6,8
MC-15-008-3			A	120	97,8		3										
MC-15-008-7				111	95,7	77,7	22,3	53,8	22,9	13,8	0,39	16'0	0,10	0,54	0,31	< 0,01	7,1
							8										
				516													
Moyenne	2,05	0,14		116	8'96	77.8	22,2										
Remarques : 1) Masse vo dans une solution 1% de fuch 6) % rapporté sans tenir cor	lumique mesurée sine basique dans l mpte du sable, sur	avec recouvre e méthanol. 4) r les fibres non	ment de sable. Tg : températu -lavées, 7) B ₂	 Moyenu de transition teneur r 	ne d'un tripl on vitreuse c naximale es	icata. 3) l alculée à m stimée.	a mention	1 P signifi 5) Valeur	e qu'au m calculée à	oins un p partir d'u	oint a été ne enthalpi	observé s e de polyn	ur au moir nérisation c	is un des t de la résine	riplicatas i pure de 25	après 15 n 7 J/g.	ninules
Copie à :	Marc-Antoine	Loranger							Préparé	par:	Claudine	Roussea	6		2		
Date :	2015-10-13		-						Approu	vé par :	Ch	stui	S		Se la	M.Sc.,	chimiste
Ce rapport est peur l'usage exclusif du cli	ent et oc peut être reprodui	t, sinon en essier, san	a los manenting loss dowing														

File # 1 : CI116-15.TRANSMITTANCE

2015-09-28 10:03 Res=8

Transports Québec 88 Sories des matérique d'infraitractures Socieur Liant hytocontronts et Chrime Type d'échantillon :	Barre d'armatu	are en matéri	ANALYS	ES PHYS	ICO-CHIMI	QUES D	ES BAR	RES D'A	RMATU		MATÉF	NAU CO	MPOSI ourt :	re	S		
Echantillonneur : Envoyé par :	Marc-Antoine Secteur béton	Loranger de ciment									Numéro Date d'o	o de l'éch échantill	onna	ge :	ge: 2015-09	ge: 2015-09-25	lon : MC-15-008-4, 5 Barre ge : 2015-09-25
Analyste(s) :	Maria Neira, (Christine Duc	hesne, Nadia	Verret							Date de	réceptio			2015-09	2015-09-25	2015-09-25
											Fournis	seur :			Pultrall	Pultrall	Pultrall
Identification	Masse volumique ¹⁾	Absortion d'eau ³⁾	Porosité 3)	Tg 4) ASTM	Cure 5) CSA	Compo	sition par ion (% p/p)				Comp	osition c	himiqu 31-305	ie i	ie FRX (%)	1e FRX (%)	ae FRX (%)
	ASTM D792 (g / mL)	ASTM D570 (%)	Absence)	(°C)	(%) / 00C	Fibre 6)	Résine 6)	SiO1	CaO	AI202	MgO	Na ₂ O	K10	0.000	TiO1	TiO ₁ Fe ₂ O ₃	TiO ₁ Fe ₂ O ₃ ZnO
MC-15-008-4	1,88	80*0				70,8	29,2	53,6	22,8	13,8	0,34	0,88	0,07		0,53	0,53 0,28	0,53 0,28 < 0,0
MC-15-008-5			Р	Entre 84 et 106	Entre 91,5 et 97.0		-	2									
															+		
															+		
														1 1	1		
Moyenne	1,88	0,08				70,8	29.2							I 1			
Remarques : 1) Masse v dans une solution 1% de fuc 6) % rapporté sans tenir co	volumique mesuré chsine basique dans ompte du sable, su	e avec recouvi le méthanol. 4 ir les fibres no	ement de sab) Tg : tempéra n-lavées, 7) E	le. 2) Moye ture de trans l ₂ O ₃ : teneu	enne d'un tripl ation vitreuse c r maximale es	icata. 3) I alculée à n timée.	La mentior ni-hauteur.	9 signifi 5) Valeu	e qu'au m r calculée	oins un p à partir d	oint a été une entha	observé : Ipie de pol	yméris	atio no	noins un des ation de la rési	noins un des triplicatas ation de la résine pure de	noins un des triplicatas après l ation de la résine pure de 239 J/g
Copie à :	Marc-Antoine	Loranger							Prépar	é par :	Claudin	e Rousse	au)
Date	2015-10-13				7810				Approv	ıvé par :	Chu	stu	C	2	Labor	Decision Processon	Corrier Picheson M.Sc
THEF.							A No.								B		

File # 1 : CI117-15.TRANSMITTANCE

2015-09-28 10:05 Res=8

ANNEXE H RAPPORT D'ANALYSE PAR SPECTROSCOPIE DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DU ¹³C EN PHASE SOLIDE

Problématique : Identification de la résine polymère de deux échantillons en poudre par comparaison avec deux échantillons standards, un de type polyester et un de type polyvinyle (ceux-ci ayant été enregistrés dans un contrat précédent, rapport du 27 mai 2015.) Échantillons numéro : CI118-15 MC-15-008-6 CI119-15 MC 15-008-7 Méthode utilisée : Spectroscopie RMN ¹³C en phase solide Détails expérimentaux : Échantillon en poudre, tassé dans un rotor de 4 mm de diamètre. Les spectres 13C en CP-MAS ont été enregistrés sur un spectromètre Bruker Avance 400 à une fréquence de 100 MHz, avec 10000 scans, à une vitesse de rotation de l'échantillon de 12 kHz, un délai de recyclage de 4 secondes, et un temps de contact de 2 ms. Résultats et discussion: Les spectres des deux nouveaux échantillons sont présentés à la figure 1, de même que les spectres de références précédemment enregistrés. Le tableau 1, donne les positions et l'attribution des pics principaux des nouveaux échantillons et la comparaison avec les standards précédemment enregistrés. Trois pics sont caractéristiques des polyvinyles : le pic vers 115-120 ppm et les deux petits pics vers 153 et 157 ppm, qui étaient faibles, mais présents dans le standard polyvinyle et absents du standard polyester, sont nettement présents. Les pics vers 170-176 ppm étaient aussi présents pour le standard polyester, mais on remarque qu'ils sont légèrement, mais systématiquement à plus haut déplacement chimique pour les polyvinyles. Ils pourraient donc provenir de groupements chimiques différents selon la résine, en accord avec l'attribution proposée. Conclusion : Les deux nouveaux échantillons inconnus sont, d'après les caractéristiques observées en spectroscopie RMN, de la classe des polyvinyles. ismo! Juin ant

> Josée Brisson, chimiste et Pierre Audet, chimiste Département de chimie, Université Laval 1045 avenue de la Médecine Québec, Québec G1V 0A6 Tél. : (418) 656-2131 poste 3536 Courriels : josee.brisson@chm.ulaval.ca, pierre.audet@chm.ulaval.ca

Position de pics des inconnus (ppm)	Intensité relative	Attribution	Standard comprenant ce pic
9 et 18	+	C aliphatique (CH, CH ₃ , CH ₂)	Les deux
40-49	++	CH ₂ en bêta d'un groupe ester C en alpha de Cl, N ou F	Les deux
70	++	C-O de fonction éthers ou esters	Les deux
115-120	+	CF ₂	Standard polyvinyle
128-130	++++	C=C	Les deux
140-145	+	C=C	Les deux
153 et 157	+	C=C	Standard polyvinyle
170-176		Carbone de fonction ester ou acide	Les deux

Tableau 1 : Positions principales des pics observés pour les échantillons inconnus et attribution chimique

Figure 1 : Spectres RMN ¹³C en phase solide des échantillons de résine. Les flèches bleues indiquent les pics caractéristiques des polyvinyles

ANNEXE I PHOTOGRAPHIES MEB

Photo 1 – Barre courbe MC-15-008-6 (artefacts de polissage visibles)

Photo 2 – Barre courbe MC-15-008-6

Photo 3 – Porosité de la barre courbe MC-15-008-6

Photo 4 – Interface composite-béton de la barre courbe MC-15-008-6

Photo 5 – Interface composite-béton de la barre droite MC-15-008-7

Transports, Mobilité durable et Électrification des transports

