Expertise sur l'état du béton et des barres d'armature en PRFV du pont P-11591 situé sur l'Autoroute 20 Est à Val-Alain

Rapport d'expertise

Demandé par :	M. Guy Tremblay, ing., M. Sc., directeur Direction du laboratoire des chaussées
	Ministère des transports du Québec

Relevés et essais	
réalisés par :	Michaël Arsenault, t.t.p.
	Dave Brindle, t.t.p.
	Pascale Larouche, t.t.p.
	Marc-Antoine Loranger, ing. jr
	Claude Nazair, ing.
	Secteur liants hydrocarbonés et chimie

Rapport rédigé par : Marc-Antoine Loranger, ing. jr Claude Nazair, ing. Secteur béton Service des matériaux d'infrastructure Direction du laboratoire des chaussées Ministère des Transports du Québec

N/Dossier SMI : MC-15-008/BC-15-095

Québec, le 18 janvier 2016

Table des matières

Table des matières	. 2
Table des figures	. 3
Liste des tableaux	.4
1. Mandat	. 5
2. Mise en contexte	. 5
3. Localisation de la structure	. 6
4. Échantillons	. 7
4.1 Béton	. 7
4.2 PRFV	. 8
5. Protocoles d'essais	. 9
5.1 Protocole d'essais sur le béton	. 9
5.2 Protocole d'essais physico-chimiques sur PRFV	10
6. Résultats des essais et discussions	11
6.1 Essais sur le béton	11
6.1.1 Résistance à la compression	12
6.1.2 Teneur en ions chlorure	12
6.1.3 Absorption et vides d'air	13
6.1.4 Détermination des paramètres des vides dans le béton de ciment (L-Barre)	13
6.1.5 Perméabilité aux ions chlorure	14
6.1.6 Observations pétrographiques	14
6.2 Essais physico-chimiques sur PRFV	14
6.2.1 Surface effective	15
6.2.2 Densité	15
6.2.3 Absorption d'eau	15
6.2.4 Taux de cure	17
6.2.5 Température de transition vitreuse (Tg)	17
6.2.6 Taux de fibres	18
6.2.7 Porosité	19
6.2.8 Spectrométrie par fluorescence X (FRX)	20
6.2.9 FTIR	21
6.2.10 Spectroscopie RMN à l'état solide	23
6.2.11 Microscopie électronique à balayage (MEB/EDS)	25
6.2.11.1 Échantillon MC-15-008-6 (barre courbe)	25
6.2.11.2 Échantillon MC-15-008-7 (barre droite)	30
7. Conclusion	33
Références	35
	-

Table des figures

Figure 1 : Plan de localisation de la structure P-11591	. 7
Figure 2 : Localisation des carottes	. 8
Figure 3 : Échantillons de barres d'armature en PRFV provenant de la carotte de béton	
C1 et C3	. 9
Figure 4 : Mécanisme de dégradation de barres d'armature en PRFV en solution alcaline	e
	16
Figure 5 : Photos avant et après les essais de porosité des barres MC-15-008-1, MC-15-	
008-3 et MC-15-005-5	20
Figure 6 : FTIR de la barre droite MC-15-008-2	22
Figure 7 : FTIR de la barre courbe MC-15-008-4	23
Figure 8 : Spectres RMN ¹³ C en phase solide des échantillons de barres en PRFV de la	
structure P-11591	24
Figure 9 : Image au MEB d'une vue générale de la coupe transversale de l'échantillon	
MC-15-008-6 (barre courbe)	26
Figure 10 : Fort grossissement au MEB des fibres de verre et de la matrice de	
l'échantillon MC-15-008-6 (barre courbe) et spectre EDS des fibres de verre et de la	
matrice	27
Figure 11 : Interface béton-composite de l'échantillon MC-15-008-6 (barre courbe)	29
Figure 12 : Vue générale au MEB de la barre MC-15-008-7 (barre droite)	30
Figure 13 : Fort grossissement au MEB des fibres de verre et de la matrice de	
l'échantillon MC-15-008-7 (barre droite) et spectre EDS des fibres de verre et de la	
matrice	31
Figure 14 : Interface béton-composite de l'échantillon MC-15-008-7 (barre droite)	32

Liste des tableaux

Tableau 1: Essais à réaliser sur les carottes de béton	10
Tableau 2: Essais à réaliser sur les barres d'armatures en PRFV	11
Tableau 3: Caractéristiques du béton des glissières coulées en place	11
Tableau 4: Résultats des essais d'absorption d'eau	16
Tableau 5: Résultats des essais de taux de cure	17
Tableau 6: Résultats des essais de température de transition vitreuse	18
Tableau 7: Résultats des essais de taux de fibres	19
Tableau 8: Composition chimique des fibres de verre (par FRX)	21

Annexes

ANNEXE A – PLANS DE CONSTRUCTION DE LA STRUCTURE P-11591

- ANNEXE B DESCRIPTION VISUELLE DES CAROTTES
- **ANNEXE C SCHÉMA DE LOCALISATION DES CAROTTES**
- ANNEXE D CERTIFICAT DE CONFORMITÉ DES BARRES D'ARMATURE EN PRFV
- ANNEXE E FORMULE DE MÉLANGE ET CARACTÉRISTIQUES DU BÉTON
- ANNEXE F RAPPORT EXAMEN PÉTROGRAPHIQUE
- ANNEXE G RÉSULTATS DES ESSAIS
- ANNEXE H RAPPORT D'ANALYSE PAR SPECTROSCOPIE DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DU ¹³C EN PHASE SOLIDE
- ANNEXE I PHOTOGRAPHIES MEB

PROPRIÉTÉ ET CONFIDENTIALITÉ

« Les résultats provenant de cette recherche et figurant dans ce rapport ne peuvent pas être utilisés par des tiers sans le consentement écrit du Ministère des Transports du Québec, que ce soit pour des recherches ultérieures, des présentations ou des publications. »

1. Mandat

Une expertise sur l'état des barres d'armature en polymères renforcés de fibres de verre (PRFV) du pont P-11591, situé sur l'autoroute 20 Est dans la municipalité de Val-Alain, a été réalisée par l'équipe technique du Secteur béton du Service des matériaux d'infrastructures (SMI) à la demande de M. Guy Tremblay, Directeur, à la Direction du laboratoire des chaussées. Cette structure a été construite en 2004.

Ce mandat consiste à évaluer les propriétés physico-chimiques des barres d'armature en PRFV contenue au sein de la glissière de sécurité orientée du côté sud-est du pont P-11591 (plans de la structure disponibles à l'annexe A). Le béton en place dans cette partie de l'ouvrage a également été caractérisé afin d'en évaluer sa durabilité. Pour ce faire, l'équipe technique du SMI a réalisé le 13 juillet 2015 une inspection sommaire de l'état de surface de la glissière de sécurité, en plus de prélever trois carottes de béton, soit deux carottes contenant des barres d'armature en PRFV de même qu'une carotte de béton sain. Cette expertise a été réalisée en collaboration avec la Direction des structures (DS). À cet effet, M. Sébastien Galipeau, ing. à la DS, était présent lors du prélèvement des carottes de béton.

2. Mise en contexte

L'utilisation de matériaux composites au sein d'ouvrages d'art est encore relativement récente au MTQ. Selon l'information disponible, il appert que le premier projet du MTQ incorporant de l'armature composite en PRFV a eu lieu en 1992 au niveau de la portion médiane (côté aval) des glissières de sécurité du pont Médéric-Martin (P-15641).

À cet effet, l'équipe technique du secteur béton du SMI a procédé, le 31 octobre 2013, à une inspection sommaire de l'état de surface des glissières sécurité du pont Médéric-Martin en plus de prélever quelques carottes de béton contenant des échantillons de barres d'armature en PRFV. Une étude exhaustive sur l'état de vieillissement des barres d'armature en PRFV a par la suite été effectuée par le SMI. L'étude conclut que les échantillons prélevés présentaient plusieurs signes de détérioration tels que la présence de fissurations, de décollement au niveau de l'interface fibres-matrice et des fibres de verre endommagées. Toutefois, il faut noter que les procédés de fabrication de même que les constituants des PRFV ont considérablement évolué depuis 1992, notamment au niveau de la résine polymère. Des analyses réalisées par spectroscopie RMN au début de l'année de 2015 ont permis de déterminer que la matrice polymère des armatures composites du pont Médéric-Martin était à base de polyester. À notre connaissance, le MTQ spécifie depuis le début des années 2000 l'utilisation d'une résine à base de vinylester pour des raisons de durabilité. En effet, plusieurs études ont démontré que les PRFV à base de résine vinylester. Suite aux conclusions de l'étude réalisée par le SMI sur les armatures en PRFV du pont Médéric-Martin (N/Dossier SMI : MC-14-013/BC-13-118), la Direction du laboratoire des chaussées et la Direction des structures ont jugé opportun de reconduire une nouvelle étude, mais cette fois-ci sur des armatures en PRFV à base de vinylester. À cet effet, la structure P-11591 située sur l'autoroute 20 Est, à Val-Alain, représentait un cas idéal pour les raisons suivantes :

- 1) premier tablier de pont en béton au Canada entièrement renforcé de barres d'armatures en PRFV (Benmokrane, El-Salakawy, El-Gamal, & Goulet, 2007);
- 2) glissières de sécurité du pont également entièrement renforcé de barres d'armatures en PRFV;
- 3) matrice polymère à base de vinylester pour l'ensemble des barres d'armature en PRFV de la structure;
- 4) structure très bien documentée et réalisation du projet en collaboration avec le milieu de recherche universitaire (Université de Sherbrooke);
- 5) projet le plus ancien dont les échantillons d'origine sont toujours disponibles pour analyses en laboratoire;
- 6) opportunité intéressante d'étudier l'état des barres d'armature en PRFV après 11 ans de mis en service et d'en comparer les résultats avec des échantillons « référence » prélevés en 2004 par le SMI lors de la construction de la structure.

3. Localisation de la structure

Le pont P-11591 est situé sur l'Autoroute 20 Est au-dessus de la Rivière Henri dans la municipalité de Val-Alain (voir figure 1). Il s'agit d'un pont à poutres en acier construit en 2004 et muni de deux voies de circulation. La structure possède une longueur totale de 57,6 m et une largeur totale de 12,6 m. Le débit de circulation journalier moyen annuel (DJMA) est de 24 200 véhicules, dont près de 25 % sont des camions (Transports Québec, 2014).

Figure 1 : Plan de localisation de la structure P-11591

4. Échantillons

4.1 Béton

Au total, 3 carottes (C1, C2 et C3) furent prélevées au niveau de la glissière du côté sud-est du pont P-11591 et les fiches de description visuelle de celles-ci se retrouvent à l'annexe B. Le plan de localisation des carottes se retrouve quant à lui à l'annexe C.

À noter que les carottes C1 et C3 avaient un diamètre de 150 mm tandis que la carotte C2 avait un diamètre de 100 mm. Les carottes C1 et C3 furent volontairement prélevées à des endroits où des fissures verticales étaient visibles à la surface de la glissière et où des barres d'armature en PRFV avaient été localisées initialement à l'aide d'un géoradar de modèle Hilti PS 1000 (voir figure 2).

Figure 2 : Localisation des carottes

La carotte C1 contenait 5 barres d'armature en PRFV tandis que la carotte C3 en contenait 3.

4.2 PRFV

Les barres d'armatures en PRFV ont été fabriquées par l'entreprise Pultrall inc., localisée à Thetford Mines. Le certificat de conformité des barres d'armature se retrouve à l'annexe D. On retrouve dans cet ouvrage deux types de barres, soit les barres droites (longitudinales #5) et les barres courbes (verticales #5 et #6). Les recouvrements théoriques des barres d'armature en PRFV sont de 75 mm. Les recouvrements mesurés à partir des carottes de béton furent de 65 mm pour la carotte C1 et de 70 mm pour la carotte C3.

Des essais physico-chimiques ont été réalisés sur les échantillons MC-15-008-1 à MC-15-008-7 (voir figure 3). Les échantillons MC-15-008-1 à MC-15-008-5 provenaient de la carotte de béton C1. Les échantillons MC-15-008-6 et MC-15-008-7 provenaient quant à eux de la carotte de béton C3. Un échantillon supplémentaire (MC-15-008-8) contenu dans la carotte de béton C3 a été conservé pour référence future. Le détail des armatures prélevées (types de barres et diamètres) est disponible à l'annexe B.

La figure 3 permet de constater visuellement une différence de couleur entre les barres droites (grisâtre) et les barres courbes (verdâtre). De plus, la quantité de grains de sable constatée sur les barres courbes au niveau de l'enrobage est nettement inférieure à celle des barres droites.

Figure 3 : Échantillons de barres d'armature en PRFV provenant de la carotte de béton C1 et C3

5. Protocoles d'essais

5.1 Protocole d'essais sur le béton

Au niveau des carottes de béton prélevées, les essais ont été réalisés selon les normes suivantes :

- Résistance à la compression de carottes de béton
- Absorption et vides perméables dans le béton durci
- Perméabilité aux ions chlorure
- Teneur en ions chlorure soluble à l'acide (totaux)
- Distribution du réseau de bulles d'air (L-Barre)
- Analyse pétrographique

CAN/CSA A23.2-14C ASTM C 642 ASTM C 1202 AASHTO T-260 ASTM C457 CSA A23.2-15A ASTM C295

Le tableau 1 ci-contre résume les essais effectués sur chacune des trois carottes prélevées.

Tableau 1: Essais à réaliser sur les carottes de béton

	C1	C2	C3
Résistance à la compression		\checkmark	
Absorption et vides d'air	\checkmark		\checkmark
Perméabilité aux ions chlorure	\checkmark	\checkmark	\checkmark
Teneur en ions chlorure	\checkmark	\checkmark	\checkmark
L-Barre	\checkmark		
Analyse pétrographique	\checkmark		

5.2 Protocole d'essais physico-chimiques sur PRFV

Le tableau 2 résume les essais physico-chimiques réalisés sur les barres d'armature en PRFV contenues dans les carottes de béton prélevées.

Les essais physico-chimiques ont été réalisés selon les normes suivantes :

Surface effective	ACI 440.3R, méthode B.1
• Densité	ASTM D792
Absorption d'eau	ASTM D570
Température de transition vitreuse	ASTM D3418
• Taux de cure	CSA S807-10
• Taux de fibres	ASTM D2584
Porosité	ASTM D5117
Spectroscopie FTIR	méthode SMI
Spectrométrie FRX	LC 31-305
MEB/EDS*	

* L'observation d'échantillons sous microscopie électronique à balayage (MEB) couplé à un système « energy dispersive X-ray spectrometry » (EDX ou EDS) ne fait référence à aucune norme. Les observations ont été réalisées au Laboratoire de microanalyse du département de géologie et de génie géologique de l'Université Laval.

Tableau 2: Essai	s à réaliser sur	les barres d'armatu	res en PRFV
------------------	------------------	---------------------	-------------

	Types de barres	ф	Carotte de béton	Densité	Absorp. eau	Тg	Taux de cure	Taux de fibres	Taux de vides	FTIR	RMN	FRX	MEB
MC-15-008-1	Courbe	#6	C1			~	~	~	~			~	
MC-15-008-2	Droite	#5	C1	~	✓			✓		~		~	
MC-15-008-3	Droite	#5	C1			~	~		~				
MC-15-008-4	Courbe	#5	C1	~	✓			~		~		~	
MC-15-008-5	Courbe	#5	C1			~	~		~				
MC-15-008-6	Courbe	#6	C3	~	✓						~		~
MC-15-008-7	Droite	#5	C3			~	~	✓			~	~	~
MC-15-008-8	Droite	#5	C3	É	chantillor	n suj	oplém	entaire	pour ré	férenc	e futu	re	J

6. Résultats des essais et discussions

6.1 Essais sur le béton

Un mélange typique de béton pour ouvrages d'art a été utilisé pour les glissières coulées en place de la structure P-11591. Ce mélange répondait aux caractéristiques d'un béton à haute performance de type XIII tel que spécifié par la norme 3101 du *Tome VII – Matériaux* du Ministère des Transports du Québec. Le tableau 3 présente les principales caractéristiques de ce mélange. De plus, la formule de mélange et les caractéristiques du béton d'origine sont disponibles pour référence à l'annexe E.

Tableau 3: Caractéristiques du béton des glissières coulées en place

Résistance @ 28 jours (MPa)	Calibre des granulats (mm)	Dosage en liant GUb-SF (kg/m ³)	Ratio eau/liant	Affaissement (mm)	Teneur en air (%)
50	5-14	410	0,38	170 ± 30	5-8

6.1.1 Résistance à la compression

Cet essai est une caractéristique fondamentale du béton. Un essai de résistance à la compression a été réalisé sur la carotte C2. Préalablement à l'essai, l'échantillon fut conditionné par immersion pendant 40 à 48 heures tel qu'exigé par la norme CAN/CSA A23.2-14C puisque les glissières de béton de la structure P-11591 sont exposées à l'humidité.

La résistance à la compression obtenue sur la carotte C2 est de 59,9 MPa. Ainsi, la résistance à la compression du béton des glissières de sécurité de la structure P-11591 est conforme aux caractéristiques prévues et est comparable aux valeurs mesurées en 2004 (voir annexe E). En effet, la valeur dépasse largement la résistance minimale de 50 MPa exigée à l'époque du bétonnage de la structure en 2004.

6.1.2 Teneur en ions chlorure

Les glissières de sécurité d'ouvrages d'art sont des éléments particulièrement exposés aux ions chlorure, et ce pour plusieurs raisons. D'une part, elles sont constamment soumises aux chlorures provenant des éclaboussures de sels de déglaçage à la suite de passages répétés de véhicules routiers et des opérations de déneigement. D'autre part, les glissières ne sont généralement pas hydrofugées à l'aide d'enduits ou de membranes imperméabilisantes, laissant donc la voie libre à la migration d'ions chlorure au sein du béton.

Il est reconnu que les ions chlorures favorisent la corrosion des barres d'armature en acier. Toutefois, dans le cas des barres d'armatures en PRFV il est admis par le milieu scientifique et industriel que celles-ci ne sont pas affectées par les chlorures provenant des sels de déglaçage en raison de leur nature non métallique. Malgré tout, des teneurs en ions chlorure ont été réalisées sur les trois carottes prélevées dans le cadre de cette expertise afin de documenter les caractéristiques du béton. Le prélèvement de la poudre de béton pour ces essais s'est effectué dans le sens longitudinal des carottes. Pour les carottes C1 et C3, celles-ci ont été prélevées au trafic (voir annexe B). Pour la carotte C2, les teneurs en ions chlorure ont été mesurées du côté non exposé des glissières à titre comparatif.

Pour la carotte C1, la teneur en ions chlorure varie de 0,60 % (dans les premiers 12,5 mm) à 0,039 % (entre 25 et 50 mm). Dans le cas de la carotte C2, la teneur en ions chlorure varie de 0,33 % (dans les premiers 12,5 mm) à 0,028 % (entre 25 et 38 mm). Quant à la carotte C3, la teneur en ions chlorure varie de 0,38 % (dans les premiers 12,5 mm) à 0,021 % (entre 25 et 50 mm). Les analyses effectuées permettent de constater que les teneurs en ions chlorure sont légèrement plus élevées dans la carotte C1 ce qui pourrait s'expliquer par la présence d'un plan de fissuration plus important à cet endroit.

6.1.3 Absorption et vides d'air

L'essai d'absorption est un indicateur de l'absorption et de la perméabilité du béton. Les valeurs obtenues sont, entre autres choses, des indicateurs du rapport eau/liant du mélange de béton, et par le fait même de la qualité de celui-ci. L'essai est réalisé selon les normes CAN/CSA A23.2-11C et ASTM C 642. L'article 11 de la norme CAN/CSA A23.2-11C évoque une précision de 0,5 % pour l'absorption, de 1 % pour les vides perméables ainsi que de 20 kg/m³ pour la masse volumique.

Les résultats d'absorption après immersion des carottes C1 et C3 sont respectivement de 5,0 % et de 4,0 %. Selon le Manuel d'entretien des structures, un béton ayant un taux inférieur à 6,5 % est jugé de « qualité acceptable ». Le béton utilisé dans le cadre des glissières du pont de Val-Alain est bien en deçà de la limite acceptable et est par conséquent de qualité adéquate du point de vue de ce critère. Quant au volume des vides perméables, il est de 12,1 % pour la carotte C1 et de 9,7 % pour la carotte C3. Par expérience, ces valeurs peuvent être considérées comme étant satisfaisantes.

Via la méthode d'essai CSA A23.2-11C, il a aussi été possible d'évaluer la masse volumique du béton à surface saturée sèche (SSS). À noter que les masses volumiques SSS obtenues sur les carottes C1 et C3 permettent d'approximer la masse volumique du béton frais. La masse volumique SSS obtenue pour la carotte C1 fut de 2348 kg/m³ comparativement à 2459 kg/m³ pour la carotte C3. Ces valeurs sont conformes aux types de béton recherché pour les ouvrages d'art du MTQ et indiquent un respect des dosages théoriques minimaux des différents ingrédients lors de la mise en place du béton (voir annexe E).

6.1.4 Détermination des paramètres des vides dans le béton de ciment (L-Barre)

Une distribution du réseau de bulles d'air adéquate est une caractéristique essentielle pour assurer une bonne durabilité d'un béton. Les exigences actuelles du CCDG, du Tome VII et de la norme CSA A23.1 spécifient qu'aucun résultat individuel ne doit être supérieure à 260 μ m et que la moyenne du facteur d'espacement ne doit pas être supérieure à 230 μ m. Toutefois, le Tome VII du MTQ mentionne que dans le cas d'un béton de type XIII, le facteur d'espacement peut être supérieure à 230 μ m à la sortie de la pompe pour autant qu'il soit inférieur ou égal à 325 μ m. De plus, la teneur en air du béton durci doit être supérieure ou égale à 3,0 %.

L'essai a été réalisé sur une plaquette rectangulaire prélevée dans le sens transversal de la carotte C1 donc selon le sens de la mise en place du béton lors de la coulée. Le facteur d'espacement obtenu est de 307 μ m, tandis que la teneur en air du béton durci est 5,9 %. À partir de l'information obtenue, les glissières du pont ont été coulées avec un mélange de béton de type XIII pompé. Par conséquent, le facteur d'espacement est conforme aux exigences actuelles du Tome VII du MTQ puisqu'il est en deçà de 325 μ m.

6.1.5 Perméabilité aux ions chlorure

La perméabilité aux ions chlorure est un essai qui permet de quantifier la performance d'un béton en terme de résistance à la pénétration des ions chlorure. Des essais de perméabilité aux ions chlorure ont été réalisés sur les carottes de béton C1, C2 et C3. Les résultats des essais varient de 266 à 664 Coulombs, ce qui équivaut à un indice de perméabilité très faible selon la classification en vigueur dans la norme d'essai ASTM C 1202. Le béton des glissières de la structure P-11591 se conforme donc à l'exigence actuelle de 1000 Coulombs de la norme 3101 du tome VII.

6.1.6 Observations pétrographiques

Une expertise a été réalisée par Englobe pour le compte du ministère des Transports du Québec afin de déterminer la nature pétrographique des granulats présents dans la carotte de béton C1. Le rapport détaillé des observations pétrographiques se retrouve à l'annexe F. Les conclusions suivantes ont été obtenues :

- Les granulats grossiers de la carotte de béton C1 se composent de particules concassées de basalte vert et rouge.
- Le granulat fin de la carotte de béton C1 se compose d'un sable de nature quartzofeldspathique.
- Le béton de la carotte C1 ne présente aucun indice de détérioration.

Selon les informations obtenues par la Direction territoriale de Chaudière-Appalaches la source de gros granulats provenait de la carrière Ray-Car et le sable de la gravière de Beauce (voir annexe E).

6.2 Essais physico-chimiques sur PRFV

Les résultats des sections 6.2.1 à 6.2.9 sont présentés de façon synthétisée au sein des rapports CI-028-15, CI-115-15, CI-116-15 et CI-115-17 se retrouvant à l'annexe G.

Pour les barres d'armature droites des glissières de la structure P-11591, les résultats sont comparés à ceux obtenus sur les barres droites dites de « référence ». Les barres droites « référence » ont été entreposées au SMI depuis 2004, mais aucun essai physico-chimique n'avait été réalisé sur celles-ci avant 2015. Ces barres ont le même diamètre que les barres prélevées de la structure P-11591 et sont issues du même lot de fabrication. Les résultats complets des essais physico-chimiques des barres droites « référence » sont disponibles à l'annexe G au sein du rapport CI-028-15 (numéro des échantillons : MC-15-001). Il est important de noter qu'aucun cadre normatif n'existait au moment de la fabrication des barres d'armature en PRFV utilisées dans la structure, bien que des guides sur ce type de matériau étaient disponibles (ACI 440.3R-04 et ISIS Canada Research

Network). Conséquemment, la comparaison des résultats avec les exigences de la norme CSA S807-10 *Specification for fibre-reinforced polymers* n'est qu'à titre indicatif. En ce qui concerne les résultats des barres d'armature courbes des glissières de la structure P-11591, ceux-ci n'ont pu être comparés à des barres courbes « référence », faute d'échantillons disponibles.

6.2.1 Surface effective

La surface effective des barres droites «référence» est de 201,51 mm². Ce résultat correspond à la moyenne obtenue sur trois échantillons de 200 mm de longueur. En comparaison, la surface effective nominale des barres droites «référence» est de $197,93 \text{ mm}^2$.

Aucun résultat de surface effective n'est disponible pour les barres d'armature droites et courbes de la structure P-11591 puisque les longueurs des échantillons prélevées n'étaient pas suffisantes.

6.2.2 Densité

La masse volumique moyenne des échantillons de barres droites de la structure P-11591 de même que des barres droites « référence » est de 2,05 g/mL. La masse volumique moyenne des échantillons de barres courbes de la structure P-11591 est de 1,86 g/mL. La masse volumique des barres droites est donc supérieure aux barres courbes, ce qui s'explique par la teneur en fibre plus élevée dans le cas des barres droites (densité des fibres de verre plus grande que la densité de la matrice polymère).

6.2.3 Absorption d'eau

Le béton est un matériau relativement perméable à l'eau et est constitué d'une matrice interstitielle poreuse fortement alcaline. Le réseau poreux du béton influence le taux de diffusion des ions alcalins. Il est bien connu que l'exposition de barres d'armature en PRFV à l'eau et à une solution alcaline engendre une détérioration à long terme du matériau (Nishizaki & Meiarashi, 2002). Conséquemment, une barre de PRFV avec une absorption d'eau élevée risque d'avoir une dégradation accélérée dans le temps par rapport à une barre avec une plus faible absorption d'eau. Le mécanisme de dégradation typique des barres en PRFV en présence d'un milieu alcalin est illustré à la figure 4 (Won & et coll., 2008).

Figure 4 : Mécanisme de dégradation de barres d'armature en PRFV en solution alcaline

Essentiellement, lorsqu'une barre de PRFV est immergée en solution aqueuse et/ou alcaline, les ions alcalins et les molécules d'eau attaquent la matrice polymère lorsqu'ils sont absorbés par celle-ci, engendrant de la délamination et de la fissuration dans la matrice du composite. Par la suite, une réaction en chaîne s'ensuit. Il se crée alors un réseau poreux au sein du composite laissant la voie libre à l'eau et aux agents chimiques ce qui accélère de surcroît la dégradation du composite. Les pores ainsi créés permettent à l'eau et aux agents chimiques d'atteindre les fibres de verre. À partir de ce moment, les fibres de verre sont lessivées (par hydrolyse) ou endommagées (fissuration). Il s'en suit une forme de « corrosion » des fibres de verre non pas par un processus électrochimique comme pour l'acier, mais plutôt par une réaction d'hydrolyse des fibres causant alors des pertes au niveau de leur section transversale (Nishizaki & Meiarashi, 2002). Les performances mécaniques s'en trouvent donc affectés.

Les résultats d'absorption d'eau des échantillons provenant de la structure P-11591 de même que ceux des échantillons « référence » sont présentés au tableau 4. Les résultats correspondent à la moyenne d'un triplicata d'échantillons pour chaque barre.

Échantillons	Types de barres	Absorption d'eau (%)
MC-15-008-2	Droite	0,14
MC-15-008-4	Courbe	0,08
MC-15-008-6	Courbe	0,14
MC-15-001	Droite « référence »	0,06

Tableau 4: Résultats des essais d'absorption d'eau

Les résultats d'absorption d'eau obtenus sur les échantillons de barres droites (MC-15-008-2) sont légèrement plus élevés que les résultats des échantillons de barres droites « référence » (MC-15-001).

À titre indicatif, les résultats d'absorption d'eau des barres droites (MC-15-008-2) et des barres courbes (MC-15-008-6) sont en deçà de la limite acceptable fixée par la norme CSA S807-10, soit ≤ 0.25 % pour des barres classées D1 (haute durabilité).

En résumé, les résultats d'absorption d'eau obtenus sur les barres droites et courbes de la structure P-11591 sont faibles.

6.2.4 Taux de cure

Les résultats de taux de cure des échantillons provenant de la structure P-11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 5.

Échantillons	Types de barres	Taux de cure [*] (%)
MC-15-008-1	Courbe	95,1
MC-15-008-3	Droite	97,8
MC-15-008-5	Courbe	Entre 91,5 et 97,0
MC-15-008-7	Droite	95,7
MC-15-001	Droite « référence »	96,8

 Tableau 5: Résultats des essais de taux de cure

^{*} Les valeurs de taux de cure obtenues par DSC (Differential scanning calorimetry) sont calculées à partir d'une enthalpie de polymérisation de la résine pure de 239 J/g pour les barres courbes et de 257 J/g pour les barres droites, soit les valeurs correspondantes aux résines utilisées par Pultrall de nos jours. Ces valeurs sont utilisées pour les calculs faute de connaître les enthalpies de polymérisation des barres fabriquées pour la structure P-11591.

Au niveau des échantillons de barres droites MC-15-008-3 et MC-15-008-7, aucune différence notable des valeurs de taux de cure n'est observable comparativement aux valeurs obtenues sur les échantillons de barres droites « référence » (MC-15-001).

Pour les échantillons de barres courbes MC-15-008-1 et MC-15-008-5, des courbes irrégulières ont été obtenues au DSC (Differential scanning calorimetry) pour des raisons qui n'ont pu être expliquées. Les essais ont été répétés plus d'une fois, mais ils se sont avérés peu concluants. Conséquemment, les valeurs de taux de cure présentent des variabilités importantes.

Trois échantillons sur quatre respecteraient l'exigence actuelle de la norme CSA S807-10, soit un taux de cure minimal de 95 % pour des barres classées D1 (haute durabilité).

6.2.5 Température de transition vitreuse (T_g)

Une baisse notable de la température de transition vitreuse d'un matériau composite est généralement attribuable à une dégradation chimique du matériau ou à une certaine

plastification (ramollissement) de la résine causée par la présence d'humidité dans la matrice (les atomes des molécules d'eau rompent des liens moléculaires du polymère) (Benmokrane, Ali, Mohamed, Robert, & ElSafty, 2015) (Mufti, Onefrei, & et coll., 2007).

Les résultats des températures de transition vitreuse des échantillons provenant de la structure P-11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 6.

Échantillons	Types de barres	T _g [*] (^o C)
MC-15-008-1	Courbe	91
MC-15-008-3	Droite	120
MC-15-008-5	Courbe	Entre 84 et 106
MC-15-008-7	Droite	111
MC-15-001	Droite « référence »	117

Tableau 6:	Résultats des	essais de t	température	de transition	vitreuse

* Les températures de transition vitreuse sont obtenues par DSC (Differential scanning calorimetry) et sont calculées à mi-hauteur.

Les courbes de calorimétrie utilisées pour déterminer le taux de cure servent également à déterminer la température de transition vitreuse. Ainsi, les températures de transition vitreuse des échantillons de barres courbes MC-15-008-3 et MC-15-008-5 présentent des variabilités importantes dues encore une fois aux courbes irrégulières obtenues par DSC. Les faibles valeurs de température de transition vitreuse obtenues sur les barres courbes sont probablement attribuables aux procédés de fabrication de ce type de barres.

Au niveau des échantillons de barres droites MC-15-008-3 et MC-15-008-7, aucune baisse substantielle des températures de transition vitreuse n'est observable par rapport aux températures de transition vitreuse obtenues pour les échantillons de barres droites « référence » (MC-15-001).

La norme CSA S807-10 exige une température de transition vitreuse minimale de 100°C pour des barres classées D1 (haute durabilité). En ce sens, seules les barres droites satisferaient les exigences actuelles.

6.2.6 Taux de fibres

Les performances mécaniques des barres d'armature en PRFV sont largement imputables aux fibres de verre qui jouent un rôle de renfort au sein du composite, la matrice polymère jouant quant à elle un rôle plus marqué au niveau de la cohésion du composite et de la protection des fibres de verre face aux agents agressifs. Les résultats de teneur en fibres des échantillons provenant de la structure P-11591 ainsi que ceux des échantillons « référence » sont présentés au tableau 7.

Échantillons	Types de barres	Taux de fibres (%)
MC-15-008-1	Courbe	68,8
MC-15-008-2	Droite	77,8
MC-15-008-4	Courbe	70,8
MC-15-008-7	Droite	77,7
MC-15-001	Droite « référence »	78,6

Tableau 7: Résultats des essais de taux de fibres

Aucune différence notable n'est observable entre la teneur en fibres des échantillons barres droites de la structure P-11591 et les échantillons de barres droites « référence ». Le taux de fibres est plus important dans le cas des barres droites (≈ 78 %) que dans le cas des barres courbes (≈ 71 %), ce qui est cohérent avec le fait que la densité des barres courbes est plus faible que celle des barres droites.

À titre indicatif, la norme CSA S807-10 exige une teneur en fibres minimale de 70 %.

6.2.7 Porosité

La présence de porosités dans un PRFV facilite le transport d'agents agressifs au cœur du composite et affaiblit la cohésion du matériau.

Des séries d'essais ont été réalisées sur les échantillons MC-15-008-1 (barre courbe), MC-15-008-3 (barre droite), MC-15-008-5 (barre courbe). Pour chaque série d'essais, 3 échantillons consécutifs de 25 mm de long provenant d'une seule et même barre furent trempés dans une solution de méthanol à 1 % de Fuchsine pendant une période de 15 min. Les porosités des échantillons sont ensuite révélées par la montée de la solution (par capillarité) au sein de l'échantillon. La figure 5 montre les échantillons avant et après 15 minutes de trempage dans la solution.

La présence de cavités sur toute la longueur des échantillons MC-15-008-1 a été observée visuellement (voir première rangée figure 5). En raison du diamètre important de ces cavités (> 0,90 mm), la solution de trempage n'a pas traversé l'échantillon par capillarité malgré la présence de porosités évidente.

Figure 5 : Photos avant et après les essais de porosité des barres MC-15-008-1, MC-15-008-3 et MC-15-005-5

Pour l'échantillon MC-15-008-3 (voir deuxième rangée figure 5), aucune porosité n'a été observée. Comparativement, au moins un point a été observé après 15 minutes de trempage dans la solution sur au moins un des triplicatas des échantillons de barres droites « référence » (MC-15-001).

Pour les échantillons MC-15-008-5, au moins un point a également été observé après 15 minutes de trempage dans la solution sur au moins un des triplicatas des échantillons (voir troisième rangée figure 5).

En conclusion, des vides plus importants sont observables sur les échantillons de barres courbes en comparaison aux échantillons de barres droites. Étant donné l'absence de fissuration dans les échantillons et la géométrie des vides observés, les porosités des barres droites et courbes ont probablement été générées lors de la fabrication de celles-ci et non pas en raison d'une dégradation dans le temps du matériau.

6.2.8 Spectrométrie par fluorescence X (FRX)

Les compositions chimiques des fibres de verre des barres composites de la structure P-11591 de même que des barres « référence » ont été obtenues par spectrométrie par fluorescence X (FRX) et sont présentées au tableau 8.

Échantillons	Types de barres	SiO ₂	CaO %	Al ₂ O ₃	MgO %	Na ₂ O %	K2O %	TiO ₂ %	Fe ₂ O ₃	ZnO %	B ₂ O
MC-15-008-1	Courbe	54,0	22,8	13,7	0,32	0,89	0,07	0,53	0,27	< 0,01	7,3
MC-15-008-2	Droite	54,3	22,9	13,7	0,38	0,89	0,08	0,54	0,30	< 0,01	6,8
MC-15-008-4	Courbe	53,6	22,8	13,8	0,34	0,88	0,07	0,53	0,28	< 0,01	7,6
MC-15-008-7	Droite	53,8	22,9	13,8	0,39	0,91	0,10	0,54	0,31	< 0,01	7,1
MC-15-001	Droite « réf. »	54,5	22,9	13,7	0,39	0,89	0,09	0,54	0,30	< 0,01	6,7

Tableau 8: Composition chimique des fibres de verre (par FRX)

Les compositions chimiques obtenues pour les barres droites ainsi que pour les barres courbes sont similaires et s'apparentent à de la fibre de verre borosilicate de type E. Cette classe de fibre de verre est couramment utilisée pour la fabrication de PRFV en raison de leur applicabilité universelle et de leur faible coût comparativement à d'autres types de fibres de renforcement (ex. : carbone et aramide).

6.2.9 FTIR

La spectroscopie FTIR est une technique d'analyse permettant d'obtenir une empreinte chimique de la résine polymère d'un PRFV.

La durabilité de la matrice d'un PRFV est majoritairement fonction de la nature chimique de la structure de sa chaîne polymère (Mufti, Onefrei, & et coll., 2007). Dans le cas d'une résine polyester ou encore vinylester, les liaisons les plus faibles de leur chaîne polymère sont les fonctions ester. L'environnement alcalin du béton favorise l'apparition de réactions d'hydrolyse des liaisons ester de la matrice polymère, causant alors des bris dans la chaîne polymère (Mufti, Onefrei, & et coll., 2007). Cette réaction d'hydrolyse endommage la résine et les propriétés mécaniques du PRFV (voir mécanisme de dégradation de la figure 4). À l'échelle macroscopique, l'apparition de fines fissures est également possible.

Figure 6 : FTIR de la barre droite MC-15-008-2

Le spectre FTIR de la barre droite identifiée MC-15-008-2 a été comparé au spectre FTIR d'une barre droite référence (MC-15-001-1) issue du même lot de fabrication (voir figure 6). Les deux spectres ne présentent aucune différence notable. Par conséquent, l'échantillon ne semble pas avoir subi de dégradation. En effet, les deux spectres ne présentent pas de différence au niveau de la plage de longueur d'onde s'étendant de 3000 cm⁻¹ à 3500 cm⁻¹, c'est-à-dire dans la région principalement associée à des bandes d'absorption infrarouge (IR) correspondantes aux groupements hydroxyles (-OH). Un changement au niveau du contenu en groupements hydroxyles est un indicateur de la présence de possibles réactions d'hydrolyse des liaisons ester de la chaîne polymère (Mufti, Onefrei, & et coll., 2007).

Figure 7 : FTIR de la barre courbe MC-15-008-4

Quant au spectre FTIR de la barre courbe identifié MC-15-008-4, celui-ci n'a pu être comparé au spectre FTIR d'une barre courbe référence (MC-15-001-1) faute d'échantillons (voir figure 7). Aucune conclusion ne peut en être retirée. Toutefois, le spectre FTIR obtenu servira à titre de référence future.

6.2.10 Spectroscopie RMN à l'état solide

Un mandat a été octroyé en septembre 2015 au département de chimie de l'Université Laval pour confirmer que les barres d'armatures en PRFV de la structure P-11591 étaient composées d'une résine vinylester. L'analyse a été effectuée par spectroscopie de résonance magnétique nucléaire (RMN) du ¹³C en phase solide. Le rapport d'analyse transmis par l'Université Laval est inclus à l'annexe H. Ce dernier présente les résultats obtenus et la démarche scientifique utilisée aux fins de l'analyse.

L'étude a bel et bien permis de confirmer que la résine des barres d'armatures en PRFV de la structure P-11591 était de type vinylester.

À noter que les flèches bleues de la figure 8 représentent les pics caractéristiques d'une résine de type vinylester.

Figure 8 : Spectres RMN ¹³C en phase solide des échantillons de barres en PRFV de la structure P-11591

6.2.11 Microscopie électronique à balayage (MEB/EDS)

La microscopie électronique à balayage (MEB) est une technique d'analyse permettant d'examiner en détail la microstructure d'une surface d'un échantillon. Dans le cas de barres d'armature en PRFV, l'observation au MEB permet de :

- 1) vérifier l'état des fibres de verre;
- 2) vérifier l'état de la matrice de polymère;
- 3) vérifier l'interface fibres-matrice;
- 4) vérifier l'interface béton-composite.

Préalablement aux observations effectuées au MEB, des sections transversales d'un échantillon d'une barre courbe (MC-15-008-6) et d'un échantillon d'une barre droite (MC-15-008-7) ont subi un traitement de surface à la suite d'un moulage dans une pastille d'époxy selon le protocole suivant :

- prépolissage à l'eau à une pression de 30 N avec un papier abrasif fait de SiC (carbure de silicium) #220 à 300 tours/min pendant 1 min;
- prépolissage à l'eau à une pression de 30 N avec un papier abrasif fait de SiC (carbure de silicium) #500 à 300 tours/min pendant 1 min;
- polissage avec un disque MD-Largo et une suspension diamantée DiaPro Allegro/Largo avec grains de 9 µm à une pression de 30 N à 150 tours/min pendant 5 min;
- 4) rinçage à l'eau à 150 tours/min;
- 5) polissage avec un disque MD-Dur et une suspension diamantée DiaPro Allegro/Dur avec grains de 3 µm à une pression de 25 N à 150 tours/min pendant 5 min;
- 6) rinçage à l'eau à 150 tours/min;
- polissage final avec un disque MD-Chem et une solution OP-U à une pression de 10 N à 150 tours/min pendant 1 min 30 s;
- 8) rinçage à l'eau à 150 tours/min.

La qualité des images obtenues au MEB de même que l'analyse en découlant est tributaire de la préparation de surface. La technique d'analyse EDS (spectromètre couplé au MEB) a également été utilisée dans le cadre de cette étude pour des fins d'analyses élémentaires et de caractérisation chimique des échantillons. À noter que sur chacun des spectres EDS obtenus, des pics correspondant à de l'or (Au) et du palladium (Pd) sont observables. La présence de ces éléments est attribuable à la couche de métallisation d'Au/Pd résultant de la préparation des échantillons. Ce dépôt d'Au/Pd à la surface des échantillons a pour but de rendre la surface à analyser conductrice. Cette étape est primordiale pour réaliser les observations avec la microsonde électronique du MEB.

6.2.11.1 Échantillon MC-15-008-6 (barre courbe)

La figure 9 est une vue générale de l'échantillon MC-15-008-6. Trois porosités sont observables sur l'image. Ces porosités couvrent des sections variant d'environ 0,04 mm²

à $0,14 \text{ mm}^2$ (porosités mesurées à l'aide du logiciel ImageJ). Une image MEB à fort grossissement (150X) d'une porosité de $0,14 \text{ mm}^2$ se retrouve à l'annexe I. Celles-ci sont probablement issues de la fabrication de la barre et ne sont pas à proprement parler des signes de détériorations de la barre.

La présence de porosité dans un échantillon a des conséquences au niveau des performances mécaniques (cohésion des fibres et de la matrice) et pourrait impacter la durabilité à long terme du matériau.

0004 15KV X20 Imm 4011

De plus, la répartition des fibres n'est pas uniforme comme en témoigne l'image 9.

Figure 9 : Image au MEB d'une vue générale de la coupe transversale de l'échantillon MC-15-008-6 (barre courbe)

La figure 10 montre une image de l'échantillon MC-15-008-6 à fort grossissement (1000X). L'image a été obtenue avec le mode d'imagerie en électrons secondaires du MEB. Aucun signe de détérioration (fissuration, pertes de section des fibres de verre) n'est visible au niveau de la matrice et des fibres de verre. De même, l'interface fibres-matrice ne présente aucun décollement.

Figure 10 : Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-6 (barre courbe) et spectre EDS des fibres de verre et de la matrice

Des analyses EDS ont été effectuées sur les fibres de verre et sur la matrice polymère de l'échantillon MC-15-008-6 (voir figure 10). Le spectre obtenu pour les fibres de verre est typique de celles-ci et présente des pics caractéristiques de Si, de Ca, d'Al et d'O conforme à ce qui est attendu (voir section 6.2.8). Le spectre EDS de la matrice polymère présente quant à lui un pic caractéristique de C typique de ce que l'on retrouve dans le cas d'un polymère (squelette d'un polymère formé majoritairement de carbone).

La solution interstitielle du béton est fortement alcaline et est constitué principalement d'ions Na^+ , K^+ et OH^- (Mufti, Onefrei, & et coll., 2007). Il est bien connu que les fibres de verre se dissolvent en présence d'une solution alcaline. Par conséquent, il est intéressant de vérifier à l'aide de spectrométrie EDS la présence d'ions alcalins (Na^+ , K^+) dans la matrice, principalement au pourtour des fibres de verre. La spectrométrie EDS ne permet toutefois pas de détecter des éléments ou des ions plus légers que le sodium (Na) (Mufti, Onefrei, & et coll., 2007). Il est donc impossible de détecter l'anion hydroxyde, OH⁻.

Aucun pic de potassium (K) ou de sodium (Na) n'a été détecté à la suite des différentes analyses de spectrométrie EDS sur l'échantillon MC-15-008-6, et ce tant au niveau de la matrice que du pourtour des fibres de verre. L'échantillon ne présente donc pas d'ions alcalins potentiellement nuisibles pour le matériau. De plus, aucun pic de Si n'a été détecté dans la matrice aux environs immédiats des fibres de verre. La présence de Si indiquerait le cas échéant, une certaine dissolution des fibres de verre.

Au niveau de l'interface béton-composite, un léger décollement variant entre 0,5 μ m et 25 μ m a été mesuré à l'aide du logiciel ImageJ (voir figure 11). Il est toutefois impossible de déterminer si ce décollement découle des conditions d'exposition de la barre (humidité et alcalinité du béton, cycles de gel-dégel, efforts mécaniques, etc.) ou s'il résulte plutôt de la coupe transversale de l'échantillon.

Figure 11 : Interface béton-composite de l'échantillon MC-15-008-6 (barre courbe)

6.2.11.2 Échantillon MC-15-008-7 (barre droite)

Figure 12 : Vue générale au MEB de la barre MC-15-008-7 (barre droite)

La figure 12 est une vue générale de l'échantillon MC-15-008-7. Contrairement à l'échantillon MC-15-008-6, l'échantillon MC-15-008-7 ne présentait aucune porosité visible.

Il est également possible d'observer une concentration de fibres de verre plus importante dans l'échantillon de barre droite comparativement à l'échantillon de barre courbe. Cette observation concorde avec les résultats obtenus à la section 6.2.6 (Taux de fibres).

La figure 13 montre une image à fort grossissement (1000X) de l'échantillon MC-15-008-7. L'image a été obtenue avec le mode d'imagerie en électrons secondaires du MEB. Aucun signe de détérioration (fissuration, pertes de section des fibres de verre) n'est visible au niveau de la matrice et des fibres de verre. De même, l'interface fibres-matrice ne présente aucun décollement. Certains éclats sont visibles sur les fibres de verre, mais ces derniers sont probablement issus de la découpe de l'échantillon et/ou de son polissage étant donné la nature fragile du matériau. De légers artefacts de polissage sont également visibles.

Figure 13 : Fort grossissement au MEB des fibres de verre et de la matrice de l'échantillon MC-15-008-7 (barre droite) et spectre EDS des fibres de verre et de la matrice

Les spectres EDS des fibres de verre (pics de Si, de Ca, d'Al et d'O) et de la matrice (pic de C) sont conventionnels et présente encore une fois des pics caractéristiques conformes à ce qui est attendu pour ces matériaux. Aucun ion alcalin (Na⁺, K⁺) n'a été détecté sur les spectres EDS de la matrice. En ce qui concerne l'anion hydroxyde OH⁻, ce dernier n'est pas détectable par EDS pour les raisons mentionnées précédemment.

Figure 14 : Interface béton-composite de l'échantillon MC-15-008-7 (barre droite)

Comparativement à l'échantillon MC-15-008-6 (barre courbe) où un décollement allant jusqu'à 25 μ m a été constaté, un décollement minime d'au plus 2 μ m est observable à certains endroits au niveau de l'interface béton-composite de l'échantillon de barre droite MC-15-008-7 (voir figure 14). De plus, l'enrobage de grains de sable en périphérie de la barre droite ne présente aucun décollement avec le composite. Cet enrobage est essentiel afin d'assurer une adhérence adéquate de la barre dans le béton.

Comme décrit à la section 4.2, l'enrobage de la barre droite semble avoir nettement plus de grains de sable que celle de la barre courbe. À cet effet, il est possible de présumer que l'adhérence des barres droites au béton devrait être supérieure à celle des barres courbes.

À noter que des images MEB supplémentaires des échantillons MC-15-008-6 et MC-15-008-7 sont disponibles à l'annexe I.

7. Conclusion

L'expertise portant sur les barres d'armature en PRFV du pont P-11591, situé sur l'autoroute 20 Est à Val-Alain, a permis de faire ressortir les conclusions suivantes :

- Le béton des glissières ne présente aucun indice de détérioration.
- Les barres d'armature en PRFV droites et courbes ne présentaient aucun signe de détérioration après 11 ans de mise en service. Toutefois, les barres courbes montraient des porosités importantes probablement causées par leur mode de fabrication.
- Les propriétés physico-chimiques de barres droites en PRFV prélevées dans la structure ont été comparées à celles de barres droites «référence» de 2004 provenant du même lot de fabrication et entreposé au SMI depuis la réalisation du projet. Il en est ressorti qu'aucun changement notable n'a été constaté. Quant aux propriétés physico-chimiques des barres courbes en PRFV prélevées dans la structure, celles-ci n'ont pu être comparées à des barres «référence» faute d'échantillon disponible. Toutefois, à partir des analyses réalisées il n'y a pas lieu de croire que celles-ci ont subi une diminution de ces propriétés physicochimiques.
- Des analyses réalisées par spectroscopie RMN au département de chimie de l'Université Laval ont permis de confirmer que les barres d'armature en PRFV de la structure étaient constituées d'une matrice à base de vinylester.
- Actuellement, il est impossible de corréler la dégradation au niveau physico-chimique à la perte de performance mécanique des barres en PRFV. Cependant, puisque la structure a été instrumentée au moment de sa construction et que des essais de chargements statiques et dynamiques ont été réalisés avant sa

mise en service (Benmokrane, El-Salakawy, El-Gamal, & Goulet, 2007), de nouveaux essais de chargement et de nouvelles collectes de données à partir de l'instrumentation déjà en place pourraient être envisagées afin d'étudier l'évolution du comportement structural de l'ouvrage.

En terminant, il n'y a pas lieu de croire sur la base de cette étude que les barres d'armature en PRFV à base d'une matrice de vinylester et de fibres de verre de la structure P-11591 présentent des risques de dégradation à court et moyen terme. À cet effet, il serait toutefois pertinent de reconduire une expertise similaire pour évaluer l'état de la structure et de ses constituants après 25 ans de mise en service, de manière à mieux prédire son comportement à long terme.

Tout en espérant que ces renseignements répondent à vos besoins, nous demeurons à votre entière disposition pour toutes informations ou toutes interrogations suscitées à la lecture de ce document.

Marc-Antoine Loranger ing. jr

claude Nazair, ing.

Secteur béton Service des matériaux d'infrastructures

PROPRIÉTÉ ET CONFIDENTIALITÉ

« Les résultats provenant de cette recherche et figurant dans ce rapport ne peuvent pas être utilisés par des tiers sans le consentement écrit du Ministère des Transports du Québec, que ce soit pour des recherches ultérieures, des présentations ou des publications. »

Références

- Benmokrane, B., Ali, A. H., Mohamed, H. M., Robert, M., & ElSafty, A. (2015, Août 5). Durability performance and service life of CFCC tendons exposed to elevated temperature and alkaline environment. *Journal of Composites for Construction*.
- Benmokrane, B., El-Salakawy, E., El-Gamal, S., & Goulet, S. (2007). Construction and testing of an innovative concrete bridge deck totally reinforced with glass FRP bars : Val-Alain bridge on highway 20 east. *Journal of Bridge Engineering*, 632-645.
- Mufti, A., Onefrei, M., & et coll. (2007). Field study of glass-fibre-reinforced polymer durability in concrete. *Canadian Journal of Civil Engineering*, 355-366.
- Nishizaki, S., & Meiarashi, I. (2002). Long-term deterioration of GFRP in water and moist environment. *Journal of composites for construction*, 21-27.
- Transports Québec. (2014). *Identification du pont*. Retrieved from Transports Québec: https://www.diffusion.mtq.gouv.qc.ca/ords/pes/f?p=122:53:0::NO:53:P53_IDE_S TRCT_0001:201212
- Won, J.-P., & et coll. (2008). The effect of exposure to alkaline solution and water on the strength-porosity relationship of GFRP rebar. *Composites Part B: engineering*, 764-772.

ANNEXE A

PLANS DE CONSTRUCTION DE LA STRUCTURE P-11591
Transports Québec

PONT SUR L'AUTOROUTE 20 DIRECTION EST AU-DESSUS DE LA RIVIÈRE HENRI

50		¢	200	300	
					.E
	E MANLESAND PROF			1 = LOCALISATION $2 = PLAN D'ENSEN$ $3 = PONT EXISTAN$ $4 = SEMELLES - DIMILICALISATION$ $5 = CULÉE 1 = D$ $6 = CULÉE 1 = A$ $7 = CULÉE 2 = D$ $8 = CULÉE 2 = A$ $9 = CULÉE 2 = A$	
ROJE				10 - CHARPENTE M 11 - CHARPENTE M 12 - CHARPENTE M CONTREVENTE 13 - CHARPENTE M 14 - DALLE DIMENS 15 - DALLE DIMENS	1É 1É 1É 1É 5I(
E				16 – JOINT DIAPHR MUR DE FRON 17 – RECONNAISSA 18 – RELEVÉ TOPO 19 – RELEVÉ TOPO	A IT GF GF

	UNITÉ ADMINISTRATIVE
DEC MATIÈDEC	DIRECTION GÉNÉRALE DES INFRASTRUCTURES
DES MATERES	ET DES TECHNOLOGIES
DESCRIPTION	DIRECTION DES STRUCTURES
ET DESCRIPTION GENERALE	LOCALISATION DU PROJET
T - DÉMOLITION	
NSIONS-ARMATURE -	ROUTE TRONÇON SECTION
ES PIEUX	MUNICIPALITÉ
1ENSIONS	VAL-ALAIN
MATURE	LOTBINIÈRE
MATURE	CIRCONSCRIPTION ÉLECTORALE
AGE DÉTAILS	DT CS CODE GÉOGRAPHIQUE 34 75 33070
TALLIQUE	COORDONNÉES GÉOGRAPHIQUES
TALLIQUE – CONTREVENTEMENTS	LONG: CADASTRE
TALLIQUE -	
TALLIOUE - DÉTAILS	
ONS & ARMATURE	
ONS & ARMATURE (SUITE)	
GME D'EXTRÉMITÉ -	
ET DRAINS	
RAPHIQUE	
RAPHIQUE	
	A M J NATURE DE MODIFICATION PAR 04 03 16 DATE D'ÉMISSION DU PLAN
	PRÉPARÉ PAR:
	techniciens : G. BERGERON
	G. CHAMBERLAND Y. DUBUC
	RECOMMANDÉ
	Transports
	Direction des structures
THERE AND A REAL THE ADDRESS AND	LOCALISATION
PO-04-11591 TC001 01	ET DESCRIPTION GÉNÉRALE
	№ PROJET 20-3475-0007
TEL QUE	No CONTRAT 3475-04-0203
CONSTRUIT	IDENTIFICATION TECHNIQUE
DATE: 2006-10-04 PAR: G. CHAMBERLAND	P_U_U_4_1_1_5_9_1 13 IDENTIFICATION REGROUPEMENT 13
Y	

ANNEXE B

DESCRIPTION VISUELLE DES CAROTTES

Transports Québec EE Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béton	FS-34-S2b-072		Révision : 1 Date de révision : 2014-11-13		
Description v	visuelle (prélèvement e	de béton	durci)		
Localisation : <u>Pont de Val-Alain (auto</u> Obstacle : <u>Rivière Henri</u> N ^o de structure : <u>P-11591</u>	Localisation :Pont de Val-Alain (autoroute 20 est)Obstacle :Rivière HenriNº de structure :P-11591				
Échantillon (ϕ = 150 mm)		Croquis	et notes générales		
	Côté exposé 7 au traffic	0 mm	Teneur ions Cl & absorption et vides perméables	0 mm 50 mm	
11591		155 mi	n armature Perméabilité ions chlorure	90 mm 140 mm	
5	Vide de \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow	170 m	m Récupération armature	180 mm	
	10 mm de profondeur		L-Barre		
			Pótrographie	200 mm	
		265 m 280 m	m m	265 mm	
Description du forage		Descrip	otion des essai	s	
Matériaux	Épaisseur	Essais :			
Enrobé bitumineux :	N/A	Teneur e	n ions chlorure		
Membrane :	N/A	Absorption et vides perméables			
Glissiere :	265-280 mm	Permean	linte aux ions chie	prure	
Beton de relection :	N/A	Pétrogra	nhie		
Profondeur totale :	265-280 mm	Résultats			
Béton		Teneur	n ions chlorure :	0-12.5: 0.60 %	
Description générale : Saine		12,5-25: 0 1	15 % et 25-50: 0.039%	;	
		Absorpti	on et vides perme	éables :	
Adhérence B.B. / B.C. : N/A		abs. : 5,0	% et vides perméa	bles : 12,1%	
État de surface : Saine avec p	présence d'une fissure	Perméab	ilité aux ions chlo	orure: 664 C	
verticale ≤ 0,	3 mm sur tout le diamètre	L-Barre :		307 µm	
de la carotte	Commen	taires :	1.1		
Fissure / Délaminage : Longue fissu	Présence	e de petites tâches	blanches sur		
U,1 mm sur p	à 65 mm (norosité visible)	Eoroco to	e sciee de plusieur	s granulats.	
(DREV/) 150 droite à	80 et 155 mm	vides de	compaction appare		
	à 170 mm (norosité visible)	tour de ce	ertaines armatures	et au sein de	
Réaction alcalis-granulats : Aucune	visuellement	la carotte	de béton (photos	BC-15-095)	
	••••				
Préparé par : <u>Marc-Antoine Lorange</u> Approuvé par : <u>Claude Nazair, ing.</u>	r, ipg. jr		Date :2 Date :	22 sept. 2015 17 déc. 2015	

Transports Québec El El Direction du Laboratoire des chaussées	FS-34-S2b-072		Révision : 1		
Service des matériaux d'infrastructures Secteur béton			Date de révision : 2014-11-13		
Description v	visuelle (prélèvement c	le béto	on durci)		
Localisation :Pont de Val-Alain (autoObstacle :Rivière HenriN° de structure :P-11591	proute 20 est)	Nº au la Nº de l'é Date d'é	aboratoire : BC-15-095 échantillon : C2 échantillonnage : 13 juil. 2015		
Échantillon (φ = 100 mm)		Croquis	s et notes générales		
	Côté exposé	0 m	0 mm 10 mm		
La n a p a c		400.	Compression 180 mm		
BC-15-095		295 i 305 i	mm Perméabilité ions chlorure 250 mm Teneur en ions Cl mm		
Description du forage		Descr	iption des essais		
Matériaux	Épaisseur	Essais	:		
Enrobé bitumineux :	N/A	Résista	ance à la compression		
Membrane :	N/A	Perméa	abilité aux ions chlorure		
Glissière :	295-305 mm	Teneur	en ions chlorure		
Béton de réfection :	N/A				
Poutre :	N/A	Résulta	its :		
Profondeur totale :	295-305 mm	Résista	ance à la compression : 59,9 Mpa		
Béton		Perméa	abilité aux ions chlorure : 435 C		
Description générale : Saine		Teneur	en ions chlorure :		
		0-12,5:	0,33%		
Adhérence B.B. / B.C. : N/A		12,5-25	: 0,075%		
		25-38: 0	0,028%		
État de surface : Saine					
		Comme	entaires :		
Fissure / Délaminage : Aucune		Forage	total (horizontal)		
		Carotte	de 100 mm de diamètre		
Etat des armatures : partiel 15Ø d	roite à 190 mm	Vides d	e compaction apparents		
(PRFV)		Photos	additionnelles dans BC-15-095		
Réaction alcalis-granulats : Aucune	visuellement	Présen	ce de petites tâches blanches sur		
		la surfa	ce sciée de plusieurs granulats.		
Préparé par : Marc-Antoine Lorange	r, Ting. jr		Date : 22 sept. 2015		
	<u>"</u> **		DateUCC. 2013		

Transports Québec 🖬 🖬 Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béton	FS-34-S2b-072		Révision : 1 Date de révision : 2014-11-13		
Description v	visuelle (prélèvement o	de béto	n durci)		
Localisation : Pont de Val-Alain (auto Obstacle : Rivière Henri N° de structure : P-11591 Échantillon ($\phi = 150$ mm)	proute 20 est)	Nº au lai Nº de l'é Date d'é	boratoire : chantillon : chantillonnage :	BC-15-095 C3 13 juil. 2015	
Echantilion (φ = 150 mm)	Côté exposé au traffic Cale en plastique → } +	Croquis 0 mr 70 m 90 m 185 m 200 m 260 m 280 m	Teneur ions C & absorption et vides perméables m Récupération armature Perméabilité ions chlorure Perméabilité ions chlorure Perméabilité	210 mm 210 mm 210 mm 210 mm 260 mm	
Description du forage Matériaux Enrobé bitumineux : Membrane : Glissière : Béton de réfection : Poutre : Profondeur totale : Béton Description générale : Saine Adhérence B.B. / B.C. : N/A État de surface : Saine, fissure Fissure / Délaminage : Fissure / Délaminage : Yeld courbe à 15Ø courbe à 15Ø courbe à Réaction alcalis-gra nulats :	Épaisseur N/A N/A 260-280 mm N/A N/A 260-280 mm 260-280 mm	Descri Essais : Teneur Absorpt Perméa Résultat Teneur 12,5-25: 0 Absorpt abs. : 4, Perméa Commer Présenc la surfac Forage t Présenc endroits Dizaine au pouto et dans	en ions chlorure ion et vides perr bilité aux ions ch s : en ions chlorure 14%; 25-50: 0,021% ion et vides perr 0% et vides perr bilité aux ions ch ntaires : e de petites tâche cosciée de plusieu total (horizontal) e de cales en plas de vides de comp pur de certaines au la carotte de bétou tos dans BC-15-0	ais néables nlorure : 0-12,5: 0,38%; et 50-56: 0,017% néables : éables : 9,7% nlorure : 266 C es blanches sur urs granulats. stique à 14 action apparents rmatures, cales n 95	
Préparé par : <u>Marc-Antoine Lorang</u> e Approuvé par : <u>Claude Nazair, ing.</u>	r, ing. jr		Date : _ Date : _	22 sept. 2015 17 déc. 2015	

ANNEXE C

SCHÉMA DE LOCALISATION DES CAROTTES

ANNEXE D

CERTIFICAT DE CONFORMITÉ DES BARRES D'ARMATURE EN PRFV

Certificat de conformité

Pultrall

23-09-2004

Identification du renfort	Propriétés	Résultats 1	Résultats 2	Résultats 3	Résultats 4	Résultats 5	Moyenne	Écart Type (s)	Valeur garantie	Requis MTQ
	Résistance en traction (Mpa):	746	751	764	816	784	772	29	706	755
Armoture droite V Bod #5	Module d'young (Gpa):	44	44	44	48	49	46	2,3	41	46
	Dosage en fibre (% massique):	78,6	78,7	78,2			79	0,3	78	
Armature droite V-Rod #5	Tg (^o C):	120	117	114	116	106	115	5,0	103	
Armature droite V-Rod #5 (lot 043006)	Absorption d'eau (%):	0,19	0,25	0,21	0,26	0,24	0,23	0,03	0,17	
	Diamètre effectif (mm):	16,0					16,0	n.a.	n.a.	
	Aire transversal (mm ²):	201,6					201,6	n.a.	n.a.	
	Circonférence effective (mm):	50,3					50,3	n.a.	n.a.	
	Résistance en traction (Mpa):	646	657	703	679	663	670	22,2	618	612
	Module d'young (Gpa):	42	43	47	47	49	46	3,1	39	42
	Dosage en fibre (% massique):	78,4	78,5	78,5			78	0,1	78	
Armature droite V-Rod #6	Tg ([°] C):	118	116	113	112	117	115	2,5	109	
(lot 042022)	Absorption d'eau (%):	0,3	0,29	0,28	0,29	0,26	0,28	0,02	0,25	
	Diamètre effectif (mm):	20,4					20,4	n.a.	n.a.	
	Aire transversal (mm ²):	325,7					325,7	n.a.	n.a.	
	Circonférence effective (mm):	64,0					64,0	n.a.	n.a.	
	Résistance en traction (Mpa):	488	478	479	474	474	479	5,7	465	400
	Dosage en fibre (% massique):	67,2	71,6	69,1			69,3	2,2	64	
	Tg (^o C):	127	127	129	124	127	127	1,6	123	
Armature courbe V-Rod #5 section courbe	Absorption d'eau (%):	0,61	0,46	0,41	0,58	-0,04	0,40	0,26	0	
	Diamètre effectif (mm):	16,2					16,2	n.a.	n.a.	
	Aire transversal (mm ²):	206,6					206,6	n.a.	n.a.	
	Circonférence effective (mm):	51,0					51,0	n.a.	n.a.	
	Résistance en traction (Mpa):	400	414	404	380	413	402	13,8	370	400
	Dosage en fibre (% massique):	67,1	67,4	70,0			68	1,6	64	
	Tg (^o C):	127	132	129	131	125	129	3,0	121	
Armature courbe V-Rod #6 section courbe	Absorption d'eau (%):		Idem armat	ure courbe V-Rod #5 se	ection courbe		n.a.	n.a.	n.a.	
	Diamètre effectif (mm):	19,4					19,4	n.a.	n.a.	
	Aire transversal (mm ²):	296,9					296,9	n.a.	n.a.	
	Circonférence effective (mm):	61,1					61,1	n.a.	n.a.	
Armature courbe V-Rod #5	Résistance en traction (Mpa):	896	861	895	881	762	859	56,0	732	540
section droite	Module d'young (Gpa):	42	33	31			36	5,8	23	42
Armature courbe V-Rod #6	Résistance en traction (Mpa):	846	882	883	865	879	871	15,7	834	530
section droite	Module d'young (Gpa):	32	36	32	37		34	2,8	28	39

Il est à noter que le coefficient d'adhérence, k_b, est le même pour tous les types de renfort de Pultrall et qu'il respecte le requis du MTQ en maintenant une valeur de 0.8 max. En annexe, un document issu de recherche universitaire conduite à l'université de Sherbrooke atteste de cette affirmation.

ANNEXE E

FORMULE DE MÉLANGE ET CARACTÉRISTIQUE DU BÉTON

Contrat 3475-04-0203

FORMULE

BETON DE CIMENT-USINE BETON CHEVALIER ST-NICOLAS

TYPE DE BETON		IV V	VII	X	XI	XIII
TYPE DE CIMENT	Type 10E-SF	Type 10E-SF			Тур	e 10E-SF
RESISTANCE EN COMPRESSION (MPA)	30	35	-			50
AFFAISSEMENT (MM)	80	80				170
TENEUR EN AIR (%)	5 à 8	5 à 8				5à8
RAPPORT E/C	0,45	0,44				0,38
CALIBRE GRANULAT	BC 5-20	BC 5-20			B	C 5-14
RESEAU BULLES D'AIR (MICRONS)	185	185				112
ANNEE	2003	2003				2004
MASSE VOLUMIQUE (KG/M3)	2320	2295				2485
MASSE CIMENT (KG)	330	350			· ·	410
MASSE AJOUTS CIMENTAIRES (KG)						
MASSE EAU (KG)	150	150				155
MASSE GROS GRANULATS (KG)	1000	1000				1050
MASSE GRANULATS FINS (KG)	840	790	,			870
IDENTIFICATION ADJUVANT 1	•				Ret	t. 100XR
QUANTITE 1				-	Ę	500ml
IDENTIFICATION ADJUVANT 2	200-N	200-N				SPN
QUANTITE 2	550ml	750 ml			6	000ml
IDENTIFICATION ADJUVANT 3	Micro-air	Micro-Air			Mi	icro-air
QUANTITE 3	150ml	125 ml				145ml
ANNEE	2004	2004				2004

CIMENT ET AJOUTS

BETON DE CIMENT-USINE BETON CHEVALIER ST-NICOLAS

TYPE DE BETON		V	VI	VII	VIII	X	XIII
TYPE DE CIMENT	10E-SF	10E-SF					Type 10E-SF
PROVENANCE	St-Basile	St-Basile					St-Basile
IDENTIFICATION DE LA CIMENTERIE	Ciment Québec	Ciment Québec					Ciment Québec
TYPE D'AJOUT CIMENTAIRE							
CLASSE							
PROVENANCE							
EFFETS PREVUS							
ANNEE	2004	2004					2004

BETON DE CIMENT-USINE BETON CHEVALIER ST-NICOLAS BC 5-20 BC 5-14 BC 5-14 BC 2,5-10 CALIBRE exigences Carrière Sartigan PROVENANCE GRANULOMETRIE С TAMIS 28 MM (% PASSANT) 100 TAMIS 20 MM (% PASSANT) 99 TAMIS 14 MM (% PASSANT) 21 TAMIS 5 MM (% PASSANT) 2 TAMIS 2,5 MM (% PASSANT) 1 TAMIS 1,25 MM (% PASSANT) **REACTIVITE-ALCALIS** NR 2003 MAX: C LOS ANGELES 10,8 MAX: 50 MICRO DEVAL 10,2 **MAX: 25 FRAGMENTATION (%)** 100 MIN: 60 PARTICULES PLATES (%) 9,9 MAX: 25 29,8 PARTICULES ALLONGEES (%) MAX: 45 PROPRETE (%) 0,69 MAX: 1,5 PARTICULES LEGERES (%) 0 MAX: 0,5 TENEUR MOTTES D'ARGILE (%) MAX: 0,25 0,3 MgSO4 (%) MAX: 12 MASSE VOLUMIQUE PILONNEE A SEC (KG/M3) 1612 DENSITE RELATIVE BRUTE (SSS) 2,822 ABSORPTION (%) 0,49 ANNEE 2003

GRANULATS FINS

BETON	DE CIMEI	NT-USINE	
BETON CH	IEVALIËR	ST-NICOL	AS
CALIBRE	BC 80microns-5	BC 80microns-5	EXIGENCES GRANULO.
PROVENANCE	Grav. De Beauce		
GRANULOMETRIE (C/NC)	С		
TAMIS 10 MM (% PASSANT)	100		100
TAMIS 5 MM (% PASSANT)	99		95-100
TAMIS 2,5 MM (% PASSANT)	83		80-100
TAMIS 1,25 MM (% PASSANT)	66	· · · · · · · · · · · · · · · · · · ·	50-90
TAMIS 630 MICRONS (% PASSANT)	48	·	25-65
TAMIS 315 MICRONS (% PASSANT)	25		10-35
TAMIS 160 MICRONS (% PASSANT)	7		2,0-10
MICRO DEVAL	20,7		MAX: 35
PARTICULES LEGERES (%)	0		MAX: 0,5
	0		MAX: 3
PROPRETE (%)	2,7		MAX: 3
MODULE DE FINESSE	2,7		2,3 à 3,1
TENEUR EN MOTTES D'ARGILE (%)	0,7		MAX: 1
MgSO4 (%)	13,4		MAX: 12
MASSE VOLUMIQUE PILONNEE A SEC (KG/M3)			
DENSITE RELATIVE BRUTE (SSS)	2,623		
ABSORPTION (%)	1,1		
ANNEE	2004		

%86

DOILIER A(S, Q

1054, boul. Saint-Joseph, Québec (Québec) G2K 1E6

Tél. : (418) 634-1807 Téléc. : (418) 628-3768

TRANSMISSION PAR TÉLÉCOPIEUR

Date: 26-08-2004 Destinataire : NTO : (HE) 839-7768 Fax no.

CC

A l'attention de :

Youn Bilaleau Pierne Rox

Objet : Pont autoroute 20 et riv. Henri Val-Alain (3475-04-0203)

Nombre de page(s), incluant celle-ci : 3

Bonjour,

Vous trouverez si-joint les résultes du réserve de bulle clair et des résultants compression pour le bétou BNP Je vois avises que nous prévoyours tétonner la culée avel demain matin e Thès 27.08-284

Bien à vous CONSTRUCTION GENIX INC aid Roy

Gérant de chantier

Titulaire d'une licence délivrée en vertu de la loi sur le Bâtiment du Québec No. 8295-7168-21

· ^ .

50-08-5005 50.9

CHE	VALIER NC.	E88	AIS EN C M	OMPRES ASSE VO		N,CALCUL MIQUE	DELA
		. 1.	<u>maria</u>	air	1.6	4,6	révision (
	T-Nira	200	DA		4-0	19-19	
PROJET:	rrai de	Consense	uca NUF	61. :			
ENDROIT :			N/F	rélèvement :	BC	204-6	3
Dete du bétonn	ae: 04-1	08-19				EXIGENCE8	
Entrepreneur :			No	recette :	BC	50ASF	
Partie(s) bétonn	160(0) :		CI	see de béton	: 5	0	
			AN	lissement ex	ligé :	180:20	
Prélèvement eff	ootus per :M,V.		Alr	ontreiné ezi	1ó : /	5à8	
Dimension des	éprouvettes :10	0mm x 200mm	Ag	égét max. (n	nm) :	14-5	
Éprouvettes reg	ues su lab. :		Ch	uffage à l'us	ine :		
Carrion no	Facture no	Chauffinge	Hrs de depe		antièv.	Giases de béton	Agricatam
		T (CA)	8:35	9:0	2	50	14.5
Affaissement	Altrentminé %	Temp. bitten	Temp. amb	Temp.	. eart.	A.e.a./diepersen	Autres adley
180	<u>د ا ماه</u>	25.6	22			,	
Eprouvettee no	Dete	Age de l'essel	Mage volumi	ue Cherge	(kg)	Nde. en compressio	Moyanne (M
	20/8						21.23
······································	22/8	3					30-
	24/8	5					3516
	26 8	7					40.6
	2/9	14				······································	
Marrie			LA MARRE VO				
	e ve le mêşînê ev e						
	Manas d	u bilbon :					
	Coefficient de la		····	e volumlaue	de betn	n;	· .
	9/9	21		Macee vo	lumiqu	e théorique : 🚽	
	VIA	28			-		
	10/1	~0					

rateire de mandrimux de Québes (1987) ins.

CARACTÉRISTIQUES DU RÉSEAU DI : VIDES D'AIR ASTN C-487 METHODE DE COMPTAGE PAR POINT I (methode B)

Client:	Béton Chevaller Inc 525 chemin de le Grande-Ligne	Dossier no:	74-3186 503
	Stonefham (Guébeo)	Repport not	R04-224
	A l'attention de monsieur Bernard Chevaller	Date:	2004-08 28

CARACTERISTIQUES						
	Identification	Échantilon				
Laboratoire no:	801	Type: cylhdre: 100 x 200				
Projet:	Essai de convenance Bélton : 60 MPa SF Ech: 204-833 ordi: 2004-8-19	Dimension maximale du granulai : 14mm Dimensions des plaquast, 100 mm				
	Usine .81-Nicolas Réception: 2004-08-23					

	RÉQULTATO	
Caractériatiques des éprouvettes	Valeure culculées	Pactour d'espèci ment (E)
Longueur de traverse (T)	2449 miti	·······
Surface couvérie	9180 mm ⁸	Exigen ove:
Nambre d'errêt (S.)	1920	325 µm max, el BHP
Teneur en sir (A)	5.5%	
Vides (n)	0.33	
Surface volumique (a)	23.84 mm ⁻¹	Veleur mesurde: 212 jum
Rapport pâta/air (P/A)	5.03	

REMARQUES

Les deux plaqués sont police et aciéce perpendiculairement à la surface.

Pro	paré par:		
Pati	rick Plamondon	Pinter Millard, toch, princ.	Date: 2(04-08-26
£2:60	10-88-95 58-783 865		

A18-659-3311 LAB. MAT. DUE. INC

p11, QUIL B11, QUIL B BETON (418) 848-1968 Usine Québec : HE VALIER NC. Usine St-Nicolas : (418) 831-0004 (819) 364-6010 Usine Princeville : 575, de la Grande Ligne, C.P. 219 (418) 774-4747 Usine Beauceville : Stoneham (Québec) G0A 4P0 Usine Theford Mines : (418) 332-2177 Télécopieur : (418) 848-4431 3475-04-0203 elecopie Expéditeur : Destinataire : O સ્વ Télécopie : Page(s) : M9-7 $(\mathcal{D}\mathcal{U})$ Téléphone : Date : **Objet:** Ouverture de compte
 Réponse Confidentiel Soumission 🛛 Liste de prix Commentaires: Luer NIT 0M 0 ۹ %<u>o</u> n m 1070 and `م JW En cas de problème de transmission, veuillez nous en informer par téléphone au (418) 848-1966. . .

P.01

576, de la Grande Ligne, C.P. 219 Stoneham (Québec) G0A 4P0

Usine Québec :	(418) 848-196
Usine St-Nicoles ;	(418) 831-0004
Usine Princeville :	(819) 364-6010
Usine Beauceville :	(418) 774-4747
Télécopleur :	(418) 848-4431

Le 27 sept 2004

CONTRAT : Const. Génix inc. PROJET : Val-Alain

Madame, Monsieur,

Voici tel que demandé, la formule de mélange de béton préparé devant servir pour le projet mentionné en titre.

Béton: prise rapide

- résistance en compression à 28 jours	50 Mpa type 13
- rapport E/c	0.37
- affaissement	170 mm ± 30
- pourcentage d'air entraîné	5 å 8 %
- calibre du granulat	5-14 mm

Mélange :

1 mètre cube : - ciment type 10 sf	410 kg	
- sable	870 kg	
- pierre	1 050 kg	
- 100 xr	500 ml	
- micro-air	165 ml	
- SPN	6000 ml	
-Eau	155	
- pozzotech 20	1500ml	
Fourniegoure		

- ciment type 10 sf portian	d	Ciment Québec
- adjuvants		Master Builders
- agrégats	Graviere de Beau	ce et Carrière Ray-Car

Nous espérons le tout à votre entière satisfaction et vous prions d'agréer, l'expression de nos sentiments les mellieurs.

Par:

NOLL

Benoit Lemelin, directeur de la production et des ventes

posliEn All acul A

Saint-Romuald, le 17 décembre 2004

ġ

Direction de la Chaudière-Appalaches

* *

Ministère des Transports

> Monsieur Yvan Bilodeau, ing. Service des projets Direction Chaudière-Appalaches 1156, boul. de la Rive-Sud Saint-Romuald (Québec) G6W 5M6

OBJET	:	Rapport final –	- Lo	ts en béton de ciment pour construction d'une structure
		Contrat no	:	3475-04-0203
		Route	:	20
		Municipalité	:	Val-Alain
		MRC	:	Lotbinière
		Entrepreneur	:	Construction Génix inc.
		Fournisseur	:	Béton Chevalier, St-Nicolas

4

Monsieur,

Vous trouverez ci-jointe la compilation sous forme de lots des essais en résistance en compression en béton de ciment concernant la construction de la structure.

- Béton de type II (30 MPa)	Lot 1 : $PR = 1,00 PU$
- Béton de type V (35 MPa)	Lot $1 : PR = 1,00 PU$
- Béton de type XIII (50 MPa)	Lot $1 : PR = 1,00 PU$
· · · · · · · · · · · · · · · · · · ·	Lot 2 : $PR = 1,00 PU$

Espérant le tout à votre entière satisfaction, nous demeurons disponible pour de plus amples informations.

Salutations distinguées.

Pierre Roy, TTPPS

Secteur Assurance de la qualité

/dc

c.c. : M. Robert Brochu, ing., chef du Service des projets
 M. Gilles Dussault, ing.
 Dossier contrat

p.j.

1156, boulevard de la Rive-Súd Saint-Romuald (Québec) GGW 5M6 Téléphone : (418) 839-5581 Télécopieur : (418) 834-7338 www.mtq.gouv.qc.ca

Transport	Ansports Ouébec 🔤									BÉTON Rapp	DE CIMEN ort par lot	IT		Fiche descriptive N ^o	Type de béton 	N° de	lot	1.		
Contrat				Projet			Route			Municipa	lité			Circonscription électorale	Circonscription électorale			Spécifications		
3475	-04-02	203						2	0			Val-Al	ain	Lotbinière	Résistance spécifiée	Cal. granulat	% d'air	Arement		
Entrepreneur	Cor	nstruc	tion C	Sénix in	IC.		Sous-t	raitant				Fourni	sseur Béton Cl	nevalier	30 MPa	BC 5-20	5à8	80		
Échantillons Essais sur héton frais							frais		Résistance en	compression										
N°	ďė	Date chantillo	nnage	% d'air	A	ffaissement mm	Tempé- rature C°	7 jrs	28 jrs 28 jrs Moyenne à 28 jrs Moyenne Note Augustité représentée par l'échantillon (m ³)						Identification et localisation des	parties bétonnées				
885-03	An 04	Mois 08	; Jour 13	6.6		100	24	22.39	36.42	36.16	36.29		36.0	Semelle culée # 1 (oue	est)					
885-04	04	08	13	6.6		100	25	19.12	32.77	32.83	32.80		72.0	Semelle culée # 1 (oue	est)					
885-05	04	08	20	6.2		110	23.4	22.67	38.19	38.58	38.39		40.0	Semelle culée # 2 (est))		 			
885-06	04	08	20	6.2		90	24.1	24.76	41.15	41.66	41.41		65.5	Semelle culée # 2 (est))					
		1									r									
					•.						_				· ·					
		1										· .			· · · · · ·	• •				
			-													,				
			1						·					·						
			Í																	
										R	37.22		Quantité totale du lot	Transmis à						
Facteur d'acceptation (k)Nombre d'échantillons (n)FrFacteur d'ajustemenknknk7311347195528883414492056					ur d'ajustement résistance		d R= d=	3.621 Résistance Indice de di	moyen spersio	213.5 m ³ ne mesurée du lot n des échantillons du lo	Surveillant Service d Unité adminis Entrepreneur <u>Construct</u> Nom	es projets ^{strative} tion Génix inc	Yvan Bilodea Représentant Harold Giass Représentant	au, ing. on, ing.						
3 -9	9	38	15 .	50	21	57 F	- = <u>R</u>	37.22	Rt : Résista	nce moyenne to	lérable			Fournisseur Béton Ch	evalier inc.	Michel Vallée)			
4 10	10	41	16	52	22	58	R _t	30.36		/ kd R	t = 30 +	/ 10	x 3.621 \ = 30.36	Nom		Représentant		<u></u>		
5 19 6 26	11 12	43 45	17	53 54	23 24	59 60 F	. =	1,000	$\begin{bmatrix} Rt = Fc + \\ \\ \end{bmatrix}$	(100)		(100	 * Note 1- La résistance avons utilisé 	e de cet échantillon est supérieure 1.5 fc.	e à 1,5 fc. Pour le c	alcul de la n	noyenne du lot, nous		
Remarques	·				·	· .			Préparé par Assurance Unité administ	de la qualité rative	Dominiq Représenta	ue Lap	prise An Mo 04 1	Jour 2- La résistance 1 10 devrait pas êt 3- La résistance	e de cet échantillon est inférieure ire payé. Ce résultat n'a pas été co moyenne du lot est inférieure à la	à 0,76 fc. Le béton insidéré pour le calcu résistance critique (l	représenté p ul de la moye 0,80 f'c).	par cet échantillon ne nne du lot.		
									Approuvé par Assurance	de la qualité	Pierre R	oy, ttp	ps 04 1	bis Jour Le béton est l 1 29 4- L'écart entre l'échantillon e	retuse et les travaux devraient être les résultats de deux (2) spè est jugé défectueux et sa valeur e	repris. cimens de cet éch est rejetée. La quar	antillon est	supérieur à 5 MPa		
									Unite administ	rative	Representa	INC		échantillon es	st payée au prix unitaire.	-, 400.				

۰.

V-1469 (92-01) MsOffice 97/dc

BC-4

5

~

•

4

Québec			BÉTC Ra	ON DE CIMEN oport par lot	NT		Fiche descriptive N ^o	Type de béton N° de lot V 1				
ntrat	Projet	Route	Munie	ipalité		•	Circonscription électorale		Spécifications			
3475-04-0203		Sous-traitant	20		Val-Ala	ain seur	Lotbiniere	Résistance spécifiée	Cal. granulat	% d'air After ment		
Construction	Génix inc.					Béton Ch	evalier	35 MPa	BC 5à20	5 à 8 80 mm		
Échantillons	Essais sur béton	frais	Résistance en compress	on	•				· · · · · · · · · · · · · · · · · · ·			
N° Date d'échantillonnage	% d'air Affaissement mm	Tempé- rature C° 7 jrs	28 jrs 28 jrs	Moyenne à 28 jrs	Note	par l'échantillon (m ³)	Identification et localisation des parties bétonnées					
An Mois Jour 5-01 04 07 10	5.6 80/150	24 35.70	45.60	45.60		5.5	Drain côté nord et éléva	ition joint pile unité # 3				
-02 04 07 12	7.6 90	24.8 26.55	34.95 38.3	3 36.67	_	17.0	Consolidation des culée	es # 1 et # 4, 4 ^e Rang		· · · · · · · · · · · · · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			
					-		· · · · · · · · · · · · · · · · · · ·	·····		- 		
·			, 		· ·					•		
		•	· ·					· · · ·				
								· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
										· · · · · · · · · · · · · · · · · · ·		
		·								· · · ·		
	· · · · · · · · · · · · · · · · · · ·	······				· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		
				>		Quantité totale du lot	Transmis à	· · · · · · · · · · · · · · · · · · ·	-			
· · ·		· .		41.14				· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·		
ur d'acceptation (k) Nombr k n k n 7 31 13	e d'échantillons (n) <u>k n k</u> 47 19 55	· Facteur d'ajustemen ^r pour résistance	t	d 6.315 R= Résistance d= Indice de di	moyenr	22.5 m ³ ne mesurée du lot n des échantillons du lot	Yvan Bilodea Représentant Harold Giass	u, ing. on. ing.				
-88 8 34 14	49 20 56	-					Nom	·	Représentant			
-9 9 38 15 10 10 41 16	50 21 57 F 52 22 58	$r = \frac{R}{R_{\star}} = \frac{41.14}{29.44}$	Kt : Kesistance moyenne	tolerable		· · · · · · · · · · · · · · · · · · ·	Fournisseur Beton Che		Représentant	· · · · · · · · · · · · · · · · · · ·		
19 11 43 17 26 12 45 18	53 23 59 54 24 60 F	r = 1,000	$- \left[Rt = fc + \left(\frac{kd}{100} \right) \right]$	Rt = <u>35</u> +	<u>(88</u>	$\left(\frac{\mathbf{x} \ 6.315}{100}\right) = \frac{29.44}{100}$	* Note 1- La résistance	de cet échantillon est supérieure	à 1,5 fc. Pour le c	alcul de la moyenne du lot, r		
harques			Préparé par Assurance de la qual Unité administrative Approuvé par Assurance de la qual Unité administrative	té Dominic Représent té Pierre R Représent	<u>que Lap</u> ant Roy, ttpp ant	orise An Mois 04 11 An Mois OS 04 11	s Jour 2- La résistance devrait pas êtri devrait pas êtri 10 3- La résistance resistance restance restance resistance restance resistance resistance resista	5 fc. de cet échantillon est inférieure à e payé. Ce résultat n'a pas été cor moyenne du lot est inférieure à la r fusé et les travaux devraient être r les résultats de deux (2) spéc st jugé défectueux et sa valeur es	0,76 fc. Le béton Isidéré pour le calcu ésistance critique (C repris. imens de cet éch st rejetée. La quan	représenté par cet échantillor I de la moyenne du lot. 9,80 fc). antillon est supéneur à 5 M tité de béton représentée par		

Transport QU	ec	nfo efec nfo efec						BÉTON Rapp	DE CIMEN	Г		Fiche desc N ^o	riptive	Type de béton XIII	N° de	lot	1		
Contrat				Projet		Route		~	Municipa	alité			Circonscription é	Circonscription électorale Spécifications					
3475	34/5-04-0203 Sous-traitant						aitant 20	0		\ 	/al-Ala	ain	Lotbinier	e	Résistance spécifiée	Cal. granulat	% d'air	Afgement	
Construction Génix inc.							· · · · ·	· .				Béton Ch	nevalier		50 MPa	Bc 5 à 14	5à8	170 mm	
Ech	Echantillons Essais sur béton frais						 .	Résistance en	compression	1	•*	Quantité représentée							
N°	Date % d'air Affaissement d'échantillonnage				Affaissement	t Tempé- rature C°	7 jrs	28 jrs	28 jrs	Moyenne à 28 jrs	Note	par l'échantillon (m ³)			identification et localisation des	parties betorniees			
885-07	An 04	Moi 08	s Jour 27	5.0	210	21	45,47	55,58	54,73	55,16		33	Murs Phase 1	; axe 1		· · ·			
885-08	04	08	31	6,2	190	19,3	26,59	41,03	41,81	41,42		1,0	Bloc d'assise	# 1					
885-09	04	09	01	6,0	190	18	40,08	54,99	55,37	55,18		27	Mur de culée	#2				i	
885-10 [.]	04	09	02	5,6	160	20,2	51,01	. 87,90	70,24	79,07		1,0	Assise culée #	<i>‡</i> 2					
885-11	04	09	08	5,0	190	20,1	45,16	81,39	82,12	81,76		13	Mur en aile						
885-12	04	09	14	5,5	200	16,6	54,57	72,56	72,11	72,34	-	7	Mur en aile 2	2					
885-13	04	09	25	6,4	190	19,6	48,57	63,02	61,27	62,15		28,5	Diaphragme d	l'extrémite	é	· · ·	·		
			1													<u> </u>			
		1					· .									· .			
		•				٠,			R	63,87		Quantité totale du lot	Transmis à	· · · · · .					
Facteur d'accer	otation (k	ā	Nombre	d'échanti	illons (n)	• Facter	ır d'aiustement	i .	d	14.61		110.5 m ²	Suproillant	Service de	es proiets	yvan Bilodea	au ing	· .	
n k	n	" k	n	k i	n K	Fr [•] pour r	ésistance		R=	Résistance n	noyenr	ne mesurée du lot		Unité administ	rative	Représentant	ia, ing.		
	7	31	13	47 1	9 55				d=	Indice de dis	persior	n des échantillons du loi	t Entrepreneur (Construct	ion Génix inc.	Harold Giass	on, ing.		
2 -88	8	34	14	49 2	20 56							<u></u>	-	Nom		Représentant		- ¹	
3 -9	9	38	15	50 2	21 57	$F_r = \frac{R}{R}$	63,87	Rt : Résistar	nce moyenne to	olérable		· ·	Fournisseur <u>t</u>	Beton Che	evalier inc.	Michel Vallée	<u> </u>		
5 19	10	41	10	53 2	2 50	1 K t		Rt = f'c +	(<u>_kd</u>) R	tt = <u>50</u> +	31	<u>x 14,61</u> = 54,53	- L						
6 26	12	45	18 [°]	54 2	24 60	F _r =	1,000					100	* Note 1- L	a résistance	de cet échantillon est supérieure	a à 1,5 fc. Pour le c	alcul de la n	noyenne du lot, nous	
Remarques						· · · · · ·	· · ·	Préparé par				An Moi	is Jour 2- 1	avons utilisé 1 a résistance	,5 fc. de cet échantillon est inférieure :	à 0.76 fc. Le béton	renrésenté r	ar cet échantilion ne	
								Assurance	de la qualité	Dominiqu	le Lap	orise, tech 04 11	1 10	levrait pas êtr	e payé. Ce résultat n'a pas été co	unsidéré pour le calcu	ul de la moye	nne du lot.	
1								Approuvé par	rative	Representan	it	An Moi	is Jour L	.a resistance .e béton est re	moyenne du lot est inferieure à la efusé et les travaux devraient être	resistance critique (L 3 repris.	J,80 FC).		
r	3								de la qualité	Pierre Ro Représentar	y, ttpp it	os 04 11	1 29 L'écart entre les résultats de deux (2) spécimens de cet échantillon est supérieur à 5 MPa, l'échantillon est jugé défectueux et sa valeur est rejetée. La quantité de béton représentée par cet						
V-1469 (92-01)) MsOffic	ce 97/d	c											-crianollon esi	i payee au prix unitaire.			BC-4	
*				· -															
							a										C	x	

.

Transport QU	Québec							·		BÉTON Rapp	DE CIMEN ort par lot	IT	· · · ·	Fiche descriptive N ^o	Type de	béton N XIII	de lot	2
Contrat				Projet			Route			Municipa	alité			Circonscription électorale		Spécificatio	ons	· · · · · · · · · · · · · · · · · · ·
3475	-04-02	03					Sourte	2	0			Val-Ala	ain	Lotbinière	Résistance sp	écifiée Cal. granu	at % d'air	Afterment
Entrepreneur	Con	struc	tion G	énix ir	nc.		Sous-ura					Fournis	Béton Ch	evalier	35 MPa	a BC 5à1	4 5à8	170 mm
							·····								•••			
Écha	antillor	IS Data		E	ssa	is sur béto	on frais		Résistance en	compression	1	- *	Quantité représentée	Identification at localisation des parties hétennées				
· N ^o	d'éc	hantillo	nnage	% d'air	r '	mm	rature C°	7 jrs	28 jrs	28 jrs	à 28 jrs	Note	par l'échantillon (m ³)					
885-14	An 04	Mois 10	Jour 08	5.6		200	19	54.19	69.89	70.77	70.33		35	Dalle				
885-15	04	10	08	5.3		200	19.6	52.20	68.55	64.10	66.32		119	Dalle			· · ·	
885-16	04	10	18	5.2		200	15.8	47.80	63.18	61.84	62.51		22	Dalle de transition et	glissière sur le pon	nt		
885-17	04	10	18	5.8		180	16.2	52.28	61.11	64.05	62.58	:	67	Dalle de transition et	glissière sur le por	nt		
885-18	04	10	21	6.2		200	18.6	44.25	61.48	61.47	61.48		15.5	Dalle de 3 m et glissi	ère sur dalle de 6 r	n		
		1	1.															
	\uparrow	·	 	NC.					· · · · · ·		x		· · · · · · · · · · · · ·				<u> </u>	
		 	. <u></u>										· · ·					
					-													
· · · · · · · · · · · · · · · · · · ·	-	 	 									-			· ·			
			·						· · ·		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	·····	· · · · · · · · · · · · · · · · · · ·
	-	 	 						· · ·				······					
L				1 <u></u>			<u> </u>			R	64.64		Quantité totale du lot	Transmis à		· · · · · · · · · · · · · · · · · · ·		
Facteur d'accep	tation (k)	Nombre	d'échan	ıtillor	ns (n)	Fr ^{: Facter}	r d'ajustement	-	d	3.673		258.5 m ³	Surveillant Service	des projets	Yvan Biloo	leau, ing.	
n k	n	<u>k</u>	<u>n</u>	k	n 10	<u>k</u>	pour r	esistance		d= 	Resistance	moyenr	re mesuree du lot 2 des échantillons du lot		nistrative	Representant	ing	
2 -88	8	34	14 ×	49	20	56				. u –	maice de di	spersion		Entrepreneur CONSTL Nom	CUON GENIX INC.	Représentant	155011, 111 <u>9</u> .	
3 - 9	9	38	15	50	21	57	Fr=R	64.64	Rt : Résista	nce moyenne to	olérable			Foumisseur Béton C	Chevalier inc.	Michel Va	lée	
4 10	10	41	16	52	22	58	Rt	50.70		/ kd \ R	t = 50 +	/ 19	x 3.673 \ = 50.70	Nom	· · · ·	Représentant		
5 19 6 26	11 12	43 45	17 18	53 54	23 24	59 60.	F _r =	1,000	$\mathbf{Rt} = \mathbf{f'c} + \mathbf{I}$	(100)		(100	* Note 1- La résistar avons utilis	nce de cet échantillon est : sé 1,5 fc.	supéneure à 1,5 fc. Pour	le calcul de la r	noyenne du lot, nous
Remarques								· · ·	Préparé par Assurance	de la qualité	Dominiq	ue Lap	prise An Moi 04 11	Mois Jour 11 10 2- La résistance de cet échantillon est inférieure à 0,76 fc. Le béton représenté par cet échantillon devrait pas être payé. Ce résultat n'a pas été considéré pour le calcul de la movenne du lot.				oar cet échantillon ne nne du lot.
									Unité administ	trative	Représenta	int	An Moi	3- La résistance moyenne du lot est inférieure à la résistance critique (0,80 fc).				
									Assurance	de la qualité	Pierre R	oy, ttpp	os 04 12	2 14 · 4 L'écart en l'échantillo	tre les résultats de deux n est juge défectueux et s	x (2) spécimens de cet la valeur est reietée. La c	échantillon est juantité de bétor	supérieur à 5 MPa, représentée par cet
V-1469 (92-01)	MeOffer	o 07/d/				<u> </u>				u ative	Representa			échantillon	est payée au prix unitaire.	·		BC 4

V-1469 (92-01) MsOffice 97/dc

.

BC-4

.

ANNEXE F

RAPPORT EXAMEN PÉTROGRAPHIQUE

Transports Québec 🔹 🐇

MINISTÈRE DES TRANSPORTS DU QUÉBEC

Examen pétrographique sur carotte de béton Structure P-11591 – Val-Alain

Rapport final

Date : Septembre 2015 N/Réf. : 072-P-0008136-0-01-501-IM-R-0003-00

10000

Le 28 septembre 2015

Monsieur Marc-Antoine Loranger, ing. jr Ministère des Transports du Québec Secteur béton Service des matériaux d'infrastructure

Objet : Examen pétrographique sur carotte de béton Structure P-11591 –Val-Alain Rapport final N/Réf.: 072-P-0008136-0-01-501-IM-R-0003-00

Monsieur,

Nous avons le plaisir de vous transmettre ci-joint le rapport final de l'examen pétrographique sur les carottes de béton de la structure P-11591 située à Val-Alain.

Nous espérons que les informations contenues dans ce rapport sauront vous être utiles. N'hésitez pas à communiquer avec nous pour toute question concernant cette étude.

Veuillez agréer, Monsieur, l'expression de nos sentiments les meilleurs.

EnGlobe

Sofie Tremblay, géo. M. Sc Pétrographe et chargée de projet

ST/AM/vb

p.j.

MINISTÈRE DES TRANSPORTS DU QUÉBEC

Examen pétrographique sur carotte de béton Structure P-11591 Val-Alain

Rapport final 072-P-0008136-1-01-501-IM-R-0003-00

OGUE / GEO

SOFIE TREMBLAY # 1776

QUÉBEC

Préparé par

Approuvé par :

remblay, géo, M. Sc.

Chargée de projet - Pétrographe N° de membre OGQ : 1776

Alexis Mailloux, ing. Chef d'équipe - Expertise N° de membre OIQ : 143768

TABLE DES MATIÈRES

1	MANDAT		
	1.1	Limites de la caractérisation	1
2	OBSERVATIONS PÉTROGRAPHIQUES		
	2.1	Description générale du béton	2
3	CONC	LUSION	5

FIGURES

Figure 1 :	Plaque polie de la carotte C1	.2
Figure 2 :	Microphotographies des granulats du béton	.4

Propriété et confidentialité

« Ce document d'ingénierie est la propriété d'EnGlobe Corp. et est protégé par la loi. Ce rapport est destiné exclusivement aux fins qui y sont mentionnées. Toute reproduction ou adaptation, partielle ou totale, est strictement prohibée sans avoir préalablement obtenu l'autorisation écrite d'Englobe et de son Client.

Si des essais ont été effectués, les résultats de ces essais ne sont valides que pour l'échantillon décrit dans le présent rapport.

Les sous-traitants d'Englobe qui auraient réalisé des travaux au chantier ou en laboratoire sont dûment qualifiés selon la procédure relative à l'approvisionnement de notre manuel qualité. Pour toute information complémentaire ou de plus amples renseignements, veuillez communiquer avec votre chargé de projet. »

REGISTRE DES RÉVISIONS ET ÉMISSIONS						
N° de révision	Date	Description de la modification et/ou de l'émission				
0A	2015-09-25	Rapport pour commentaires				
00	2015-09-28	Rapport final				

1 MANDAT

Les services d'Englobe ont été retenus par le Ministère des Transports du Québec afin de réaliser un examen pétrographique sur une carotte de béton provenant de la structure P-11591 située à Val-Alain.

L'objectif de l'expertise est de déterminer la nature pétrographique des granulats présents dans le béton de la structure.

1.1 LIMITES DE LA CARACTÉRISATION

Les commentaires et observations de ce rapport sont basés sur l'analyse pétrographique effectuée selon les normes CSA A23.2-15A et ASTM C295. Toutes les identifications ont été faites au moyen de techniques de diagnostic visuelles normalisées et géologiques de base. Les conclusions sont donc une opinion professionnelle tenant compte des résultats d'un examen visuel, de l'expérience acquise par histoires de cas ainsi que de l'état actuel de la pratique. Il est à noter qu'aucune lame mince n'a été réalisée.

2 OBSERVATIONS PÉTROGRAPHIQUES

2.1 DESCRIPTION GÉNÉRALE DU BÉTON

Les observations pétrographiques ont été réalisées sur la carotte C1. Pour réaliser les observations, l'échantillon a été taillé à l'aide d'une scie diamantée. Ensuite, la surface de la section obtenue a été graduellement polie à l'aide d'une polisseuse portative utilisant des disques dont les particules abrasives sont de plus en plus fines.

La section polie provenant de la carotte de béton prélevée sur la structure est présentée à la Figure 1.

Figure 1 : Plaque polie de la carotte C1

Les granulats grossiers présents dans le béton se composent de particules concassées de roche de nature basaltique. La forme des particules est angulaire à subangulaire. Le diamètre maximal du gros granulat est de 14 mm. La couleur des particules est verte et rouge selon le niveau d'altération de l'hématite présente dans les granulats. La pierre contient fréquemment des amygdales remplis de calcite cristalline. La dureté des granulats est moyenne ($\approx 4 \text{ à } 5^*$) et l'agencement des grains est cohésif (bonne ténacité). L'enrobage et la distribution des granulats dans le béton sont bons. La Figure 2 présente des microphotographies des granulats présents dans le béton.

Le granulat fin se compose d'un sable de nature quartzo-feldspathique. La forme des particules de sable est subarrondie à arrondie. Le diamètre maximal du sable est d'environ 5 mm. On retrouve parfois des particules de dimension supérieure.

La pâte de ciment a une couleur gris moyen laissant présager l'utilisation d'ajouts cimentaires dans le béton. Celle-ci présente quelques vides d'air uniformément répartis dont le diamètre maximal est d'environ 3 mm. Quelques vides de compaction d'une dimension maximale de 9 mm ont également été observés.

Aucun indice de détérioration n'a été observé dans le béton.

^{*} Sur l'échelle de Mohs qui compte dix niveaux de dureté de 1=faible dureté (talc) à 10=grande dureté (diamant)

Figure 2 : Microphotographies des granulats du béton

3 CONCLUSION

Les services d'Englobe ont été retenus par le Ministère des Transports du Québec afin de réaliser un examen pétrographique sur une carotte de béton provenant de la structure P-11591 située à Val-Alain.

L'objectif de l'expertise était de déterminer la nature pétrographique des granulats présents dans le béton de la structure.

Les granulats grossiers présents dans le béton se composent de particules concassées de basalte vert et rouge.

Le granulat fin se compose d'un sable de nature quartzo-feldspathique.

Aucun indice de détérioration n'a été observé dans le béton.

FIN DU RAPPORT

ANNEXE G RÉSULTATS DES ESSAIS

Transports		
	- T.	<u> </u>
Quebec	+	-

Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béton FS-35-S2b-034

Révision : 0

Date de révision : 2014-04-01

Essais de résistance à la compression (carottes) CSA A23.2-14C							
BC-1	5-095			[Date :	10 sept. 201	5
Détails Client : # client : Projet : Produit et résistar	ice spéficiée	:					
Échantillons Type d'échantillon	15 :	Cylindre 🗌	Carotte	7			
Date et heure de Date et heure de Date de réception Lieu de prévelème Cure :	coulée : prélèvement : ent :	:					
Résultats							
Identification	Date de	Âre	Diamètre	Hauteur (mm)	Résistance à la compression	Masse volumique	Type de

Identification	i'essai	Âge	(mm)	(mm)	(MPa)	(kg/m³)	rupture
C-2	2015-09-10	nd	100,85	177,92	59,9	2372	3

***************************************	• • • • • • • • • • • • • • • • • • •	64 1 64 6 64 64 64 64 64 64 64 64 64 64 64 6			********		\subseteq
**********	1869+4941949+49+1949+49+49+49+49+49+4	***********************************	99 <i>0040010</i> 904001005040404104	8949449494949494949494949494949		*******	**********
**************************************	********	***********	***************************************	*******************************	84 DAQ DA DAC DAA DA LAA DAA DA IDA DAC DA DA DA DA DA DA	904 94 994 944 944 964 964 964 964 964 964	**********
*******		a 6 8 8 7 8 6 6 8 8 6 8 8 9 8 8 8 8 8 8 8 8 8 8 8	11 64 1 64 644 664 664 674 674 677 6678		*****		
***************************************	902991929029919479494299799999999	***************************************			•••••••••••••••••••••••••••••••••••••••		
***************		*******					
• 4	***************************************	**	************************************				
**************************************	902991929029919699409409599999999						
÷		F	Résistance r	noyenne :	59,9	MPa	

Remarques :		
_		
Préparé par : Date :	Pascale Larouche t.t.p. 2015-09-10	Approuvé par : Nadia Pouliot, 11 Date : $10/09/2015$.

Service des Matériaux d'Infrastructures Secteur Liants hydrocarbonés et Chimie

Rapport d'essais

Chlorure dans le béton de ciment

Révision ; 2 Page 1 de 1

2015-03-23

Type d'échantillon :	Béton	Numéro du rapport :	CI109-15
Client :		Provenance :	Val-Alain
Bon de commande :		Numéro d'échantillon :	BC-15-095
Échantillonneur :	Pascale Larouche	Date de réception :	2015-09-02
Date d'échantillonnage :	2015-09-02	Analyste (s) :	Nadia Verret

Teneur en ions chlorure solubles à l'acide (%)				
	AASHTO T 260			
Échantillon	Profondeur (mm)	Chlorure (%)		
BC-15-095 Carotte C-1	0-12,5	0,60		
BC-15-095 Carotte C-1	12,5-25	0,15		
BC-15-095 Carotte C-1	25-50	0,039		
BC-15-095 Carotte C-2	0-12,5	0,33		
BC-15-095 Carotte C-2	12,5-25	0,075		
BC-15-095 Carotte C-2	25-38	0,028		
BC-15-095 Carotte C-3	0-12,5	0,38		
BC-15-095 Carotte C-3	12,5-25	0,14		
BC-15-095 Carotte C-3	25-50	0,021		
BC-15-095 Carotte C-3	50-56	0,017		

Copie à : Pascale Larouche	Préparé par :	Claudine Rousseau	
	Approuvé par :	Cerfultun M.Sc., chimiste	
	Date :	2015-09-11	ISII.
Les résultats ne se rapportent qu'à l'échantillon soumis à l'essai. Ce rapport est pour l'usage exclusif du client et ne peut être reproduit, si	inon en entier, sans la permission écrite	du Laboratoire des diaussées	x =
Browset Control 2700, rue Einstein Service Control Sarrie-Fory (Outblecc) G1P 31%8 Control Téléphone: {418} 544-0181 Marco and warder Romit control Téléphone: {418} 648-5892 Isource I 17025 www.mbg gouv.gc.ca		GAETAN LECLE 90-088 Manager PUEBEC	ERC

Transports Québec Es Es

Direction du Laboratoire des chaussées Service des matériaux d'infrastructures Secteur béton Révision : 1

Date de révision 2015-03-09

Déte	Détermination de la teneur en eau, de la masse volumique, de l'absorption et des vides d'air dans le béton, le coulis ou le mortier CSA A23.2-11C							
		BC-15-095	Date	: 8 ser	ot. 2015			
Dé Clie # cl Pro Pro	tail nt : ient jet : duit	s Carottage P-11591 Val-Alain :	3					
Ec Dat Dat	han e de e de i de	itilions coulée : prélèvement : 2015-07-13 prélèvement : P-11591 Val-Alain	Âge de l'échantille	on : 				
Ré	sul	tats	A	В	С	٦		
		# Laboratoire	C1	C3		1		
	1-	Mo (Masse initiale)	1246,1	1140,4				
(6)	A-	Masse sèche	1193,6	1101,0				
sses	B-	Masse humide / immersion	1253,3	1144,8				
Mas	C-	Masse (SSS) après ébullition	1258,4	1146,3				
	D- Masse dans l'eau après ébullition 724,6 680,8							
		Teneur en eau (%)	4,4	3,6				
		Absorption après immersion (%)	5,0	4,0				
<u>s</u>		Absorption après immersion et ébullition (%)	5,4	4,1				
alcu		Masse volumique à sec (kg/m³)	2236	2365				
	f	Manage (interesting and a improvement of the less)	F			1		

Remarque :

Préparé par : Idir Benamara Date : 2015-09-18

Masse volumique après immersion (kg/m³)

Masse volumique après imm. et ébullition (kg/m³)

Volume des vides perméables (%)

Approuvé par: Nadia Poulior, ing. Date:

2348

2357

12,1

2459

2463

9,7

Page 1 de 1

Projet :

Endroit :

Client : Ministère des Transports du Québec

laboratoire

Québec

Laboratoire des chaussées 2015 à 2018; Essais en

Paramètres du système de vides d'air dans le béton durci ASTM C457 Procédure B

325, rue de l'Espinay Québec, G1L 2J2 Téléphone: (418) 647-1402

Dossier : P-0008136-0-01-500 Réf. client : 731667

Rapport n° : 21

Page 1 de 1

Rév. O

ÉCHANTILLONNAGE								
N° d'éch. LVM : 21	Date / heure de prélèvement : 2015-07-13 à :							
Nº d'éch. client : BC-15-095 (Prélevé par : le client							
Type d'échantillon : Carotte de béton	Âge à l'essai : 49 jours							
Plaque sciées et polies - Dimensions : 150 mm diam.	Endroit de prélèvement : P-11591; Val-Alain							
Position :								

CARACTÉRISTIQUES DU MÉLANGE							
N° de formule	Fo	purnisseur	Usine				
Résistance à 28 jours	: MP	a Type ou clas	se de béton :				
Dimension maximale des granulats		1					
Liant (type, marque et provenance)	:						
Granulat(s) fin(s) (provenance)							
29							
Adjuvants chimiques (types et sources)	•						
Latex (source)	: Aucun						

	PARAMÈTRES D'ESSAI	
	Exigences	Utilisés
Surface (mm ²)	7100 min.	11850
Longueur totale traversée (mm)	2286 min.	2398
Nombre d'arrêts	1350 min.	3200
Grossissement du microscope	50X min 125X max.	120 X

(TATS		EXIGENCES
Caractéristiques	Valeurs calculées		Norme CSA A23.1
Pâte	29,4 %	%	Individuelle : ≤ 260 μm Moyenne : ≤ 230 μm
Granulats	64.7 %		Tome VII du MTQ
Teneur en air (A)	5,9 %	‰	Tous les types : ≤ 230 µm Excentions :
Surface volumique (a)	15,1 m	nm ⁻¹	Type XIV-S et XVI-15 : \leq 300 μ m
Facteur d'espacement (ĩ)	307 µ	m	Type XIII à la sortie de la pompe : \leq 325 µm Type XIV-C et XIV-R à la sortie de la pompe : \leq 260 µm

REMARQUES

Le prélèvement et le transport de l'échantillon ont été effectués par un représentant du client. La plaque a été prélevée horizontalement sur la carotte.

Préparé par :	Date :	Approuvé par :	Date :
Asmae El Aychi, tech	2015-08-31	Sofie Tremblay, géo. M. Sc.	1/09/2015
			EQ-09-IM-109 rév. 08 (14-01)

Transports Québec ER ER Direction du Labora Service des matéri	itoire des chaussées aux d'infrastructures	F	S-35-S2b-042	1	Révision : 0
Secteur béton	Per	 méabilité	aux ions chloru	Date of Date o	le révision : 2013-08-02
		AST	M C 1202		
BC-15-0	95]	Da	te :	9 sept. 2015
Détails Client : # client : Projet : Carotta	ige P-11591 Val	-Alain			
Échantillons	a "	_			
l ype d'échantillons :	Carottes :				
Date de coulée : Date de prélèvement : Date de réception :	13 juil. 2015		Type de cure : Lieu de prélèvem Produit :	ent : P-11591 Va	I-Alain
	(44 one)				
Resultats d'essais	(11 ans)	ntillon	-) (Classification	ASTM C 1202
	C-1	ntinon 1		Classification	Indice de
Section testée	Miliou		-	(Coulombs)	nerméshilité
Diamètre mov (mm)	101.0			> 4 000	Élevée
Hauteur mov (mm)	48.7			2 000 - 4 000	Modérée
Temp, maximale (°C	24			1 000 - 2 000	Faible
Charge non corr. (C	, 751	·[100 - 1 000	Très faible
Charge corrigée (C.) 664		-	< 100	Négligeable
Charge moyenne (C	.) 6	64	-		
Indice de perméabili	té Très	faible			
40	Со	urbe de l'év	volution du couran	2	
35 -		-	<u> </u>		
₹ 30 -					
<u>É</u> 25					
E 20					C-1
<u>5</u> 15					
U 10			********		
3	······································	******			
0	1	2	3 4	5	6
		Ter	nne (haurne)	_	
		161	uba (ueniea)		
Remarque :					
Préparé par : Dave E Date : 14 se	Findle, t.t.p.		Approuvé j Di	par: Nadic ate: 16/09/	Pouliating. 2015
					Page 1 de

*

Transports Québec E E Direction du Laboratok Service des matériaux Secteur béton	e des chaussées d'infrastructures	FS-	35-S2b-042		Pate d	Révision : 0 e révision : 2013-08-02
	Per	méabilité a ASTN	ux ions chic I C 1202	orure		
BC-15-09	5]	I	Date :[ç) sept. 2015
Détails Client : # client : Projet : Carottage	e P-11591 Val-	Alain				
Type d'échantillons :	Carottes :	7	Cylindre : 🔲			
Date de coulée : Date de prélèvement : Date de réception :	13 juil. 2015		Type de cure : Lieu de prélève Produit :	ement :	P-11591 Va	l-Alain
Résultats d'essais	(11 ans)					
	Écha	ntillon		Cl	assification	ASTM C 1202
	C-2] [Ch	arge	Indice de
Section testée	Milieu		4 🖡	(Cou	lombs)	perméabilité
Diametre moy (mm)	101,0		4 –	2 000	4 000	Lievee
Temp maximale (°C)	22,0			2 000		Faible
Charge non corr (C)	492		1 -	1000	- 1 000	Très faible
Charge corrigée (C.)	435		1 -	< 100	100	Négligeable
Charge moyenne (C.)	4	35	-			
Indice de perméabilité	Très	faible				
25 20 WE 15 10 5 0 0	Con	urbe de l'évo	Plution du cours	ant 4	5	← C-1 6
		Temp	s (heures)			
Remarque :						
Préparé par : Dave Brin Date : 14 sept	idle, t.t.p. embre 2015		Арргоцу	é par : Date :	Nadia 16/09/1	Page 1 de 1

Direction du Laboratoire Service des matériaux o Secteur béton	e des chaussées l'infrastructures	FS	-35-S2b-042		F Date d	Révision : 0 e révision : 2013-08-02	
	Peri	méabilité AST	aux ions chl M C 1202	orure			
BC-15-095	,			Date :[(9 sept. 2015	
Détails Client : # client : Projet : Carottage Échantillons	P-11591 Val-	Alain					
Type d'échantillons : Date de coulée : Date de prélèvement : Date de réception :	Carottes : 13 juil. 2015		Cylindre : Type de cure Lieu de prélèv Produit :	: vement :	P-11591 Va	I-Alain	
Résultats d'essais	(11 ans) Échar	ntiilon	 	Cla	assification	ASTM C 1202	
Section testée	Milieu		-	(Cou	lombs)	perméabilité	
Diamètre moy (mm)	101,0		-1 F	> 4	4 000	Élevée	
Hauteur moy (mm)	51,6		- 1 F	2 000	- 4 000	Modérée	
Temp. maximale (°C)	22		1 [1 000	- 2 000	Faible	
Charge non corr. (C.)	301			100	- 1 000	Très faible	
Charge corrigée (C.)	266] [<	100	Négligeable	
Charge moyenne (C.) 266							
Indice de perméabilité Très faible							
Courbe de l'évolution du courant							
= 12							
È 10							
1 1 8							
2							
					·		
0	1	2	3	4	5	6	
		Tem	ips (heures)				
Remarque :							
Prénaré par : Dave Brin	dle. t.t.p.		Approu	vé par :	Nadia	2 Poulist. me	

s matériaux d'infrastructures ints hydrocarbonés et Chimie			ANALYSES P	HYSICO-C	HIMIQUES	DES BAR	RES D'AF	RMATURI	EN MAT	rériau c	OMPOSI	TE	, " ,			ד ד מ	age 1 de 1 évision : 0 015-03-19
Véchantillon : Bat	hrre d'armatur	e en matériar	composite							Z	uméro d	e rappor		CI028-15			
tillonneur : Da	ave Brindle										luméro d	e l'échan	tillon : N	MC-15-0(01	Barre dro	ite
é par : Sec	cteur béton d	e ciment						×		D	ate d'éch	antillon	nage: 2	2015-02-2	20		
ste(s): Ma	aria Neira, Cl	ristine Duch	esne. Nadia V	Verret	×					D	ate de ré	ception :	••	2015-02-2	20		
										T	ournisse	ur:		Pultrall	5		
Identification vo	Masse olumique ¹⁾	Absortion d'eau ²⁾	Porosité ³⁾ (Présence /	Tg ⁴⁾ ASTM	Cure ⁵⁾ CSA S807	Composit calcinatio ASTM 1	tion par n (% p/p) D2584				Compos	ition chin LC 31	nique Fl -305	RX (%)			-
	ASTM D792 (g / mL)	ASTM D570 (%)	Absence)	(°C)	. (%)	Fibre ⁶⁾	Résine ⁶⁾	SiO ₂	CaO .	Al ₂ O ₃	MgO ^a	Na ₂ O	K20	TiO ₂	Fe ₂ O ₃	ZnO	B ₂ O ₃ ⁷⁾
MC-15-001-1	2,06	0,05	Р	116	96,4	78,4	21,6	54,5	22,9	13,7	0,39	0,89	0,09	0,54	0,30	< 0,01	6,7
MC-15-001-2	2,05	0,06	A	120	97,6	78,6	21,4										
MC-15-001-3	2,05	0,06	A	115	96,5	78,8	21,2	~									
	- 2			,		-											
	2																
									(
										5						.e	
Moyenne	2 05	0.06		117	8.96	78.6	21.4								÷		
Remarques: 1) minutes dans une solution	Masse volum 1% de fuchsin	ique mesurée e basique dans	avec recouvre le méthanol. 4	;ment de sal 1) Tg : tempé	ole. 2) Moy frature de tra	enne d'un t nsition vitre	riplicata. use calculé	3) La mer e à mi-hau	ntion P sig teur. 5	gnifie qu'a) Valeur ca	u moins u lculée à par	in point a tir d'une en	été observ thalpie de j	vé sur au 1 polymérisat	moins un . tion de la ré	des triplic sine pure d	atas e 257 J/g
å. M	arc-Antoine I	Oranger							Prénaré	nar: (laudine	Rousseau		ALL THE REAL PROPERTY OF	MIS72		
8		c		×				, 	Approuv	'é par :	0/14,0	1.	U C	Christ	ine Duchesni		himin

Type d'échantillon :	Barre d'armat	lire en matéria	ANALYSES u composite	PHYSICC	D-CHIMIQ	UES DES	S BARRE	S D'AR	MATUR		ATÉRI <i>A</i> Numéro	U COMI	POSITE	CI115	5		
Échantillonneur : Envoyé nar :	Marc-Antoine Secteur béton	Loranger de ciment						82			Numéro Date d'o) de l'éch échantille	antillon		MC-15	MC-15-008-1, -6	MC-15-008-1, -6 Barre
Analyste(s) :	Maria Neira	Thristine Duc	heene Nadia	Verret							Date de	récentio	3		2015-00	2015-00-25	2015-00-25
Analyste(s) :	Maria Neira, (Christine Duc	hesne, Nadia	Verret							Date de Fournis	réceptio seur :		1 . · · ·	2015-09 Pultrall	2015-09-25 Pultrall	2015-09-25 Pultrall
Identification	Masse volumique	Absortion d'eau ²⁾	Porosité ³⁾ (Prisence /	Tg ⁴⁾ ASTM D3418	Cure ⁵⁾ CSA S807	Compos calcinat ASTN	sition par ion (% p/p) 1 D2584				Comp	osition cl LC	iimique 31-305	FR	%) X	X (%)	X (%)
	(g / mL)	(%)	Absence)	(°C)	(%)	Fibre ⁶⁾	Résine 6)	SiO ₂	CaO	Al ₂ O ₃	MgO	Na ₂ O	К,0			FiO ₂ Fe ₂ O ₃	liO ₂ Fe ₂ O ₃ ZnO
MC-15-008-1			Voir remarque 8)	16 §	95,1	8,8	31,2	54,0	22,8	13,7	0,32	0,89	0,07		0,53	0,53 0,27	0,53 0,27 < 0,0
MC-15-008-6	1,84	0,14															
							1										
			43														
									-								
Moyenne	1,84	0,14		16	95,1	68,8	31,2										
Remarques : 1) Masse vol dans une solution 1% de fuchs 6) % rapporté sans tenir con des cavités soient présentes	lumique mesurée sine basique dans mpte du sable, su sur toute la lone	avec recouvry le méthanol. 4 ir les fibres no	rment de sable Tg : températu n-lavées, 7) B ₂	 Moyer Moyer re de transit reneur teneur olorant n'a 	ne d'un trip ion vitreuse maximale e	olicata. 3) calculée à r estimée. 8) é l'échantil	La mentio ni-hauteur. La présen	n P signif 5) Valeu ce de trou	ie qu'au m r calculée s a été ob	oins un p à partir d' servée vi	oint a été ine enthal suellemer	observé s pie de poly nt sur ces é aison du d	ur au mo mérisation chantillo	ins u i de l 1s (v	n des a rési a rési	n des triplicata: a résine pure de oir photos ci-jo	n des triplicatas après 1 a résine pure de 239 J/g. oir photos ci-jointes). E rtant de ces cavités (> 0.
Copie à :	Marc-Antoine	: Loranger								par :	Claudin	e Rousse	-			and the second	
Date :	2015-10-13	-							Prépari		Cinner		IL				makeline Duches

•

Date/heu	1		ABSORTION	
	No CI /No. MC	Section	Masse ava	asse apr
	CI-115-15	6A	200	
	HC-15-008-6	6B	1 2	
		6C		
		ť		
1 Ale				
		D		
689	Y	the class		1
-		A DE CO		+

1				
Date/heu)		6	ION
	No CI /No. MC	Section	Mas	Masse après
	CI-115-15	6A	A Second	
	HC-15-008-6	6B	1 h	
		6C		
		1	1	
			T	

		HEC	Out					umis a l'essai.	echantilion so	apponent qua i	resultats he se t	es citausees, Les	du Laboratoire d	a permission ecrue	sinon en entier, sans	nt et ne peul ette reproduit,	c e rappon est pour rusage excutsit du cite
, chimiste	M.Sc.,	Contraction of the second	Con Con	B	stui	Chr	ivé par :	Approu		7						2015-10-13	Date :
		SZ	Sector Statement		Rousseau	Claudine	épar : "	Prépare	R						oranger	Marc-Antoine I	Copie à :
													and the second se				
	57 J/g.	* pure de 2:	de la résine	iérisation (e de polym	ne enthalpi	à partir d'ui	calculée	5) Valeut	u-hauteur.	stimée.	on vitreuse (naximale e	D_3 : teneur 1	g: températui lavées. 7) B ₂ (méthanol, 4) les fibres non-	ine basique dans le ipte du sable, sur	dans une solution 1% de fuchs 6) % rapporté sans tenir con
minutes	après 15 i	triplicatas	ns un des t	ır au moii	observė su	oint a été	ioins un p	ie qu'au n	1 P signifi	La mentior	licata. 3) l	ne d'un trip	2) Moyen	ient de sable.	vec recouvren	umique mesurée a	Remarques : 1) Masse vol
										22,2	77,8	96,8	116		0,14	2,05 -	Moyenne
									191				1639	=		~~	
-						55		56		8				Ĩ			
	3	22											2				
		2	1	a P						a.							
7,1	< 0,01	0,31	0,54	0,10	0,91	0,39	13,8	22,9	53,8	22,3	77,7	95,7	111			22	MC-15-008-7
												97,8	120	A		3	MC-15-008-3
6,8	< 0,01	0,30	0,54	0,08	0,89	0,38	13,7	22,9	54,3	22,2	77,8			-	0,14	2,05	MC-15-008-2
B ₂ O ₃ ⁷⁾	ZnO	Fe ₂ O ₃	TiO ₂	K ₂ 0	Na ₂ O	MgO	Al ₂ O ₃	CaO	SiO ₂	Résine ⁶⁾	Fibre 6)	(%)	(°C)	Absence)	(%)	(g / mL)	
			FRX (%)	imique l 1-305	sition ch LC 3	Compo				ition par on (% p/p) D2584	Compos calcinati ASTM	Cure ⁵⁾ CSA S807	Tg ⁴⁾ ASTM D3418	Porosité ³⁾ (Présence /	Absortion d'eau ²⁾	Masse volumique ¹⁾	Identification
		-25	2015-09- Pultrall		réception eur :	Date de 1 Fourniss							Verret	sne, Nadia	uristine Duche	Maria Neira, Cł	Analyste(s) :
1		-25	2015-09-	nnage :	chantillo	Date d'é				8		112			e ciment	Secteur béton de	Envoyé par :
roite –	7 Barre di)08-2, 3, 7	MC-15-0	ntillon :	de l'écha	Numéro							22		oranger,	Marc-Antoine L	Échantillonneur :
		5	CI116-15	irt:	de rappo	Numéro								composite	en matériau	Barre d'armature	Type d'échantillon :
							1										Sectaur Liants hydrocarbones et Chimie
-5-35-53-272 Page 1 de 1 Révision : 0 2015-03-19	Ŧ			OSITE	COMP	ATÉRIAI	E EN M	MATUR	S D'AR	BARRE	JES DES	-CHIMIQ	эНУSICO	VALYSES F	<u>≥</u>	* # * *	Transports Québec 22 12 Service des malériaux d'infrastructures
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																• • •	

Transmission / Wavenumber (cm-1)

Overlay Z-Zoom CURSOR

File # 1 : CI116-15.TRANSMITTANCE

2015-09-28 10:03 Res=8

				•								i				24	* nr. C1.070
Transports Québec Es Es Service des matériaux d'infrastructures Secteur Liants hydrocarbonés et Chimie			ANALYSE	:S PHYS	ICO-CHIMI	QUES DE	ES BARF	RES D'A	RMATU	REEN	MATÉR		MPOSIT	ш у	-		Page 1 de 1 Révision : 0 2015-03-19
Type d'échantillon :	Barre d'armatu	re en matéria	u composite				:				Numéro	de rappo	ort:	CI117-1:	J		
Échantillonneur :	Marc-Antoine	Loranger									Numéro	de l'écha	antillon :	MC-15-(08-4, 5	Barre co	urbe
Envoyé par :	Secteur béton o	de ciment									Date d'é	chantillo	nnage :	2015-09-	.25		
Analyste(s) :	Maria Neira, C	hristine Ducl	hesne, Nadia	Verret							Date de	réceptior		2015-09-	.25		
								:::::::::::::::::::::::::::::::::::::::			Fourniss	eur :		Pultrall			
	Masse	Absortion		· Ta 4)		Composi	ition par		1		Compo	sition ch	imique I	* 7RX (%)			
Identification	volumique ¹⁾	d'eau ²⁾	Porosité 3) (Présence /	1g " ASTM D3418	Cure ⁵⁾ CSA	calcinatio ASTM	0n (% p/p) D2584				Compo	SITION CI	31-305	(KA (%)		-	
	ASTN1 1/92 (g/mL)	(%) (%)	Absence)	(°C)	2007	Fibre ⁶⁾	Résine 6)	SiO2	CaO	Al ₂ O ₃	MgO	Na ₂ O	K10	TiO ₂	Fe_2O_3	ZnO	$B_2O_3^{-\eta_1}$
MC-15-008-4	1,88	0,08		8		70,8	29,2	53,6	22,8	13,8	0,34	0,88	0,07	0,53	0,28	< 0,01	7,6
MC-15-008-5			Р	Entre 84 et 106	Entre 91,5 et 97,0		÷	C.				20					
	ţ.																
				8													
	5													5			
							84										
Moyenne	1,88	0,08		121		70,8	29,2			ž.							
Remarques : 1) Masse vol	umique mesurée	avec recouvre	ement de sable	e. 2) Moye	nne d'un tripl	icata. 3) L	a mention	P signifie	e qu'au m	oins un po	oint a été (observé su	ır au moin	ns un des (riplicatas	après 15 i	ninutes
6) % rapporté sans tenir con	npte du sable, su	r les fibres noi	n-lavées. 7) B ₂	O ₃ : teneu	r maximale es	timée.									80 20		
Copie à :	Marc-Antoine	Loranger							Préparé	par :	Claudine	Roussea	Ē		ILER		
T 910 .	2015-10-13	~			570				Approu	vé par :	Chi	the	ch,	Con	a prahesne	M.Sc	chimiste
Ce rapport est pour l'usage exclusif du clie	nt et ne peut être reprodu	iit, sinon en entier, sa	ns la permission écrit	e du Laboratoire	: des chaussées. Les i	résultats ne se ra	pportent qu'à l'e	échantillon sou	unis à l'essai.	-				0	IFREC A		
			-												and the second se		

Transmission / Wavenumber (cm-1)

File # 1 : CI117-15.TRANSMITTANCE

Overlay Z-Zoom CURSOR

2015-09-28 10:05 Res=8

ANNEXE H

RAPPORT D'ANALYSE PAR SPECTROSCOPIE DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DU ¹³C EN PHASE SOLIDE

Université Laval, le 16 octobre 2015

1.032

Rapport d'analyse RMN solide du ¹³C de deux échantillons de résine

Remis à Madame Christine Duchesne Ministère des Transports du Québec Service des matériaux d'infrastructures Secteur liants hydrocarbonés et chimie

Problématique :

Identification de la résine polymère de deux échantillons en poudre par comparaison avec deux échantillons standards, un de type polyester et un de type polyvinyle (ceux-ci ayant été enregistrés dans un contrat précédent, rapport du 27 mai 2015.)

Échantillons numéro : Cl118-15 MC-15-008-6 Cl119-15 MC 15-008-7

Méthode utilisée :

Spectroscopie RMN ¹³C en phase solide

Détails expérimentaux :

Échantillon en poudre, tassé dans un rotor de 4 mm de diamètre. Les spectres 13C en CP-MAS ont été enregistrés sur un spectromètre Bruker Avance 400 à une fréquence de 100 MHz, avec 10000 scans, à une vitesse de rotation de l'échantillon de 12 kHz, un délai de recyclage de 4 secondes, et un temps de contact de 2 ms.

Résultats et discussion:

Les spectres des deux nouveaux échantillons sont présentés à la figure 1, de même que les spectres de références précédemment enregistrés. Le tableau 1, donne les positions et l'attribution des pics principaux des nouveaux échantillons et la comparaison avec les standards précédemment enregistrés.

Trois pics sont caractéristiques des polyvinyles : le pic vers 115-120 ppm et les deux petits pics vers 153 et 157 ppm, qui étaient faibles, mais présents dans le standard polyvinyle et absents du standard polyester, sont nettement présents. Les pics vers 170-176 ppm étaient aussi présents pour le standard polyester, mais on remarque qu'ils sont légèrement, mais systématiquement à plus haut déplacement chimique pour les polyvinyles. Ils pourraient donc provenir de groupements chimiques différents selon la résine, en accord avec l'attribution proposée.

Conclusion:

Les deux nouveaux échantillons inconnus sont, d'après les caractéristiques observées en spectroscopie RMN, de la classe des polyvinyles.

Pires D. Paria Cant

Josée Brisson, chimiste et Pierre Audet, chimiste Département de chimie, Université Laval 1045 avenue de la Médecine Québec, Québec G1V 0A6 Tél. : (418) 656-2131 poste 3536 Courriels : josee.brisson@chm.ulaval.ca, pierre.audet@chm.ulaval.ca Tableau 1 : Positions principales des pics observés pour les échantillons inconnus et attribution chimique

Position de pics des	Intensité relative	Attribution	Standard comprenant ce pic
inconnus (ppm)			
9 et 18	+	C aliphatique (CH, CH ₃ , CH ₂)	Les deux
40-49		CH2 en bêta d'un groupe ester	Les deux
	++	C en alpha de Cl, N ou F	
70	++	C-O de fonction éthers ou esters	Les deux
115-120	+	CF ₂	Standard polyvinyle
128-130	+++	C=C	Les deux
140-145	+	C=C	Les deux
153 et 157	+	C=C	Standard polyvinyle
170-176		Carbone de fonction ester ou acide	Les deux

Figure 1 : Spectres RMN ¹³C en phase solide des échantillons de résine. Les flèches bleues indiquent les pics caractéristiques des polyvinyles

ANNEXE I PHOTOGRAPHIES MEB

Barre courbe MC-15-008-6 (artefacts de polissage visibles)

Barre courbe MC-15-008-6

Porosité de la barre courbe MC-15-008-6

Interface composite-béton de la barre courbe MC-15-008-6

Interface composite-béton de la barre droite MC-15-008-7