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Résumé

Une base de données composeée des séries temporelles de longue durée des valeurs d’onde
de tempéte, des marées et des niveaux d'eau totaux est par la présente, livrée au ministére des
Transports du Quebec pour un ensemble de points d’intérét dans I'estuaire et le golfe du Saint-
Laurent. Les ondes de tempéte ont été produites d’une part par un champ réaliste de forcage
atmosphérique et aussi par quelques champs stochastiques climatiques. Le forcage réaliste est
fourni par MERRA, soit I’analyse atmosphérique rétrospective de 1’ére actuelle pour la recherche
et les applications produite par la NASA qui couvre la période de 1979 a 2011. Le forcage
stochastique climatique a été produit par le Centre canadien de la modélisation et de l'analyse
climatique sous la famille de solutions MRCC, Modele régional canadien du climat, et par le
modele pour la recherche interdisciplinaire sur le climat, version 4 (MIROC4h), qui couvre
différentes périodes depuis 1950 jusqu’a aussi loin que 2100. Cette base de données sera trés
utile pour des études statistiques pour évaluer les risques et les impacts liés aux impacts des
niveaux d'eau sur la région cotiére et les infrastructures de transport maritime. Les séries

temporelles sont disponibles au MTQ sur demande en s’adressant au chef du module hydraulique.

Ce rapport décrit également une nouvelle méthode, la technique de la fonction de Green
pour toutes sources (ASGF, All-Source Green Fonction), qui rend possible la simulation des
ondes de tempéte pour de longues périodes et avec des champs multiples de forcage. Un exemple
est également donné sur la fagon d'utiliser statistiquement les séries temporelles de niveau d'eau
avec la théorie des valeurs extrémes de Gumble pour permettre de valider les changements dans

les périodes de tempéte de retour des ondes de tempéte.
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Préface

Préoccupé par les impacts possibles des changements climatiques sur les infrastructures
portuaires et cotieres, le ministére des Transports du Québec (MTQ) a financé un projet de
recherche sur la modélisation des ondes de tempéte et des niveaux d'eau totaux sur un horizon
climatique pour un ensemble de points de leur intérét. Les livrables du projet sont les séries
temporelles d’ondes de tempétes, passées et futures, pour la période 1950 a 2100, ainsi que les
prédictions de marée pour la méme période. Ces séries sont d’intérét parce qu'elles fournissent
une base de données pour des études statistiques pour évaluer les impacts dus au changement

climatique.

Ce rapport décrit comment ces series temporelles de niveau d'eau sont produites. Nous
présentons & la suite du rapportune documentation en appui au rapport. Il s’agit de textes qui ont
été acceptés pour publication mais sujet a des revisions mineures. Les détails d'une nouvelle
méthode utilisée pour produire efficacement de longues séries temporelles d’onde de tempéte
sont présentés en 2.1 et en 2.2 par Z. Xu. La nouvelle méthode, appelée la technique de la
fonction de Green pour toutes sources (ASGF, All-Source Green Fonction), permet de produire
des séries longues d’un siecle. Une méthode statistique d’analyse des séries temporelles de
niveau d’eau est illustrée en 2.3 par Z. Xu, J.-P. Savard et D. Lefaivre. Il y a plusieurs facons
d'effectuer une analyse statistique des séries temporelles. Notre approche consiste a utiliser
I'analyse des valeurs extrémes de Gumbel (EVA) pour ces séries temporelles, pour identifier s’il
y a des changements dans les périodes de retour des ondes de tempéte pour le prochain siécle.
Cette documentation en appui au rapport permet aux lecteurs de ce rapport (et a leurs auteurs)

une maniéere commode de référer 1’un a ’autre.

Zhigang Xu Denis Lefaivre

Institut Maurice-Lamontagne Institut Maurice-Lamontagne
Péches et Océans Canada Péches et Océans Canada

et et

Institut des sciences de la mer Institut des sciences de la mer
Université du Québec & Rimouski Université du Québec a Rimouski

zhigang.xu@dfo-mpo.gc.ca denis.lefaivre@dfo-mpo.gc.ca
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1 Modélisation des ondes de tempéte dans I’estuaire et le golfe du Saint-
Laurent en reproduction historique et en fonction des changements
climatiques

Zhigang Xu et Denis Lefaivre

Péches et Océans Canada, Institut Maurice-Lamontagne.
et

Institut des Sciences de la mer
Université du Québec a Rimouski

Le 31 janvier 2015

1.1 Introduction

C’est le chapitre principal de ce rapport. Les autres chapitres sont auxiliaires a celui-Ci pour
décrire succinctement comment produire le calcul d’onde de tempéte pour des séries temporelles
sur de longues périodes a un ensemble de points d'intérét (POI). Dans la section 1.2, nous allons
d'abord décrire les champs atmosphériques utilisés pour calculer les ondes de tempéte. A la
section 1.3, nous décrirons ensuite comment produire les simulations d’ondes de tempéte avec
ces forcages sur une période d’un siécle, et comment produire les simulations de marées. A la
section 1.4, nous présenterons I’utilisation des références verticales et comment intégrer les
marées aux ondes de tempéte pour obtenir les niveaux d'eau totaux dans le référentiel vertical
voulu. Il'y a deux annexes a ce chapitre, qui donnent plus de détails sur certains aspects. La
position des POI identifiés par le MTQ est illustrée a la figure 1-1 et reprise dans le tableau 1-2
de I'annexe B du présent chapitre.

Ajouter les numéros de station selon la liste du Tableau 1.2
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Figure 1-1 Les points d'intérét (POI) identifiés par le MTQ. Les points verts indiquent ou des

observations sont disponibles et utilisées.

1.2 Le forcage atmosphérique

Nous utilisons les résultats d'un modele atmosphérique comme forgage pour entrainer notre
modele d'onde de tempéte. Plus précisément, nous utilisons la pression atmosphérique au niveau
de la mer et les composantes U et V du vent a 10 metres au-dessus du niveau moyen des mers
comme champ de forcage, (voir les équations 2-2 et 2-3 du chapitre 2). Le champ de forcage
peut étre classé comme réaliste ou stochastique, selon les résultats du modéle atmosphérique
utilisé. Par réaliste, nous voulons dire que nous reproduisons un état passé. Par stochastique,
nous entendons que le champ atmosphérique ne reproduit pas le passé mais conserve ses attributs
statistiques tels que la fréquence et I’intensité des tempétes sans qu’elles ne se produisent
précisément au méme moment que dans la réalité. Les résultats d'un modele atmosphérique en
réanalyse comme MERRA et GEM sont réalistes car ils assimilent les observations passées. Ils
peuvent en effet bien prévoir la météorologie pour les prochains jours. Les résultats d’un modele
climatique sont stochastiques. Une fois lancé, un modele climatique n’assimile pas
d’observations méme si sa période de calcul couvre le passé et ou des observations sont
disponibles. Les résultats de modeles stochastiques sont utiles parce qu’ils fournissent une base
pour des analyses statistiques des résultats. Plus grand est le nombre de modeles stochastiques
utilisés, plus robustes sont les analyses statistiques qui en découlent. C’est pourquoi un ensemble

de resultats de modeles climatiques multi-membres est souhaitable.



Pour notre champ de forgage réaliste, nous avons choisi les résultats du modele
atmospherique MERRA. L'acronyme MERRA représente Modern-Era Retrospective Analysis
for Research and Applications, soit I’analyse atmosphérique rétrospective de 1’¢re actuelle pour
la recherche et les applications. Cette analyse est produite sous la gouverne de la NASA et est
disponible au site web suivant : http://gmao.gsfc.nasa.gov/merra/. C’est un ensemble de données
de réaanalyse atmosphérique qui utilise le systéme d'assimilation de données globales de la
NASA et d’une variété de systémes d'observation autour du globe. 1l est destiné a fournir a la
communauté scientifique et publique un ensemble global de données a la pointe de la recherche.
Sa résolution temporelle est d'une heure avec une résolution spatiale est de 0,5 degrés. Son
domaine temporel couvre les années 1979 a nos jours. En raison des différentes étapes de
téléchargement de données et de leur traitement, nous utilisons les données jusqu'au 31 décembre

2011 pour ce projet.

Pour le forgage stochastique du climat, nous utilisons les résultats de quatre modéles
climatiques. lls sont présentés au tableau 1-1 La famille des modeles MRCC proviennent du
Modéle Régional Canadien du Climat. Ce sont des solutions régionales. Le domaine du MRCC

est présenté a la figure 1-2.

Nom Résolution spatiale et Résolution Source Réaliste ou
couverture temporelle et stochastique
période
0.50 deg. en latitude, 0.67 Horaire, du 25 juillet | NASA/JPL Réaliste
MERRA . N .
deg. en longitude, global 1971 a nos jours

Aux 3 heures, 1961- | EC* et OURANOS? | Stochastique

MRCC/AEV 45 km (~0.4 deg), régional 2100

Aux 3 heures, 1961- EC et OURANOS

MRCC/AHJ 45 km (~0.4 deg), régional 2100 Stochastique

MRCC/AJL 45 km (~0.4 deg), régional Horaire, 1961-2070 EC and OURANOS | Stochastique

MIROC4H 0.56 deg, global Aux 3 heures, 1950- | Japon

2035 Stochastique

Tableau 1-1 Caractéristiques des modeles atmosphériques utilisés comme forcage atmosphérique

pour le calcul des ondes de tempéte.

L EC: Environnement Canada
2 OURANOS: Consortium sur la climatologie régionale et I'adaptation aux changements climatiques


http://www.ec.gc.ca/
http://www.ouranos.ca/en/

MRCC Domain (in Red)

-200 -150

Lon

Figure 1-2 Le contour en rouge indique le domaine du modele climatique MRCC.

1.3 La modélisation des ondes de tempéte et des marées

1.3.1 Reproduction historique des ondes de tempéte

D'un modele global des ondes de tempéte, Xu (2014b) a écrit une relation linéaire simple et
précise mais trés efficace entre le forgage global en entrée et la réponse en niveau d'eau local, tel
qu’indiqué dans I'équation 3-14, reprise ici en Eqg. 1-1 par commodité,

n=Cs (1-1)
ou C est une matrice qui représente en données d’entrée le forgage atmosphérique global, s est
un vecteur de parameétres spécifiés inhérents a la physique du modele d'onde de tempéte, n
représente la réponse en série temporelle des niveaux d'eau a un POI. Cette relation linéaire
simple est issue d'un modéle numérique traditionnel beaucoup plus complexe tel que décrit par
I'équation (2-1), et est basée sur la technique de la fonction de Green pour toutes sources (ASGF,
All-Source Green Fonction) (Xu, 2007; Xu 2011) . Le résultat de I'équation (1-1) est identique a
la sortie de I'Eq. (2-1) aux POI a toutes fins pratiques, mais le premier est des millions de fois
plus efficace que le second. Il existe plusieurs facteurs qui contribuent a une telle amélioration de
I'efficacite, tel que décrit dans Xu 2014a et Xu 2014b. La principale raison est que I'équation (1-1)
calcule la réponse en un seul point alors que I’Eq. (2-1) calcule la réponse a tous les points de la
grille du modele, méme si le résultat n’est pas d’intérét pour nous. Les liens dynamiques entre les
POl et le reste de I'océan global ont été pré-calculés, et imbriqués dans la matrice C et le vecteur
s. Une telle augmentation d’efficacité rend possible la simulation d’ondes de tempéte sur un

siecle.



En introduisant un terme d'erreur pour tenir compte du bruit dans le calcul et des
imperfections du modéle d'onde de tempéte, Xu 2014b, Eq. (3-15), a repris 1’équation linéaire

précédente pour en faire un modéle de régression, Eq. (1-2),

n=Cs+e¢ (1-2)
dans lequel £ représente le terme d'erreur. Le vecteur s doit maintenant étre considéré comme un
vecteur contenant les paramétres de régression a étre déterminé par 1’ajustement optimal entre les
données et le modele. Ce modéle de régression linéaire nous fournit un outil pour effectuer des

simulations d'ondes de tempéte avec assimilation de données d’observation.

Xu (2014b) a donné un exemple ou les deux solutions ont été comparées soit sans
assimilation de données selon I’Eq. (1-1) et avec assimilation de données selon I’Eq. (1-2) & un

cas réel d’onde de tempéte survenue en décembre 2010. L'inadéquation entre les observations et
les résultats du modéle sans assimilation de données est 0.18 tel qu’évalué par le paramétre >

défini par I’Eq. ( 2-96). L'inadéquation entre les observations et les résultats du modele avec
assimilation de données n’est plus que de 0.05. Xu et al (2014) a démontré comment 1'équation
(1-2) a éte utilisée pour assimiler de longues séries de données autant en reproduction historique
qu’en prévision climatologique des ondes de tempéte & Sept-Iles dans le golfe du Saint-Laurent.
A la figure (4-5) est présentée la série temporelle de la reproduction historique 1979-2011 avec
assimilation de données et de la prévision climatologique de 1950 a 2100. Toutes les séries
temporelles des ondes de tempéte produites dans le cadre de ce projet pour les autres POl ont été

générées de la méme maniere.

L’équation Eq. (1-2) implique que des données d'observation sont nécessaires pour
contraindre le vecteur des parametres de régression e. Cependant, comme illustré a la figue (1-1),
il n’y a pas d’observations a tous les POL. Il n'y a pas d’observations aux points indiqués en
rouge. Pour résoudre ce probléme, nous avons eu recours a un modele d’onde de tempéte non
linéaire, dont les équations sont déecrites a I'annexe A du présent chapitre, pour produire des
résultats pour une année compleéte utilisés comme "données" tel que requis par le modeéle de
régression. Le domaine du modele non linéaire couvre I'ensemble du golfe du Saint-Laurent. Les
conditions frontiéres aux limites océaniques, soit au détroit de Cabot et au détroit de Belle-Tle ont
été calculees a lI'aide de la méthode ASGF. Nous avons utilisé le modéle non linéaire pour fournir



les «données» au modeéle linéaire, parce que généralement le premier est réputé donner de
meilleures solutions que le deuxiéme. Cependant, pour exécuter le premier cela demande
beaucoup plus de temps de calcul que d’exécuter le mode¢le linéaire. En conséquence, nous
utilisons les résultats des modeéles non-linéaire et linéaire ensemble pour produire des séries

temporelles de niveau d’eau en reproduction historique sur de longues périodes.

1.3.2 Simulation des ondes de tempéte en changement climatique

Avec l'assimilation des données, nous avons non seulement la reproduction historique des
ondes de tempéte, mais avons aussi obtenu le vecteur des paramétres de régression le plus
adéquat pour la modélisation avec le forcage atmosphérique futur. Celui-ci correspond aux les
quatre champs de forcages climatiques stochastiques énumérés dans le tableau 1-1. Les détails
sur la méthode d’utilisation de ces forgages avec le modele de régression de I’équation 1-2 pour
effectuer une prévision climatologique sont documentés au chapitre 4, ou le membre
MRCC/AHJ est utilisé a titre d'exemple pour démontrer comment la série temporelle des ondes
de tempéte peut étre générée de maniere tres efficace pour la période allant jusqu’a I’an 2100. Ce
chapitre traite é¢galement des biais systématiques dans les ondes de tempéte en raison d’un
forcage climatique trop fort et propose un moyen de corriger ces biais a I’aide de la méthode

d’analyse des valeurs extrémes (EVA).

1.3.3 Modélisation des marées

La modélisation des marées est basée sur l'analyse harmonique. Pour les stations ou il y a
des observations, nous appliquons I'analyse harmonique des données pour obtenir un ensemble
de constantes harmoniques de marée, puis nous les utilisons pour produire des séries temporelles
de marée pour la période de 1979 a 2011. Pour les POl ou il n'y a pas d'observation, nous
prenons une station qui est tout prés de la position désirée. S’il n’y en a pas, NOUS avons recours
aux résultats d’un modéle de marée non linéaire pour I'ensemble du golfe du Saint-Laurent
(Saucier et al 2000; 2003) pour obtenir une année compléte de données, puis nous utilisons
I’analyse harmonique sur cette série temporelle (tel qu’indiqué au Tableau 1-2). Le modéle est
entrainé par les marées aux frontiéres ouvertes des détroits de Cabot et de Belle-Isle, et par le
débit d'eau douce a Québec. Le niveau d'eau horaire a tous les points de la grille de 5 km pour
2006 a été utilisé.



14 Repere vertical et niveau d’eau total

Avec I’utilisation des séries temporelles des niveaux d'eau, il faut étre conscient qu’on doit
tenir compte de trois références verticales. Elles sont représentées a la Figure 1-3.

e CGVD28: Niveau moyen des mers dans le référentiel géodésique canadien de
référence altimétrique 1928, qui est la référence verticale adoptée par le gouvernement
du Canada pour les applications terrestres (topographiques)®.

e Le zéro des cartes, ZC: C’est le niveau le plus bas de la marée basse, défini comme la
moyenne sur 19 ans des plus faibles marées annuelles prédites, telles que présentées
dans les Tables de Marées du Service hydrographique du Canada. Il fournit une
référence verticale pour la profondeur indiquée sur les cartes marines et la hauteur des
marées *. Le zéro des cartes, ZC, peut étre défini en référence au systtme CGVD28.
Chaque station marégraphique a sa propre valeur du ZC, comme indiqué a la 7e
colonne du tableau 1-2 du présent chapitre. Il y a quelques stations ou les valeurs du
ZC sont en rouge, ce qui signifie que ces valeurs sont interpolées a partir des stations a
proximité.

e Niveau moyen des mers, Z0: C’est le niveau moyen de 1’eau de la prédiction de marée
sur la période d'observation disponible, référencé au zéro des cartes. Chaque station a

sa propre valeur de Z0, tel qu’affiché au Tableau 1-2.

Les valeurs d’ondes de tempéte sont fournies par rapport au niveau moyen des mers (z =0,
sur la figure 1-3). Les prédictions de marée sont données par rapport au zéro des cartes locales.
Le niveau d'eau total, soit la somme des ondes de tempéte et des marées est également donné par
rapport au zéro des cartes locales. Pour transférer les données de marées et les niveaux d'eau
totaux dans le référentiel du CGVD28, il faut simplement ajouter 1’écart avec le ZC indiqué a la
7° colonne du Tableau 1-2. Pour transférer les données des ondes de tempéte seules dans le

référentiel du CGVD28, il faut utiliser 1’équation suivante:
Neovpze =N+ Z0+CD (1-3)
OU M,q06 €St 1'onde de tempéte dans le réfeérentiel CGVD28, n est I'onde de tempéte au niveau

moyen des mers, Z0 et CD ont été définis plus haut.

® http://www.rncan.gc.ca/sciences-terre/geomatique/systemes-reference-geodesique/9053

* http://waterlevels.gc.ca/eng/info/verticaldatums


http://www.rncan.gc.ca/sciences-terre/geomatique/systemes-reference-geodesique/9053
http://waterlevels.gc.ca/eng/info/verticaldatums

Finalement, pour les stations ou la différence entre le CGVD28 et les niveaux de référence:
zero des cartes et ligne des hautes eaux, n’est pas connue, une interpolation linéaire entre les

stations voisines a été effectuée.

La station Baie-des-Moutons n’a pu étre référencée au CGVD28 faute de voisins immédiats.

Il n’y a donc pas de résultats pour cette station.

z=1] niveau des mers instantané
— )_\ -
T 7=0, niveau moyen 4 1 A /
A des mers A

Z0 -_

niveau moyen des mers
CGVD28
CcDh

Y Y éro des cartes

N d=hin A
profondeur profondeur totale

profondeur sur les
moyenne

cartes marines

W
A
!\A\

e

Figure 1-3. Représentation schématique des références verticales utilisées.

1.5 Livrables

Le tableau 1-2 donne la liste des 60 stations ou on peut suivre les liens vers les livrables. La
troisieme colonne du tableau contient les liens vers la série temporelle correspondante a la station
de la reproduction historique réaliste (marées, les ondes de tempéte et les niveaux d'eau totaux).
La derniére colonne contient les liens vers la série temporelle stochastique climatique. Certaines
stations ont été remplacés par la station la plus proche en raison d'absence d'observations, tel
qu’indiqué dans la derniére section du tableau. Dans 1’avant derniére colonne du tableau, le

«oui» en noir indique qu'il y a un an d’observations, le «oui» en rouge signifie qu'il y a une



courte série d’observations, et le "mo" en rouge indique que nous avons utilisé les résultats du
modele opérationnel de marée. Au tableau 1-2, les valeurs de ZC et de LHE en rouge indiquent

qu'elles ont interpolées a partir des stations a proximité.

Les ondes de tempéte climatologiques stochastiques ont été entrainées par trois forcages
climatiques, MRCC-AHJ, MRCC_AEYV et MIROCA4H. Les forcages du MRCC couvrent la
période 1961-2100 et le MIROC4H couvre la période 1950-2035. Les solutions réalistes
proviennent du forcage MERRA et couvrent la période 1979-2011.

En cliquant sur un des liens, votre navigateur Web ouvre un fichier texte. Pour éviter que le
méme enregistrement s’étende sur deux lignes de votre écran, vous pourriez avoir besoin
d'ajuster la taille de la police. Chaque fichier contient un en-téte suivi des données. L'en-téte
contient I’information sur la station et indique le contenu des colonnes du champ de données. Un

exemple d’en-téte est présenté ci-dessous.

Station Name: Sept-Iles; Station ID: 2780
Longitude and Latitude (deg.): -66.38, 50.18%
Start and End Times (UTC): 1979%-07-28 00:00:00, 2011-12-31 23:00:00
Number of Records: 284280
Missing Data Flag: NaN
Time System: UTC (GMT); Water Level Units: meters
Buthors: Zhigang Xu and Denis Lefaivre (ISMER/UQAR)
Email: zhigang.xu@dfo-mpo.gc.ca
denis.lefaivre@Rdfo-mpo.gc.ca

Data Column Heading Symbols:
¥ = year; M = month; D = day; H = hour
OTotal = Observed Total Water Lewvel (m, CD)
(m, CD): in meters and referenced to Chart Datum
Tide = Tides(m, CD)
Resid Residual Water Level (0OTotal-Tide) (m)
Nlin Surge Simulated by A Non-Linear Model
(where there is no cbservation)

DASurge = Data Assimilative Surges (m)
STotal = Simulated Total Water Level (Tide+DASurge, m, CD)

GO P P o P o o P o O o o o o o o o o oo o o de

%-——— Data S5tart from here ———

Y M D H 0Total Tide Resid Nlin DASurge STotal
187% 7 28 0 NaN 1.3003 NaN NaN 0.142%9 1.4432
1879 7 28 1 NaN 0.8655 NaN NaN 0.1245 0.5%40
1879 7 28 2 NaN 0.5864 NaN NaN 0.1133 0.6997
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1.7 Annexe A: Le systeme d’équations de Navier—Stokes qui gouvernent les ondes de
tempétes

Nous utilisons les équations suivantes pour modéliser les ondes de tempéte:

on _ _oud ovd
E = o oy (1-4)

ud g Q0 g o2 Ovud (1-5)
ot X ox oy

ovd

—_— —fud+7) -7 ————-—— 1-6
p (1-6)

ou

n perturbation de surface de la mer par rapport au niveau
moyen des mers.
la valeur moyenne sur la colonne d’eau des
composantes de vitesse dans les directions est et nord.
la profondeur totale de I'eau, ou h est la hauteur d'eau
d = h+n mesurée du fond marin au niveau moyen des mers. a-7)
Voir la figure 1-3.

(rf, TS) = (U, V) le coe_fficient d_e fri_ction au fonq, ou K est soit
’ quadrique ou linéaire, (voir la ligne suivante).

(gN2Ju? +v2  le coefficient de friction quadrique au fond, ou V" est
B VR la rugosité de Manning;
K = le coefficient de friction lineaire au fond, et |w| est une (1-9)
gN2|w| vitesse de courant minimale estimée, avec comme
s valeur de 0.1m/ s pour un courant de marée typique.

_ Py le forgage induit par la pression atmosphérique (connu
n, = . , N (1-10)
09 également sous le nom d'effet barométre inverse).

Stress du vent au niveau moyen des mers, ou (U, V)
s s | r— sont les composantes de la vitesse du vent dans les
womy) CNU+VIUNV) - irections est et nord, a 10 metres au-dessus du niveau (1-11)
moyen des mers, ou Cd est le coefficient de trainée
(voir Eq. 2-4).
g I'accélération terrestre.
_ . le paramétre de coriolis, ou € est la période de

f = 2Qsing rotation de la terre et ¢ la latitude.

la longueur de I'arc le long des cercles de latitude et de
longitude avec R = 6371 km pour le rayon moyen de la

R(Acosg, ¢) Terre (rayon volumétrique de la terre, Moritz 2000), et (1-13)
A lalongitude.

(uv)

(1-8)

(1-12)

(x.y)

t le temps.
Les unités du systéme international (SI) sont utilisées dans le systeme ci-dessus (avec la longueur en

metre, la masse en kilogramme et le temps en seconde).
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1.8 Annexe B: Liste des stations et des séries temporelles

. No Z0en | ZCen _ | Ondede

Sta;on Station Nom de la station (Iazt. L-ong. zC | covpzg | Observati tlc_empgte

SHC 9) (deg) (m) (m) ons c |m2t|qu

Rive-sud et Gaspésie
1 3250 Québec (Lauzon) 46.830 | -71.160 | 2.56 -1.96 yes yes
2 3100 Saint-Francois I.0. 47.000 | -70.810 | 2.87 -2.52 yes yes
3 3170 Saint-Jean-Port-Joli 47.220 | -70.270 | 2.97 -2.69 yes yes
4 3160 Pointe-aux-Orignaux 47.490 | -70.030 | 3.27 -3.01 yes yes
5 3130 Riviére-du-Loup 47850 | -69.570 | 2.60 -2.64 yes yes
6 3005 Trois-Pistoles 48.130 | -69.190 | 2.37 -2.39 yes yes
7 2985 Rimouski 48.480 | -68.510 2.25 -2.28 yes yes
8 2975 ILM.L. 48.640 | -68.170 | 2.11 -2.16 yes yes
9 2955 Matane 48.850 | -67.530 | 1.97 -1.97 yes yes
10 2945 Gros-Méchins 49.010 | -66.980 | 1.76 -1.78 yes yes
11 2935 Sainte-Anne-des-Monts | 49.130 | -66.490 | 1.65 -1.66 yes yes
12 2920 Mont-Louis 49.240 | -65.740 | 1.46 -1.42 yes yes
13 2350 Grande-Vallée 49.230 | -65.130 | 1.29 -1.22 yes yes
14 2330 Riviére-au-Renard 49.000 | -64.380 | 1.01 -0.99 yes yes
15 2320 Gaspé 48.833 | -64.483 | 0.96 -0.91 yes yes
16 2309 Mal-Bay 48.620 | -64.200 0.86 -0.76 yes yes
17 2295 Anse-a-Beaufils 48.472 | -64.308 | 0.62 -0.71 mo yes
18 2269 Chandler 48.342 | -64.657 | 0.69 -0.76 mo yes
19 2250 Port Daniel 48.180 | -64.960 0.86 -0.73 yes yes
20 2230 Havre-de-Beaubassin 48.038 | -65.481 1.05 -0.94 yes yes
21 2215 Pointe Howatson 48.140 | -65.840 1.16 -1.15 yes yes
22 2200 Carleton 48.100 | -66.130 | 1.15 -1.13 yes yes
23 2165 Dalhousie 48.067 | -66.383 1.59 -1.48 yes yes
Rive-nord et Haute-
Céte-Nord

24 3057 | Saint-Joseph-de-la-Rive | 47.450 | -70.370 | 3.36 -3.37 yes yes
25 3030 Saint-Siméon 47.840 | -69.870 | 2.88 -2.89 yes yes
26 3425 Tadoussac 48.140 | -69.710 | 231 -2.39 yes yes
27 2900 Les Escoumins 48.350 | -69.390 | 2.23 -2.27 yes yes
28 2880 Forestville 48.740 | -69.050 | 2.17 -2.15 yes yes
29 2860 Betsiamites 48.930 | -68.630 | 2.23 -2.00 mo yes
30 2840 Baie-Comeau 49.230 | -68.130 | 1.78 -1.81 yes yes
31 2826 Godbout 49.320 | -67.600 1.83 -1.76 yes yes
32 2815 Baie-Trinité 49.423 | -67.290 | 1.89 -1.67 mo yes
33 2790 Port-Cartier 50.030 | -66.790 | 1.51 -1.48 yes yes
34 2780 Sept-lles 50.190 | -66.380 | 1.56 -1.46 yes yes
35 NaN Riviére-Pigou 50.270 | -65.570 | 0.84 -1.29 mo yes
36 2750 Riviére-au-tonnerre 50.270 | -64.760 | 1.25 -1.11 yes yes

Basse-Cote-Nord



https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Lauzon_3250.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3250_Lauzon.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Saint-Francois_IO_3100.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3100_Saint-Francois_IO.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Saint-Jean-Port-Joli_3170.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3170_Saint-Jean-Port-Joli.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Pointe-aux-Orignaux_3160.txt
https://dl.dropboxusercontent.com/u/16568185/project_mtq/2014_deliverables/1950-2100/climate_eta_3160_Pointe-aux-Orignaux.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Rivi%C3%A8re-du-Loup_3130.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3130_Rivi%C3%A8re-du-Loup.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Trois-Pistoles_3005.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3005_Trois-Pistoles.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Rimouski_2985.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2985_Rimouski.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/IML_2975.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2975_IML.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Matane_2955.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2955_Matane.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Gros-M%C3%A9chins_2945.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2945_Gros-M%C3%A9chins.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Sainte-Anne-des-Monts_2935.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2935_Sainte-Anne-des-Monts.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Mont-Louis_2920.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2920_Mont-Louis.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Grande-Vall%C3%A9e_2350.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2350_Grande-Vall%C3%A9e.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Riviere-au-Renard_2330.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2330_Riviere-au-Renard.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Gasp%C3%A9_2320.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2320_Gasp%C3%A9.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Mal-Bay_2309.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2309_Mal-Bay.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Anse-%C3%A0-Beaufils_2295.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2295_Anse-%C3%A0-Beaufils.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Chandler_2269.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2269_Chandler.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Port_Daniel_2250.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2250_Port_Daniel.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Havre-de-Beaubassin_2230.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2230_Havre-de-Beaubassin.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Pointe_Howatson_2215.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2215_Pointe_Howatson.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Carleton_2200.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2200_Carleton.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Dalhousie_2165.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2165_Dalhousie.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Saint-Joseph-de-la-Rive_3057.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3057_Saint-Joseph-de-la-Rive.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Saint-Sim%C3%A9on_3030.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3030_Saint-Sim%C3%A9on.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Tadoussac_3425.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_3425_Tadoussac.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Les_Escoumins_2900.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2900_Les_Escoumins.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Forestville_2880.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2880_Forestville.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Betsiamites_2860.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2860_Betsiamites.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Baie-Comeau_2840.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2840_Baie-Comeau.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Godbout_2826.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2826_Godbout.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Baie-Trinit%C3%A9_2815.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2815_Baie-Trinit%C3%A9.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Port-Cartier_2790.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2790_Port-Cartier.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Sept-Iles_2780.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2780_Sept-Iles.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Rivi%C3%A8re-Pigou_NaN.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_NaN_Rivi%C3%A8re-Pigou.mat
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1979-2011/Rivi%C3%A8re-au-tonnerre_2750.txt
https://dl.dropboxusercontent.com/u/16568185/project_MTQ/2014_deliverables/1950-2100/climate_eta_2750_Rivi%C3%A8re-au-tonnerre.mat
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37 2470 Mingan 50.290 -64.020 1.13 -1.03 yes yes
38 2480 Havre St-Pierre 50.240 | -63.610 | 0.96 -0.87 yes yes
39 2490 Baie Johan-Beetz 50.280 -62.810 0.93 -0.91 yes yes
40 2510 Natashquan 50.190 | -61.840 | 0.84 -0.97 yes yes
41 2518 Kegashka 50.180 | -61.260 | 0.96 -1.00 yes yes
42 2530 Gethsémani 50.220 | -60.680 0.97 -1.03 yes yes
43 Etamamiou 50.270 | -59.970 | 1.21 -1.09 mo yes
44 2550 Harrington Harbour 50.500 | -59.480 | 1.03 -1.16 yes yes
45 2564 St-Augustin 51.170 | -58.530 1.06 -1.13 yes yes
46 2579 Riv. St-Paul 51.471 -57.702 1.32 -0.97 mo yes
47 2588 Blanc-Sablon 51.420 | -57.150 | 1.01 -1.01 yes yes
Anticosti
48 2360 Port Ménier 49810 | 64370 [ 1.02 [ -0.97 yes yes
lles-de-la-Madeleine
49 1970 Cap-aux-Meules 47.380 | -61.860 | 0.83 -0.77 yes yes
50 1964 Havre-Aubert 47.240 | -61.830 | 0.69 -0.62 yes yes
51 1985 Grande-Entrée 47556 | -61.559 | 0.63 -0.65 mo yes
52 1989 Pointe-aux-Loups 47530 | -61.710 | 0.40 -0.59 mo yes
53 1960 Millerand 47220 | -62.020 | 0.51 -0.51 mo yes

Stations Replaced by
the Nearby Ones

Remplacée par Grande Entrée,

54 Lisle de Iest 47620 | 61400 | g5y yes
) Remplacée par Havre-de-

55 Bonaventure 48.030 65.480 Beaubassin, St# 20 Yes

56 Newport 48.280 | -64.720 | Remplacée par Chandler, St#18 yes

57 Pointe St-Pierre 48.630 | -64.170 | Remplacée par Mal-Bay, St#16 yes
Remplacée par Anse-a-Beaufils,

58 Cap d'Espoir 48417 | 64333 | gy Yes
Remplacée par Baie-Trinité, St#

59 Islets Caribou 49.500 | -67.220 | 5, Yes

Ile Eskimo (Riv. St- remplacée Riv. St-Paul,
60 Paul) 51.420 | -58.300 St # 46 yes

Tableau 1-2 La liste des stations et des liens vers les livrables. La troisieme colonne du tableau contient
les liens vers la série temporelle correspondante a la station de la reproduction historique réaliste (marées,
les ondes de tempéte et les niveaux d'eau totaux). La derniére colonne contient les liens vers la série
temporelle stochastique climatique. Certaines stations ont été remplacées par la station la plus proche en
raison d'absence d'observations, tel qu’indiqué dans la derniére section du tableau. Dans I’avant derniére
colonne du tableau, le «yes» en noir indique qu'il y a un an d’observations, le «yes» en rouge signifie qu'il
y a une courte série d’observations, et le "mo" en rouge indique que nous avons utilisé les résultats du
modeéle opérationnel de marée. Les valeurs du ZC en rouge dans le tableau indiquent qu’elles ont été

interpolées d’une station voisine.
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2 Documentation en appui au rapport

Cette documentation comprend trois textes qui ont été acceptés pour publication dans deux
journaux scientifiques différents, avec révision en cours. Les références complétes seront
disponibles aupres des auteurs.
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2.1 The All-Source Green’s Function (ASGF) and its Applications to Storm Surge
Modelling. Part I: From the Governing Equations to the ASGF Convolution

Zhigang Xu

Maurice Lamontagne Institute
Fisheries and Oceans Canada, Mont-Joli, Quebec

and

Institut des Sciences de la Mer
Université du Québec a Rimouski

(This section is adapted from a manuscript submitted to Ocean Dynamics on 2014/Oct/30

and accepted on 2015/Jan/19 subjected to revisions.)

2.1.0 Abstract

A new method to model storm surges is proposed. Without compromising modelling
quality, the new method is thousands of times faster than the traditional method within the linear
dynamics frame. The new method is also free of artificial open water boundary conditions. What
supports this tremendous enhancement of modelling efficiency is the All-Source Green’s
Function (ASGF), which is the pre-calculated connection between a point of interest (POI) and
the rest of the world ocean. Once it is calculated, it can be repeatedly used to fast produce the
storm surge time series at the POI. With the ASGF, the storm surge modelling can be simplified
as a convolution of a matrix with an atmospheric forcing field. The simplification will facilitate
some other mathematical operations to further enhance the computational efficiency and to

finally lead to a scheme for data assimilation.

Mathematical derivations from the depth averaged linear shallow water equations to the

ASGF convolution and physical interpretation of the ASGF are presented in the paper along with
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the algorithms and Matlab functions. Also presented are the results of testing the new method

with a real storm surge event.

Keywords: ASGF, Convolution, Storm Surge

2.1.1 Introduction

This paper presents a new method for modelling storm surges within the linear and depth
averaged shallow water dynamics system. The method is called the ASGF method. The acronym
ASGF stands for the All-Source Green’s Function, implying that all the model grid points can be
the source points, in contrast to the traditional Green’s function where only one or a few grid
points are specified as the source points. The ASGF was first proposed by Xu (2007) to
instantaneously predict tsunami arrivals at a point of interest (POI) from an arbitrary tsunami
source in terms of both arrival times and wave amplitudes (also see Xu 2011). The ASGF can be
used as a very efficient tool to model storm surges and tides as well, but its application to storm

surge modelling will be focused on in this paper.

As it will be seen in the next section, the ASGF can be numerically derived from a storm
surge model. All the numerical features that the storm surge model has will be passed on to the
ASGF. The solution obtained via the ASGF method at a POl will be practically the same® to the
solution obtained for the same point by running the surge model traditionally. However, as the
realistic case in Section 2.1.5 shows, the ASGF method can compute 1555 times faster. This is
because it cuts down computations for the solutions at millions of grid points which are not of
interest. It targets its computations just at one or a few points where we need to know the
solutions. The traditional modelling method has to map out the solutions at all the grid points no
matter if they are needed or not. With such an enormous computational speed enhancement,
some very long term simulations become feasible. For example, it is desirable to

hydrodynamically convert some of the existing century long climate model solutions to storm

® Precisely speaking, within the length of the convolution kernel, the solutions by the traditional method
and by the ASGF method are identical. After the length of the convolution kernel, the differences of the
solutions by the two methods are negligible because of the frictions, if the length of the kernel is chosen

appropriately. For the study reported here, the length of the convolution kernel is 72 hours.
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surge time series for risk assessment due to climate change. It may not be possible to perform
such a long term simulation with a traditional modelling approach, whereas using the ASGF

method it can be achieved in a few minutes.

Besides its fast speed feature, another feature of the ASGF method is that it accounts for
the influences of global forcing and global ocean geometry, and there are no more artificial open
water boundary issues. This is because the ASGF can be prepared with the global ocean.
Theoretically speaking, something that happens in any parts of the world’s oceans will
eventually affect the solution at a POI, significantly or insignificantly. This point will be better
seen in Section 2.1.4. Putting aside the significance issue of the global influences, just for the
sake of getting rid of the artificial open water boundaries, it is better off to include the entire
world ocean as the domain to calculate the ASGF. It does not take long to calculate an ASGF
with global coverage. As reported in Section 2.1.4, to pre-calculate a 72 hour long ASGF with
the world ocean discretized in 5 minutes longitudes and latitudes, it only takes about 40 minutes
in the author’s laptop®. Once it is pre-calculated, it can be repeatedly used for any events.

The ASGF, like any other types of Green’s functions, works only when the dynamics
system in question is linear. However, the linear dynamics often provides the first order
approximations, especially for storm surges, tides and tsunamis in deep water. Besides, when it
comes to data assimilation, the missing nonlinearity effects may be quite much compensated by
the best fit between the observations and the linear model parameters. This will be indeed the
case for Sept-lles, a test POI for this study, which will be reported in Part 1l of this study. For a
place where nonlinear effect is expected to be strong, one may set up a local non-linear model
but setting its open water boundaries at places where the non-linearity may expected to be weak.
In this case, the ASGF method can be used to provide the nonlinear model with open water
boundary conditions, in terms of the barotropic components, by supplying the time series of sea
surface elevations and water mass transports along the open water boundaries. This topic will be

explored in a future paper.

® Dell Precision M6600, with a processor of Intel Core i7-2960XM CPU 2.70GHz and solid state drive of

OCZ Vertex3 SSD 2.57480GB.
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2.1.2 Linear and Depth Average Shallow Water Equations in Matrix Form

The following depth averaged linear shallow water equations, written in matrix form, are

chosen to model storm surges,

0 0 0cosg |
OX  CcOoS¢ oy 0 0 0
0 7 0 K 7 0 e
—lu|=-|gh— — —f ~lgh— 1 0 2-1
ot J ox h - d OX £ (2-1)
\" \' T
nl ¢ K s o0 1]’
Loy h | oy |

where tis the time variable, x and y are the arc lengths along circles of latitude and longitude
related with the longitude 4, latitude ¢ and the Earth’s mean radius R (taken as 6371 km) by

X =RAcos¢ andy = R¢; 2:L, and i=i; n, uand v are the sea surface
X Rcosg oA oy Rog

elevation, and the mass fluxes in longitudinal and latitudinal directions; f and g are the Coriolis
parameter, gravity acceleration; and h and « are the water depth and bottom frictional

coefficient. Note that the partial operator in the matrix affects all the factors that come to its

s¢

dco co
cos¢ dy

with v should be understood as w. To avoid the

s¢poy
polar singularity, a rotated spherical coordinate system is used, the pole of which is rotated to
(40W, 80N), a point on Greenland.

right, e.g., the multiplication of

The second term on the RHS of eq. (2-1) contains the forces due to the atmospheric

pressures and the wind stresses. The air pressures at the mean sea level, p,, enter into the

momentum equation as the inverse barometer 7,

Pa
Ma=——% 22
L9 (2:2)

where p is the sea water density, taken as 1025kg / m*. The wind stresses z, and T, are

obtained by converting the wind velocity components, U,, and V,,, at the 10 m above the sea

level with
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(7 Ty) = %Cd ’\/(uloz + V102) (Uyg, Vo) (2-3)

where p, refers to the air density, taken as 1.25kg /m*, and C, is the drag coefficient C,

specified by
¢, Jrex10° (BTG <7ms) (24)
2.8x1073, (otherwise)

The formula for the drag coefficient was modified from Csanady (1982). The second line of the
above equation is the modification by trial and error in fitting our model solutions to an observed

storm surge.

At the sea bottom, a linear frictional stress, «(u,v)/h, is used, by following Heaps

(1969). However, Heaps used a constant x =0.0024m/ s, whereas here a spatially varying « is
adopted by following Ding et al. (2004) and Tan (1992) such that it is inversely proportional to
cubic root of water depth. This results in x ranging from 4.5 X 10™*m/s to 4.6 X 10~3m/s in the
world ocean. This is an attempt to reflect a general fact that there is less bottom friction in deep

water than in shallow water. For more details, see Xu (2011).

The world ocean is taken as the model domain and the GEBCOO08 (General Bathymetric
Chart of the Ocean, http://www.gebco.net) is used for the bathymetry of the model. An
advantage of using the global ocean as the model domain is that the model is free of artificial
open water boundaries; all the lateral boundary conditions are zero normal flow conditions to the
true coasts, i.e.,

u=0, at the west and east coasts, (2-5)

v=0, at the south and north coasts. (2-6)

Eqg. (2-1) contains differential operators in space and in time. Xu (2011) gave details on
how to replace the continuous differential operators with discretized difference operators, by
using the central difference in space and the Sielecki’s (1968) explicit-implicit scheme in time.
For this study, the same central difference scheme in space is still used, but time wise the
Leendertse’s (1967) alternative directional implicit (ADI) scheme is adopted instead. An
advantage of using the ADI scheme is that its time step is not restricted by the CFL condition
anymore. Appendix A gives the ADI scheme in matrices.


http://www.gebco.net/
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Whatever a valid difference scheme we prefer, we can always end up with the following

canonical form:

(k+1) (k) (k)

1,
= Alu| +B|1, (k=0,12,--) (2-7)
\Y \/ T

y

where k is 0-based time stepping index, the bold letters are the discretized versions of their
continuous counterparts in Eq. (2-1). The matrix A updates the state vector [qu v]" from the

current time step to the next. The initial value of the state vector can be assumed as zero for
storm surge problem. The matrix B maps the atmospheric forcing into momentum to change the

state vector. Introducing x to denote the state vector and f to denote the forcing vector

B[, 7. 7,1,
x=[n u V]T, fEB[na T, ry]T (2-8)

we can present eq. (2-7) in a compact form,

k) — Ay (k) _,_f(k), k=0,12,--9) (2-9)

where the superscripts with parentheses refer to time steps.

2.1.3 Storm Surge Solution and the All-Source Green’s Function (ASGF)
The solution to Eq. (2-9) can be expressed in terms of initial conditions and the external
forces as

k . .
X(k+1) _ Ak+1X(O) + ZAlf(k*I) , (k =0,12,-- ) ( 2-10)

i=0

where the superscripts without parenthesis refers to powers of the matrix. At first glance, the
solution may appear impractical, since it requires powers of the matrix A , whereas powers of a
large size matrix are too expensive to compute. This would be indeed the case if we had to know
solutions at all the grid points. However in reality, we need not to know solutions at every grid
points. We only need to know solutions at a few POIs. In this case, we will only need to
calculate a few rows of the matrix powers, instead of the entire matrix powers. Without loss of

generality, let us assume that we have only one POI, say at the nth grid point, where the solution
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is wanted. In other words, only the nth component of the solution vector x is interested. In this
case, as we can see from Eq. ( 2-10), all is needed is the nth row of each of the powers of A .

Introducing a new notation

r=A'(n:). (2-11)
to represent the nth row of the ith power of A, we can then write

k .
n(k+1) — rk+lX(o) + Zrif(k—l)’ (k =0,12,---, kmax) ) (2-12)
i=0
where 7 =x(n) to explicitly indicate that the nth component of the solution vector is a sea
surface elevation, which is interested in this paper (but the velocities at a POI can be interested

too). The row vector r; can be calculated iteratively,

ri+1 = r|A1 (i:O,l,Z,"',imaX) 1 ( 2‘13)
. 0, | for all the grid points except for the nth
o) = ) e P (2-14)
0 1, j=n.

As we can see, each iteration involves a multiplication of a row vector times a matrix, which can

be performed very economically.

In the above, for simple presentation it is assumed that the matrix A is available. Xu (2011)
gives an expression for A in terms of the global difference operators with the Sielecki’s (1968)
explicit-implicit scheme. However when the numerical scheme that discretizes the governing
equations is more complicated, the matrix A may only be expressed as a product of several
factor matrices. This is the case with the ADI scheme adopted by this study. In this case, we can

still calculate the row vector r; but in a slightly different way. Appendix A shows how we can

still have the same canonical form can be derived with the ADI scheme. Appendix B shows how

to calculate the row vector r, defined above when the matrix A comes only in its factorization.

Collecting all the row vectors, r,, (i=0,1,2,---,i_..), into two matrices,

G =Ir, ;rz;"';nmax;rimaxﬂ]- (2-15)
G, =[r nir - 1 (2-16)

Then Eq. (2-12) can be written concisely as
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n=Gx? +G_=f (2-17)

where is n=[7® 7 n® ... p%=DT" "3 column vector containing the solution time series at a
POI. The second term is a convolution, defined as

Kk
(G *H)* P =G (+L)f*", (k=012Kyp) (2-18)

i=0

where the notation ‘*’ stands for a convolution operation. Eq. ( 2-17) shows that the solution is
contributed by the two parts. The first term on the RHS is a contribution by the initial condition
and the second term is a contribution by the external forcing. The forcing vector f changes with
time. A convolution is needed because different instances of f produce different responses and

these responses have to be added in the right order of time.

The contents of G, and G_ are mostly the same. The same set of row vectors r,

(1=12,3,--+,1,, ) appear in both G, and G, but with their position shifted by 1; only r, and

max

I, ., appear in one of the matrices. G; is appropriate for a free wave problem like tsunamis,

whereas G, is good for a forced wave problem like storm surges. Both of them can be used as

the definition of the all-source Green’s function (ASGF). In the following text, when there is no
ambiguity, their subscripts may be dropped off. The ASGF is an internal property of the dynamic
system. It can be pre-calculated. Once it is calculated, it can be repeatedly used for any events

such as tsunamis or storm surges.

A tsunami problem is an initial value problem, since there is no external forcing after the

onset of a tsunami. Thus for a pure initial value problem like tsunamis, we have

n=Gx?. (2-19)

A single matrix times a column vector can be performed in no time. This means that we can
instantaneously produce a tsunami arrival time series at a destination point. This of course also
needs a reliable initial condition x® (the so-called source function in tsunami literature). Xu and
Song (2013) demonstrated the potential for fast tsunami predictions by combing the ASGF
method and the GPS-derived source function (based on the ground movement of the coastal

GPS-stations detected by the satellites) with the 2011 Tohoku tsunami as an illustrating case.
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For a storm surge problem, the forcing field f will not be a zero field. It will vary with time
and occupies the whole domain. After the forcing spins up the ocean, the convolution term will
be a dominant term whereas the effect of the initial condition will be negligible due to friction.
Therefore, for a forced wave problem like a storm surge, we can drop off the initial condition

term and simply write

n=G,*f. (2-20)

The i, inEq.(2-13) andthe k., in Eq. ( 2-12) are both time stepping indices and all are

associated with the same At inherited from the storm surge model of Eq. ( 2-9). However they

do not have to be the same. Usually i, is much less than k. The k. xAt is the duration of

max

the simulation, say a few months or a few years. The i xAt represents a time beyond which
the row vector r, for i>i_, becomes negligibly small due to frictional effect. For example,

Figure 2-3 shows how a component of r decays to almost to zero after a day. As we will see in

Part Il of this study (Xu, 2014), even with all the components of r taken into account, it is
sufficient to set i, such that i, xAt=72hours. In short, the index i ., is the length of
convolution kernel, whereas the index k., is the length of simulation. The value of At is set

internally by the storm surge model for stability or accuracy of the solution. It is usually on an
order of seconds or minutes. However we may not wish to output the solution at such a fine time
step. We can choose a much larger time step, say an hour, to output the solutions. An hourly time
series of the output is very common in storm surge modelling. The difference between the two
types of time steps, the surge model internal time step and solution output time step, can be taken

as advantage to greatly reduce the size of G; see Appendix C for details.

Recall from the second part of Eq. ( 2-8), the forcing vector f is defined as
f=B[n, 7 7,]. (2-21)

The column vector on the RHS is interpolated from an atmospheric model grid, i.e.,

[n. . t,] =L, % %] (2-22)
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where the variables with tildes are defined on an atmospheric model grid, and L is the
interpolation matrix. Usually the spatial resolution of an atmospheric model is much coarser than
a surge model. This means that the column vector on the RHS will be much shorter than the one
on the LHS of Eq. ( 2-22) and the interpolation matrix L will be tall and thin. For the realistic
test case shown in Section 2.1.5, the length of the column vector on the LHS of Eq. ( 2-22) is
32,377,503 and the length of column vector on the RHS is 408,622. Thus it is very worthwhile
to substitute Eqgs. ( 2-21) and ( 2-22) into ( 2-20) to greatly reduce the number of columns of the

convolution matrix. The substitution results in

n=G, *f (2-23)

with
G, =G,BL, (2-24)
f=[n.%1%]. (2-25)

Now G, is anew convolution matrix, whose number of columns are much less than that of G,
For the example case just mentioned, the number of its columns of G, is 408,622, a reduction
by 31,968,881 from that of G_ . This is a huge reduction. Thus Eq. ( 2-23) should be actually

used for a real storm surge simulation. See Appendix C for how this idea is implemented in
Matlab.

2.1.4 Interpretations of the ASGF

The matrix G (either G, or G_) can be interpreted with physical meanings, which may

shed light on what is going on behind the mathematics. Figure 2-1 should remind us of a
concept often seen in text books: the dependence intervals for 1-dimensional wave solution. It
tells how the wave solution at a point of interest, x, depends only on the conditions within the

interval of [x —ct,x+ct] where c is the wave speed, which is constant in this simple case. The
dependence interval grows with the time at the same rate as the wave speed c.
Wave solutions at a point on the real ocean surface have a domain of dependence too.

However, this seems to have received little attention in practice, perhaps owing to the fact that it

is hard to visualize this domain from solutions obtained with a conventional modelling approach.
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Now with the matrix G, we can not only see the domain of dependence but also know weights
of the dependence. Each row of G contains the domains of dependences at a particular time.
Figure 2-2 shows the domains of dependence of the wave solutions at Sept-lles at 4 different
times. Panel (a) shows the domain of dependence at t=6 hours: the solution at Sept-Iles depends
only on the conditions within the colorful region. The condition outside of the region has no
effects on the solutions yet; they take longer time to affect the solutions. Panels a, b, c and d
together illustrate how the domain of dependence grows with time at the same rate as the wave
speeds. The wave speeds in a real ocean are spatially varying, largely controlled by the local
water depths. As shown in panel (d), the domain of dependence has covered the entire world
ocean in 48 hours. This means that anything that happens in the world ocean can all affect the
wave solution at Sept-lles within 2 days, significantly or insignificantly. The colour spectrum
indicates the weights of the dependences, which can be positive or negative. A negative weight
means a positive impulse will cause a negative response, and vice-versa. We may refer domains
and weights of dependence collectively as a field of dependence. Values of the weights are
largely affected by the resolution of the model grid. The finer the grid spacing is, the smaller the
weights will be. The weights shown in the figure are for a model grid spacing of 5 minutes in
longitude and latitude. The field of dependence may also be termed as the connections between
the POI and the rest of the world ocean, which may sound more intuitive to a broad audience.

(t, )

t, %)

- - + +
X; ct2 x-ct, X x+ct, X ct2

Figure 2-1 One-dimensional wave solution at a point x depends on the initial condition only within the

interval [x-ct, x+ct]. The interval of dependence grows at the same rate as the wave speed c.
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Figure 2-2. Domains of dependence of wave solutions at Sept-lles of Estuary of Gulf of St. Lawrence at
t=6, 12, 24 and 48 (47.75 precisely) hours as shown by panels a, b, ¢, and d. The color spectrum indicates
weights of the dependence. Note that the longitudes and latitudes shown above are not natural ones. They
are rotated longitudes and latitudes used by the model. The pole of the natural spherical coordinates is

rotated out of water to a place at Greenland (40W, 80N) to avoid the polar singularity in the water.

The columns of G contain Green’s functions. Each column is a response time series to an
impulse placed at a grid point. There are as many such Green’s functions as there are number of
grid points. Hence the name of “all-source Green’s function”: all the model grid points are
allowed to be the source points. Figure 2-3 illustrates one of the Green’s functions, the response
to an air pressure impulse placed at Sept-lles.
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Thus, G contains a complete set of information on the linear dynamics system. Its rows contain
the information how the POI is connected to the rest of the world (i.e., the fields of dependence);
its columns contain all the Green’s functions to the delta-forcings at the grid points. The matrix
G, or to say the ASGF, is an internal property of the linear dynamics system. It is independent of
external forcing. It can be calculated before events. Once it is pre-calculated, it can be repeatedly
used to fast produce responses to tsunami or storm surge events. It can be also used to model
tides (which will be the topic of another paper). All the time consuming computations (such as
due to the small time steps) have been absorbed at the stage of calculation for G . To calculate a
G matrix of 72 hour long and covering the world ocean with a grid spacing of 5 minute, it only

takes about 40 minutes on the author’s laptop.

Green's function to the Local Air Pressure Impulse at Sept-lles

T T T T T T T

0.6

04

0.2

=
=
?

1 1 1 1 1 1 1

0 10 20 30 40 50 60 70
hours

Figure 2-3 Each column of G is a Green’s function to an impulse placed at a grid
point. There are as many such Green’s functions as the model grid points. Shown
here is one of the Green’s functions, corresponding to an air pressure impulse placed

at Sept-lles.
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2.1.5 Test with a Real Storm Surge Event

Through the ASGF, a storm surge model has been reduced to a convolution as expressed
by Eq. (2-20). Itis time to test it with a real event. Between December 6 and 7, 2010, there was
a big storm moving over the Estuary of Gulf of St. Lawrence. Shown in panel (a) of Figure 2-4
IS a snapshot of air pressures at the mean sea level, based on the MERRA data (see below). The
storm in the air caused a big surge in the water, which in turn damaged coastal high ways and
many residential properties. Shown in panels (b) and (c) are examples of the damages. For the
test, the tidal gauge at Sept-lles, operated by Canadian hydrographic Service (CHS), is chosen as
the POI. Panel (b) of Figure 2-4 shows its location. The ASGF matrix G for this POI has been
calculated and illustrated in Figure 2-2.

For the test, the MERRA data is chosen to supply the atmospheric forcing. The acronym
MERRA stands for Modern-Era Retrospective Analysis for Research and Applications. It is
produced by NASA and available in http://gmao.gsfc.nasa.gov/merra/. It is a re-analyzed dataset,
utilizing the NASA global data assimilation system and a variety of global observing systems. It
is meant to provide the science and applications communities with state-of-the-art global dataset.
Its temporal resolution is hourly and spatial resolution is 0.50 degrees in latitude and 0.67
degrees in longitude. It covers the period from 1979 to present. It is adopted for this study
because its solutions are highly realistic, has hourly temporal resolution (which is high), and
covers the whole globe. At any hour, the MERRA data gives a forcing vector of 408,622

elements consisting of the points of air pressures and wind stresses in the global ocean.

The Matlab function conv_FG in Appendix D implements Eq. ( 2-20) in Matlab. It
requires the forcing vectors at different instants arranged into forcing matrix F (see Eq. ( 2-52)
in the appendix). With both G and F prepared, we can simply plug them into this function to
quickly produce the simulations. The simulation period is extended beyond the days of the event
to include the whole month of December of 2010. The MERRA data of the whole month plus 72
hours proceeding December 1, 2010 are pulled out to form a series of forcing vectors. To extend
the forcing field backwards to include the last 72 hours from November is a way to deal with the
unknown initial condition. After the computation, the first 72 hours of the time series will be
discarded. This way, the unknown initial condition is actually pushed backwards three days
before December 1 to let them to have a sufficient time to decay.


http://gmao.gsfc.nasa.gov/merra/

30

Shown in Figure 2-10 is a comparison between the observation and the simulation. As we
can see, the observed surge that peaked at zero hours on December 7 is well captured by the

simulation. The overall agreement between the observations and the simulations for the whole

month also looks good. The »* as defined below quantitatively measures the overall misfits

> sum of squares of misfits

= : 2-26
sum of sqaures of observations ( )

The smaller this ratio is, the better the agreement. The value of the »* for the non-data

assimilative simulation is 0.18. In other words, 82% of the observed variance is accounted for by
the simulation. The effects of global forcing and global ocean geometry have all been accounted

in the time series.
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Figure 2-4 Panel (a) is a snapshot of the air pressure at the mean sea level. The storm caused a big
surge in the water, which damaged the coastal highway and residential properties as shown in Panels b
and c. Sept-lles is chosen as a point of interest to simulate the storm surge; its location is shown in
panel (d). Note that the longitudes and latitudes shown in panel (a) are not the same as those on panel

(d). The former are based on the rotated spherical coordinates used by the model.

To produce the whole month of the time series shown in Figure 2-10, it only takes 45
seconds, of which 33 seconds were used to retrieve the forcing data from the disk. It takes only
12 seconds for the function conv_FG to finish the convolution calculation. In contrast, to
produce the same time series with the conventional modelling approach (i.e., by running the
model as Eq. ( 2-9)), it will take 19.45 hours. The ASGF method is 1555 times faster! Part 11 of
this study (Xu, 2014b) will show that when the G matrix is further applied with the singular
value decomposition (SVD) and the forcing field is compressed accordingly, this simulation can
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go even much faster, at a speed of 0.5 seconds of computer time for a 10-year hourly simulation.
Such an extremely fast simulation speed will make it possible to run some very long simulations.
There exist some climate model solutions for next hundred years. With the new method we can
easily convert these century long climate model solutions to the time series of storm surges at set
of POIs. Using this new approach, Xu et al (2014) computed storm surge time series for Sept-lles

with a climate forcing field spanning years from 1961 to 2100.
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Figure 2-5 Comparisons of the simulations (in red) of storm surges against the observations (in
black) at Sept-lles for the month of December 2010. The value of »* shown in the title

measures how much the overall misfit is between the observations and the simulations. There

are 744 hourly data points in each time series.
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2.1.6 Summary and Discussions

Starting from the depth averaged linear shallow water equations, this paper first works out
algorithms to calculate the ASGF for two situations: one situation is where the dynamics matrix
A is available as a single matrix, resulting from using a simple discretizing numerical scheme
such as Sielecki’s (1968) explicit-implicit scheme; another situation is where the dynamic matrix
A only can be presented as a product of several factor matrices, and it is not feasible to multiply
out the product. The second situation arises from using more advanced discretizing scheme such
as ADI. Appendix A and B present the ADI scheme in matrix and the corresponding ASGF
algorithm. Appendix C presents two Matlab functions on how to calculate the ASGF matrices

for a free wave problem, G, and for a forced wave problem, G_. The latter needs to be

calculated differently from the former so that the relatively slow variation of the atmospheric

forcing field can be taken as an advantage to reduce the size of G..

The ASGF is then interpreted the in two ways: the rows of the ASGF matrix contain the
information how the POI is connected with the rest of the world ocean at different times (more
precisely, the field of dependence); the columns of the matrix contain all the Green’s functions
corresponding to the impulse forces at all the grid points. The ASGF method is then tested with a
real storm surge case. The simulation it produces accounts for 82% of the observed variance,
without resorting to data assimilation technique. This means that all the pieces associated with
the ASGF method have been put together correctly and the new method works as it should. To
produce the same simulation time series shown in Figure 2-10, the new method works 1555

times faster than the traditional method.

Eq. (2-7) is a canonical form shared essentially by all linear storm surge models, although
they may not be written in matrix form. Different models differ only in the content of A. To run
a traditional storm surge model is essentially the same as to iteratively solve Eq. (2-7). Two
features are common to all traditional storm surge models: they all have to map out solutions at
every grid points even though only solutions at few grid points are interested; they all have to
bear small time steps, for the sake of stability or accuracy, even though hourly output is common
in storm surge simulations. These two features imply intensive computations. Consequently, it is

rare to see a global storm surge model. Most seen are regional models. A regional model may
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imply a less computational load; however it trades for another challenge, which is the artificial

open water boundary condition issue.

The ASGF method proposed in this paper goes a level above the traditional modelling
approach. Instead of using Eq. (2-7) to run for individual events, the algorithm of Egs. (2-13) and
(2-14), which is derived from Eq. (2-7), are used to run for the all-source Green’s functions
(ASGF). The ASGF only needs to be calculated once and for all. Once it is calculated, it can be
repeatedly used for any events. Each time a convolution of the ASGF matrix with a forcing field
will give a fast response to an event. As far as the linear dynamics is valid, the ASGF method has
all the merits of traditional storm surge modelling, but can make the modelling thousands of
times faster. It also accounts for the influences of global forcing fields and of the global ocean
geometry. It gets rid of the open water boundary condition issue completely, since it can

affordably embrace the whole world ocean as its domain.

In the terminology of system and control theory, the ASGF is a system of multiple inputs
and single output (MISO). The multiple inputs are a global forcing field, f, defined on model

grid points, the single-output is a response time series, i, ataPOIl. The ASGF, which comes as

a numerical matrix G, is the kernel of the MISO system. With the same G but a different type
of forcing f, the system becomes a different model: when f is an atmospheric forcing field, the
system is a storm surge model; when f is an astronomic forcing field, the system is a tide model;
when f is tectonic (via a so-called tsunami source function) the system is a tsunami model. The
system has been tested with a real tsunami case and a real storm surge case. Its testing with tidal

observations will be reported in the near future.
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Figure 2-6. An MISO system with the ASGF as its kernel. A global forcing field can be atmospheric,

astronomic or tectonic, defined on the entire or any part of the domain. A convolution of the ASGF

matrix G with the forcing field can quickly yield the response.

The ASGF simplifies the expression of a storm surge model. It expresses sea surface
elevations at a POI as a convolution of a matrix with a forcing field. This simplification opens a
door to many other mathematical operations, such as singular value decompositions (SVD), fast
Fourier transform (FFT) and liner regression analysis. These operations will make the storm
surge modelling even faster and data assimilative. These points will be considered in a
companion paper (Part 11, Xu 2014).
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2.1.8 Appendix A: The ADI scheme in Matrices

The alternative directional implicit scheme (ADI) to model long waves in the ocean was
first developed by Leendertse’s (1967). This appendix is to present the ADI scheme in matrices
and to show that the form of Eq. ( 2-9) still holds.

It is always possible to turn Eq. (2-1) first into a semi-discretized form as

X exs Df (2-27)
dt
where x is the same as defined by Eq. ( 2-8), the matrices C and D holds spatial difference

operators, and

f=[n, 7 7,]. (2-28)

To say it a semi-discretized form because only the space is discretized but the time still remains
continuous. It is easy to calculate C since it is only a matter of assembling the spatial difference
operators. Also C is highly sparse, hence it is feasible to store them in the computer RAM even
for a fairly large size of the system, such as the one used for this study, which has 32,224,425
grid points, resulted from 5-minute discretizing of the global ocean, and its sparsity is on the

orders of 107"

Various numerical schemes arise from different ways to discretize the time derivative and
from how to evaluate the state vector x on the RHS of Eq. ( 2-27). The way that the ADI does is

this: it first splits the matrix C into two parts
C=C,+C, (2-29)

where C, only involves the x-directional spatial difference operators and C, only involves the y-

directional spatial difference operators. Then in discretizing the time it splits the time step into
two halves such that

(k+12)

(k) n
= e pf”, (2-30)
(k+1) _  (k+1/2) A(k+

X X - CXX(kHJz) +ny(k+l) i Df(k 1/2). (2_31)

At/ 2
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where s=At/2. In the first half time step, the implicit scheme is applied to the x-direction only,
and in the second half time step, the implicit scheme is applied to the y-direction only. This way,
a solution in each half step only requires a tri-diagonal matrix algorithm, which is not costly. It

is reasonable to assume that the external forcing does not change from the first half step to the

second half, i.e., we can assume f**? =f® Then from Egs. ( 2-30) and ( 2-33) we can have

(|—%cx)x<k+“2> = (|+§cy)x<k>+%of‘”, (2-32)
(|—%cy)x<k+1> = (I+%Cx)x‘k+”2)+%Df(k). (2-33)

Factorize (I -sC,) and (I-sC,) as follows

P,(1-5:C) =LY, (2-34)
At
Pb(l—?Cy):LbUb (2-35)
where L, and L, are lower triangle matrices, U, and U, are upper triangle matrices, and P, and

P, are permutation matrices. ® This decomposition is known as o the lu-decomposition (lower

and upper triangle decomposition). Noticing that permutation matrices are orthogonal matrices,
we have
(1- %cx)-1 —U, L, P, (2-36)

(I —%Cy)‘l =U,"L,'P, (2-37)

The inverses of L and U are easy to carry out, since they are triangle matrices. To have this lu-

decomposition done beforehand will help to speed up the model running.
Egs. (2-32) and ( 2-33) can then be solved as

At

X(k+1/2) - UaflLaflRaX(k) + 2 UaflLa—lpan(k)’ (2_38)

& The factor matrices can be obtained by the Matlab command lu. For example, [La, Ua, Pa]=lu(l-sCx);.
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n = UL TR X +%UblLb1PbDf(k) . (2-39)
where
At
R, =P,(1+5°C)) (2-40)
R, =P,(1+5C) (2-41)

Merging the two half step solutions shown by ( 2-38) and ( 2-39) into one step solution

X0 = U, L, (R,U, L, "R x® + At P,U, L, 'P,Df ) (2-42)
Let
A=U,"L,"R,U,L,"R, (2-43)
£ = AtU, 'L, *P,U, L, "P,DF (2-44)

we finally arrive at

x® ) _ Ax®) 4§00 (2-45)

which recovers the canonical form of Eg. ( 2-9). The ADI scheme is a two-step discretizing
scheme. The above derivation should serve as an example on how to arrive at the canonical form

if another type of discretizing scheme is used.

The matrix A in the above is given in its 6 factor matrices. We should not try to multiply
out the product of these factor matrices when the system is of large size for two reasons: firstly
it would take too long to carry out the multiplications and secondly the product matrix A would
be too full to store in computer RAM. When it comes to multiplication with a column vector,
such as, Ax™ , we can perform the multiplications of the factor matrices with the column vector
successively from the right to the left, i.e., U, (L, (R, (U, (L, (R, x™))))), each of the

multiplications results in only a column vector.

The ADI scheme has two advantages: it is stable without restriction of the CFL condition

and it conserves the total mechanical energy of the system. Leendertse (1967) and Wesseling
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(2009) showed that the ADI method imposes no necessary stability condition for the time step
for the linear systems similarly to Eq. ( 2-45), based on the Fourier stability analysis (von
Newman stability analysis). Although the Fourier stability analysis does not tell a sufficient time
step condition either to guarantee the stability, a test run of model Eq. ( 2-45) for 10 days shows
that the model is stable with At =600 seconds and a 5-minute gridded global ocean as the model
domain with realistic bathymetry. In contrast, using the Sielecki’s (1968) explicit-implicit
scheme, the time step would be necessarily bounded with the CFL condition, which is 5 seconds
for the same global model domain. Another advantage of the ADI scheme is its conservation of
the total mechanical energy of the system. The total mechanical energy, which is the sum of the
potential and kinetic energies domain wise, should be conserved in a frictionless environment.
However, this physical law may be violated to various degrees by different numerical schemes.
An unstable scheme will result in unbounded growth of the total energy. While a stable scheme
has to necessarily keep the total energy upper bounded, it may cause the total energy to fluctuate
around its initial value or to decay. That the total energy decays with the time, known as
numerical dissipation, is not good either. A good numerical scheme should keep the fluctuation
of total energy as little as possible. Shown in Figure 2-7 is a comparison of the total energy
conservations by two schemes for an initial value problem, where an initial distribution sea
surface is suddenly released in frictionless sea water body (Figure 2-8). The top panel of Figure
2-7 shows how the ADI scheme keeps the total mechanical energy almost constant as shown by
the flat blue line. The panel also shows how the potential energy in green and the kinetic energy
in red vary with time but their sum, the total energy show in blue, stay constant visibly. The
middle panel shows the energy time series by Sielecki’s scheme. The total energy does not
appear as flat as the one in the top panel since it has noticeable fluctuations. The bottom panel
contrasts the total energy variations by the two schemes in zoom view. The total energy by the
ADI scheme stays visibly flat whereas the one by Sielecki’s scheme appears to have a relatively
large fluctuation. In fact, both schemes causes the total energies to fluctuate, but the fluctuation
amplitude is 0.01% of the initial total energy with the ADI scheme, and 2.90% with Sielecki’s
scheme. For the linear dynamic system in question, actually there is a numerical scheme, known
as Crank-Nicolson scheme, and can be proved to conserve the total energy perfectly (see Durran,
1999, page 158). However Crank-Nicolson is too expensive to use. The involved matrix

inversion will not be as easy as inversions of the lower and upper triangle matrices involved in
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the ADI method. The ADI scheme balances the computational accuracy and efficiency nicely,
and it is therefore adopted for this study.
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Figure 2-7 Comparison of conversation of the total energy by the ADI and Sielecki’s schemes in
an initial value problem. The top and middle panels show the variations of the potential and
kinetic energies and the total energies with time for the ADI and Sielecki’s schemes respectively.
The bottom panel contrasts the fluctuations of the total energies by the schemes in a zoomed view.

The ADI scheme conserves the total energy much better than the Sielecki’s scheme.
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Figure 2-8 A relaxation experiment: top panel is the initial sea level distribution and the bottom

panel is the distribution at time step of 2000 with At =5sec.

2.1.9 Appendix B: Algorithm to Compute the ASGF with the ADI scheme

The algorithm shown by Egs. ( 2-13) and ( 2-14) needs to be adapted for the ADI scheme.
The ADI scheme results in the matrix A composed of 6 factor matrices, as shown by Eq. (2-43).
As commented above, we should not multiply out the product of the factor matrices. Also due to
presence of inverses of the factor matrices, a left row vector multiplies with a right matrix
becomes not possible. We need to do a matrix transpose first. Transpose both sides of Egs. ( 2-13)

and ( 2-14), we can have

Cj+1 = RaT(La_T(Ua_T(RbT(Lb_T(Ub_TCj)))))’ (jzo’l’z’“"jmax) ( 2'46)
. 0, ifor all the grid points except for the nth
c,(i) = {1 i Hep P (2-47)

where Eq. (Eq. 2-43) has been substituted in,
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cC = ' (2-48)

and L, T, for example, is short for (L,")™. Once all the ¢, (j=0,1,2,- ) are calculated,

Y jmax

we can transpose them to make the row vectors r;,, (i=0,1,2,---,i . ) and stack them to make the

max

ASGF matrices, G, and G, as shown by Eqgs. ( 2-15) and ( 2-16).

2.1.10 Appendix C: Matlab Functions to Calculate the ASGF matrices of G, and G,

This appendix gives two Matlab functions to calculate the G, and G_ matrices defined by
Egs. (2-15) and ( 2-16). The function ASGF ini in Table 2-1 calculates G, , whereas the
function ASGF _conv in Table 2-2 calculates G, . These two functions assume that the
dynamics matrix A has been made explicitly available. If the dynamics matrix A is given as a

product of several factor matrices, some of which may involve inversions, the codes need to be

modified according to the algorithm given in Appendix B.

The coding for ASGF ini follows the algorithm shown by Egs. ( 2-13), ( 2-14) and
(2-15). However not all the row vectors r are recorded into the matrix G . A decimating factor
d is used to record only a subset of the row rectors. As explained in paragraph after Eq.( 2-20),
the At associated with the index i is set internally by the model of Eq. ( 2-9). It is a small value.
Let us assume it is 5 seconds. For an initial value like tsunami problem, it may be sufficient to
resolve the solutions in one minute. From 5 seconds to 1 minute, there is a factor 12 to decimate
the row vectors before they are recorded into G. Line 19 assumes this decimation. Other lines of

the function should be self-evident.

The code for ASGF_conv is mostly the same as that for ASGF_ini. However there is
an important difference. In ASGF_conv, what is recorded into the matrix G is not the row
vectors themselves, but the sums of their subsets. The sums are needed because the atmospheric
forcing vectors are usually given by a much larger time step than the time step required by the

surge model. To give a simple example, let k., =5 in Eq. ( 2-12) and drop off the initial

condition term, we have
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k
7Y =3 0D (k=0,1,2,34,5). (2-49)
i=0

Expand it so that we can see it more concretely,

7®7 T, £©
77(2) rl ro f (€]
77(3) r, nrn f@
@ |~ ® (2-50)
n r,rn nn f
77(5) B, n nn £
_77(6)_ s R n r| _f(s)_

where the omitted elements in the upper triangle of the matrix are all zero. Assume that the
forcing vector varies with every three time steps, i.e., f@ =f® =f® and f® =f® =f®  Also
assume that we wish only to retain the solutions at every three steps too, then the above equation

can be reduced to

@7 ry+r+r 0 fO
77(6) =l ® | (2-51)
n R+r,+r r+n+r | f
As we can see, because the forcing vector varies with every three time steps, we can have

reduced a 6 x6 matrixto a 2x2 matrix. The elements in the lower triangle of the reduced

matrix are sums of every three row vectors, i.e., r,+r,+r, and r,+r,+r,. Thatis how the

sums of the row vectors come into play. In this simple example, the decimating factor d is 3. For
a realistic case, let us assume At required by the surge model is 5 seconds whereas the
atmospheric forcing vectors are given by hourly. From 5 seconds to 3600 seconds, there is a big
factor of 720 to lump over the row vectors and to reduce the size of the matrix G. In the function,

the vector g holds the accumulation of the r vectors. The g is periodically (every d steps)

recorded into the matrix G and then renewed to the current value of the r vector before it starts a
new round of accumulation. The recording and the renewal is done in Line 29 and the
accumulation is done in line 31. The last two optional inputs to the function are B and L which

are introduced in Eqgs. (2-7) and ( 2-22) respectively. If they are inputted, the vector g will be
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multiplied by BL before it is recorded into G. This way, the columns of G can be reduced if
L is atall and thin matrix.
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function G = ASGF ini (A, n, imax, d)
To calculate the ASGF matrix for the initial value problem.

o

o

Inputs: A, the dynamic matrix; it should be a square matrix.
n, the nth grid point (POI, point of interest).
imax, the max iteration number.
d, an integer decimating factor (>=1) to record the
row-vectors of the powers of A into G.

o° o oe

O ~J o U WDN -
o

o

9 %
10 % Output: G, the ASGF matrix for the POI.
11 %
12
13 N=size (A,2); r=zeros(1l,N); r(n)=1l; M=ceil (imax/d);
14 G=zeros (M,N) ; % pre-allocate memory for G
15
16 m=0;
17 for i=1:imax+1
18 r=r*A;
19 if mod (i, d)==0
20 m=m+1; G(m, :)=r;
21 end
22 end
23 G=G(l:m,:);
24 end % end of the function

Table 2-1. A Matlab function, ASGF_ini, to calculate the ASGF matrix G, for the initial value problem.
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function G = ASGF conv(A, n, imax, d, B, L)
To calculate the ASGF matrix for the forced problem.

o\

o\

1

2

3

4 % Inputs: A, the dynamic matrix; it should be a square

5 % matrix.

6 % n, the nth grid point (POI, point of interest).

7 % imax, the max iteration number.

8 % d, an integer decimating factor (>=1) to record the
9 % row-vectors of the powers of A into G.
10 % B, optional input, for mapping the external force
11 % into the momentum to change the state vector of
12 % the system.
13 % L, optional input, which interpret the forcing
14 % field as given to the grid used by the dynamic
15 % system.
16 % Output: G, the ASGF matrix for the POI.

17
18 N=size (A,2); r=zeros(l,N); r(n)=1; g=r; M=ceil (imax/d);
19

20 if nargin==5, BL=B; N=size (BL,2); end

21 if nargin==6, BL=B*L; N=size(BL,2); end

oe

22 G=zeros (M, N) ; % pre-allocate memory for G
23

24 m=0;

25 for i=1:imax+1

26 r=r*A;

27 if mod(i,d)==0

28 if nargin>=5, g=g*BL; end
29 m=m+1l; G(m,:)=g; g=r;

30 else

31 g=g+r;

32 end

33 end

34 G=G(l:m, :);

35 end % end of the function

Table 2-2 A Matlab function, ASGF_conv, to calculate the ASGF matrix G, for the forced problem.




48

2.1.11 Appendix D: Convolution of Matrices, conv_F

In this paper, the rows of the matrix G are arranged with the time-indices, and its columns
are arranged with the space-indices. Let us introduce another matrix, F, with the same row and

column arrangement, to hold the forcing vectors at different times
F:[f(o) £O 0 k) ]T (2-52)

Thus, the time-varying information of the forcing field is contained in the columns and the
space-varying information is contained in the rows. To let F and G shear the same row and
column arrangement allows us to extend the commutative property of convolution from vector
operands to matrix operands. This is to say the following relation holds when both F and G are

matrices,

G*F=F*G. (2-53)

In many text books, this property is proved for the two scalar operands. It actually holds when
the two operands are vector functions of time. A vector function of time becomes a matrix when
it is discretized in time. The proof of this property for the matrix case is not difficult and nor

lengthy, so let it be included here for convenience in reference.

With F introduced by Eq. ( 2-52), the convolution definition given by Eq. (2-18) Error!
Reference source not found. can be re-expressed as

(G *F) ziG(i+1,:)FT(:,k—i+1), (k=012,--k ). (2-54)

i=0

The above can be further transformed as

k
(G*P)* = > G(k-m+1:)F (;m+1) let m=k —i (2-55)
m=0
k exchange the positions
= D F(Mm+1)GT(k-m+1) of G and F" with (2-56)
m=0 their transposes

according to the
= (F+xG)*™ definition by Eq. (2-  (2-57)
54).



49

forany k=0,1,2,---,k.... Thus, Eq. (2-53) is proved. One may also view Eq.( 2-54) and Eq.

(2-56) as the equivalent definitions of convolution. Note the result of the convolution as defined
above is a vector when all when all the k’s are taken.

With the matrix F as introduced above, Eq. (2-20) can be re-expressed as

n=Gx*F. (2-58)
where the subscript ‘¢’ of G has been dropped off. To give this formula a concrete look, let us
assume, without loss of generality, that there are only two rows in G and three rows inF, i.e.,
G=[r;r]and F= [f(o’ fo f(z)]T. For this simple case, according to the definition given in Eq.

(2-55), we can write Eq. (2-58) as

m Iy 0 0
r. r 0
T M E e+ O F G+ FTRI) (2-59)
1 0 r I
n, 0 0 r,

where 7,, n,, n,and n,are four scalars of the convolution values at four times
(t= At, 2At, 3At, 4At, with At being an hour, for example). The first term on the RHS

represents a train of waves set into motion by the first instantaneous forcing vector, F'(;,1). The
second term is another train of waves set into motion by the second instantaneous forcing vector,
F'(:,2), and similarly is the third term. Once set into motion, these trains of waves become free

waves since their associated instantaneous forces no longer exist. The total response is the sum

of these free trains of waves.

Because this simple example assumes that there are only three successive forces and the
wave set up by each force only lasts two time steps, the length of the total response is four time
steps, as shown by the number of the elements of column vector on the LHS of Eq. ( 2-59).

Generally speaking, the length of the response vector of convolution is given by the formula
Ly=Ls+L—1 (2-60)

where L, stands for the length of the response vector, L, stands for the length of the
convolution kernel (in terms of the number of rows of G), L. stands for the length of the forcing
(in terms of the time steps of the forcing field).
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Eq. (2-59) can be also written as

m F(@1,:) 0

m|_ F2:) |+ [F@) | +

o TEe) ™ TIrey (2:61)
P 0 F(3.)

which is an instance of the commutative property of convolution given in Eq. (2-53). Although
Eq. (2-59) and Eq. ( 2-61) produce the same results, they differ in that the former has three terms
where the latter has two terms. If we use a for-loop to perform matrix-vector multiplication in
each term the for-loop will be shorter with Eq. ( 2-61) than with Eq. ( 2-59). In Matlab, the
shorter a for-loop is, the better the computational efficiency will be. For this simple example, the
lengths of the for-loop differ only by 1 trivially. However, in a real application, the difference
can be very big! For the real application in this paper, the number of rows in G is 72 and the
number of forcing vectors is 744 (hourly forcing vectors, for the whole months of December,

24 x31=744). The length of the for-loop with Eq. ( 2-59) is 774, whereas the length with Eq.
(2-61) is 72. Their difference is 702. If the number of the hourly forcing vectors covers a year,

the difference in the length of the for-loop will be 8688, which is very big!

A Matlab function, conv_FG, is given in Table 2-3. It implements the convolution
defined by Eq. ( 2-56). Matlab has a built-in function, called conv. However it cannot be
applied to matrices. The function conv_FG takes in two matrices, G and F, and yields a
response vector ¢. The function will verify if G is shorter than F . If this is not case, it will swap
G and F before proceeding for the calculation (lines 15 to 18). Line 20 specifies the length of
the response vector according to Eq. ( 2-60). Line 21pre-allocates the computer memory to the
response vectorc. Line 22 gives an index vector i, which is used in the for-loop to synchronize
the waves produced by each instance of the external forcing “kicks”. The for-loop given in lines
24 to 27 performs the actual calculation of the convolution. Line 25 transposes the mth row of G
to be used in the next line. Eq. ( 2-56) suggests that G should be transposed before a column of
G' is used. However, we do not have to transpose the entire matrix. We can transpose one row
per time step. This is perhaps a more efficient approach when G is big, since the computer then
does not need to create an internal copy of G' . Line 26 computes the multiplication of matrix F

with the column vector g, and adds the results to the right places in ¢ as the loop progresses.
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function c=conv_FG(G,F)

Convolution of two matrices, G and F.

The length of G, in terms of the number of its rows,

is assumed shorter than the length of F. If this is not case,
G and F will be swapped first. The output c is a column vector
whose length is equal to the sum of the lengths of G and F
minus 1.

o 0° o° o oP°

o

size G=size(G); size F=size(F);

if size G(2)~=size F(2)
error('G and F must have the same columns!')
end

if size F(l)<size G(1)
tmp=F; F=G; G=tmp; % to ensure F is longer.
size F=size(F); size G=size (G);

end

o\°

p=size F(1l)+size G(1)-1;
c=zeros(p,1);
i=0:size F(1)-1;

length of the convolution vector
pre-allocate memory

o\°

for m=l:size G(1)

g=G(m,:)."; % transpose of G(m, :)
c(mti)=c(m+i)+F*g; % multiplication and addition
end
end % end of the function

Table 2-3 Matlab function conv_FG
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2.2 The All-Source Green’s Function (ASGF) and its Applications to Storm Surge
Modelling. Part I1: From the ASGF Convolution to Forcing Data Compression and a
Regression Model

Zhigang Xu
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and
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Université du Québec a Rimouski

(This section is adapted from a manuscript submitted to Ocean Dynamics on 2014/Oct/30

and accepted on 2015/Jan/19 subjected to revisions.)

2.2.0 Abstract

In Part I of this study, a traditional storm surge model boils down to a simple convolution
of an ASGF matrix with an atmospheric forcing field. This paper further develops the ASGF
convolution with the singular value decompositions (SVD) and fast Fourier transform and its
inverse (fft/ifft). A very simple and efficient regression model is achieved at the end, which not
only can make the storm surge simulations data assimilative, but also can make the simulations

millions of times faster than the traditional modelling approach.
Keywords: ASGF Convolution, SVD, FFT/IFFT, Linear Regression, Storm Surges

2.2.1 Introduction

In Part I, Xu (2014) proposed a new method to model storm surges. The new method uses
the all-source Green’s function (ASGF). The ASGF comes as a matrix and can be pre-calculated
from a storm surge model. Each column of the ASGF matrix is a Green’s function corresponding

to an impulse force at a grid point and there are as many such columns as the total number of
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model grid points. A traditional complicated storm surge model then boils down to a simple

convolution,

n=G*f (2-62)

where G is the ASGF matrix and f is the atmospheric forcing field (cf. Eq. 2-20). With this
ASGF convolution we can perform storm surge simulations for a point of interest (POI)
thousands of times faster than with the traditional modelling approach. The fast speed does not
compromise the quality of simulation. Rather, it should be better given that the ASGF
convolution accounts for the influences and is free of artificial open water boundary effects.
Most traditional storm surge models are regional and hence their solutions have to bear
influences of artificial open water boundary conditions to various degrees. Part | showed a
realistic test case where a whole month of hourly time series of n was simulated. It only took 45
seconds to finish the simulation, of which 33 seconds were used to retrieve the atmospheric
forcing data from the disk; the ASGF convolution itself consumed only 12 seconds. The

simulation accounted for 82% of the variance of the observation without any data assimilations.

The simplicity of the ASGF convolution opens a door to many other mathematical
operations. This paper further develops the ASGF convolution with the singular value
decompositions (SVD) and fast Fourier transform and its inverse (fft/ifft). As we will see, we can
end up with a simple and very efficient regression model, which can make the storm surge
simulations not only data assimilative, but also millions times faster than the traditional

modelling approach.

2.2.2 Singular Value Decomposition (SVD) and Forcing Data Compression

The matrix G is short and wide for a realistic case. Its number of rows equals the number

of time steps we want to record the row vectors r, (cf. Egs. 2-13 and 2-14). Its number of
columns equals to the number of grid points where the atmospheric forcing vector is defined. For

the realistic test case presented in Part I, G has 72 rows and 408,622 columns, which is indeed

very short and wide.

The short and wide characteristic of G implies that there is a huge null space that can be

squeezed out, for the sake of computational efficiency and for data assimilations as well. The
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singular value decomposition (SVD) is good for finding such a null space. Let us apply SVD to
G
VT
G _ U |: S 0 :| 72x408622 (2-63)

T
72x408622  72x72 | 72x72  72x408550 V2
408550x408622

where U and [V V,] are unitary matrices (i.e., U'U=UU" =1 and
VV,IIV V1=V VLIV VL] =1, whereeach | isan identity matrix with its appropriate

dimensions understood), S is a diagonal matrix with non-negative real numbers on the diagonal,

known as the singular values of G. Besides Sin the middle is a zero matrix, which makes V,

contribute null to G. The null space of G is found. It is spanned by the columns of V, .

The singular values of G are arranged in a descending order. They regulate the

importance of the input modes, since the compressed forcing vector V'f is multiplied by S as
by Eq. (2-66). Shown in Figure 2-9 are singular values of G for Sept-lles, a POI for the realistic
test case chosen in Part I. Those values larger than 1 (there are 39 of them) will amplify the
effects of the corresponding forcing components, whereas those less than 1 (there are 33 of them)
will reduce the effects. The figure also annotates a ratio of the last singular value versus the first
singular value, which is 0.0019 and means that significance of mode 72 is less than 0.2% as that
of mode 1. In retrospect, this may justify the cut off at 72 hours in pre-calculation of the matrix
G.
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Singular Values of the G-matrix for Sept-lles
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Figure 2-9 Singular values of the ASGF matrix, G, at Sept-lles.

Because V, contributes null to G, it can be squeezed out from the SVD decomposition. In

general, when G has dimensions of mxn we can always decompose it as

G = U S VT (2'64)

mxn mxm mxm mxn

with m <n (which is not required by the SVD itself, however is appropriate in this study). With

the above SVD decomposition, Eq. (2-62) can be written as

n=(USV")xf (2-65)

The following relation can be proved,

(USVT) #f = (US)*(V'f) =U*(SV'f). (2-66)
In fact, following the convolution definition as of Eq. (2-18), we can prove the above relations
by parentheses:
k .
[(USVT) #f]*D = D UUG+1)sVTyEED (2-67)

i=0
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= ZK:(U(i +1)S) (VT ) =[(US) *(VTH*™  (2-68)

i=0

- iU(i +L)(SVITED) =[(U(SVTH“ (2-69)

i=0
where k =0,1,2,--- . Thus the relationship is proved.

Define

y=V'f

mxl ~ Mxn nxl

(2-70)

The y is a compressed forcing vector. Its dimension is mx1. Take the above mentioned

matrix G with dimensions of 72 x408622 as example. This G matrix implies that forcing
vector f has 408,622 elements. Now the compression can make it a much shorter one, with 72
elements only. The compression rate is 5675 times. This is a huge data compression and results
in three benefits:

Firstly, the compression facilitates to store the forcing data. For example, the global
MERRA atmospheric data from 1979 to 2013 occupies a 400 GB disk space. The compression
reduces the size of this dataset to 72 MB per POI. If we have 1000 POls, which is perhaps a quite
large number practically, the total disk space to store the compressed forcing data is 70 GB.
Nowadays, one can easily store a 70 GB dataset in a portable computer.

Secondly, the compression makes the retrieval of the forcing data from the disk files much
faster. The disk data retrieval is often a bottle neck controlling the simulation speed. It was
reported in Part I, to retrieve a month of hourly MERRA forcing data, it took 33 seconds whereas
to compute the ASGF convolution itself only takes 12 seconds. Now with the compressed
forcing, the time used for the disk data retrieval is 0.022 seconds and the time used to compute
the ASGF convolution is 0.004 seconds. The speed of data retrieval is enhanced by more than
1500 times. The data retrieval enhancement will become even better when longer periods of data
are retrieved. Of course, to compress the forcing data itself takes time. However, what really
takes time for the compression is to retrieve the original forcing data from the disk. Once the
forcing vector f is loaded into the computer RAM, it can be used for the compressions for all the

POls. Different POls have different V matrices, but they all share the same f for compression.
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The forcing data compression only needs to be performed once, but can benefit all the

subsequent computations.

Thirdly, the compression makes the convolution much faster. With the compressed forcing

vector, Eq. ( 2-65) can be simplified as
n=(US)*y = Ux(Sy). (2-71)

The simplification means there are much less numbers to compute with. From 12 seconds to
0.004 seconds as mentioned above, the speed of the convolution computation is increased 3000

times.

Accounting for the time taken for the disk data retrievals and for the convolution
computations together, it takes 45 seconds using Eg. (2-65) and 0.026 seconds using Eq. (2-71),
the enhancement of the simulation speed is more than 1700 times. Recall from Part | that the 45
seconds with Eq. (2-62) was already 1,500 times faster than the traditional modelling approach;
the total speed-up due to the combination of the ASGF and SVD is 1555x1700times. This
speed-up of millions of times makes long term simulations very easy. Table 2-4 shows that a

10 year long simulation of hourly storm surges can be finished in about 0.5 seconds.

t=(datenum(2000,1,1):1/24:datenum(2009,12,31,23,59,59)).";
tic

psi=POI.get forcing svd(t, 1, true);

z=conv_FG(US,psi);

toc

Elapsed time is 0.492306 seconds.

Table 2-4 The SVD compression of forcing data results in a very fast simulation of storm surges. The
time elapsed in the simulation of a 10 year hourly storm surges at a POl is recorded. It takes only 0.49

seconds to finish the simulation.

2.2.3 From the ASGF Convolution to a Regression Model
Appendix A proves the following relation is true.
U*(SW):[Ul*Wl Uy, - Upxy; - Um*“%JS (2-72)

Substituting this relation into Eq. (2-71), we have

n=[U xy, U,*y, - U *y_]s. (2-73)
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Introducing a new matrix C
C=[U,*y, U,*y, - U *y, ] (2-74)

we can express Eq. (2-73) as
n=Cs (2-75)

Appendix A also discusses how to use the fast Fourier transfer (FFT) and its inverse (IFFT) to
evaluate the C matrix quickly. The appendix also provides a Matlab function, conv FFT, for

the evaluation. To evaluate the C matrix with 10 years of hourly forcing field, it only takes 1

second.

By admitting an error term, £, which may consist of errors from the observations, the

forcing data, and the model itself, we can cast the above equation to a regression model
n=Cs+eg (2-76)

where s should now be viewed as a vector of regression parameters. For the real case example,
the G matrix has dimensions of 72 x408622, which means there are 72 parameters ins. They
initially come from the surge model through the SVD of G . Now they can be relaxed from the
given values for best fit to the observations. If there are at least 72 observation points, denoted

as m,, the least square fitting parameters, S, are given by
§=(C'C)'C'n, (2-77)

and the least square fitted solution, 1, is given by

n=C8 (2-78)
(e.g., Strang, 1986; Strang 2007; Seber and Lee 2003).

Part | of this study showed a simulation of storm surges at Sept-lles for the whole month of
December 2010. The simulation was performed without data assimilation. The »? -value, which

measures the misfits between the simulations and the observations (see Eq. 2-26 for its
definition), is 0.18. Now let us see if the regression model Eq. ( 2-76) can further reduce the

misfits. Shown in the top panel of Figure 2-10 is the simulation without data assimilation,
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which is copied from Figure 5 from Part | for an easy comparison. Shown on the bottom panel of
Figure 2-10 is a simulation with data assimilation from regression analysis of Egs. ( 2-76) and
(2-78) . As we can see, the data assimilation greatly improves the fitting between the simulation
(in red) and the observation (in black). The »* value is reduced down to 0.05. This means that

95% of the observed variance is accounted for by the simulation.
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y2=0.18, without data assimilation
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Figure 2-10 Comparisons of the simulations (in red) of storm surges against the observations (in
black) at Sept-Iles for the month of December 2010. The simulation shown in the top panel is

obtained without data assimilation, whereas the simulation in the bottom panel is obtained with
data assimilation. The value of »* shown in each panel measures the overall misfit between the

observation and the simulation. There are 744 hourly data points in each time series.

2.24 Summary and Discussions

Starting with the ASGF convolution of Eq. (2-62), this paper proposed to apply the SVD
decomposition to the ASGF matrix G so that a huge null space could be squeezed out and the
forcing data greatly compressed. The forcing data compression not only results in small sizes of
forcing data for storing and retrieving, but also speeds up computations. Through the SVD
decomposition, Eq. (2-62) is simplified to Eq. (271). Eq. (2-62) can already speed up storm
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surge simulations 1,550 times compared with the traditional modelling approach. Now Eq. (2-71)
can further speed up by another factor of 1,700. Therefore with Eq. (2-71), the simulations can

proceed millions of times faster than the traditional method.

The application of SVD further leads to data assimilation. The singular vales can be moved
from the middle of the three factor matrices to the right, making it possible to relax the singular
values that are being given by the surge model to those which are best adjusted by the
observations. Eq. (2-71) is further cast to a regression model as of Eq. (2-76). The power of the
regression model to best fit between the simulations and the observations is well demonstrated.

The whole month of hourly storm surges in December 2010 at Sept-Iles were simulated in Part |

without data assimilation and the »* value, which measures the overall misfits, was 0.18. Now

with the data assimilation by Eq. (2-76), the »* is reduced to 0.05.

Whether 95% of the variances of the observed de-tided signals should indeed all be
attributed to atmospheric forcing is another question and is perhaps worthy of further
investigation. The main point of this paper is to boil down the traditional complicated storm
surge modelling to a very simple regression model that can easily conduct various regression
analyses. The method demonstrated in this paper is not the only method. For example, a
weighting matrix could be multiplied to both sides of Eq. (2-76) to let the large data have greater
weighting when it comes to determining the least square solutions. Large data are perhaps more
likely caused by storms than small ones. There could be three C matrices in Eq. (2-76), and three
sets of s regression parameter vectors accordingly, one for the air pressure forcing and the other
two for the two wind stress components. As it is written in Eq. (2-76), the three forcing
components have been all fabricated into the same C. Given that the forcing data from an
atmospheric model contain errors, it may be worthwhile to apply the regression model
simulations of tides. The tide generating forcing can be very accurately calculated. This way, the
regression analyses will be free of the forcing errors, which may help us understand better the
characteristics of the responses at a POI. Explorations along these lines will be reported in the

future.

Due to its extremely fast simulation speed and data assimilative capability, the ASGF
regression model of Eq. (2-76) provides an effective tool for a long term hindcast and forecast.

With the observations and realistic atmospheric forcing in the past, the hindcast can yield the
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best estimated model parameter vector ¢ . With the best estimated & and with a set of climate
model solutions for the future that can be used as the atmospheric forcing, we can
climatologically forecast the storm surges. Xu et al (2014) has taken this approach and produced
storm surges at Sept-lles for the next one hundred years, which can provide a database for further

statistical analysis, such as extreme value analysis.
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2.2.6 Appendix A: Columnwise Convolutions of Two Matrices, conv_FFT

The following relationship is true and can be proved from the convolution definition given
by Eq. (2-18) in Part I.

U*(S‘I’):[Ul*‘l’l U, *y, - Um*‘llm]s (2-79)

where s=[s, s,---s,1", U, is the jth column of U, and w; =[y” y ...y * =T is a column

vector consisting of the time series of v, with j=1,2,---,m .

To prove it, let us assume for simplicity but without loss of generality that U is of

dimensions2x2, andsois S

ull ulZ Sl O
o ] sofs 0 -
21 22 2
and that the forcing field consists of only two instantaneous vectors, y® and y®,
(0) ®
o _| %" o _| %
y = I A (2-81)

® http://www.ouranos.ca/
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In this simple case,

(0)

S
u, u, 0 0 Sl;/jl o
U*(Sy) = Uy Uy Uy Up szwz(l) (2-82)
0 0 uy Uu,J| 7y,
S¥
u11 0 W (0) u12 O v (0)
= Uy Uy |:‘//l(1) :| SiH| Uy U |:‘//2(1) :| S, (2-83)
0 wu, |-t 0 uy,l|-"?
= Upxy s +U,*y, s, (2-84)
= [Uiry Uyxy,]s (2-85)

where U, and U, stand for the first and second columns of U, v, and v, are defined by

(0) (0)
A v, S
= , = y S = . 2'86
\lll |:!//l(l) :| ‘|’2 |:W2(1) :| |:32 :| ( )

They are vectors in time whereas those defined in Eq. (2-81)Error! Reference source not
found. are vectors in space. The same procedure revealed by this simple example can be used to
prove the general relationship as of Eq. (2-79) Error! Reference source not found. by the

mathematical induction method.

Let

C:[Ul*‘l’l U, *y, - Um*‘l’m]v (2-87)

which can be fast computed through the convolution theory. According to theory (or called the
convolution rule, e.g., Strang 2007), a convolution of two vectors, f and g, can be computed

through FFT and IFFT (fast Fourier transform and its inverse),

f g = ifft(f. *g) (2-88)
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where f = fft(f) and g ="fft(g), and the operator “dot star, .*” means pair wise multiplications.
Necessary zeros will have to padded to f and g beforehand according to the convolution length

rule expressed in Eq. (60) in Part I.

Applying the convolution theory to the column wise convolutions in Eq. (2-74), we can

have
c =ifft(0 .* V) (2-89)

where U = fft(U) and ¥ = fft(¥) and

=[u, U, - U] (2-90)

U
Y=[y, v, - wy,] (2-91)

The Matlab function, conv_ FFT, presented below computes the convolution through
FFT/IFFT. It takes in two matrices and outputs a matrix too. The output matrix is a columnwise
convolution of the two input matrices. However there is an optional logical input, sumcol. It is
defaulted as false. When it is input as true, the output matrix will be summed over its columns
and the resultant column vector will be output. The two input matrices are named F and G,
which is inherited from conv_FG presented in Table 3 of Appendix D in Part | (Section 2.1.11).
The function will first validate if the two input matrices have the same number of columns. If not,
it will give an error message through lines 9 to 11. Padding rows of zeros to F and G according
to the convolution length is necessary to prevent unwanted folding back in FFT/IFFT (Strang,
2007) and to make element-wise multiplications possible. Padding zeros is carried out in lines
14 to 18. Two FFTs are performed in lines 21 and 22, and element-wise multiplication of the
results of FFTs is performed in line 25. Line 28 performs the summation over the columns if it is
intended. Line 32 performs the IFFT of the result before it is output. Note that the summation
over the columns should be performed before the IFFT, so that when the summation is indeed
carried out, the IFFT only needs to be performed for one column. When the summation over the

columns is performed, the output of this function is the same as conv_FG.

1) function C=conv_FFT (G, F, sumcol)
2) % Convolution of two matrices using fft/ifft.
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o\

The convolution is performed column-wisely and the results is
% output as the C matrix

if nargin<3, sumcol=false; end

size G=size(G); size F=size(F);
if size G(2)~=size F(2)

error('G and F must have the same columns!')
end

% padding zeros

p=size G(1l)+size F(1)-1; % length of the convolution
Z=zeros (p-size G(1l), size G(2));

G=[G;Z];

Z=zeros (p-size F (1), size F(2));

F=[F;2];

% element-wise multiplications
C=G.*F;

if sumcol
C=sum(C, 2) ;
end

% inverse fft
C=1ifft (C);

Table 2-5 Matlab function of conv_FFT
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2.3.1 Abstract

We demonstrate that long term climate model solutions can be very efficiently converted
to a value database of future storm surge time series for points of interest (POIs). We use the All-
Source Green’s Function (ASGF) regression model for the conversion. Not only being data
assimilative, the ASGF regression model can also simulate storm surges at a POl millions of
times faster than the traditional modelling approach. For the demonstration, we take the tidal
gauge at Sept-lles in the Gulf of St. Lawrence as the POI. We first use the ASGF regression
model to assimilate 32 years of the tidal gauge data, producing a continuous hindcast of storm
surges and a set of best estimated regression parameters. We then use the ASGF regression
model with the best estimated parameters to convert a Canadian Regional Climate Model
solution (CRCM/AHJ) to an hourly time series of storm surges from 1961 to 2100. We then
apply the Gumbel’s extreme value analysis (EVA) to the time series as a whole and tri-decadal
piecewise as well. The tri-decadal piecewise approach is intended to investigate if there are any
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progressive shortening of storm surge return periods due to future climate change. However, the
investigation does not reveal so. We also demonstrate how to correct for bias due to the forcing
field at the EVA level.

Keywords: All-Source Green’s Function (ASGF), ASGF Regression Model, Storm Surges,

Climatological Forcing Field

2.3.2 Introduction

Storm surges are a source of coastal hazards. They are closely related with climate change.
How to quantitatively assess impact of climate change on storm surges is a challenge, simply
because there is no future water level time series available for statistics. On the other hand, storm
containing climate model solutions have recently become more and more available. For example,
the Canadian Regional Climate Model'® has made a suite of solutions available, with a spatial
resolution of about 0.4 degree and a temporal resolution of 3-hourly, spanning from 1961 to
2100. It is highly desirable therefore to make a good use of these climate model solutions by
converting them hydrodynamically to storm surge time series for some points of interest. Such a
conversion would usually require running a storm surge model. However a storm surge model
can only run at a time step typically in order of seconds, either for the sake of stability or
accuracy of solution. It would be hard to run a model for over a hundred years with such a small

time step.

However, there is a very efficient tool we can use. Xu (2014a,b) proposed a new method
to model storm surges. Without compromising quality of modelling, the new method is millions
of times faster than the traditional modelling approach (within the linear dynamics frame). Also
the new method is data assimilative, and free of influences of artificial open water boundaries.
What supports this tremendous enhancement of modelling efficiency is the All-Source Green’s
Function (ASGF), which is a pre-calculated matrix to connect a point of interest (POI) and the
rest of the world ocean. Once it is calculated, it can be repeatedly used to fast produce the storm

surge time series at the POI. It was first proposed to instantaneously predict tsunami arrivals at

1% http://www.cccma.ec.ge.ca/data/crem423/crem423.shtml
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some POls in terms of both time and wave amplitudes (Xu, 2007; 2011; Xu and Song 2013).
With an ASGF matrix, a traditional storm surge model can be simplified as a convolution of the
matrix with an atmospheric forcing field. Further applied with the singular value decomposition
(SVD) and fast Fourier transform and its inverse (fft/ifft), the ASGF convolution can boil down
to a simple and very efficient regression model. As reported in Xu (2014b), a simulation of 10
year hourly storm surges at a POI can now be finished in 0.5 seconds!

Because of its tremendously fast speed and its data assimilative capability, the ASGF
regression model can provide us a good tool to convert long term climate model solutions to
storm surge time series in the future. Obtained time series can serve as a database for further
statistics studies. This way, we can feasibly convert an ensemble of climate model solutions to an
ensemble of storm surge time series, and thereby we can bring the assessment of the risks due to
future storm surges to the same footing as the assessment of future climate changes.

In this paper, we focus on a case study to demonstrate how we can use the ASGF
regression model to generate future storm surge time series at a POl and how we can use it
statistically. Our procedure consists of two parts: hindcast of past storm surges observed at a
POI and forecast of future storm surges at the same place. The hindcast will give us a set of
model parameters that are best estimated with the data. The estimated parameters then can be
used for the forecast with a climate forcing field. We choose Sept-lles as our POI, where there

are multiple decades of tidal gauge data available for a hindcast.

For the hindcast, we choose MERRA™ data to provide the forcing field to drive the surge
model. The acronym MERRA stands for Modern-Era Retrospective Analysis for Research and
Applications. It is produced by NASA, and meant to provide the science and applications
communities with a state-of-the-art global dataset. It uses the NASA global data assimilation
system and a variety of global observing systems. Its temporal resolution is hourly and spatial
resolution is 0.50 degrees in latitude and 0.67 degrees in longitude. It spans from 1979 to present
and has a global coverage. For the forecast, we choose one of the solutions, the AHJ solution,
produced by Canadian Regional Cclimate Model (CRCM)* to provide the forcing field (Music
and Caya 2007). This forcing field will be referred to as the CRCM/AHJ forcing field hereafter.
It has a spatial resolution of about 0.4 degree and a temporal resolution of 3-hourly, spanning a

! http://gmao.gsfc.nasa.gov/merra/

12 http://www.cccma.ec.ge.ca/data/crem.shtml
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period from 1961 to 2100. It is a regional dataset, covering the Arctic, the North American

continent and its adjacent seas (see Figure 2-14).

Bernier and Thompson (2006) hindcast storm surges from 1960 to 1999 for the northwest
Atlantic sea including the Gulf of St. Lawrence with a non-linear regional model. The forcing
field they used is six hourly winds from AES40 dataset (Swail and Cox 2000) and inferred air
pressures from the winds. Their modelling approach is traditional, which allows them to have a
domain wise solution and to further derive spatial maps of the sizes of storm surges with a
definite return period. Such spatial maps are nice since they present the spatial structures of the

variables in question.

Our ASGF approach is a POl approach, which is not designed to produce domain wise
model solutions and spatial maps derived afterwards. The ASGF method is built upon an
assumption that we actually have only a few points, certainly not all the grid points, where model
solutions are of interest. The strengths of the ASGF method as mentioned above are all derived
from this assumption. Also, the ASGF method works for linear dynamics. However, the linear
dynamics often provides the first order approximations. Besides, the data assimilative capability

of the method may quite much compensate the missing nonlinearity effects.

2.3.3 The ASGF Regression Model

Starting with a global storm surge model, Xu (2014a) derived the all source Green’s
function (ASGF) and then used the convolution of the ASGF matrix with a global forcing field to
express sea surface elevations at a POI. Applying the singular value decomposition (SVD) and
the fast Fourier transform and its inverse (FFT/IFFT) to the ASGF matrix, Xu (2014b) showed

that the convolution could further boil down to a very simple linear relation:

n=Cs (2-92)
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where n is a vector consisting of time series of the sea surface elevations at a POI, C is a matrix

consisting of the columnwise convolutions of the ASGF matrix with an atmospheric forcing field,

and s is a vector of parameters, which are given by the singular values of the ASGF matrix.

Xu (2014b) reported that using Eq. (2-92) to model storm surges at a POI is millions of
times faster than the traditional modelling method. Not only does it enhance the modelling speed
enormously, Eq. (2-92) also opens an easy way for data assimilation. Simply by admitting an
error term, Eq. (2-92) becomes

N=Cs+eg (2-93)
where g is an error vector consisting of the errors in the observations of the forcing field and of
the model itself. The parameter vector s can now be relaxed from the given values to be
determined by the least square fitting between the model and the observations. Xu (20144, b)
derived Egs. (2-92) and (2-93) in details. Eq. (2-93) will be referred as the ASGF regression

model from here on.

Denote 7, as the observations, we can estimate s by minimizing ¢ (the so-called least

square fitting technique). The estimated parameter vector, §, is

§ = (C'O'Chn, (2-94)

(e.g., Strang, 1986; Strang 2007; Seber and Lee 2003). The observation data are assimilated
into the model parameter vector §. The least square fitted solution, 1, or to say, the data
assimilative model solution, is given by
n=Cs. (2-95)
Solution given by Eq. (2-92) is non-data assimilative whereas the one given by Eqg. (2-95)
is data assimilative. Figure 2-11, adapted from Xu (2014b), compares both types of solutions
against the same observations, which are the de-tided sea surface elevations. The top panel is the

comparison for the non-data assimilative solution and the bottom panel shows the comparison

for the data assimilative solution. As we can see, the non-data assimilative solution agrees with
the observations well whereas the assimilative simulations perform even better. The »* indicated

in the titles of the panels measures the overall misfits between the simulations and the

observations. It is defined as
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> sum of squares of misfits
sum of squares of observations

(2-96)

The smaller this value is, the better the fit between the simulations and the observations. The y?
value for the non-assimilative solutions is 0.18, which means that 82% of the observed variance
is explained by the solutions. The »*value for the assimilative solutions is 0.05; in other words,

95% of the observed variance is explained by the assimilative solutions. Thus, Figure 2-11 well

illustrates the power of the ASGF regression model. We will use it for a long term hindcast and
forecast.

yz=0.1 8, without data assimilation
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Figure 2-11. Comparisons of non-data assimilative solution (top) and data assimilative solution

(bottom) with the observations with the observations at Sept-1les. The observations are sea surface

elevations after removal of tides. The »* values indicated in the panel titles are the ratios of the
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misfit variance over the observed variance. The smaller this value is, the better the agreement is

between the simulations and the observations (after Xu 2014b).

2.3.4 Data Assimilative Hindcast with the MERRA Forcing Field

The forcing field used for the short term test case shown above is the MERRA data. We
will use this forcing field also for the long term hindcast. This forcing dataset is preferable
because it is highly realistic and has hourly temporal resolution (which is high compared with
other similar products). It also covers the entire globe, which suits the ASGF approach. At any
hour, the MERRA forcing field gives a vector of 408,622 elements consisting of the points of air
pressures and wind stresses over the global ocean. Shown in Figure 2-12 are the results of the
hindcast of storm surges at Sept-lles in three different ways. The simulations are shown in red,
and the observations are shown in black. The period of the hindcast is from 1979/07/30 to
2011/12/31.

The top panel of the figure shows the simulations without data assimilation. Shown in the
middle panel are the data assimilative simulations with all the data weighted equally. The third
panel shows the results from the weighted least square fitting, with the surge data weighted ten
times more than the non-surge data. The surge data are those that are outside the yellow band
(outside of +35cm). They are more likely caused by storms in the air than those within; not all
de-tided signals can be attributed to atmospheric forcing. There are 240,903 hourly points in the
observations, of which 9,318 points are outside the yellow band. For simplicity in wording only,
we refer to those outside the yellow band as surge data or simply surges, and refer to those

within the band as non-surge data.

The misfit measurement »* is indicated in each panel with two values, the first value is for

all the misfits whereas the second one is for the misfits of the surge data. The first value of »°

indicated in the top panel is 0.38 whereas the second value is 0.12. This means that the
simulations and the observations agree much better for the surge data than for all the data. The
middle panel of the figure shows the results of data assimilation where all the data points are
weighted equally. The data assimilation improves the fit, but the improvement is mostly
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absorbed by the majority of the non-surge data; the first value of »* is dropped from 0.38 to 0.32

whereas the second value remains the same to the second decimal place. We wish to improve

De-tided Sea Levels and Modelled Storm Surges
Without Data Assimilation

A oAt

¥%=(0.38, 0.12)
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J ¥*=(0.41, 0.07)
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Figure 2-12. Long term simulations of storm surges without data assimilation (top), with
equally weight data assimilation (middle) and with surge-weighted data assimilation

(bottom). The simulations are shown in red and the observations are shown in black with
data gaps. The data outside the yellow band are larger than 35cm in their absolute values,
and are referred to as surge data. The simulations are continuous but are not shown at the

data gaps.
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the fit particularly for the surges, whereas the ordinary oscillations are not much of our concern.
Thus, we exercised a weighted least square fitting, by replacing the matrix C with WC where
W is a diagonal matrix to weight the surge data 10 times more than the non-surge data. The

result of this surge-weighted data assimilation is shown in the third panel. The agreement

between the simulations and the surge data is improved significantly. The »* value is dropped

from 0.12 down to 0.07. The improvement comes at the cost of increase of the »* for all the

misfits, the majority (96%) of which are of the non-surge data. This is a trade-off that we can
accept since we care much more for the surge data than for the non-surge data.

What if we reserve half of the data from the data assimilation? Can the model be trained
with the first half of data to well predict for the next half? Figure 2-13 shows the results of this
investigation. The first half of the observations (about 16 years of hourly data) is assimilated
with the weighting scheme mentioned above. The red curve is for the assimilative simulations,
with a black curve behind for the observations. The green curve is the predictions for the second
half period (about 16 years of hourly data too) by the model trained with only the first half of the
observations. The »* value for the data assimilation half is 0.08 and that for the prediction half is
0.07, both are satisfactory. Shown in the middle and bottom panels of the figure are two zoomed
views of the assimilation half and of the prediction half respectively. The results of this
investigation are encouraging. It makes sense to use the trained surge model to predict the future

surges with some climate model solutions as the forcing fields.
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Surge-Weighted Data Assimilation and Prediction
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Figure 2-13. Top panel: half data assimilation and half predictions: the assimilative solution is shown in
red and the prediction is shown in green against the observations in black. The misfit measurements for

the assimilation and for the prediction are shown by the ° values in red and in green respectively.

Middle and bottom panels: two zoom views of the top panel.
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2.3.5 Climatological Forecast of Storm Surges with CRCM/AHJ Forcing Field

By climatological forecast, we mean to produce storm surges for the future with climate
model solutions as a forcing field. The climate is a stochastic process. Solutions output by a
climate model run are just one of many possible realizations of the stochastic process. Climate
model solutions are not constrained by observations even though the model run starts from the
past. We should not expect a one-to-one correspondence between the climate model solutions
and the real events in the past therefore. The storm surges driven by the climate model solutions
will be stochastic too. They should not be expected to correspond to the past real events either.
The value of having stochastic storm surges is that they can provide a basis for statistics. The

more stochastic storm surges we can produce, the more robust statistics we can draw.

For this study, we will use the CRCM/AHJ climate model solution to provide a forcing
field. The CRMC/AHJ is a regional climate model solution. Its regional coverage is outlined in
Figure 2-14. Its three hourly forcing field will be interpolated to hourly since the All-Source
Green’s Function (the matrix G in Eq. 2-104) is hourly. The forcing field spans from
1961/Jan/01 00:00:00 to 2100/Nov/30 21:00:00. There are almost 140 years of hourly storm
surges to generate. With the ASGF method, it takes less than 8 seconds to generate it on a PC.

MRCC_AHJ: Mean Sea Level Air Pressure at 2100-11-30 21:00:00 (UTC)
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Figure 2-14 The CRCM/AHJ is a regional climate model solution. Shown above is a snapshot the
mean sea level air pressures at 2100/Nov/30 21:00:00 UTC.
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To calculate storm surges for the future, we use Eq. (2-92) with the matrix C calculated
with the CRCM/AHJ forcing field (cf. Eq. 2-74) and with the s replaced by the § obtained from
the surge-weighted assimilation of the 32 years observations (cf. the third panel of Figure 2-12).
The forcing field is regional where the ASGF matrix is prepared for the global ocean. This
means we have to assign zero values for the forcing field outside of the regional domain. We
also subtract a standard air pressure (101.325kPa) from the air pressure within the regional
domain to avoid a huge imbalance of the air pressures within the domain and outside. To subtract

a constant value from the air pressure field will not change the surge dynamics at all.

Shown in the bottom panel of Figure 2-15 is the time series of the storm surges driven by
CRCM/AHJ. For reference, we have also shown the observations and realistic simulations with
the MERRA forcing field in the same time line in the top and the middle panels respectively.
From the figure, we may see that the CRCM/AHJ driven storm surges are much stronger than the
realistic ones, if we can compare the bottom panel with the top panel or middle panel for the
same period. This indicates the CRCM/AHJ forcing is too strong and will result in a systematic
bias in the simulated storm surges. We will correct this bias in the next section.
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Figure 2-15 Time series of storm surges at Sept-lles. The top panel is observed, the middle
panel is driven by MERRA force field and the bottom panel is driven by CRMC/AHJ
forcing field. The data points outside the red band are larger than 35cm in absolute values.

2.3.6 Extreme Value Analysis of the Future Storm Surges

The time series as shown in the bottom panel of Figure 2-15 should have some statistical
values. One may explore them in many ways. The statistics we are going to explore in this
section is to apply the Gumbel’s extreme value analysis (EVA) to the simulated time series.
According to Gumbel (1954, 1958), the return periods of the annual maxima of the storm surges
should obey a straight line distribution on a double-logarithm scale. Shown on the left panel of
Figure 2-16 are such straights lines, along with the experimental data and confidence zones, in
black and blue colors respectively for the observed and simulated annual maxima from 1979 to
2011.
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As we can see, the EVA results in blue show a systematic bias from those in black. This
means that the CRCM/AHJ forcing field is too strong compared to the reality. We need to
correct for this bias. The correction can be done by first finding out the difference in the slopes
and in the intercepts between the blue and black lines. We can then adjust the line, the data
points, and the confidence zone in blue by applying the differences. Shown on the right panel of
the figure are the results after the correction. As we can expect, the line and the confidence zone
in blue are now coincident with those in black. The two sets of the data points are not necessary
coincident one to another, but they all distribute along the straight lines.
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Figure 2-16. On the left: the EVA results from the simulated annual maxima (blue) and from the observed
annual maxima (black). The dots are the experiment data, and the straight lines are the least square fitted
lines. The shaded zones are 67% confidence zones. The results in blue are systematically biased from
those in black. On the right: the data and lines in blue are corrected for the biases.

Shown in Figure 2-17 are the results from applying the EVA to the 140 year hourly time
series as whole after the correction for the CMCR/AHJ forcing bias. An obvious benefit from
having such a long time series is that the Gumbel’s line is constrained by more data points,
especially at the top end. There are data points beyond 32 years return period to control the line.
Consequently, the confidence zone in light blue becomes somewhat narrower than that in gray.
Another feature may be worthy to note is that the straight line in blue is less steep than the line in
black. The two lines intersect at about at the coordinates of (5, 1), which means that the model
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simulation gives longer return period than the observation for storm surges larger than 1m.

However their associated confidence zones still overlap each other.

Shown in Figure 2-18 are results of applying EVA to tri-decadal pieces of the time series
from 2012 to 2100. Shown on the left panels are the results without the correction for the
CRCM/AHJ bias whereas on the right panels are the results with the correction. The EVA results
from the past observation (1979-2011) are superimposed on each panel for comparison. This tri-
decadal piecewise approach attempts to investigate if there is a progressive shortening in the
return periods of storm surges, which is what we may all be concerned with the impact of climate
change. However, by comparing the blues against the blacks on the right panels, we do not see a
progressive shortening of the return periods for the same sizes of the storm surges. The bottom
right panel of Figure 2-18 for the period of 2073-2100 shows almost the same picture as the
panel on the right of Figure 2-16 for the period of 1979-2011.
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Figure 2-17 Shown in blue are the simulated annual maxima from 1961 to 2100 and the best

fitted Gumbel’s straight line and associated 67% confidence zone. Shown in black are the

counterparts from the observed annual maxima from 1979-2011.
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2.3.7 Summary and Discussions

We have demonstrated that the ASGF regression model can be used as a very efficient tool
to hydrodynamically convert the available climate model solutions to a database of future storm
surges. The ASGF regression model is derived from a traditional storm surge model but can
produce simulations millions of times faster than the latter. It can easily assimilate observed data

into simulations. Weighted data assimilations can be also easily exercised.

For the demonstration, we used the ASGF regression model derived for Sept-lles to first
assimilate 32 years (1979-2011) of detided data with large data (>0.35m) weighted more than
smaller ones. The large data are more likely driven by the storms in the air than the smaller ones.
The data assimilation produces a continuous hindcast of storm surges at Sept-lles. It also yields
the best estimated regression model parameters, which can be used for a climatological
prediction into the future. For the climatological prediction, we used the CRCM/AHJ climate
model solution to provide a forcing field from 1961 to 2100. With the best estimated regression
parameters and with the CRCM/AHJ forcing field, the ASGF regression model produces a 140

year hourly time series of storm surges in a few seconds.

The produced time series can be used for further statistical studies. We subjected the time
series to the Gumbel’s EVA. The simulated time series has a portion that is overlapped by the
observation time series (see Figure 2-15). This makes possible to see if the simulation driven by
CRCM/AH] is statistically biased from the reality. We indeed found that there is a bias and
corrected for it (see Figure 2-16 and Figure 2-18). We applied the EVA to the 140 year long
time series as a whole as well as to its tri-decadal pieces. The tri-decadal approach is an attempt
to investigate if there is any progressive shortening of the return periods of the storm surges.

However the investigation does not reveal so.

We do not wish to interpret the above EVA results as a general conclusion here, since they
are based on only one of many possible climate forcing fields. The main point of this study is to
demonstrate that the ASGF regression model as of Eq. (2-93) can be used as a very efficient tool
to convert a long term climate model solution to the same length of storm surge time series at a
POI. The procedure shown by the demonstration can be repeated for other POIs and with other

climate forcing fields. As more climate model solutions are collected for this purpose, the larger
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database of future storm surges we can establish, and more robust statistics can be drawn upon.
In fact, a project is currently underway to apply the same procedure to the permanent tidal
gauges operated by the Canadian Hydrographic Service.
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