
ÉTUDE DE POLLUTION SONORE DE L'AUTOROUTE 25,

TRONÇON TUNNEL LOUIS-H. LAFONTAINE ET LES LIMITES DE VILLE D'ANJOU

CANQ TR GE CA 347 1992 556303

Service de l'Environnement

MINISTÈRE DES TRANSPORTS
DIRECTION DE L'OBSERVATOIRE EN TRANSPORT
SERVICE DE L'INNOVATION ET DE LA DOCUMENTATION
700, Boul. René-Lévesque Est, 21e étage
Québec (Québec) GIR SH1

ÉTUDE DE POLLUTION SONORE DE L'AUTOROUTE 25,

TRONÇON TUNNEL LOUIS-H. LAFONTAINE ET LES LIMITES DE VILLE D'ANJOU

Juillet 1992

CANQ TR GE CA 347 1992 Cette étude de pollution sonore a été réalisée à la suite de plaintes d'un comité de citoyens habitant le long de l'autoroute 25 entre la sortie du tunnel Louis-H. Lafontaine et la limite de ville d'Anjou.

Le niveau de pression sonore a été mesuré à vingt-deux (22) endroits aux abords de l'autoroute 25 et dans les rues avoisinantes sur des périodes variant de l heure à 24 heures. Ces mesures ont permis d'établir le climat sonore actuel et les paramètres de calcul du programme de simulation du bruit routier STAMINA 2.0/ optima. Ce logiciel a, par la suite, été utilisé pour calculer le niveau de bruit actuel dans toute la zone d'étude et tracer les isocontours acoustiques permettant d'identifier les zones où le niveau sonore est trop élevé.

Ainsi cette étude a permis de dénombrer qu'environ 6 480 personnes étaient actuellement atteintes par un niveau de perturbation sonore au-delà du niveau acceptable de 55 dBA. De ce nombre, environ 1 300 résidents subissent un climat sonore fortement (niveau supérieur à 65 dBA) et très fortement perturbés (niveau supérieur à 70 dBA).

Dans certaines zones où le niveau sonore est excessif, il est possible d'implanter des écrans antibruit; de nouvelles simulations ont permis d'établir les dimensions optimales des écrans permettant d'obtenir une réduction importante du niveau de bruit.

Les endroits que l'on peut protéger efficacement par des écrans antibruit en abaissant le niveau de bruit à 65 dBA ou moins, sont: de la rue Lecourt à Lavaltrie; de la rue Ontario à la rue Hochelaga; de la rue Sainte-Claire à la rue Sherbrooke et de la place Curatteau à la bretelle d'accès à la rue Curatteau.

Toutefois, pour certains autres secteurs, les solutions de type écran ne sont pas applicables à cause de sérieuses limitations d'espace, pour conserver l'accès des résidents aux voies de circulation ou parce qu'une telle solution est peu efficace. C'est le cas des secteurs de la rue Hochelaga jusqu'à la rue Sainte-Claire et au nord de place Curatteau, jusqu'à ville d'Anjou. Seule la réduction du trafic routier sur certains tronçons de route combinée à l'implantation d'un écran antibruit produirait une diminution satisfaisante du niveau de bruit perçu aux résidences rapprochées.

Cette étude a été réalisée par le personnel du service de l'Environnement, sous la responsabilité de Monsieur Claude Girard, urbaniste.

ÉQUIPE DE TRAVAIL

Line Gamache

Ingénieure, chargée de projet

Robert Montplaisir

Biologiste

chef (par intérim), Division du contrôle de la pollution et recherche

Graphisme et édition:

Hrant Khandjian

Responsable de l'atelier graphique

Avec la collaboration du Service des Projets de Montréal:

Jacques Venne

Agent de recherche

TABLE DES MATIÈRES

ÉQUIPE	DE TRA	VAIL .	• •	• •			•	•		•	•	•	•	•	•	•	٠.	i
LISTE	DES TAB	LEAUX	• •				•	•		• •	•	•	•	•	•	•	•	٧
LISTE	DES FIG	JRES .	• •		• •	• •	•	•		•	•	•	•	•	•	٠.		viii
LISTE	DES CAR	TES .				• •	•	•		•	•	•	•	•	•	٠	٠	X
LISTE	DES ANN	EXES .					•	•	• •	•	•	•	•	•	•	•	•	xii
	*										-			٠.				
1.0	INTROD	JCTION	• • • • • •	• •	• •		•	•	• •	•	•.	•	•	•	•	•	•	1
	1.1	Proble	emati Fif	que	•	• •	•	•	• •	•	•	•	•	•	•	•	•	1
	1.3	Object Limit	LII AD]a	· ·	٠. ٠	átu	do.	• •	•	•	•	•	•	•	•	•	1 1
	1.4	Conte					•											
2.0	MÉTHODO	OLOGIE	D'AN	ALY:	SE													4
	2.1	Exame					•		•	•	•	•	•	:	•	:	•	4
	2.2	Invent	taire	de	s co	mpo:	san	tes	dı	ı m	i٦	iei	u					5
-	2.3	Invent																
		sonore					•	•		•	•	•	•	•	•	•	•	5
		2.3.1	Kel	eve	S SO	nore	25	•	• •	•	٠	•	•	•	•	•	•	5
		2.3.2 2.3.3	2113	เเกิน เมไล	ment tion	atio) (vdi	nat			•	•	•	•	•	•	6 6
	2.4	Évalua	ation	de	la	pai neri	tur	hat	ina	ieu 19	เ กก	· nra	•	•	•	•	•	7
	2.5	Élaboi	ratio	n d	es m	esui	res	CC	rre	ect	iv	es	-	•				
	2.6	Simula	ation	du	cli	mat	SO	nor	e 1	fut	ur							8 8
	2.7	Évalua	ation	de	la	pert	tur	bat	ior	ı s	on	ore	9 1	fut	tui	re		8

3.0	INVENTA 3.1	AIRE DU CLIMAT SONORE ACTUEL	9
	3.2	Résultats des simulations du niveau	
		sonore actuel	17
		3.2.1 Validation du modèle	17
		actuel	19
		3.2.3 Simulation de la rue Honoré-Beaugrand	20
	3.3	Évaluation de la perturbation sonore	
		actuelle sur la population résidante	22
•		3.3.1 Description du caractère	
			22
	**	3.3.2 Évaluation de la perturbation sonore actuelle sur la population	
			23
4.0	MESURES	S CORRECTIVES	30
1.0	4.1		30
	4.2		30
	4.3		31
	4.4	Réaménagement de certaines voies de	-
		circulation	32
	4.5	Réduction du trafic sur les voies	
	•	de service	34
5.0	SIMULATIO	ON DU CLIMAT SONORE FUTUR	35
	5.1		35
		5.1.1 Zone 1: de la rue Notre-Dame à la	
			35
		5.1.2 Zone 2: de la rue Hochelaga jusqu'aux	
			35
	•		35
	5.2	Modification des voies de circulation	39
			43
		5.2.1 Zone 1: de la rue Notre-Dame à la	73
			43
	5.3	Réduction du trafic sur les voies de	
		service	46
	5.4	Évaluation de la perturbation sonore future	
		sur la population résidante actuelle	, -
		et future selon les divers scénarios	47

5.0	COÛTS 6.1	DES MES Coûts	SURES CO de réan	RRECT nénage	IVES ment	de:	s \	70	ies	: d	le	•	•	•	•	• ,	58
	6.2 6.3 6.4	circu Coûts Coûts	lation des écr d'expro totaux	 rans a priat	 intibration	ui'	t	•	•	•	•						58 58 61 61
7.0			T_RECOMM														63
_EXIQ	UE			• •		•		•	•	•		•	•				65

LISTE DES TABLEAUX

Tableau 1:	Grille d'évaluation de la qualité de l'environnement sonore	7
Tableau 2:	Résultats des mesures aux points de relevé de 1 heure et 3 heures	16
Tableau 3:	Niveaux de bruit mesurés et calculés aux différents points de mesure	18
Tableau 4:	Niveau de bruit de l'autoroute 25 et de la rue Honoré-Beaugrand aux abords de la rue Honoré-Beaugrand	21
Tableau 5:	Évaluation de la perturbation sonore actuelle sur les résidents	25
Tableau 6:	Caractéristiques des écrans nos 604, 802 et 803 pour le scénario 2 de la zone 2, rue Hochelaga à ville d'Anjou	36
Tableau 7:	Résultats des réductions des niveaux de bruit pour les récepteurs les plus affectés - Écrans nos 604, 802 et 803 - Scénario 2	37
Tableau 8:	Caractéristiques de l'écran no 901 pour le scénario 2 de la zone 2, rue Hochelaga à ville d'Anjou	38

Tableau	9:	Résultats des réductions des niveaux de bruit pour les récepteurs les plus affectés entre les rues Sherbrooke et Hochelaga, écrans nos 901, 802 et 803 - Scénario 2	38
Tableau	10:	Caractéristiques des écrans nos 604 et 709 pour le scénario 3 de la zone 2, rue Hochelaga à ville d'Anjou	40
Tableau	11:	Résultats des réductions des niveaux de bruit pour les récepteurs les plus affectés, écrans nos 604 et 709 - Scénario 3	41
Tableau	12:	Résultats des réductions des niveaux de bruit pour les récepteurs les plus affectés entre les rues Sherbrooke et Hochelaga, écrans nos 709 et 901 - Scénario 3	42
Tableau	13:	Caractéristiques des écrans antibruit de la zone 1, rue Notre-Dame à la rue Hochelaga	44
Tableau	14:	Résultats des réductions des niveaux de bruit pour les récepteurs les plus affectés - Zone 1	45
Tableau	15:	Résultats de la simulation avec trafic nul sur les voies de service	46
Tableau	16:	Efficacité des mesures correctives proposées par les scénarios 1, 2 et 3 pour réduire la perturbation sonore sur les résidents	48

Tableau 17:	Estimation des coûts des écrans antibruit						
		00					
Tableau 18:	Comparaison des coûts totaux reliés au choix des scénarios l et 2 ou l et 3	62					

LISTE DES FIGURES

igure	1:	Limite de la zone d'étude	2
igure	2:	Évolution des niveaux Leq, L_{95} et L_{10} au point no 1	10
igure	3:	Évolution des niveaux Leq, L_{95} et L_{10} au point no 4	10
igure	4:	Évolution des niveaux Leq, L_{95} et L_{10} au point no 10	11
igure	5:	Évolution des niveaux Leq, L_{95} et L_{10} au point no 19	11
igure	6:	Évolution des niveaux L_1 , L_{50} et L_{99} au point no 1	12
igure	7:	Évolution des niveaux L_1 , L_{50} et L_{99} au point no 4	12
igure	8:	Évolution des niveaux L_1 , L_{50} et L_{99} au point no 10	13
igure	9:	Évolution des niveaux L_1 , L_{50} et L_{99} au point no 19	13
igure	10:	Niveaux équivalents mesurés au point no 1	l 4

Figure	11:	Niveaux équivalents mesurés au point no 4	. 14
Figure		Niveaux équivalents mesurés au point no 10	. 1!
Figure	13:	Niveaux équivalents mesurés au point no 19	. 15

LISTE DES CARTES

Carte		Climat sonore actuel - Tronçon rue Notre-Dame - Rue Hochelaga		26
Carte	2:	Climat sonore actuel - Tronçon rue Hochelaga - Limite de ville d'Anjou	• •	27
Carte	3:	Incidence du climat sonore actuel sur l'affectation et l'utilisation du sol - Tronçon rue Notre-Dame - rue Hochelaga		28
Carte	4:	Incidence du climat sonore actuel sur l'affectation et l'utilisation du sol - Tronçon rue Hochelaga - Limite de ville d'Anjou		29
Carte	5:	Climat sonore futur - Scénario 1 - Tronçon rue Notre-Dame - Rue Hochelaga .		50
Carte	6:	Climat sonore futur - Scénario 2 - Écrans nos 604, 802 et 803 - Tronçon rue Hochelaga - Limite de ville d'Anjou		51
Carte	7:	Climat sonore futur - Scénario 2 - Écrans nos 604, 802, 803 et 901 - Tronçon rue Hochelaga - Limite de ville d'Anjou	• •	52
Carte	8:	Climat sonore futur - Scénario 3 - Écrans nos 604 et 709 - Tronçon rue Hochelaga - Limite de ville d'Anjou		53

Carte 9:	Climat sonore futur - Scénario 3 - Écrans nos 604, 709 et 901 - Tronçon rue Hochelaga - Limite de ville d'Anjou 54
Carte 10:	Incidence du climat sonore futur sur l'affectation et l'utilisation du sol - Scénario 1 - Tronçon rue Notre-Dame - Rue Hochelaga 55
Carte 11:	Incidence du climat sonore futur sur l'affectation et l'utilisation du sol - Scénario 2 - Tronçon rue Hochelaga - Limite de ville d'Anjou 56
Carte 12:	Incidence du climat sonore futur sur l'affectation et l'utilisation du sol - Scénario 3 - Tronçon rue Hochelaga - Limite de ville d'Anjou 57

LISTE DES ANNEXES

Annexe 1: Résultats des relevés sonores

Annexe 2: Sections coupes de l'autoroute 25

Annexe 3: Résultats de la simulation du climat sonore

Annexe 4: Résultats de la simulation de la rue

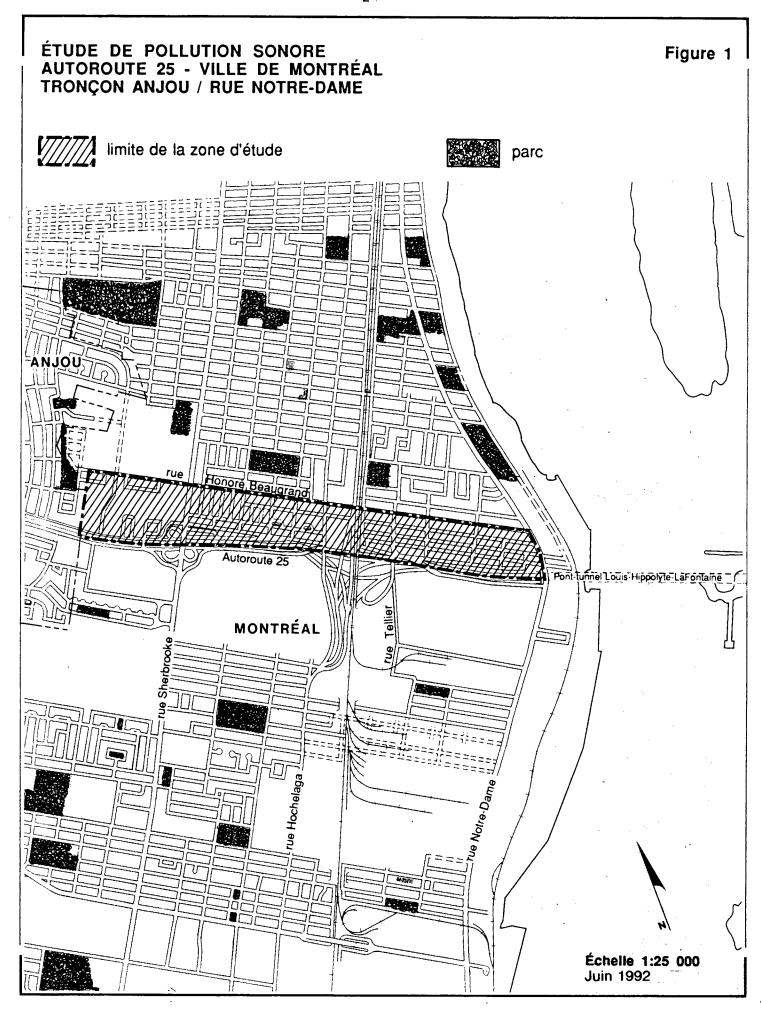
Honoré-Beaugrand

1

INTRODUCTION

1.0 INTRODUCTION

1.1 PROBLÉMATIQUE


Le bruit émis par la circulation le long de l'autoroute 25, entre la sortie du tunnel Louis-H. Lafontaine et les limites de ville d'Anjou, perturbe plusieurs résidents. Ces derniers ont d'ailleurs formé un comité de citoyens qui s'est plaint spécifiquement de ce problème aux représentants de la ville de Montréal et du ministère des Transports du Québec.

1.2 OBJECTIF

Cette étude a pour but d'évaluer le climat sonore existant, de déterminer les voies de circulation les plus bruyantes et de présenter les alternatives de solutions permettant de réduire le bruit sur ce tronçon de 2,5 km de l'autoroute 25, sur le territoire de la ville de Montréal.

1.3 LIMITE DE LA ZONE D'ÉTUDE

La zone d'étude, illustrée sur la figure 1, est limitée au sud par la rue Notre-Dame, au nord par la ville d'Anjou et s'étend à l'est sur une bande de 300 mètres environ longeant l'autoroute 25.

1.4 CONTENU DU DOCUMENT

Cette étude de pollution sonore comporte sept (7) sections. Après avoir rappelé la problématique et l'objectif de l'étude dans la section 1, la section 2 expose la méthodologie retenue pour réaliser cette étude de pollution sonore. Les résultats des campagnes de mesure de niveaux de bruit, à proximité de l'autoroute et des simulations réalisées pour évaluer le climat sonore actuel, sont discutés à la section 3. Les mesures correctives envisageables pour réduire les niveaux de bruit sont énoncées à la section 4 tandis que la section 5 présente le climat sonore futur qui en résulterait si elles étaient réalisées. Les coûts de ces mesures correctives sont précisés à la section 6 tandis que la section 7 présente les principales conclusions et recommandations de cette étude.

Enfin, ce rapport est complété par quatre (4) annexes qui détaillent les résultats des relevés sonores, des sections coupées de l'autoroute 25, les résultats de la simulation du climat sonore actuel le long de l'autoroute 25 et la rue Honoré-Beaugrand.

2

MÉTHODOLOGIE D'ANALYSE

2.0 MÉTHODOLOGIE D'ANALYSE

La méthodologie utilisée pour réaliser l'étude de pollution sonore de l'autoroute 25 comprend les étapes suivantes:

- examen du projet;
- inventaire des composantes du milieu;
- inventaire et simulation du climat sonore actuel;
- évaluation de la perturbation sonore actuelle pour les résidents;
- détermination des mesures correctives;
- simulation du climat sonore futur;
- évaluation de la perturbation sonore future pour les résidents après l'insertion des mesures correctives.

Les sections suivantes présentent les objectifs et les résultats obtenus à chacune des étapes.

2.1 EXAMEN DU PROJET

Cette étape consistait à rassembler les documents relatifs à la problématique du bruit le long de la section d'autoroute à l'étude et à en prendre connaissance. Ainsi, des cartes ont été commandées, des photographies ont été prises et différentes informations ont été demandées dont, entre autres, les données de circulation, les modifications de tracés ou de géométries possibles et la topographie du site.

2.2 INVENTAIRE DES COMPOSANTES DU MILIEU

L'inventaire des composantes du milieu comprend la détermination des caractéristiques de l'infrastructure routière à étudier et les différents éléments du milieu récepteur (utilisation du sol, type d'habitation, autres sources de bruit, etc.).

Les données utilisées pour cet inventaire sont:

- le règlement de zonage no. 2110, octobre 1988;
- la carte d'utilisation du sol de la Ville de Montréal 1988;
- statistique Canada, "Caractéristiques de la population et logement, divisions et subdivisions de recensement Québec partie 2" - 1988.

2.3 INVENTAIRE ET SIMULATION DU CLIMAT SONORE ACTUEL

2.3.1 RELEVÉS SONORES

Le climat sonore actuel a été évalué en réalisant des relevés sur le site et des simulations sur ordinateur. Quatre (4) relevés continus de 24 heures et trois (3) relevés de trois (3) heures ont été effectués à la première rangée de maisons attenantes à l'infrastructure routière.

À chacune des sept (7) stations de mesure énoncées précédemment, correspondait deux (2) points de mesure plus éloignés des voies de circulation pour lesquels un échantillonnage s'est fait pendant une période d'une heure (sauf au point no 19). Ces mesures ont été effectuées en même temps que celles de plus longue durée de façon à pouvoir comparer ces niveaux entre eux. Elles ont permis, entre autres, de vérifier et de valider le modèle utilisé pour calculer les niveaux sonores à partir des données de circulation. Un relevé additionnel d'une heure a été pris face à l'institution "Hospital of Hope".

2.3.2 INSTRUMENTATION

L'instrumentation utilisée pour réaliser les relevés sonores consistait en:

sonomètre/analyseurs Larson Davis modèle 800B;

 calculateur/contrôleur HP71B avec logiciel d'analyse statistique;

imprimante HP Think Jet;

analyseur statistique Bruël & Kjaer modèle 4426;

sonomètre Bruël & Kjaer modèle 7006;

calibrateur Bruël & Kjaer;

anémomètre Turbo Meter;

psychrometer sling de Taylor;

caméra vidéo RCA.

Les véhicules ont été comptés par catégorie (automobile, camion intermédiaire, camion lourd) entre 10h00 et 11h00, pendant les relevés de 24 heures.

2.3.3 SIMULATION PAR ORDINATEUR

Les équations de base recommandées par le ministère des Transports pour la prédiction du bruit de la circulation routière sont tirées du document RD-77-108 du Federal Highway Administration des États-Unis et intitulé "FHWA Highway Traffic Noise Prediction Model" (Barry, 1978).

En champ libre, l'erreur moyenne du modèle en terme de déviation normalisée des différences entre les niveaux sonores prédits et les niveaux mesurés est de ± 2 dBA.

Ces équations ont été adaptées pour être traitées à l'aide de l'informatique. Le modèle de simulation par ordinateur est décrit dans le document FHWA-DP-58-1 "Noise Barrier Cost Reduction Procedure STAMINA 2.0/OPTIMA: User's Manual" du Federal Highway Administration des États-Unis (Bowlby et al., 1982).

À l'aide de la simulation par ordinateur, et en utilisant des données sur la topographie de la route, le volume de circulation et sa composition, la présence d'obstacles naturels, la distance des maisons par rapport à la route, et la vitesse affichée, il est possible de prédire le niveau de bruit généré par la circulation routière, et de calculer la réduction de bruit que procure des écrans antibruit de différentes hauteurs.

Des vérifications ont été faites pour ajuster les différents paramètres tels l'atténuation par le sol et les effets d'écrans des bâtiments.

2.4 ÉVALUATION DE LA PERTURBATION SONORE

Les résultats obtenus lors des relevés et des simulations ont été utilisés pour établir le degré et les zones de perturbation et pour identifier les secteurs d'intervention (zone sensible où le niveau est supérieur ou égal à 65 dBA Leq (24 heures)). Les secteurs soumis à des niveaux supérieurs à 55 et 60 dBA ont aussi été identifiés.

La perturbation sonore en terme de nombre de logements directement touchés et des impacts qui seraient susceptibles d'en découler sur les projets et affectation future dans la zone d'étude ont été quantifiés et qualifiés selon la grille d'évaluation de la qualité de l'environnement sonore adoptée par le ministère des Transports et présentée au tableau 1.

TABLEAU 1: GRILLE D'ÉVALUATION DE LA QUALITÉ DE L'ENVIRONNEMENT SONORE

ZONE DE CLIMAT SONORE	NIVEAU DE PERTURBATION
Leq (24h) ≥ 65 dBA	fort
60 dBA ≤ Leq (24h) < 65 dBA	moyen
55 dBA < Leq (24h) < 60 dBA	faible
Leq (24h) <u><</u> 55 dBA	acceptable
·	

Selon cette grille, lorsque la circulation empruntant une infrastructure routière du ministère génère un niveau de bruit équivalent sur 24 heures (Leq (24h)) supérieur ou égal à 65 dBA, le ministère des Transports du Québec reconnaît qu'il y a un problème de pollution sonore et tente d'apporter des correctifs.

2.5 ÉLABORATION DES MESURES CORRECTIVES

Dans les secteurs où la perturbation sonore pour les résidents est trop élevée, des mesures correctives pour abaisser les niveaux de bruit de la circulation ont été élaborées.

2.6 SIMULATION DU CLIMAT SONORE FUTUR

Utilisant le même modèle et les mêmes données de circulation de l'étape 3, les niveaux de bruit qui résulteraient de l'implantation des mesures correctives envisagées ont été ensuite calculés.

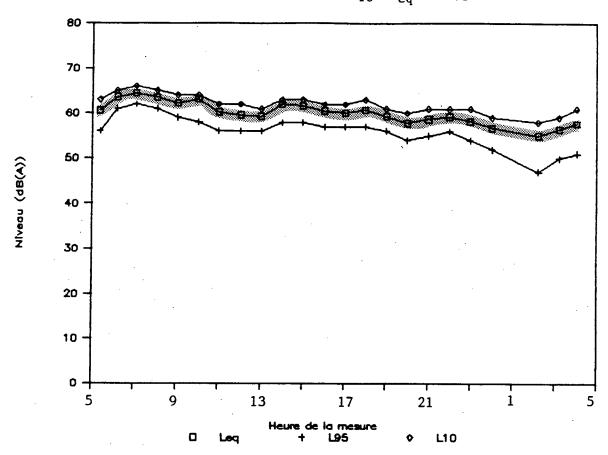
2.7 ÉVALUATION DE LA PERTURBATION SONORE FUTURE

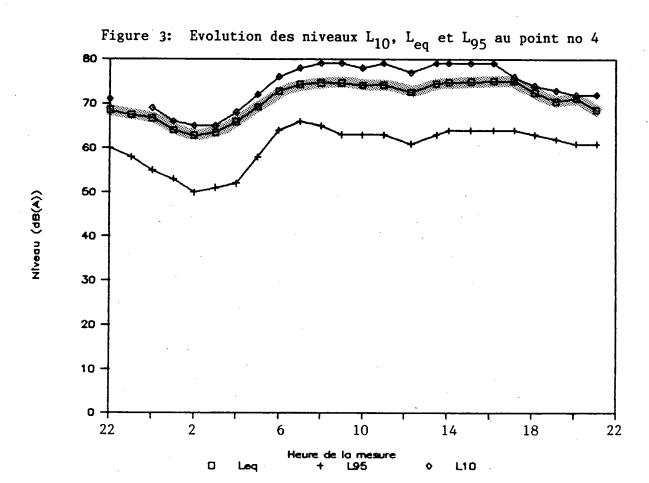
Pour évaluer l'efficacité des mesures correctives, un nouveau dénombrement des résidents subissant un climat sonore fortement, moyennement ou faiblement perturbé a été réalisé et les résultats obtenus ont été comparés avec la situation existante.

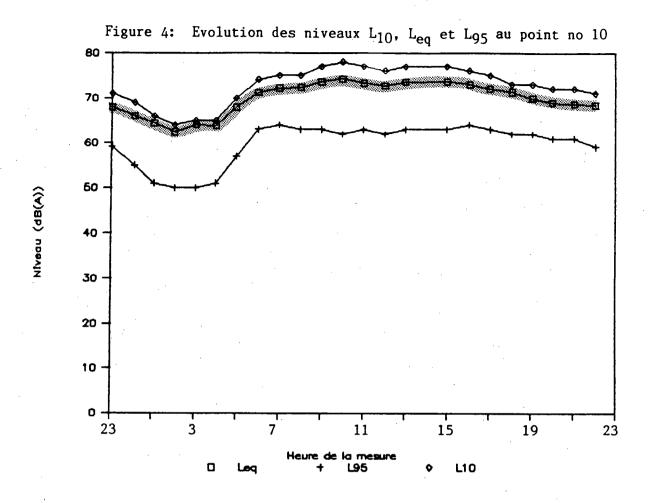
3.0 INVENTAIRE DU CLIMAT SONORE ACTUEL

3.1 RÉSULTATS DES CAMPAGNES DE MESURE

L'objet de ce chapitre est de donner une synthèse des principaux résultats afin que le lecteur puisse mieux connaître le climat sonore actuel. Les relevés sonores ont été réalisés les 9, 12, 13, 14, 15, 16, 19, 20 et 22 septembre 1988. La position approximative des points de mesure se retrouve sur les cartes 1 et 2. L'annexe 1 précise la position exacte et le numéro de chacun des points de mesure.


Les figures 2 à 5 présentent l'évolution des niveaux L_{10} , L_{95} et Leq en fonction de l'heure pour les mesures de 24 heures et les figures 6 à 9 présentent pour les mêmes points, la variation des niveaux L_1 , L_{50} et L_{99} . Comme il faut s'y attendre, c'est tôt le matin et tard le soir que les niveaux de bruit sont les plus faibles. On constate aussi que derrière la butte de terre (point no 1), les niveaux sonores sont beaucoup plus faibles qu'ailleurs.


Les niveaux sonores exprimés à l'aide d'un indicateur L_x où x est un chiffre, tel que L_{10} , L_{50} ou L_{99} , représentent une valeur en décibel où pendant x % du temps d'échantillonnage, l'intensité instantanée du bruit est supérieure à cette valeur. Par exemple, si $L_{10} = 70$ dBA, ceci signifie que pendant 10 % du temps d'échantillonnage le niveau est supérieur à 70 dBA. En général, L_{10} représente le niveau de bruit de pointe et L_{95} le niveau de bruit de fond.


Les figures 10 à 13 donnent la moyenne des niveaux équivalents pour différentes périodes d'une journée (jour, soir, nuit). Les niveaux sont donc de l'ordre de 60 dBA (59 à 61) au point no 1 et de l'ordre de 70 dBA (67 à 75) pour les autres points où les mesures de 24 heures ont été réalisées.

Le tableau 2 présente les résultats pour les autres points de mesure. On constate qu'il n'y a pas de différences importantes entre les niveaux mesurés aux divers points le long de la voie de service (rue Curatteau). Ces niveaux dépassent largement les 65 dBA. On constate aussi que les niveaux sonores décroissent considérablement dès que l'on se trouve à la hauteur de la rue Lepailleur. Les effets de la distance et du masquage des maisons semblent importants. Le problème de bruit est donc très prononcé pour les deux premières rangées de maisons.

Figure 2: Evolution des niveaux L_{10} , L_{eq} et L_{95} au point no 1

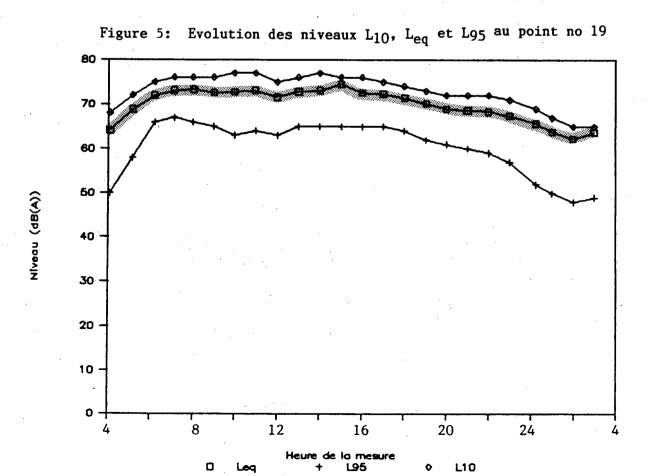
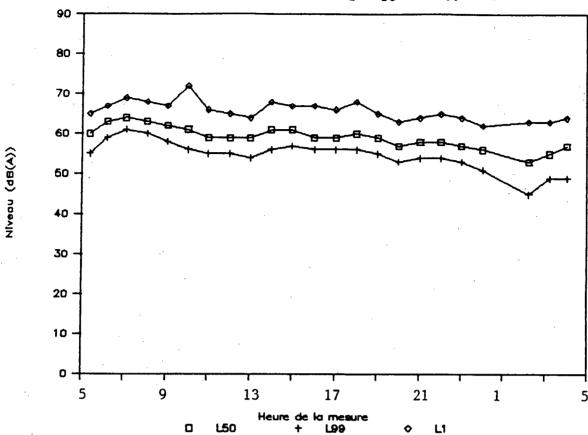
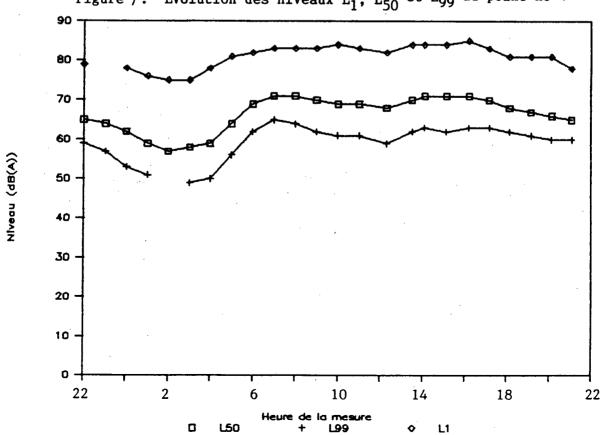
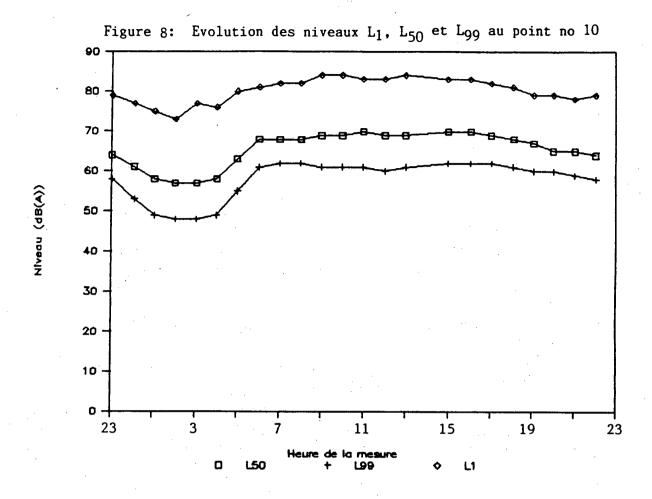
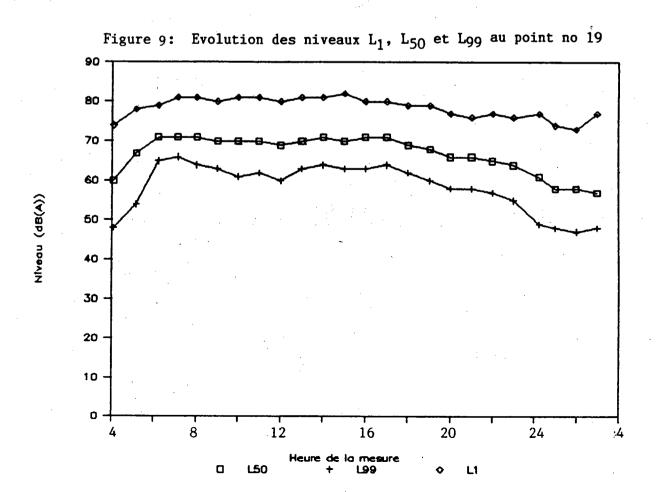
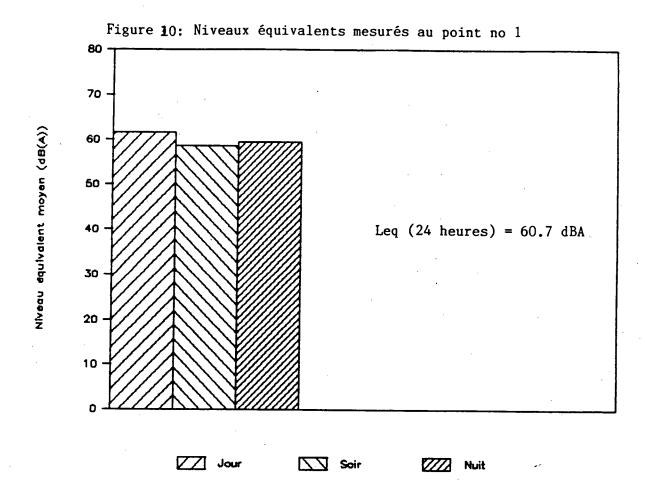
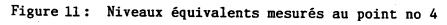
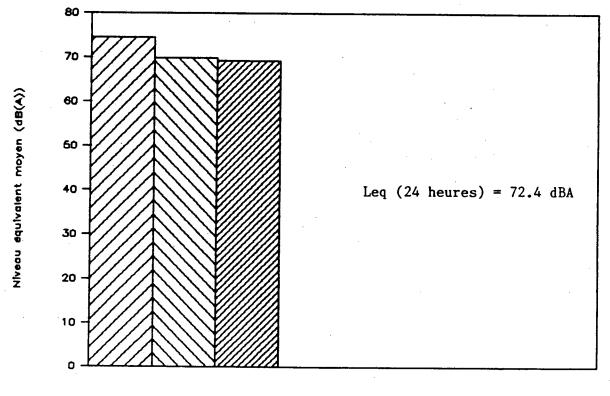
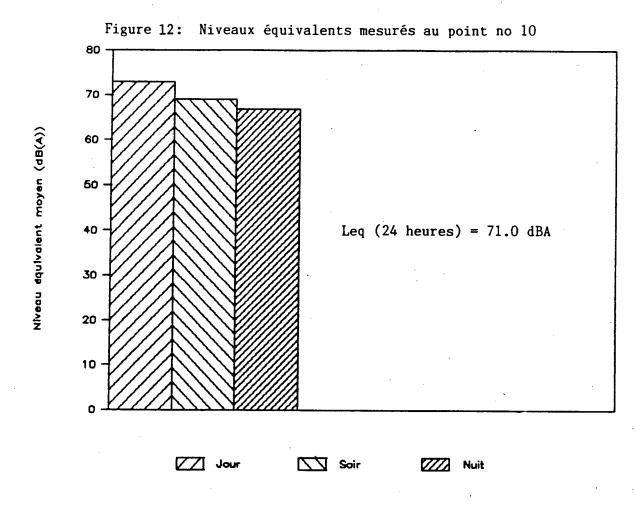


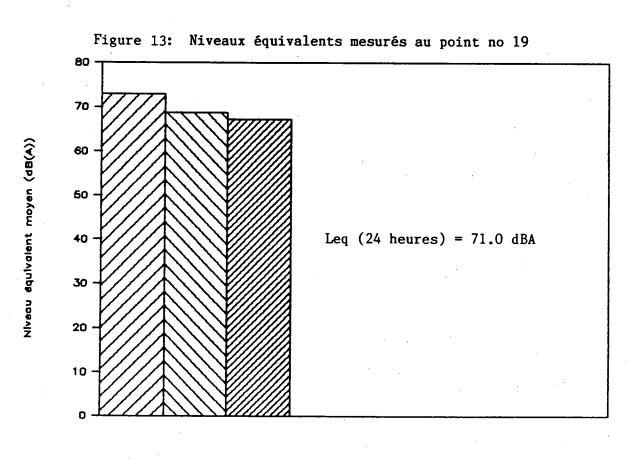
Figure 6: Evolution des niveaux L_1 , L_{50} , et L_{99} au point no 1


Figure 7: Evolution des niveaux L_1 , L_{50} et L_{99} au point no 4







ZZ Jour

William Nui

Z Jour

3.2 RÉSULTATS DES SIMULATIONS DU NIVEAU SONORE ACTUEL

3.2.1 VALIDATION DU MODÈLE

Une première série de simulations a été effectuée dans le but d'assurer la validité du modèle et des méthodes de calcul; les niveaux sonores ont été calculés aux emplacements des points de mesure.

Les coordonnées des différentes composantes (routes et écrans) ont été obtenues à partir de cartes à l'échelle 1:1000 produites par le Service de l'Habitation et de l'Urbanisme de la Ville de Montréal et par le ministère de l'Énergie et des Ressources du Québec ainsi qu'à partir de sections (coupes) à l'échelle 1:500 produites par Photosur inc. (annexe 2).

Les véhicules circulant sur les différentes routes ont fait l'objet d'un comptage entre 10h00 et 11h00 aux points de mesure de 24 heures (1, 4, 10 et 19). Dans la majorité des cas, les comptages ont été effectués à partir d'enregistrement vidéo. Trois types de véhicules ont été distingués dans ces comptages, soient les automobiles, camions intermédiaires et camions lourds. Les résultats des comptages se retrouvent à l'annexe 1. Les vitesses de circulation affichées sur les rues, les voies de service et l'autoroute sont de 50, 50 et 70 km/h respectivement. Cependant, les observations faites en circulant sur ces routes ont permis d'établir les vitesses réelles de circulation de 50, 60 et 90 km/h.

Toutes ces informations ont été utilisées pour calculer les niveaux de bruit. Le tableau 3 présente la comparaison entre les valeurs mesurées et celles calculées à partir des comptages de véhicules d'une durée d'une heure. Ces résultats montrent que le logiciel STAMINA permet de prédire correctement les niveaux de bruit produit par les routes.

TABLEAU 3: NIVEAUX DE BRUIT MESURÉS ET CALCULÉS AUX DIFFÉRENTS POINTS DE MESURE

POINT DE MESURE	Leq (H)	dBA
	MESURÉ	CALCULÉ
1	60,1	61,5
2	59,9	60,6
3	58,9	59,3
4	74,8	75,0
5	70,3	70,4
6	67,8	67,9
7	71,2	70,2
8	67,9	67,8
9	65,5	65,3
10	73,4	73,4
11	67,9	67,9
12	63,8	63,9
13	72,6	73,2
14	69,5	69,9
15	66,9	67,1
16	68,5	67,7
17	67,1	66,8
18	64,9	64,2
19	73,8	74,4
20A	70,3	70,7
20B	68,0	68,3
20C	68,2	68,5
20D	68,2	68,5
21	64,0	64,2

3.2.2 SIMULATION DU CLIMAT SONORE ACTUEL

Pour effectuer les calculs du climat sonore actuel, la zone d'étude a été divisée en cinq secteurs. Cette division a été nécessaire à cause des limitations quant aux nombres de routes et d'écrans imposés par le logiciel de calcul. Chacun des secteurs contient de 24 à 30 sections de route (chacune de ces sections est divisée en plusieurs tronçons) et de 12 à 18 récepteurs. Ces récepteurs, au nombre de 207, ont été positionnés de façon à faciliter le traçage de courbes isophones. La simulation a, par la suite, été reprise en éliminant les routes dont la contribution à tous les récepteurs était inférieure d'au moins 15 dBA à la contribution de la route la plus bruyante pour chacun des récepteurs. Cette simplification du problème n'affecte pas les résultats mais réduit de beaucoup le temps de calcul.

Les débits de véhicules nécessaires au calcul des niveaux sonores ont été obtenus du Service des projets du ministère des Transports. Les proportions d'automobiles, de camions intermédiaires et de camions lourds ont été adaptées à partir des comptages effectués pour la validation du modèle. Les vitesses de circulation utilisées sont celles ayant servi à la validation du modèle.

Les résultats de cette simulation sont détaillés à l'annexe 3; une synthèse des résultats est représentée sur les cartes 1 et 2 sous forme d'isocontours acoustiques. Ces cartes présentent également la contribution de chaque tronçon de route important.

Il devient alors possible d'identifier les tronçons qui posent un problème et auxquels des mesures correctives devraient être appliquées.

À partir de cette carte, il est possible de différencer cinq zones où les niveaux de bruit aux récepteurs excèdent 65 dBA.

- zone limitée par les rues Notre-Dame et Lafontaine, à la sortie du Tunnel Louis-H. Lafontaine (ISO 25 à 32);
- zone limitée par les rues Ontario et Souligny, comprenant la rue Tellier (ISO 18 à 24);
- zone limitée par les rues Hochelaga et Sainte-Claire (ISO 13 à 17);

- zone limitée par les rues Sainte-Claire et Sherbrooke (ISO 8 à 12);
- zone s'étendant de la rue Sherbrooke à Ville d'Anjou (ISO 1 à 7).

L'implantation d'un écran antibruit est problématique dans la zone limitée par les rues Hochelaga et Sainte-Claire. Comme on peut le constater sur la carte 2, la rue Curatteau est une source de bruit importante dans cette zone. L'espace entre les résidences et la rue Curatteau est insuffisant pour y installer un écran antibruit.

Toutefois, l'installation d'un écran antibruit entre la rue Curatteau et l'autoroute 25, dans le but d'atténuer le bruit de l'autoroute 25, pourrait entraîner une certaine diminution des niveaux sonores. La moyenne du niveau de bruit des récepteurs, situés près des résidences de cette zone les plus rapprochées de l'autoroute 25, est de 71 dBA.

3.2.3 SIMULATION DE LA RUE HONORÉ-BEAUGRAND

Afin de déterminer la contribution du bruit émis par la circulation sur la rue Honoré-Beaugrand et de mieux connaître les conséquences d'un traitement acoustique appliqué à l'autoroute 25, des simulations ont été réalisées le long de la rue Honoré-Beaugrand.

Pour cette simulation, seule la rue Honoré-Beaugrand était considérée; les débits de véhicules étaient tirés des données du Ministère et la vitesse de circulation était de 50 km/h. Les résultats détaillés pour tous les récepteurs sont présentés à l'annexe 4. Le tableau 4 compare les contributions de l'autoroute 25 et de la rue Honoré-Beaugrand (dans ou près de la première rangée de maisons par rapport à la rue Honoré-Beaugrand).

Il apparaît que les niveaux de bruit des deux routes, (autoroute 25 et rue Honoré-Beaugrand), sont du même ordre de grandeur aux abords de la rue Honoré-Beaugrand ou que le bruit provenant de l'autoroute est inférieur à celui de la rue Honoré-Beaugrand. Un traitement acoustique le long de l'autoroute 25 ne sera donc pas perceptible à la hauteur de la rue Honoré-Beaugrand.

TABLEAU 4: NIVEAU DE BRUIT DE L'AUTOROUTE 25 ET DE LA RUE HONORÉ-BEAUGRAND AUX ABORDS DE LA RUE HONORÉ-BEAUGRAND

	Leq (h) (dBA)		
RÉCEPTEUR ⁽¹⁾	AUTOROUTE 25 ⁽²⁾	HONORÉ-BEAUGRAND	
ISO 8,8	64,0	64,0	
ISO 11,6	58,0	62,0	
ISO 16,6	56,7	61,0	
ISO 17,6	57,2	62,0	
ISO 18,6	61,7	63,0	
ISO 19,6	56,4	64,0	

- (1) Les axes de positionnement des récepteurs considérés dans le modèle de prévision STAMINA 2.0 sont précisés sur les cartes 1 et 2 (pages 26 et 27).
- (2) En excluant le niveau de bruit provenant de la rue Hochelaga le cas échéant.

3.3 ÉVALUATION DE LA PERTURBATION SONORE ACTUELLE SUR LA POPULATION RÉSIDANTE

3.3.1 DESCRIPTION DU CARACTÈRE DU MILIEU

La zone d'étude s'insère dans un contexte urbain dont la fonction résidentielle à basse densité prédomine. Cette zone d'habitation est formée par les secteurs suivants:

- A3: maisons isolées ou jumelées, deux étages, un seul logement;
- A4: maisons isolées ou jumelées, un ou deux étages, un seul logement;
- B1: maisons isolées ou jumelées, deux étages, deux logements maximum;
- maisons isolées, deux étages, trois logements maximum;
 maisons jumelées, deux étages, deux logements maximum;
- C1: maisons isolées ou jumelées, deux étages, trois logements maximum;
- D1: . maisons isolées, deux étages, un ou plusieurs logements; . maisons contigues, deux étages, deux logements
 - maximum; deux etages, deux logements
- D2: maisons isolées, deux ou trois étages, un ou plusieurs logements:
 - maisons contiguës, deux ou trois étages, deux ou trois logements maximum respectivement;
- D3: . maisons isolées ou jumelées, deux ou trois étages, un ou plusieurs logements;
 - maisons contigues, deux ou trois étages, trois ou cinq logements maximum respectivement;

Il a été repéré un seul secteur résidentiel à densité moyenne (D3), lequel se retrouve sur la rue Souligny.

Les secteurs de commerce sont situés sur les axes routiers suivants:

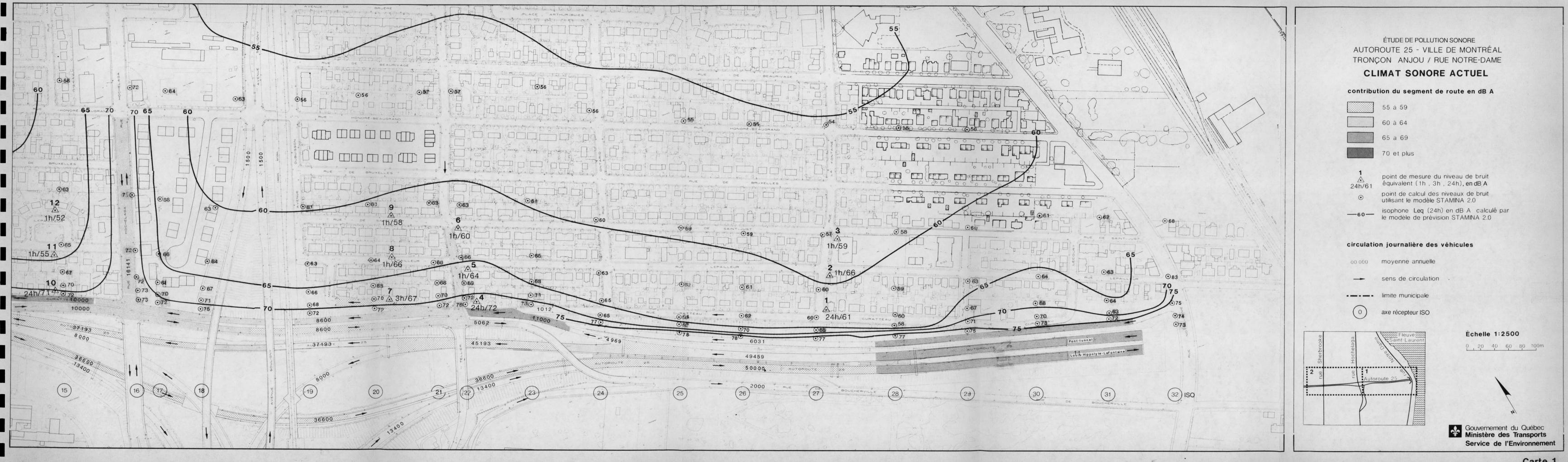
- rue Ontario et rue Marseille Classe I 2 bâtiments de deux étages;
- rue Hochelaga Classe II 50 bâtiments de dix-huit pieds (18') à cinquante pieds (50') de hauteur;
- rue Sherbrooke Classe I 3 bâtiments de trois étages.

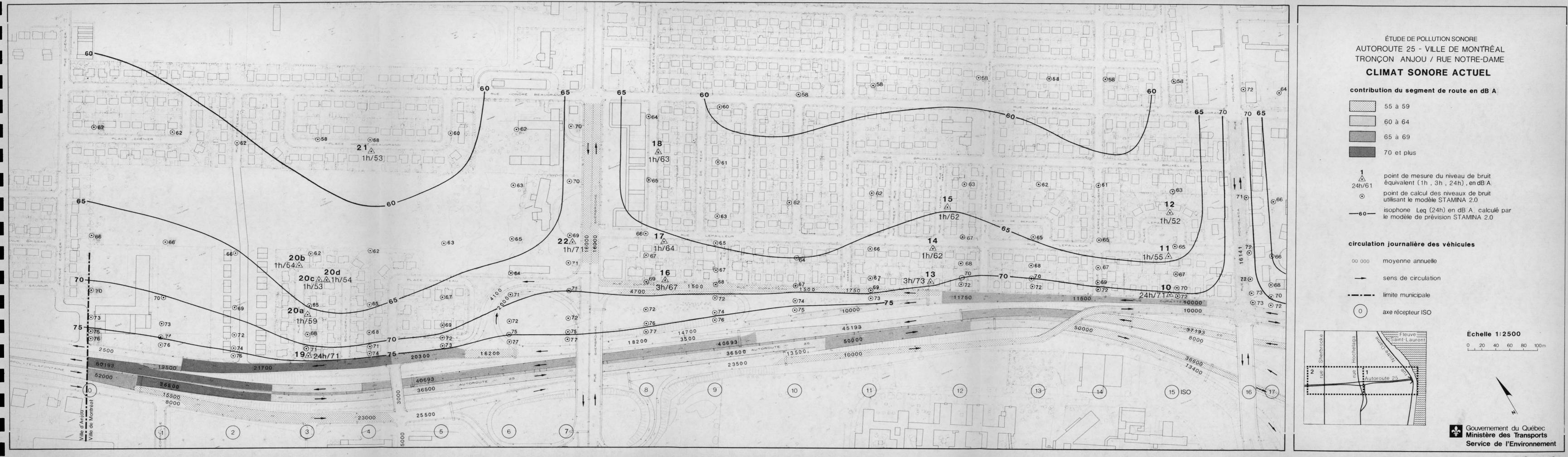
Les cartes 3 et 4 illustrent les composantes physiques du milieu récepteur ainsi que le nombre de résidents affectés par la pollution sonore générée par l'autoroute 25 et ses voies de service.

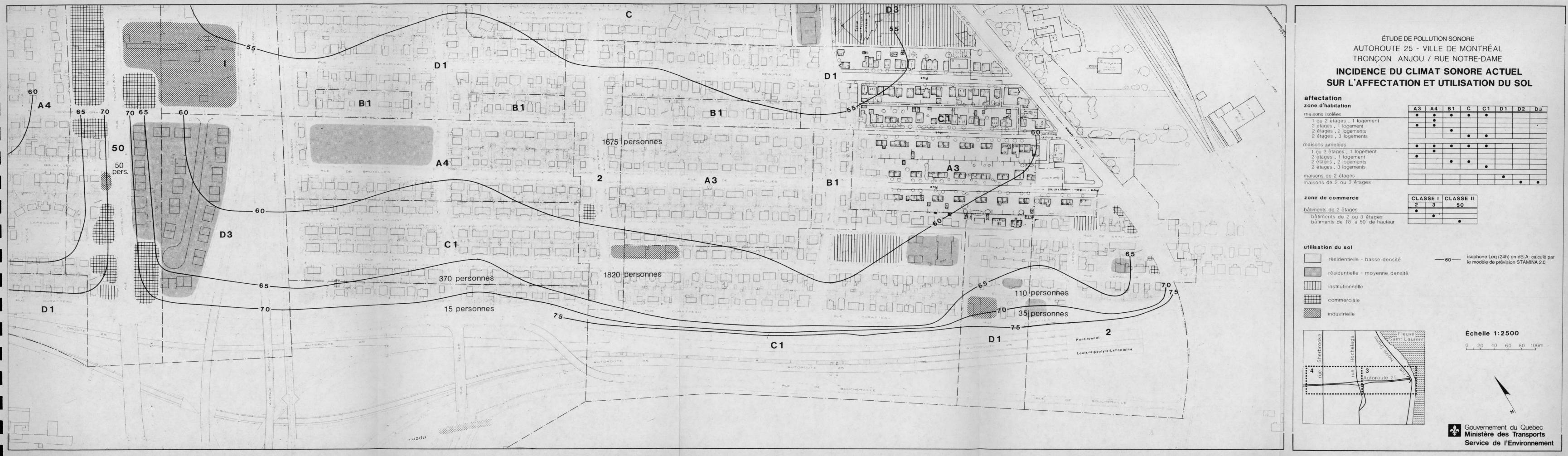
3.3.2 ÉVALUATION DE LA PERTURBATION SONORE ACTUELLE SUR LA POPULATION RÉSIDANTE

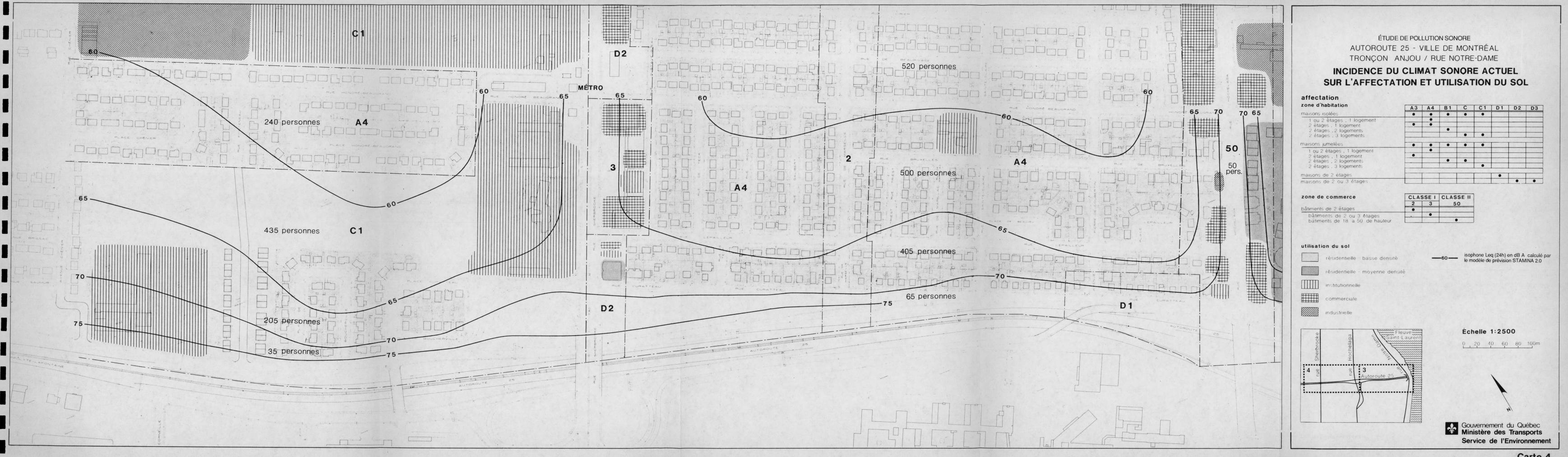
La perturbation sonore actuelle en terme de nombre de résidents directement touchés par le bruit provenant de l'autoroute 25 a été quantifiée et qualifiée au tableau 5. Il tient compte également de la perturbation sonore qui serait susceptible d'en découler sur les projets et l'affectation future à l'intérieur de la zone d'étude.

En fait, il est prévu une augmentation probable du nombre de résidents sur les terrains vacants situés sur la rue Fonteneau. Cette prévision, basée sur le règlement de zonage actuel de la Ville de Montréal, signifie une augmentation de 350 résidents environ.


Ainsi 6 480 personnes seraient atteintes par un niveau de perturbation sonore, au-delà du niveau acceptable 55 dBA. Parmi eux, 20 % se trouvent dans les zones dont le niveau sonore est fortement et très fortement perturbé, c'est-à-dire au-delà de 65 dBA. Ces 1 290 résidents se situent dans les secteurs suivants:


- 145 résidents situés entre les rues Notre-Dame et Lavaltrie (11 %);
- 435 résidents situés entre les rues Ontario et Hochelaga (34 %);
- 470 résidents situés entre les rues Hochelaga et Sherbrooke (36 %);
- 240 résidents situés aux environs de la rue Boucherville (19 %).


TABLEAU 5: ÉVALUATION DE LA PERTURBATION SONORE ACTUELLE SUR LES RÉSIDENTS


NOM	IBRE DE RÉSIDI (2,6/log.)	ENTS	ZONE DE CLIMAT	NIVEAU DE	
ACTUEL	FUTUR*	TOTAL	SONORE ACTUEL	PERTURBATION SONORE	
200		200	70 dBA et plus	Très fort	
1 015	75	1 090	65 dBA à 70 dBA	Fort	
2 505	250	2 755	60 dBA à 65 dBA	Moyen	
2 410	25	2 435	55 dBA à 60 dBA	Faible	

^{*} Prévision concernant la zone en développement située sur la rue Fontenau, basée sur le règlement de zonage actuel.

Л

MESURES CORRECTIVES

4.0 MESURES CORRECTIVES

4.1 TYPES DE CORRECTIFS ENVISAGEABLES

Il importe, en premier lieu, de rappeler que le bruit provenant des voies de service le long de l'autoroute contribue de façon importante au niveau sonore existant aux premières rangées de maisons. En fait, en maints endroits, la contribution des voies de service est comparable à celle de l'autoroute. Cela apparaît clairement sur les cartes 1 et 2 où l'on retrouve la contribution de chacun des segments de route.

Cette situation est due aux faits qu'il y a beaucoup de circulation sur ces voies et que ces dernières sont très près des résidences. Également, la proportion importante de camions contribue à détériorer le climat sonore.

À cause de cette situation, les mesures correctives de réduction du bruit doivent permettre de réduire à la fois le bruit de l'autoroute et celui des voies de service. Il existe essentiellement trois types de correctifs envisageables. Ce sont l'implantation d'écrans antibruit entre la voie de service et les résidences les plus près, le réaménagement des voies de circulation pour éloigner le trafic des résidences ou pour permettre l'installation d'écrans antibruit et enfin des mesures visant la réduction du trafic sur les voies de service.

4.2 CRITÈRES DE CONCEPTION

Deux critères ont été établis par le ministère des Transports pour calculer la hauteur des écrans et assurer l'efficacité des mesures correctives: le premier stipule que le niveau de bruit doit être inférieur à 65 dBA après l'implantation des correctifs et le second demande que ces correctifs amènent une réduction minimale du niveau de bruit de 7 dBA par rapport au niveau actuel, à la première rangée de maisons attenantes à l'infrastructure routière.

4.3 IMPLANTATION D'ÉCRANS ANTIBRUIT

L'état actuel des voies de circulation permet d'implanter des écrans entre les voies de circulation et les résidences à six endroits différents. Il s'agit:

Écran no 500: Il est situé entre la voie de service et la rue Curatteau et il joint les buttes de terre existantes situées au sud de la rue Lecourt et au nord de la rue Lavaltrie. On le retrouve sur la carte no 5.

Écran no 20: Il longe la voie de service et débute à la rue Souligny ouest pour se terminer à la rue Hochelaga. On le retrouve aussi sur la carte no 5.

Écran no 604: Il protège le secteur situé sur la place Curatteau.
Il longe la rue de Boucherville et la bretelle
d'accès à la voie de service nord de la rue
Sherbrooke ouest. On le retrouve sur les cartes
nos 6, 7, 8 et 9.

Écrans nos 802 et 803:

L'écran 803 débute au sud de la rue Sherbrooke, à l'intérieur du terre-plein de la bretelle d'accès à la voie de service et se termine à la courbe de la bretelle située au sud de la rue de Teck. L'écran 802 est le prolongement de l'écran 803. Il débute de l'autre côté de la courbe de la bretelle et se termine tout juste à la hauteur de la rue Sainte-Claire. Ils sont visibles sur les cartes nos 6 et 7.

Écran no 709: Il est situé en bordure ouest de la rue Curatteau. Il débute à la rue Sherbrooke et se termine à la hauteur de la rue Sainte-Claire (cartes nos 8 et 9).

Écran no 901: Il est situé en bordure ouest de la rue Curatteau. Il débute à la rue Sainte-Claire et se termine à la hauteur de la rue Hochelaga (cartes 7 et 9). Pour l'implantation des écrans nos 709 et 802, il est supposé que la bande centrale séparant la voie de service de la rue Curatteau sera prolongée jusqu'au sud de la rue Sainte-Claire, ce qui implique un réaménagement mineur.

4.4 RÉAMÉNAGEMENT DE CERTAINES VOIES DE CIRCULATION

Les réaménagements proposés dans le cadre de cette étude permettent l'implantation de nouveaux écrans antibruit et/ou la diminution du trafic sur les voies de service. Ces réaménagements sont:

- séparation de la voie de service direction nord de la rue Curatteau à la hauteur de la rue Tellier et implantation des écrans suivants:
 - écran no 501: il est situé entre la rue Curatteau et la voie de service. Il débute à la hauteur de la rue Tellier et se termine au sud de la

rue Ontario (carte no 5);

 écran no 502: il longe la voie de service et se situe entre la rue Tellier et le chemin de fer du Canadien National au sud de la rue Souligny

(carte 5);

- séparation de la voie de service nord de la rue Curatteau à la hauteur de la rue Tellier et fermeture de la rue Tellier entre la voie de service et la rue Curatteau. Dans ce cas, il y aurait possibilité d'implanter un écran longeant la voie de service. L'écran débuterait à la rue Ontario et se terminerait à la hauteur du chemin de fer au sud de la rue Souligny;
- déviation de la rue Curatteau sur la rue de Teck et aménagement d'un accès à la rue Sherbrooke est à partir de la bretelle d'accès située au nord de la rue Sherbrooke. Cette modification permettrait de réduire le débit de véhicules sur la rue Curatteau. On pourrait alors implanter deux écrans sur les buttes de terre entre la voie de service et les résidences de part et d'autre de la bretelle d'accès à la voie de service;

fermeture de la rue Curatteau au sud de la rue Sherbrooke et aménagement d'une boucle demi-tour. Aménagement d'une bretelle d'accès à la rue Sherbrooke à partir de la voie de service nord. Remplacement de la bretelle d'accès à la voie de service nord pour la rue Sherbrooke est (au sud de la rue Sherbrooke) par une voie d'accès à la bretelle joignant la rue Sherbrooke ouest et la voie de service nord. Ces modifications permettraient, comme dans le cas précédent, de réduire le débit de véhicules sur la rue Curatteau et d'implanter des écrans antibruit.

Trois des aménagements précédemment cités ont été éliminés après avoir obtenu les résultats des simulations des niveaux sonores. Il s'agit de la fermeture de la rue Tellier et de la déviation et la fermeture de la rue Curatteau. Les simulations de niveaux sonores ont montré que dans le premier cas, il y avait très peu de différence entre les niveaux sonores résultant de ce réaménagement et ceux résultant de la séparation de la voie de service à la hauteur de Tellier. Dans les second et troisième cas, la réduction du bruit obtenue était comparable ou inférieure à celle obtenue après l'insertion d'écrans antibruit entre Sainte-Claire et Sherbrooke et ce, sans réaménagement géométrique. De plus, ces deux dernières solutions créaient des contraintes à la circulation.

D'autres hypothèses de réaménagement ont été étudiées par le service des Projets de Montréal du ministère des Transports du Québec, lesquelles furent rejetées pour des considérations techniques ou économiques.

Pour les besoins de l'étude, la zone de travail a été séparée en deux. La zone 1 s'étend de la rue Notre-Dame à la rue Hochelaga tandis que la zone 2 s'étend de la rue Hochelaga jusqu'aux limites de ville d'Anjou. Suite à l'élimination de certains réaménagements, la zone 1 comprend un scénario possible et la zone 2 en comporte deux. En bref, ces scénarios se décrivent ainsi:

Zone 1:

scénario 1: séparation de la voie de service nord et de la rue Curatteau à la hauteur de Tellier et implantation des écrans nos 500, 501, 502 et 20 (carte no 5);

Zone 2:

scénario 2: aménagement des écrans nos 604, 802, 803 et 901 sans modification de la géométrie des voies de circulation entre la rue Hochelaga et les limites de ville d'Anjou (cartes nos 6 et 7);

scénario 3: aménagement des écrans nos 604, 709 et 901 sans modification de la géométrie des voies de circulation entre la rue Hochelaga et les limites de ville d'Anjou (cartes nos 8 et 9).

4.5 RÉDUCTION DU TRAFIC SUR LES VOIES DE SERVICE

Plusieurs résidences sont rapprochées ou doivent avoir accès à la voie de service ce qui empêche toute installation d'écrans antibruit. Cette situation se produit au nord de place Curatteau. La seule mesure de réduction du bruit qui pourrait s'appliquer à cet endroit consisterait à réduire le trafic routier sur la voie de service. Pour vérifier le potentiel de réduction du bruit attribuable à une telle diminution de trafic, le ministère des Transports a réalisé des simulations en réduisant le nombre de véhicules sur la voie de service. Les résultats de ces simulations sont discutés à la section 5.

5

SIMULATION DU CLIMAT SONORE FUTUR

5.0 SIMULATION DU CLIMAT SONORE FUTUR

5.1 IMPLANTATION D'ÉCRANS ANTIBRUIT

5.1.1 ZONE 1: DE LA RUE NOTRE-DAME À LA RUE HOCHELAGA

Un scénario n'impliquant aucune modification des voies de circulation n'a pu être élaboré pour l'ensemble de cette zone. Cependant, à l'extrémité sud de cette zone, il est possible d'implanter l'écran no 500 sans modifier les voies de circulation et à l'extrémité nord de la zone, l'écran no 20. L'implantation de ces écrans et les isophones résultant de leur implantation peuvent être visualisées sur la carte 5; l'écran no 500 apporte une atténuation des niveaux sonores pour les récepteurs ISO 27 à ISO 31 et l'écran no 20 pour les récepteurs ISO 17 et 18.

5.1.2 ZONE 2: DE LA RUE HOCHELAGA JUSQU'AUX LIMITES DE VILLE D'ANJOU

5.1.2.1 SCÉNARIO 2

A) IMPLANTATION DES ÉCRANS NOS 604, 802, 803

Les caractéristiques des trois écrans simulés dans ce scénario sont présentées au tableau 6. La valeur Z indique l'élévation du haut de l'écran et la valeur Z0 l'élévation de la base de l'écran.

Les résultats des simulations, effectuées avec les écrans nos 604 (place Curatteau), 802 (rue de Teck à la rue Sainte-Claire) et 803 (sud de Sherbrooke à la rue de Teck), sont présentés à la carte 6 sous forme de courbes isophones. La réduction du bruit la plus marquée est ressentie entre les rues Marseille et Sainte-Claire.

Le détail des résultats des simulations, pour les récepteurs localisés près des résidences les plus affectées, sont présentés au tableau 7.

TABLEAU 6: CARACTÉRISTIQUES DES ÉCRANS NOS 604, 802 et 803 POUR LE SCÉNARIO 2 DE LA ZONE 2, RUE HOCHELAGA À VILLE D'ANJOU

ÉCRAN	SECTION	LONGUEUR APPROX. (m)	Z (m)	ZO ⁽¹⁾ (m)	HAUTEUR (m)
604	1	51,8	34,9	29,9	5,0
	2	14,3	36,3	31,3	5,0
	3	95,3	36,8	31,8	5,0
803	1 2	157,2 26,9	37,4 37,4	32,4 32,4	5,0 5,0
802	1	49,5	34,5	29,5	5,0
	2	104,3	37,7	32,2	5,0
	3	84,2	36,5	31,0	5,5
	4	109,3	33,0	28,0	5,0

(1) ZO: Niveau du sol pour l'écran 604 et niveau de la butte actuelle pour les écrans 802 et 803.

TABLEAU 7: RÉSULTATS DES RÉDUCTIONS DES NIVEAUX DE BRUIT POUR LES RÉCEPTEURS LES PLUS AFFECTÉS - SCÉNARIO 2 -ÉCRANS NOS 604, 802 ET 803

RÉCEPTEUR	NIVEAU PRÉDIT (dBA)	RÉDUCTION (dBA)
ISO 5,3	62,8	6,6
ISO 9,4	65,6	2,4
ISO 10,3	63,4	3,4
ISO 11,3	59,1	7,8
ISO 12,1	67,4	4,7

Le niveau de bruit prédit est inférieur à 65 dBA pour les récepteurs situés au centre de la zone protégée par les écrans. Cependant, il excède 65 dBA pour les récepteurs situés entre les rues de Teck et Sherbrooke.

Deux facteurs expliquent l'efficacité moindre des écrans pour ce secteur. Le premier est la présence d'une partie de la bretelle, du même côté de l'écran que les habitations que l'on veut protéger. Les écrans n'apportent aucune réduction du bruit généré par ces routes. Une partie du bruit rayonné dans la direction de l'écran sera réfléchie par ce dernier vers la zone habitée. Les écrans antibruit no 802 et 803 devront être constitués de matériaux absorbants du côté de la rue Curatteau pour éviter que les réflexions sonores diminuent leur efficacité. Le second facteur limitant l'efficacité des écrans est la présence de l'ouverture laissée pour la bretelle.

B) IMPLANTATION DES ÉCRANS NOS 802, 803 ET 901

Pour le secteur comprit entre les rues Sherbrooke et Hochelaga, une simulation a été faite en présence des écrans nos 803 (sud de Sherbrooke à la rue de Teck), 802 (rue de Teck à la rue Sainte-Claire) et 901 (de la rue Sainte-Claire à la rue Hochelaga).

Les caractéristiques des écrans nos 802 et 803 ont été présentées au tableau 6. Le tableau 8 présente les caractéristiques de l'écran no 901 situé entre les rues Sainte-Claire et Hochelaga en bordure ouest de la rue Curatteau. La valeur Z indique l'élévation du haut de l'écran et la valeur Z0 l'élévation de la base de l'écran.

TABLEAU 8: CARACTÉRISTIQUES DE L'ÉCRAN NO 901 POUR LE SCÉNARIO 2 DE LA ZONE 2, RUE HOCHELAGA À VILLE D'ANJOU

ÉCRAN	SECTION	LONGUEUR APPROXIMATIVE (m)	Z (m)	ZO ⁽¹⁾ (m)	HAUTEUR (m)
901	1	80,6	34,3	29,3	5,0
	2	100,2	34,3	29,3	5,0
	3	91,4	33,0	28,0	5,0
	4	44,7	32,1	27,1	5,0

(1) ZO: Niveau du sol pour l'écran 901.

Les résultats des simulations, effectuées avec les écrans nos 803, 802 et 901, sont présentés à la carte 7 sous forme de courbes isophones. Le détail des résultats des simulations, pour les récepteurs localisés près des résidences les plus touchées sont présentés au tableau 9. La présence de l'écran no 901 affecte les niveaux de bruit des récepteurs ISO 10 à 15.

TABLEAU 9: RÉSULTATS DES RÉDUCTIONS DES NIVEAUX DE BRUIT POUR LES RÉCEPTEURS LES PLUS AFFECTÉS ENTRE LES RUES SHERBROOKE ET HOCHELAGA – ÉCRANS NOS 901, 802 ET 803 – SCÉNARIO 2

RÉCEPTEUR	NIVEAU PRÉDIT (dBA)	RÉDUCTION (dBA)
ISO 9,4	65,6	2,4
ISO 10,3	61,6	5,2
ISO 11,3	58,3	8,6
ISO 12,1	66,6	5,5
ISO 13,1	69,0	3,1
ISO 14,1	68,5	3,0
ISO 15,2	66,6	3,0

Le niveau de bruit prédit n'est pas inférieur à 65 dBA pour les récepteurs protégés par l'écran 901, soit les récepteurs ISO 13, 14 et 15. Ceci s'explique par la présence de plus de 10 000 véhicules par jour sur la rue Curatteau située entre les premières résidences et l'écran. La diminution des niveaux de bruit entre les rues Hochelaga et Sainte-Claire est d'au plus, 3 dBA. Pour obtenir une réduction du bruit supérieure, il faudrait diminuer de façon importante les débits sur cette portion de la rue Curatteau. L'ajout d'absorbant à l'écran no 901 n'augmenterait pas son efficacité acoustique mais permettrait d'éviter que les réflexions sonores diminuent son efficacité.

La présence de l'écran no 901 permet par contre d'augmenter la réduction des niveaux de bruit des récepteurs ISO 10, 11 et 12 et ce, de 1 à 2 dBA.

5.1.2.2 SCÉNARIO 3

A) IMPLANTATION DES ÉCRANS NOS 604 et 709

Le détail des caractéristiques des écrans simulés dans ce scénario est présenté au tableau 10.

TABLEAU 10: CARACTÉRISTIQUES DES ÉCRANS NOS 604 ET 709 POUR LE SCÉNARIO 3 DE LA ZONE 2, RUE HOCHELAGA À VILLE D'ANJOU

ÉCRAN	SECTION	LONGUEUR APPROX. (m)	Z (m)	ZO ⁽¹⁾ (m)	HAUTEUR (m)
604	1	51,8	34,9	29,9	5,0
	2	14,3	36,3	31,3	5,0
	3	95,3	36,8	31,8	5,0
709	1	109,3	32,1	26,6	5,5
	2	92,6	33,5	28,0	5,5
	3	79,1	34,7	29,2	5,5
	4	74,2	35,9	29,9	5,5
	5	79,9	35,7	30,2	5,5
	6	67,7	36,0	30,5	5,5
	7	55,7	36,1	30,6	5,5

(1) ZO: Niveau du sol pour l'écran 604 et niveau de la rue Curatteau pour l'écran 709.

Les résultats des simulations, effectuées avec les écrans nos 604 (place Curatteau) et 709 (sud de la rue Sherbrooke à la rue Sainte-Claire), sont présentés à la carte 8 sous forme de courbes isophones. L'écran 709 étant continu, la réduction du niveau de bruit présente peu de variations le long de cet écran.

Le détail des résultats des simulations, pour les récepteurs localisés près des résidences les plus affectées, sont présentés au tableau 11.

TABLEAU 11: RÉSULTATS DES RÉDUCTIONS DES NIVEAUX DE BRUIT POUR LES RÉCEPTEURS LES PLUS AFFECTÉS, ÉCRANS NOS 604 ET 709 - SCÉNARIO 3

RÉCEPTEUR	NIVEAU PRÉDIT (dBA)	RÉDUCTION (dBA)
ISO 5,3	62,8	6,6
ISO 9,4	61,6	6,4
ISO 10,3	61,5	5,3
ISO 11,3	59,8	7,1
ISO 12,1	67,8	4,3

Le niveau de bruit prédit est inférieur à 65 dBA sauf pour le récepteur situé à l'extrémité sud de l'écran no 709. En moyenne l'écran no 709 permet d'obtenir une réduction de près de 7 dBA à la première rangée de maisons attenante à la route.

L'écran antibruit no 709 devra être constitué de matériau absorbant du côté de la rue Curatteau pour éviter que les réflexions sonores diminuent son efficacité.

B) IMPLANTATION DES ÉCRANS NOS 709 ET 901

Une simulation sonore supplémentaire a été effectuée pour le secteur comprit entre les rues Sherbrooke et Hochelaga et ce, en présence des écrans nos 709 (sud de la rue Sherbrooke à la rue Sainte-Claire) et 901 (de la rue Sainte-Claire à Hochelaga). Les caractéristiques des écrans nos 709 et 901 apparaissent respectivement aux tableaux 10 et 8.

Le tableau 12 présente les résultats de simulations pour les récepteurs localisés près de la première rangée de maisons entre les rues Sherbrooke et Hochelaga et ce, en présence des écrans 709 et 901. La carte 9 présente les résultats des simulations effectuées sous forme de courbes isophones.

TABLEAU 12: RÉSULTATS DES RÉDUCTIONS DES NIVEAUX DE BRUIT POUR LES RÉCEPTEURS LES PLUS AFFECTÉS ENTRE LES RUES SHERBROOKE ET HOCHELAGA, ÉCRANS NOS 709 ET 901 -SCÉNARIO 3

RÉCEPTEUR	NIVEAU PRÉDIT (dBA)	RÉDUCTION (dBA)
ISO 9,4	61,6	6,4
ISO 10,3	59,9	6,9
ISO 11,3	58,9	8,0
ISO 12,1	67,3	4,8
ISO 13,1	68,7	3,4
ISO 14,1	68,5	3,0
ISO 15,2	66,6	3,0

La réduction des niveaux de bruit est d'au plus 3 dBA pour les récepteurs protégés par l'écran no 901. Ceci est dû à la présence d'un débit important de véhicules sur la rue Curatteau entre les rues Sainte-Claire et Hochelaga.

L'ajout de l'écran no 901 permet toutefois d'accroître la réduction des niveaux sonores des récepteurs ISO 10, 11 et 12.

5.2 MODIFICATION DES VOIES DE CIRCULATION ET IMPLANTATION D'ÉCRANS ANTIBRUIT

5.2.1 ZONE 1: DE LA RUE NOTRE-DAME À LA RUE HOCHELAGA

Les caractéristiques des écrans entre les rues Notre-Dame et Hochelaga sont présentées au tableau 13. La valeur Z indique l'élévation du haut de l'écran et la valeur ZO le niveau du sol.

Les résultats sont illustrés sous forme de courbes isophones sur la carte 5 alors que le tableau 14 donne les détails pour les récepteurs situés près des résidences. Ce tableau donne aussi les résultats pour des résidents qui se situeraient à l'étage supérieur (6,0 mètres du sol).

Le niveau à tous les récepteurs du rez-de-chaussée est inférieur à 65 dBA. La réduction du bruit est d'au moins 7 dBA dans tous les cas sauf pour: le récepteur ISO 17.2 pour lequel l'écran no 20 ne suffit pas à masquer toutes les routes et pour le récepteur ISO 24.3 qui ne bénéficie que d'une réduction de 2 dBA. Dans ce dernier cas, le niveau de bruit actuel est faible comparé à celui des autres récepteurs. C'est pourquoi il est beaucoup plus difficile de le réduire.

Le tableau 14 nous permet également de constater que malgré l'installation d'écrans, le niveau de bruit à tous les récepteurs situés à la hauteur de l'étage est de beaucoup supérieur à 65 dBA. Il faudrait que la hauteur des écrans soit beaucoup plus grande pour permettre de réduire le bruit substantiellement pour ces résidents. Des simulations avec des hauteurs de 5,5 mètres ne donnaient que 1 à 3 dBA de réduction. Il ne semble pas possible de protéger efficacement les résidents des étages supérieurs avec des écrans en bordure des routes.

TABLEAU 13: CARACTÉRISTIQUES DES ÉCRANS ANTIBRUIT DE LA ZONE 1, RUE NOTRE-DAME À LA RUE HOCHELAGA

ÉCRAN	SECTION	LONGUEUR APPROX. (m)	Z (m)	ZO ⁽¹⁾ (m)	HAUTEUR (m)
500	1	90,2	16,1	12,1	4,0
	2	86,0	15,3	11,3	4,0
	3	12,4	15,6	11,6	4,0
20	1	104,0	23,8	19,8	4,0
501	1	153,6	18,9	14,9	4,0
	2	94,9	19,2	15,2	4,0
	3	16,5	19,9	15,9	4,0
	4	11,2	20,0	16,0	4,0
502	1	93,0	20,5	16,3	4,5 ⁽²⁾
	2	125,2	20,3	16,1	4,5 ⁽²⁾
	3	20,2	19,8	16,1	4,0 ⁽²⁾

(1) ZO: niveau du sol pour les écrans nos 501, 502 et 20. Niveau de la rue Curatteau pour l'écran no 500.

(2): hauteur pour fin de construction

NOTE: Écran no 500: situé entre les rues Lecourt et Lavaltrie

Écran no 501: situé entre les rues Tellier et Ontario

Écran no 502: situé entre les rues Tellier et Souligny

Écran no 20: situé entre les rues Souligny et Hochelaga

TABLEAU 14: RÉSULTATS DES RÉDUCTIONS DES NIVEAUX DE BRUIT POUR LES RÉCEPTEURS LES PLUS AFFECTÉS - ZONE 1

	REZ-DE-C	ÉTAGE	
RÉCEPTEUR	NIVEAU PRÉDIT (dBA)	RÉDUCTION (dBA)	NIVEAU PRÉDIT (dBA)
ISO 17,2	64,0	5,0	71,0
ISO 19,2	61,0	7,0	71,0
ISO 20,2	61,0	9,0	70,0
ISO 21,2	61,0	8,0	70,0
ISO 22,1	61,0	14,0	74,0
ISO 23,1	63,0	10,0	71,0
ISO 24,3	63,0	2,0	70,0

5.3 RÉDUCTION DU TRAFIC SUR LES VOIES DE SERVICE

Pour les endroits où l'installation d'écrans antibruit apparaît impossible (au nord de la place Curatteau) ou peu efficace (entre les rues Sainte-Claire et Hochelaga), il convenait d'examiner l'effet de la réduction du trafic sur les voies de service. Le niveau sonore aux résidents situés à ces endroits a été simulé en supposant qu'aucun véhicule ne circulait sur les voies de service. Les résultats sont présentés au tableau 15.

TABLEAU 15: RÉSULTATS DE LA SIMULATION AVEC TRAFIC NUL SUR LES VOIES DE SERVICE

RÉCEPTEUR	NIVEAU SONORE ACTUEL (dBA)	NIVEAU SONORE PRÉDIT (dBA)	RÉDUCTION (dBA)
ISO 0,2	75,0	75,0	0,0
ISO 1,1	76,0	76,0	0,0
ISO 2,1	76,0	75,0	1,0
ISO 3,1	73,0	68,0	5,0
ISO 4,1	74,0	70,0	4,0
ISO 13,1	72,0	70,0	2,0
ISO 14,1	72,0	67,0	5,0
ISO 15,1	72,0	67,0	5,0

Ces résultats obtenus avec un trafic nul constituent la situation la plus favorable et ne satisfont cependant, en aucun cas, les deux critères énoncés précédemment. Il apparaît donc qu'aucune diminution réaliste de trafic sur les voies ne permettra, à elle seule, une réduction du bruit qui satisfera les critères.

Toute réduction de débit devrait se faire en parallèle avec l'installation d'écrans entre l'autoroute et la voie de service pour obtenir une réduction intéressante du niveau sonore (près de 7 dBA).

5.4 ÉVALUATION DE LA PERTURBATION SONORE FUTURE SUR LA POPULA-TION RÉSIDANTE ACTUELLE ET FUTURE SELON LES DIVERS SCÉNARIOS

La perturbation sonore future en terme du nombre de résidents directement touchés par le bruit doit être qualifiée et quantifiée en fonction des trois scénarios présentés précédemment.

Pour ce faire, les nouvelles courbes isophones qui découleraient de ces scénarios ont été superposées sur les cartes d'affectation et d'utilisation du sol et la nouvelle répartition de la population touchée a été dénombrée. Pour illustrer l'efficacité acoustique des mesures correctives proposées, les courbes isophones telles qu'elles se présentent actuellement ont été également tracées.

Ainsi, les cartes 10, 11 et 12 présentent l'incidence du climat sonore futur sur l'affectation et l'utilisation du sol advenant que les scénarios 1, 2 ou 3 devaient être retenus.

Le tableau 16 présente le dénombrement des résidents qui seraient protégés advenant que les scénarios 1 et 2 ou 1 et 3 seraient retenus. Comme démontré sur ce tableau, la population actuellement touchée par un niveau de perturbation sonore au-delà de la limite acceptable, c'est-à-dire 55 dBA, est égale à 6 480 personnes, dont 1 290 (20 %) subissent un niveau sonore supérieur à 65 dBA.

Ainsi, le choix des scénarios 1 et 2 ou 1 et 3 permettrait de protéger environ 450 personnes qui subissent actuellement un niveau sonore supérieur à 65 dBA (tableau 16). Dans la zone de climat sonore moyennement perturbée 60 à 65 dBA, les scénarios 1 et 2 permettraient par ailleurs de protéger 975 personnes comparativement à 995 pour les scénarios 1 et 3 (tableau 16).

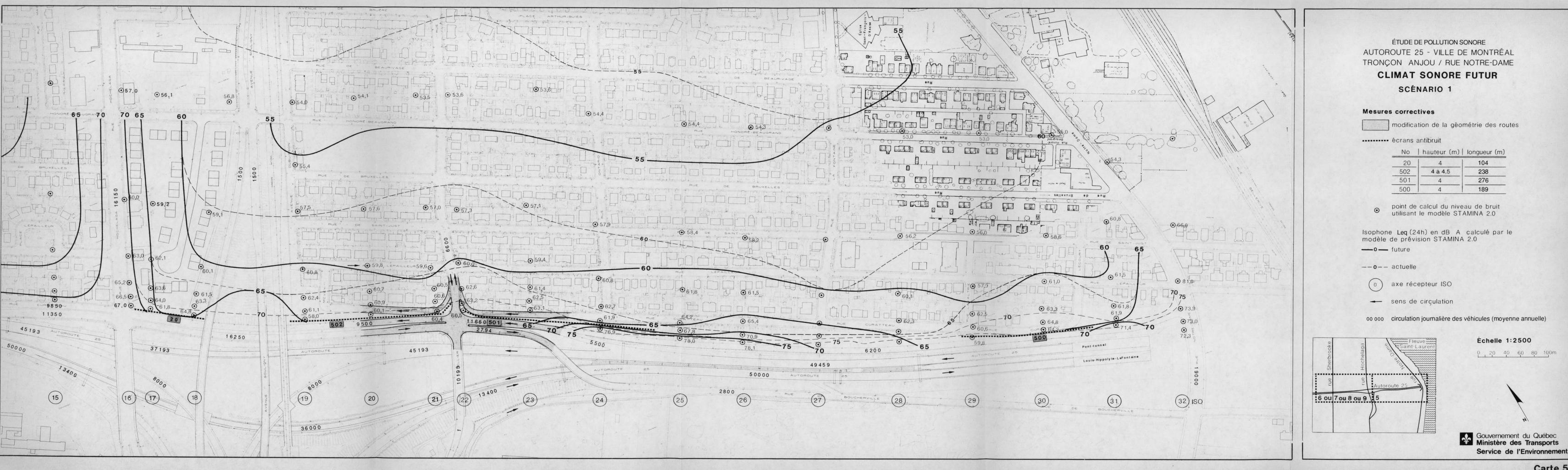
Les scénarios 1 et 2 ainsi que 1 et 3 sont équivalents pour les zones où le climat sonore se situe au-delà de 70 dBA, avec une réduction de 60 (30 %) du nombre de résidents touchés (tableau 16).

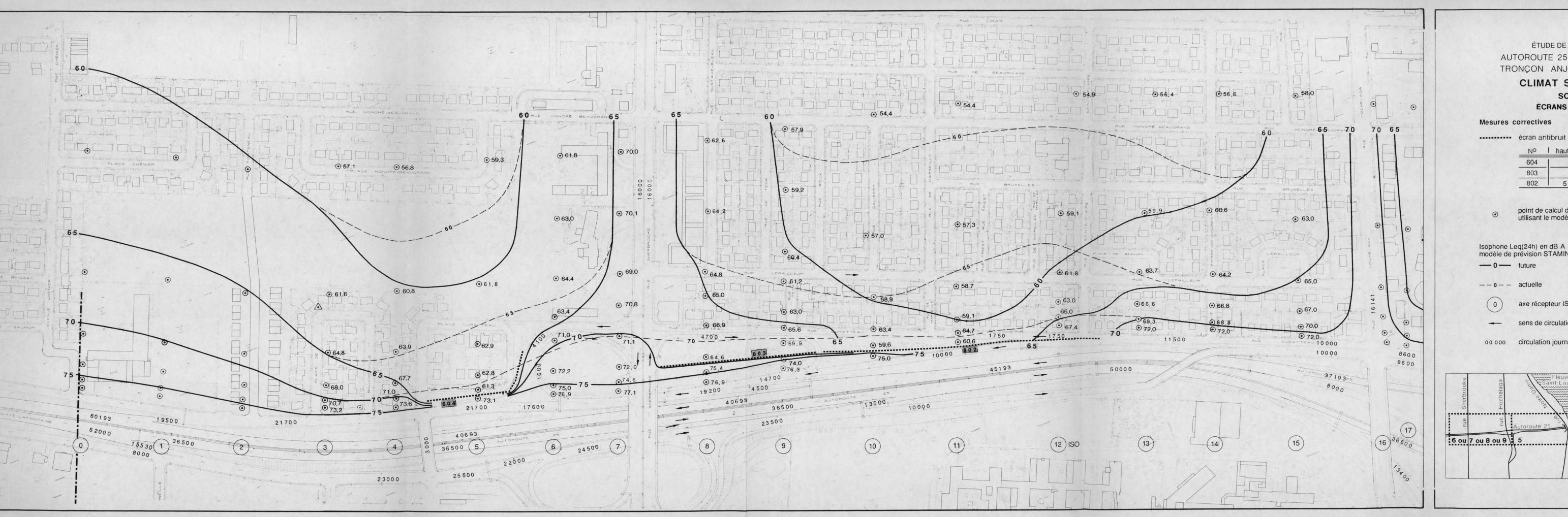
TABLEAU 16: EFFICACITÉ DES MESURES CORRECTIVES PROPOSÉES PAR LES SCÉNARIOS 1, 2 ET 3 POUR RÉDUIRE LA PERTURBATION SONORE SUR LES RÉSIDENTS

ZONE DE CLIMAT SONORE	NIVEAU DE PERTURBATION	NOMBRE DE RÉSIDENTS ⁽¹⁾ ACTUELLEMENT AFFECTÉS			NOMBRE DE RÉSIDENTS POTENTIELLEMENT AFFECTÉS							
					SCÉNARIOS 1 ET 2			SCÉNARIOS 1 ET 3				
		ACTUEL	FUTUR ⁽²⁾	TOTAL	ACTUEL	FUTUR	TOTAL	POPULATION PROTÉGÉE ⁽³⁾	ACTUEL	FUTUR	TOTAL	POPULATION PROTÉGÉE ⁽³⁾
Très fortement perturbée	70 dBA et plus	200	,	200	140		140	60	140		140	60
Fortement perturbée	65 dBA à 70 dBA	1 015	75	1 090	630	60	690	400	640	60	700	390
Moyennement perturbée	60 dBA à 65 dBA	2 505	250	2 755	1 590	190	1 780	975	1 570	190	1 760	995
Faiblement perturbée	55 dBA à 60 dBA	2 410	25	2 435	3 770	100	3 870	(1 435)	3 780	100	3 880	(1 445)
TOTAL:				6 480			6 480				6 480	

⁽¹⁾ Ces chiffres proviennent du tableau 5.

⁽²⁾ Prévision concernant la zone en développement située sur la rue Fontenau basée sur le Règlement de zonage actuel.


⁽³⁾ Considérant que les scénarios proposés visent une réduction du nombre de résidents très fortement ou fortement perturbés par le climat sonore actuel, il en résulte forcément une augmentation du nombre de résidents faiblement perturbés, nombre indiqué entre parenthèses.


Ils sont également presque équivalents pour les zones de climat sonore fortement perturbées, soit entre 65 et 70 dBA, avec une réduction de l'ordre de 36 % du nombre de résidents affectés (690-700 en comparaison avec 1 090 pour la situation actuelle).

Du point de vue du nombre de résidents protégés, les scénarios 1 et 2 ainsi que 1 et 3 sont, dans l'ensemble équivalent.

Il faut souligner que le dénombrement des résidents touchés par la pollution sonore ne tient pas compte de la présence de l'écran no 901 situé entre les rues Sainte-Claire et Hochelaga. Cet écran ne permet pas d'obtenir une réduction de bruit de 7 dBA à la première rangée de maisons. Toutefois, la présence de l'écran no 901 pour les scénarios 2 et 3 permettrait de réduire de 50 % le nombre de résidents touchés au-delà de 70 dBA et d'environ 40 % le nombre de résidents situés dans la zone de climat sonore fortement perturbée (entre 65 et 70 dBA).

Donc, la présence de l'écran no 901 permet d'augmenter l'efficacité exprimée en nombre de résidents affectés, des scénarios 2 et 3, de 20 % en zone de climat sonore très fortement perturbée (au-delà de 70 dBA) et de 4 % en zone de climat sonore fortement perturbée (entre 65 et70 dBA).

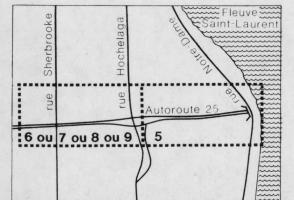
ÉTUDE DE POLLUTION SONORE

AUTOROUTE 25 - VILLE DE MONTRÉAL TRONÇON ANJOU / RUE NOTRE-DAME

CLIMAT SONORE FUTUR SCÉNARIO 2 ÉCRANS 604, 802 ET 803

Mesures correctives

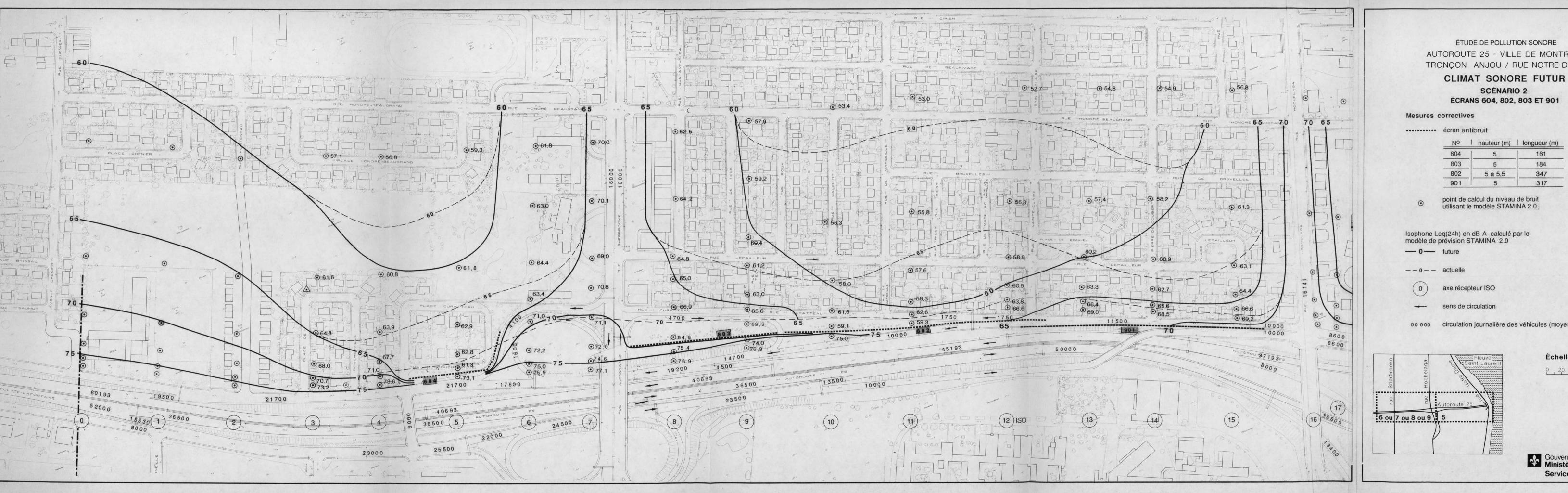
No	hauteur (m)	l longueur (m)
604	5	161
803 5		184
802	5 à 5,5	347


point de calcul du niveau de bruit utilisant le modèle STAMINA 2.0

Isophone Leq(24h) en dB A calculé par le modèle de prévision STAMINA 2.0

axe récepteur ISO

sens de circulation


00 000 circulation journalière des véhicules (moyenne annuelle)

Échelle 1:2500

0 20 40 60 80 100m

Gouvernement du Québec Ministère des Transports Service de l'Environnement

ÉTUDE DE POLLUTION SONORE AUTOROUTE 25 - VILLE DE MONTRÉAL

TRONÇON ANJOU / RUE NOTRE-DAME

SCÉNARIO 2 ÉCRANS 604, 802, 803 ET 901

écran antibruit

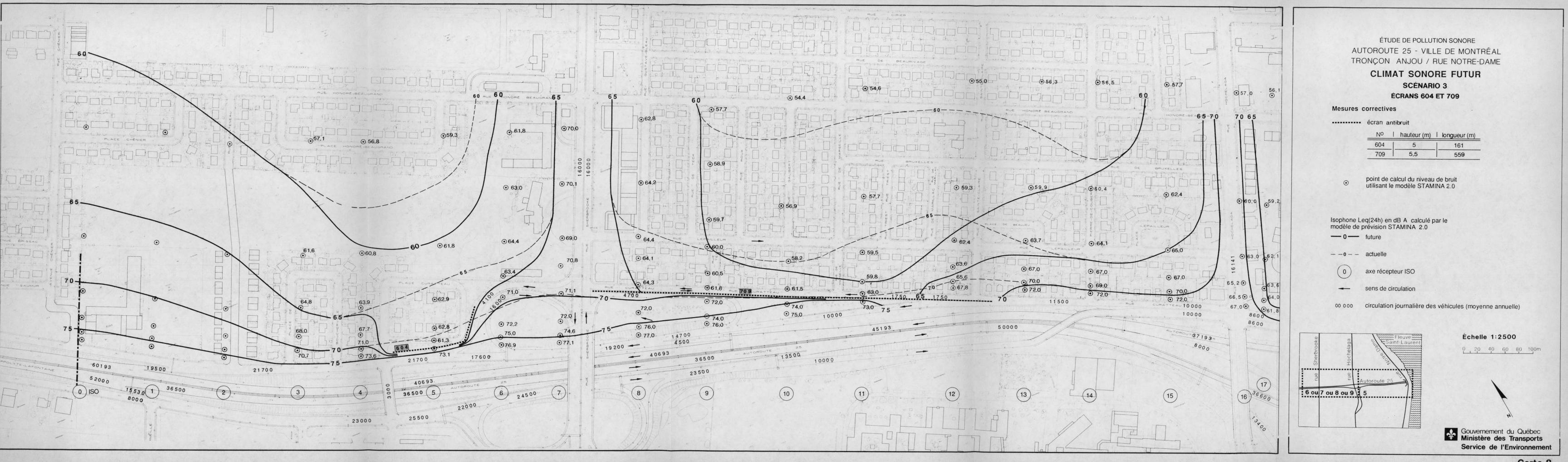
No	hauteur (m)	l longueur (m)		
604	5	161		
803	5	184		
802 5 à 5,5		347		
901	5	317		

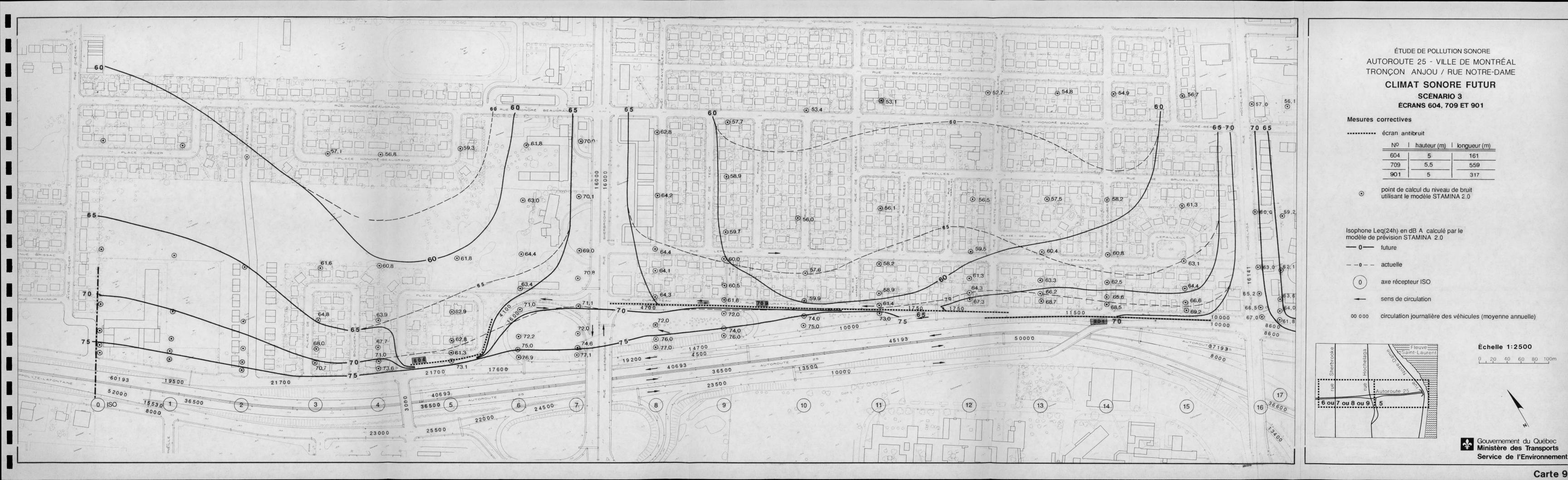
point de calcul du niveau de bruit utilisant le modèle STAMINA 2.0

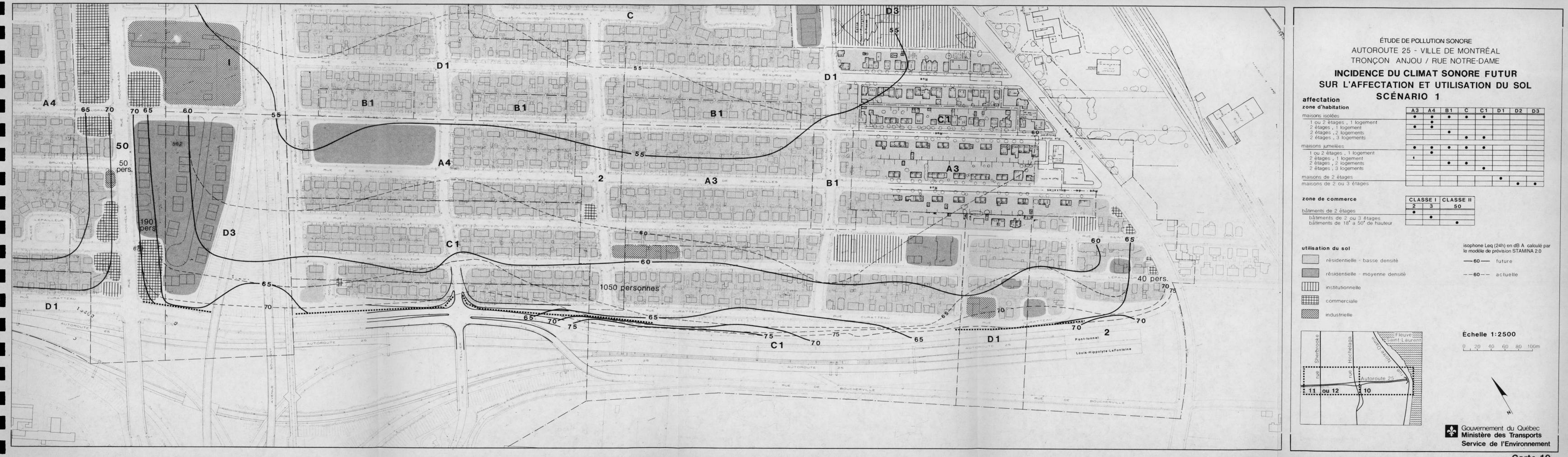
Isophone Leq(24h) en dB A calculé par le modèle de prévision STAMINA 2.0

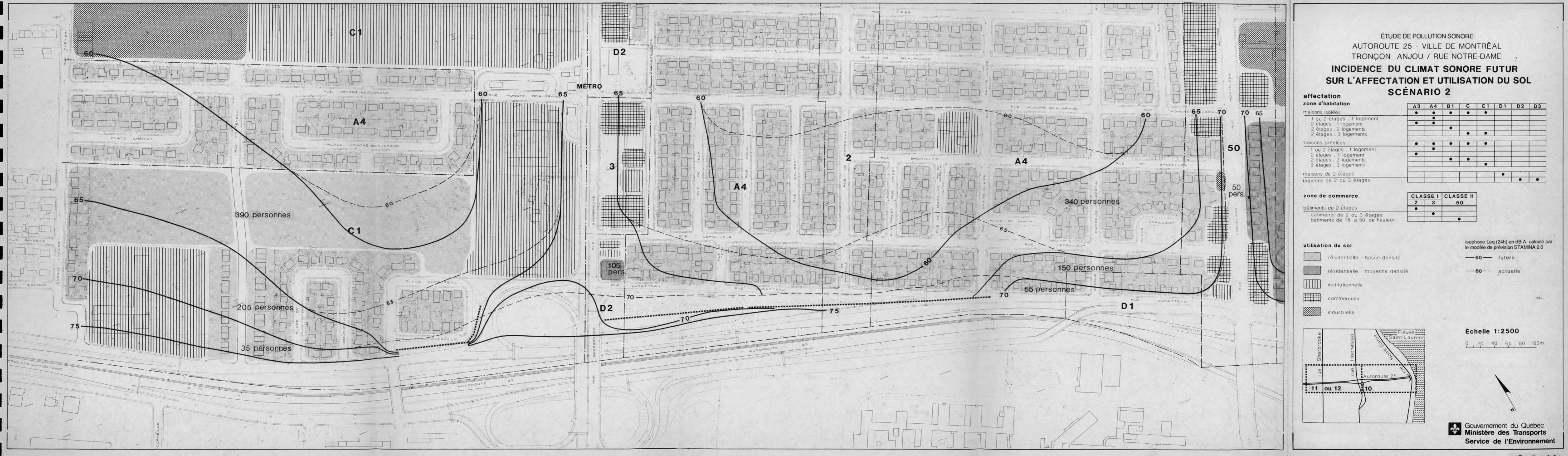
axe récepteur ISO

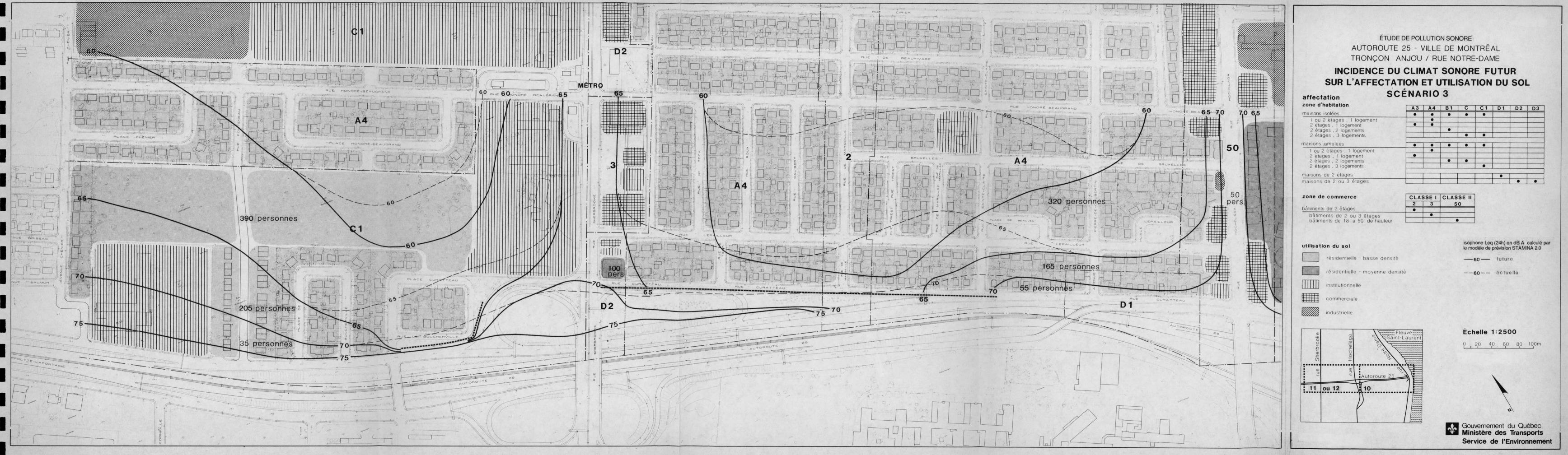
sens de circulation


00 000 circulation journalière des véhicules (moyenne annuelle)




Échelle 1:2500


0 20 40 60 80 100m


Gouvernement du Québec Ministère des Transports Service de l'Environnement

COÛTS DES MESURES CORRECTIVES

6.0 COÛTS DES MESURES CORRECTIVES

6.1 COÛTS DE RÉAMÉNAGEMENT DES VOIES DE CIRCULATION

Les sections précédentes ont démontré que pour atteindre des réductions significatives des niveaux de bruit pour la population à proximité de l'autoroute 25 et de ses voies de service, entre le tronçon de la rue Notre-Dame et les limites de ville d'Anjou, il était nécessaire de réaménager les voies de circulation à une intersection, soit au coin des rues Tellier et Curatteau.

Le coût de ce réaménagement, tel qu'estimé en 1989 par le ministère des Transports du Québec, pour le scénario 1, s'élève à 400 000 dollars.

6.2 COÛTS DES ÉCRANS ANTIBRUIT

Pour être efficace, les écrans antibruit aménagés le long des routes doivent satisfaire certains critères de conception et d'exploitation, à savoir:

1. Exigences générales concernant l'écran antibruit

Les matériaux utilisés dans la fabrication de l'écran doivent permettre d'obtenir un mur qui résiste à la neige et à la glace, aux cycles de gel et dégel, aux agents de déglaçage, aux fungus, aux insectes, à l'acidité du sol, aux rayons ultraviolet; il ne doit pas rouiller ou se tacher ou pourrir; il doit nécessiter le minimum d'entretien. Il doit être ignifuge.

Le matériau proposé doit avoir déjà été utilisé dans des conditions d'exposition semblables et pour les mêmes fins et avoir démontré un comportement satisfaisant durant une période d'au moins 5 ans.

Le mur doit pouvoir résister aux charges (vent 1 dans 30 ans = 1 kPa) tel que requis par le Code National du Bâtiment. Les panneaux doivent en plus être conçus pour les charges de transport et de manutention.

2. Propriétés acoustiques de l'écran

L'écran possèdera les propriétés suivantes:

a) Diminution de la transmission du bruit

La transmission du bruit à travers les panneaux, incluant les joints et les poteaux, doit être diminuée de 25 dB pour une onde de 500 hertz, selon la norme ASTM E90.

L'essai ASTM E90 n'est pas nécessaire si une des deux conditions suivantes est remplie:

- la masse du panneau est d'au moins 20 kg/m²;
- il est démontré que le panneau est classifié 32 dB ou plus (Sound Transmission Class).
- b) Coefficient de réduction du bruit (Noise Reduction Coefficient)

Pour être considéré absorbant, l'écran doit être constitué d'un matériau ayant un coefficient de réduction du bruit de 0,70 ou plus (Noise Reduction Coefficient, NRC). Ce coefficient doit être évalué selon la norme ASTM C423.

Le tableau 17 présente l'estimation des coûts des différents écrans prévus à l'intérieur des scénarios 1, 2 et 3. Ces coûts sont basés sur les coûts de construction d'écrans pour des projets similaires dans la région de Montréal. Pour le scénario 1, les coûts de construction et l'installation des écrans sont estimés à 808 000 \$. Pour les scénarios 2 et 3, les coûts sont respectivement de 762 000 et 848 000 \$. Un montant approximatif de 350 000 \$ doit être ajouté dans l'éventualité de la construction de l'écran no 901.

TABLEAU 17: ESTIMATION DES COÛTS DES ÉCRANS ANTIBRUIT

ÉCRAN	LONGUEUR	HAUTEUR	COÛTS		SCÉNARIOS	
NO .	(m)	MOYENNE (m)	(\$) ⁽¹⁾	1	2	3
500	189	4,0	990	188 000	_	_
501	276	4,0	990	275 000	-	-
502	238	4,5	1 000	240 000	.	<u>-</u>
20	104	4,0	990	105 000	_	-
802	347	5,0	1 100	- -	382 000	- ,
803	184	5,0	1 100	_	203 000	<u>-</u>
604	161	5,0	1 100	_	177 000	177 000
709	559	5,5	1 200	-	_	671 000
901	317	5,0	1 100	-	349 000	349 000
	TO ⁻	TAL:		808 000	762 000 (1 111 000) ²	848 000 (1 197 000) ²

⁽¹⁾ Ces coûts incluent un parapet de béton de type New-Jersey à la base du mur, les poteaux, la fourniture des panneaux et l'installation des panneaux. Ces coûts représentent ceux d'un mur préfabriqué assez simple, semblable à celui de ville d'Anjou.

⁽²⁾ Coût incluant écran no 901.

6.3 COÛT D'EXPROPRIATION

Pour réaliser le réaménagement de l'intersection des rues Tellier et Curatteau, il faudra exproprier au minimum 2 résidences dont la valeur totale est estimée à 210 000 \$.

6.4 COÛTS TOTAUX

Le tableau 18 résume l'ensemble de ces coûts selon les trois scénarios. Ainsi, la réalisation des scénarios 1 et 2 implique des dépenses estimées à environ 2 180 000 \$ comparativement à 2 266 000 \$ pour les scénarios 1 et 3, soit un différentiel d'environ 86 000 \$ en faveur des scénarios 1 et 2. Un montant approximatif de 350 000 \$ doit être ajouté pour l'écran no 901.

TABLEAU 18: COMPARAISON DES COÛTS TOTAUX RELIÉS AU CHOIX DES SCÉNARIOS 1 ET 2 OU 1 ET 3

MESURES CORRECTIVES	SCÉNARIOS 1 ET 2 (\$ 1989)	SCÉNARIOS 1 ET 3 (\$ 1989)
Modification de la géométrie des voies de circulation (rues Tellier et Curatteau)	400 000	400 000
Écrans antibruit	1 570 000 (1 919 000) ⁽¹⁾	1 656 000 (2 005 000) ⁽¹⁾
Expropriation de deux résidences à l'intersection des rues Tellier et Curatteau	210 000	210 000
TOTAL:	2 180 000 (2 529 000) ⁽¹⁾	2 266 000 (2 615 000) ⁽¹⁾

⁽¹⁾ Coût incluant écran no 901.

7

CONCLUSION ET RECOMMANDATIONS

7.0 CONCLUSION ET RECOMMANDATIONS

Le niveau sonore le long de l'autoroute 25 entre le tunnel Louis-H. Lafontaine et ville d'Anjou est élevé. Les niveaux équivalents près des résidences en bordure de la voie de service peuvent atteindre 73 dBA.

Les simulations réalisées à l'aide du logiciel STAMINA montrent que ce sont principalement les deux premières rangées de maisons qui sont affectées. De même, les résultats indiquent que la voie de service contribue de façon importante au bruit.

Cette étude a permis de démontrer qu'il est possible d'obtenir une réduction importante du niveau de bruit le long de l'autoroute 25 aux endroits que l'on peut protéger par des écrans antibruit, soit:

- de place Curatteau à la bretelle d'accès à la rue Curatteau;
- de la rue de Sherbrooke à la rue Sainte-Claire;
- de la rue Hochelaga à la rue Souligny;
- de la rue Souligny à la rue Ontario;
- de la rue de Lavaltrie à la rue Lecourt.

Dans tous ces cas, le niveau de bruit peut être ramené à 65 dBA ou moins et dans la plupart des cas, le niveau de bruit peut être réduit de 7 dBA.

Par contre, les endroits qui ne sont pas protégés par des écrans ne bénéficient d'aucune réduction du niveau de bruit. C'est le cas des secteurs suivants:

- au nord de place Curatteau (jusqu'à ville d'Anjou);
- de la rue Sainte-Claire à la rue Hochelaga.

Pour ces endroits, une réduction très importante du trafic sur les voies de service jumelée à l'implantation d'écrans antibruit entre les voies de service et l'autoroute pourrait engendrer une réduction appréciable du niveau de bruit.

L'écran no 901 proposé entre les rues Sainte-Claire et Hochelaga ne permet pas d'obtenir une réduction de bruit qui satisferait les critères, soit une réduction de 7 dBA et un niveau sonore résultant inférieur à 65 dBA. Toutefois, la présence de cet écran permet d'augmenter l'efficacité des écrans proposés entre les rues Sherbrooke et Sainte-Claire et réduit les niveaux sonores d'au moins 3 dBA entre les rues Sainte-Claire et Hochelaga. La présence de l'écran no 901 n'est pas nécessaire mais toutefois souhaitable.

Mentionnons que le niveau sonore, à la hauteur du 2ème étage des résidences en bordure de l'autoroute, n'est que très peu affecté par la présence des écrans.

Finalement, il a été vérifié que le recours à des écrans absorbants en quelques endroits serait nécessaire pour assurer l'efficacité des écrans mis en place.

Au plan économique, la réalisation de l'ensemble des mesures correctives prévues au scénario 1 nécessitent des dépenses estimées à environ 810 000 \$, 765 000 \$ pour le scénario 2 et 850 000 \$ pour le scénario 3. Un montant supplémentaire d'environ 350 000 \$ est à prévoir pour la construction de l'écran no 901 le cas échéant. Du point de vue acoustique le scénario 3 permet d'obtenir une réduction des niveaux sonores supérieure au scénario 2

LEXIQUE

LEXIQUE

DOMAINE ACOUSTIQUE

Décibel:

niveau d'intensité acoustique d'un bruit

(niveau sonore).

Isophone:

courbe unissant des points de même intensité de

bruit.

 $L_v = Y dBA$:

c'est une valeur Y en décibel où pendant "X" % du temps d'échantillonnage, l'intensité

instantanée du bruit est supérieure à cette

valeur Y.

Niveau équivalent

(Leq):

niveau d'intensité acoustique (ou sonore) équivalent pour une période donnée. Le Leq représente le niveau de bruit constant qui aurait été produit avec la même énergie que le bruit réellement perçu pendant cette période.

Plan de coupe

acoustique:

perpendiculaire au tracé l'infrastructure routière représentant

propagation typique du bruit dans une section

homogène.

Pondération A:

filtre qui simule la réponse acoustique de

l'oreille.

Secteur homogène: partie d'une zone à l'étude présentant des

caractéristiques semblables.

Sonomètre:

appareil pour mesurer les sons. L'instrument complet comprend le microphone, l'amplificateur, les réseaux de pondération, le détecteur et l'appareil indicateur de caractéristiques temporelles déterminées.

Zone sensible:

la zone sensible est définie comme étant une zone à utilisation du sol résidentielle, institutionnelle ou récréative.

Camion

intermédiaire:

tout véhicule de deux essieux et 6 roues servant au transport de marchandises.

Camion lourd:

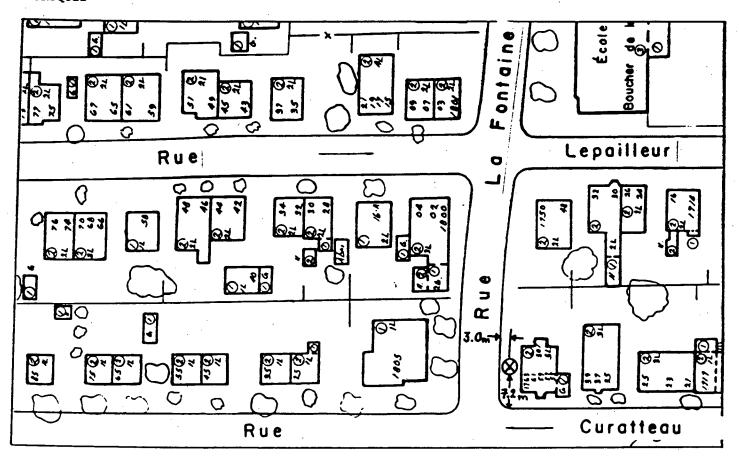
tout véhicule de trois essieux et plus servant au transport de marchandises.

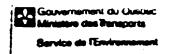
Récepteur ISO:

position des récepteurs considérés pour le calcul des niveaux de bruit à l'aide du modèle de précision STAMINA 2.0.

Niveau de bruit ambiant:

le niveau du son du bruit de fond bruit caractéristique d'un environnement. En pratique, le niveau d'un bruit distinct qui s'y ajoute doit être au-dessus du niveau du bruit ambiant pour être perçu.

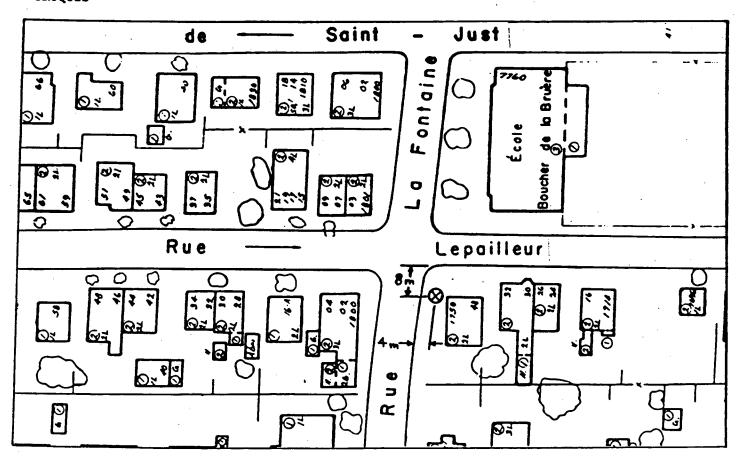

ANNEXE 1


RÉSULTATS DES RELEVÉS SONORES

LOCALISATION DES POINTS DE MESURE .

POINT NO	ADRESSE	DEBUT	FIN	DATE
1	1763 Curatteau	5:22	4:58	12-09-88
			13-09-88	
2	1750 Lepailleur	16:00	16:40	12-09-88
3	1760 de Saint-Just	17:00	17:30	12-09-88
4	7710 Tellier	22:00	22:00	14-09-88
			15-09-88	
4.1	7710 Tellier	8:01	11:05	22-09-88
5	2114 Lapailleur	8:02	8:47	22-09-88
6	2144 de Saint-Just	9:00	9:40	22-09-88
7	2195 Curatteau	12:27	15:27	09-09-88
8	2191 Lepailleur	12:17	12:47	09-09-88
9	2185 de Saint-Just	13:05	14:05	09-09-88
10	2595 Curatteau	22:00	23:00	15-09-88
			16-09-88	
11	2600 Lepailleur	10:00	10:45	16-09-88
12	2641 Lepailleur	11:00	11:55	16 - 09-88
13	2905 Curatteau	13:00	16:00	22-09-88
14	2912 Lepailleur	13:00	14:00	22-09-88
15	7802 de Marillac	14:00	15:00	22-09-88
16	3245 Curatteau	16:04	19:04	09-09-88
17	3280 Lepailleur	16:07	16:47	09-09-88
18	7876 Gustave Bleau	17:10	18:00	09-09-88
19	5111 de Boucherville	4:05	4:00	19-09-88
			20-09-88	•
20a	5085 Place de Boucherville	18:15	18:30	19-09-88
20b	5033 Place de Boucherville	18:35	18:50	19-09-88
20c	5025 Place de Boucherville	19:20	19:35	19-09-88
20d	5025 Place de Boucherville	19:20	19:35	19-09-88
21	4972 Place Honoré Beaugrand	20:00	20:30	19-09-88
22	7745 Sherbrooke	18:18	18:38	09-09-88

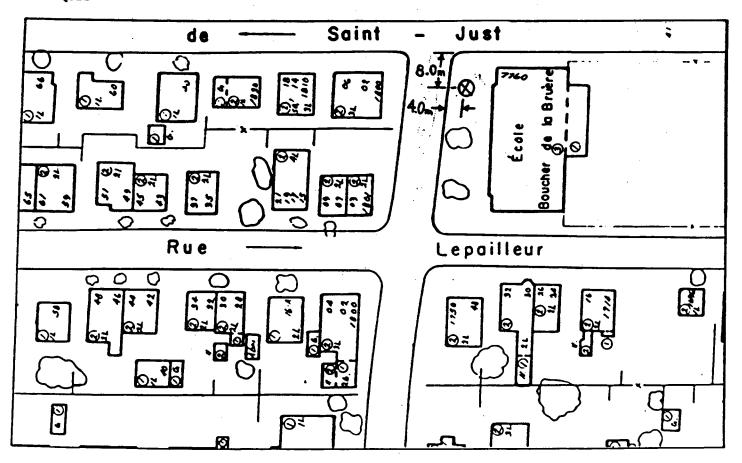
PROJET: Autoroute 25								RELEVI	E: 1
ADRESSE: 1763 Curatteau								DATE:	12/9/88
PERIODE D'ECHANTILLONNAGE:				DEBUT	r: 5:	22		FIN: 4:58 (13/9/8	
APPAREIL: LAD 800	 B_ HP 7 1	В		ETALO	N NO.	: 84 K	4230 (
PRE-CALIBRATION:			IB(A)	POST-	CALIE	RATION:		93	·8 dB(A)
PONDERATION:	TEMP	ORELLE:	F() S	()	F	REQUENT	ELLE:	A(4)	L()
VERIFICATION DES P	ILES	DEBU	T	VOLTS		FIN		VOLTS	<u> </u>
DONNEES METEOROLOG	IQUES	L	0 - 6 1	n 6	- 12	h 12	2 - 18 1	h 18	l - 24 h
HUMIDITE RELATIVE	(%)			T		.			.,
TEMPERATURE	(C)								- <u></u>
VITESSE DU VENT (Km/h)								


PROJET:	toroute 25			RELEVE : 1
ADRESSE :	DATE : 12/9/88			
	RIODE) : 10:00			
ROUTE NO.	25 sud (6)	25 nord (2	Voie service nord	Rud low froit 62
AUTOS	1828	1840	256	189
CAM. LEGER	408	432	24	19
CAM. LOURD	322	267	86	93

EVENEMENTS SONORES

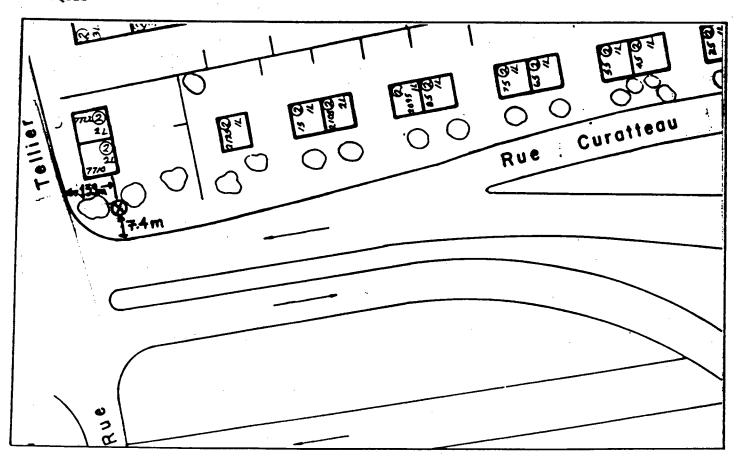
HEURE	DUREE	DESCRIPTION
extre 8.79		Notocyclette
11 12.01 "		réparations dans la rue par V. de M., perreuse à 100:
" Hit 15		autobas, avion bas, moto, conversations (2min)
16.217		musique (16:15 à 16:17) ourion haut à 16:27
		The state of the s
	•	

NOM DE L'OPERATEUR :


PROJET: Autoroa	ite 25				RELEVE: 2
ADRESSE: 1750 L	epailleu	r			DATE: 12/9/88
PERIODE D'ECHANTILLONNAGE: DEBUT: 16:00					FIN: 16:40
APPAREIL: 84K 7006	, L40800 B	, uptib	ETALON N	0.: B&K 4230	(1314 195)
PRE-CALIBRATION:		93.8 dB(A)	POST-CAL	IBRATION:	93.8 dB(A)
PONDERATION:	TEMPO	RELLE: F()	S()	FREQUENTIELLI	E: A(++) L()
VERIFICATION DES F	PILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOG	IQUES	0 - 6	h 6 - 1	2 h 12 - 1	18 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)				

NOM DE L'OPERATEUR:

SIGNATURE:


PROJET: Autoroute 25	RELEVE: 3			
ADRESSE: 1760 de Sain	DATE: 12/9/88			
PERIODE D'ECHANTILLONNAGE:		DEBUT: 1	7:00	FIN: 17:30
APPAREIL: 84K 7006, L4D800	B, 47718	ETALON N	D.: B&K 4230	(1314 195)
PRE-CALIBRATION:	93.8 dB(A)	POST-CAL	BRATION:	93.8 dB(A)
PONDERATION: TEMP	ORELLE: F() S	()	FREQUENTIELL	E: A(++ L()
VERIFICATION DES PILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOGIQUES	0 - 6	h 6 - 12	h 12 –	18 h 18 - 24 h
HUMIDITE RELATIVE (2)				
TEMPERATURE (C)				
VITESSE DU VENT (Km/h)				

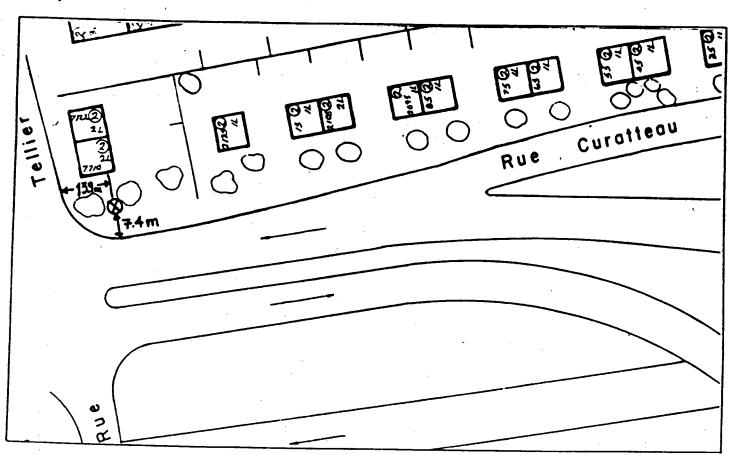
NOM DE L'OPERATEUR:

SIGNATURE:

PROJET: Autor		RELEVE: 4				
ADRESSE: 7710	Tellier					DATE: 14/9/88
PERIODE D'ECHANT	DEBUT: 22:00			FIN: 22:00(15/4/8)		
APPAREIL: L&D		P718	ETALO	N NO.:	B& K 4230	(1314 195)
PRE-CALIBRATION:		93.8 dB(A)	POST-	CALIBRA	rion:	93.8 dB(A)
PONDERATION:	TEMP	ORELLE: F()	S()	FREC	QUENTIELLE:	A(++++++++++++++++++++++++++++++++++++
VERIFICATION DES	PILES	DEBUT	VOLTS		FIN	VOLTS
DONNEES METEOROLO	OGIQUES	0 - 6	h 6-	- 12 h	12 - 18	h 18 – 24 h
HUMIDITE RELATIVE	E (%)					
TEMPERATURE	(C)			·		
VITESSE DU VENT	(Km/h)					

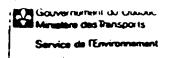
NOM DE L'OPERATEUR:

SIGNATURE:

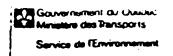

PROJET:	Arroyl. 25			RELEVE : 4
ADRESSE :	7710 Tell 01			DATE : 15/9/17
COMPTAGE (PE	RIODE) :			
ROUTE NO.	Tellino last	Tellight		
AUTOS	148	loo		
CAM. LEGER	13	21		
CAM. LOURD	1	37	į	

EVENEMENTS SONORES

HEURE	DUREE	DESCRIPTION
2:47 à 3:18		arinder
5'.5 <u>)</u>	~305ec	2 notes lus brugante
•		<u>ا</u>
·		
	<u> </u>	
-		


NOM DE L'OPERATEUR :

PROJET: Autorou	te 25			· · · · · · · · · · · · · · · · · · ·	RELEVE: 4.1
ADRESSE: 7710 T	DATE: 21/9/88				
PERIODE D'ECHANTIL		DEBUT:	8:01	FIN: 11:05	
	DOB, HP7	F18			30 (1314 195)
PRE-CALIBRATION:		93.8 dB(A)	POST-CALIBRATION:		93.8 dB(A)
PONDERATION:	TEMPOR	RELLE: F()	S()	FREQUENTIEL	LE: A(+) L()
VERIFICATION DES PI	LES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOGI	QUES	0 - 6	6 h 6 -	12 h 12 -	18 h 18 - 24 h
HUMIDITE RELATIVE (X)				
TEMPERATURE (C)	`			
VITESSE DU VENT (Km/h)				


NOM DE L'OPERATEUR:

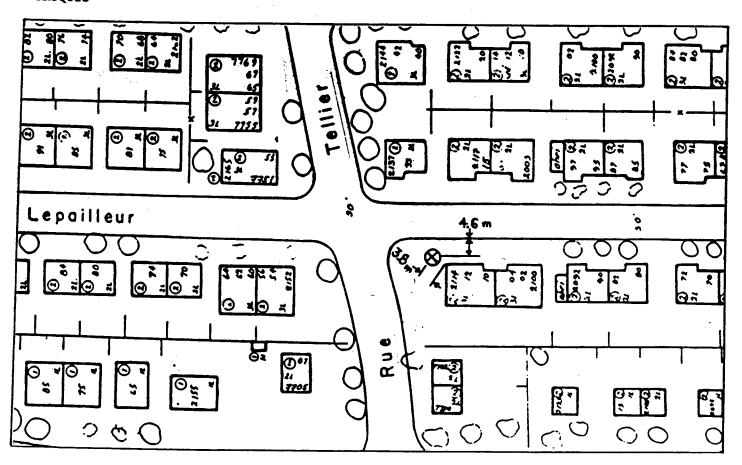
SIGNATURE:

			· · · · · · · · · · · · · · · · · · ·	
PROJET:				RELEVE : 4.
ADRESSE :	7710 T. Ju.			DATE : 27/9/8
	RIODE) :			
ROUTE NO.	25 cus 82 d (59	25 ves noid 6,10	Voisevice -c no: d	
AUTOS	1598	1911	537	
CAM. LEGER	141	159	17	
CAM. LOURD	315	J43	149	
EVENEMENTS SOI	NORES		· · · · · · · · · · · · · · · · · · ·	
HEURE	DUREE	D	ESCRIPTION	
	i			
				and the Control of th
i				and the second s
				i de la companya del companya de la companya del companya de la co
	•			
	i			3
	:			

NOM DE L'OPERATEUR :

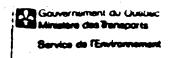
PROJET: Autoroute 25	RELEVE : 4.1
ADRESSE : 77 10 Tellier	DATE : 22/9/85

COMPTAGE (PERIODE) : 10:05 à 11:05


ROUTE NO.	whi was bond 64	Tellier à l'est	a Teller a l'oute	Vis sevia - sud
AUTOS	244	178	119	254
CAM. LEGER	34	10	12	21
CAM. LOURD	<i>B</i> 2	1	52	112

EVENEMENTS SONORES

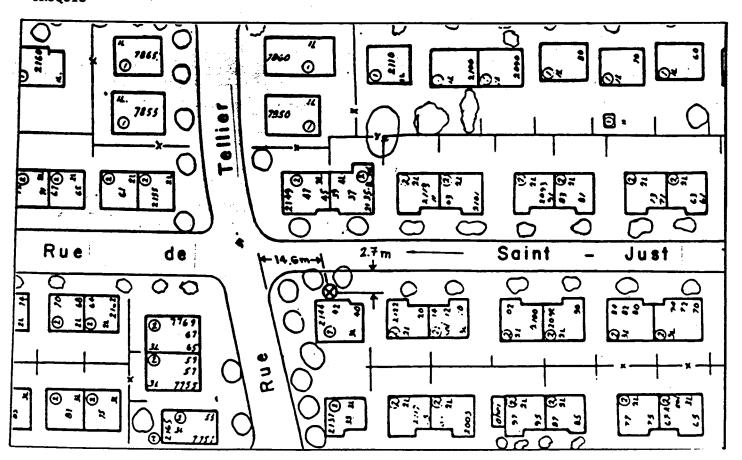
HEURE	DUREE	DESCRIPTION
	1	
	<u>:</u>	
<u> </u>	!	
	!	
		<u> </u>


NOM DE L'OPERATEUR :

PROJET: Autoro	RELEVE: 5				
ADRESSE: 2114	DATE: 22/9/88				
PERIODE D'ECHANTI	FIN: 8:47				
APPAREIL: BAK 70	206, 1¢DE	008, HP71B	ETALON N	0.: B&K 423	
PRE-CALIBRATION:		93.8 dB(A)		IBRATION:	93.8 dB(A)
PONDERATION:	TEMPO	ORELLE: F()	S()	FREQUENTIELLE	: A(4) L()
VERIFICATION DES	PILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOG	GIQUES	0 - 6	h 6 - 1	2 h 12 – 1	8 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)				

NOM DE L'OPERATEUR:

SIGNATURE:


PROJET:		· · · · · · · · · · · · · · · · · · ·		RELEVE : 5			
ADRESSE :	ADRESSE : 2114 Lovo Cur						
COMPTAGE (PE	RIODE) :						
ROUTE NO.	Tollier	he was blear		1.			
AUTOS	311	36					
CAM. LEGER	10	2		İ			
CAM. LOURD	8,	8					

EVENEMENTS SONORES

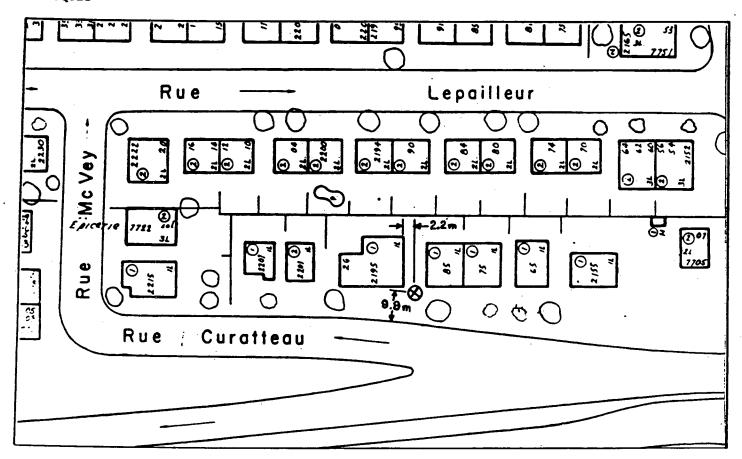
HEURE	DUREE	DESCRIPTION
		Bruit de la me Curcheau domine
8:33, 8:39	iet 8:41 Juice Strak	Aviers (Nivan semblable à celui d'en muior
8:44	~ 1min	Hilier
8:34	18 min	Bricolour scie (intermitent) à environ 35
·		
	·	
	<u> </u>	

NOM DE L'OPERATEUR :

PROJET: Autoro	ute 25				RELEVE: 6
ADRESSE: 2144		Just		•	DATE: 22/9/88
PERIODE D'ECHANTI	FIN: 9:40				
APPAREIL: B&K 700	06, L4D800B	, HP71B	ETALON NO	34 K4230	(1314195)
PRE-CALIBRATION:		5.8 dB(A)	POST-CAL1	BRATION:	93.8 dB(A)
PONDERATION:	TEMPORE	LLE: F()	S()	FREQUENTIELLE	: A(-)- L()
VERIFICATION DES	PILES	DEBUT	VOLTS	PIN	VOLTS
DONNEES METEOROLOG	GIQUES	0 - 6	h 6 - 12	h 12 – 1	8 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)			·	
VITESSE DU VENT	(Km/h)				

NOM DE L'OPERATEUR:

SIGNATURE:


PROJET: 214	19 de Dous	1 J. J.		RELEVE : 6
ADRESSE :			· · · · · · · · · · · · · · · · · · ·	DATE : 2:/9/S
COMPTAGE (PER	RIODE) : 9:00	i 9:44		
ROUTE NO.	Tella	tout 16		
AUTOS	129	20	• • •	
CAM. LEGER	32	4	:	
CAM. LOURD	A	1		

EVENEMENTS SONORES

HEURE	DUREE	DUREE DESCRIPTION				
9:15	~ 2 min	Annosogi de le vui St-Juit por comion				
9:25	~ 7 min	Bolonage				
i						
. !						
						
<u> </u>						
	·					

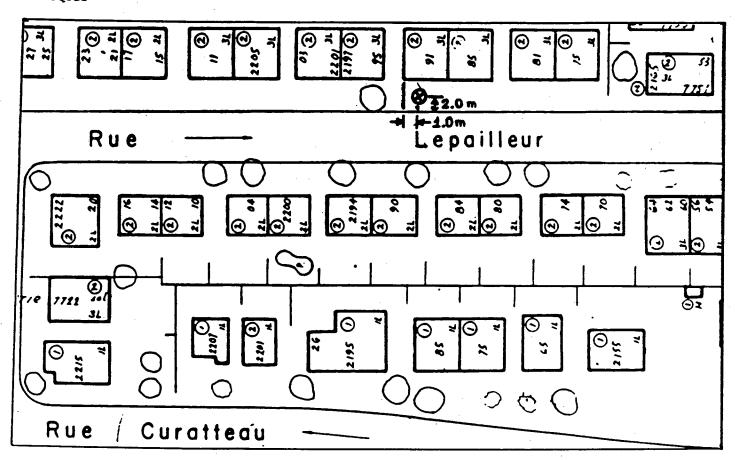
NOM DE L'OPERATEUR :

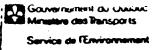
PROJET: Autoroute	25			RELEVE: ₹			
ADRESSE: 2195 Cur.	ADRESSE: 2195 Curatteau						
PERIODE D'ECHANTILLONN	12:27	DATE: 9/9/88 FIN: 15:27					
APPAREIL: L4D800B	, HP71B	ETALON NO).: B& K 4230	(1314195)			
PRE-CALIBRATION:	93.8 dB(A)	POST-CALI	BRATION:	93.8 dB(A)			
PONDERATION:	TEMPORELLE: F()	S()	FREQUENTIELLE:	A(4)— L()			
VERIFICATION DES PILES	DEBUT	VOLTS	PIN	VOLTS			
DONNEES METEOROLOGIQUE	s 0 - 6	h 6 - 12	h 12 – 18	h 18 - 24 h			
HUMIDITE RELATIVE (2)							
TEMPERATURE (C)							
VITESSE DU VENT (Km/I	h)						

NOM DE L'OPERATEUR:

PROJET:	Autoroute 25	RELEVE : 7
ADRESSE	: 2195 Caratteau	DATE : 9/9/28

COMPTAGE (PERIODE) : 12:55 à 13:55

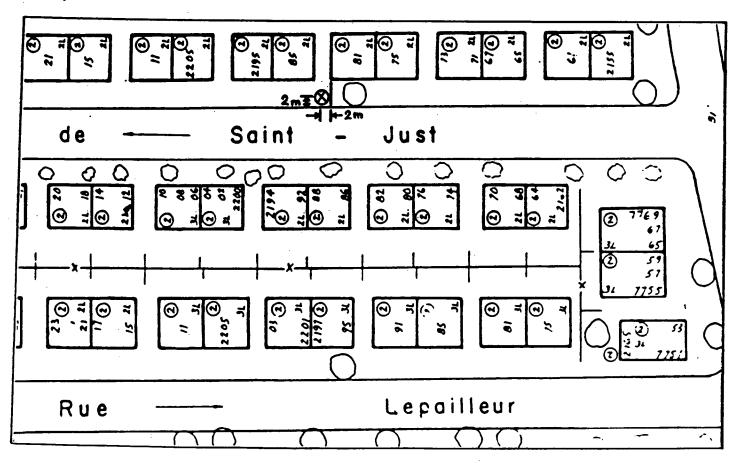

ROUTE NO.	Voie service nord	Voie service sud	Curatteau	
AUTOS	842	447	37	
CAM. LEGER	67	32	3	
CAM. LOURD	103	93	Ø	

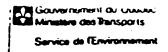

EVENEMENTS SONORES

HEURE	DUREE	DESCRIPTION
	3 X	
	·	

NOM DE L'OPERATEUR :

PROJET: Autoro	ute 25				RELEVE: 8
ADRESSE: 2191	Lepaille	ur			DATE: 9/9/88
PERIODE D'ECHANTILLONNAGE:			DEBUT: 12:17		FIN: 12:47
APPAREIL: 84K 700	6, L4D 800 B	5, HP 71B	ETALON N	0.: Bek 4230	(1314 195)
PRE-CALIBRATION:	93.8	dB(A)		IBRATION:	93.8 dB(A)
PONDERATION:	TEMPO	RELLE: F()	S()	FREQUENTIELL	E: A(L) L()
VERIFICATION DES	PILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOG	IQUES	0 - 6	h 6 - 12	2 h 12 - 1	18 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)				

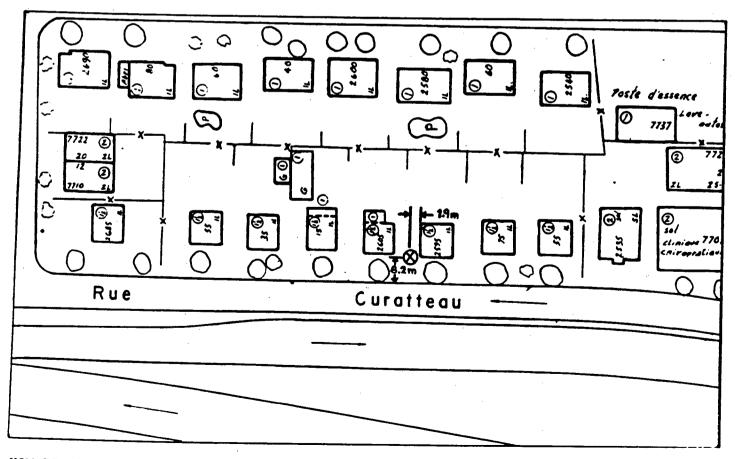




			·	
PROJET:			RELEVE : 8	
ADRESSE :	DATE :9/9/26			
COMPTAGE (PE	ERIODE) : 17.1	न : 12:50		
ROUTE NO.	L paellen			
AUTOS	25 + 1 nuls			
CAM. LEGER	2			
CAM. LOURD	0			
VENEMENTS SO	NORES			
HEURE	DUREE	DESCRIPTION		
•		Souces: onlos, went do les arb	دکا	
·		transport refer to trat	a)\S	
12:35		Diracage anto à provincté		
12:21	8 min	Tonduse à 2 maisons du por		
12:40			me / Fin des hann	
<u> </u>		·		
:				

NOM DE L'OPERATEUR :

oute 2	5			RELEVE: 9
St - Jo				DATE: 9/9/88
		DEBUT:	13:05	FIN: 14:05
06,L¢D80	08, HP718	ETALON NO	D.: L&D 4230	0 (1314 195)
93.8	dB(A)	POST-CAL	BRATION:	93.8 dB(A)
TEMPO	RELLE: F()	5()	FREQUENTIELLE	E: A(+++ L()
PILES	DEBUT	VOLTS	FIN	VOLTS
GIQUES	0 - 6	h 6 - 12	h 12 – 1	8 h 18 - 24 h
(%)				
(C)				
(Km/h)				
	St - Joint Control of the state	06, L (D 800 B, HP 71 B 93.8 dB(A) TEMPORELLE: F() S PILES DEBUT GIQUES 0 - 6	St - Just ILLONNAGE: DEBUT: 06, L D 800 B, HP 71 B ETALON NO 93.8 dB(A) POST-CAL TEMPORELLE: F() S() PILES DEBUT	St - Just DEBUT: 13:05


	DATE : 9/9/88
	1 1110
i	

EVENEMENTS SONORES

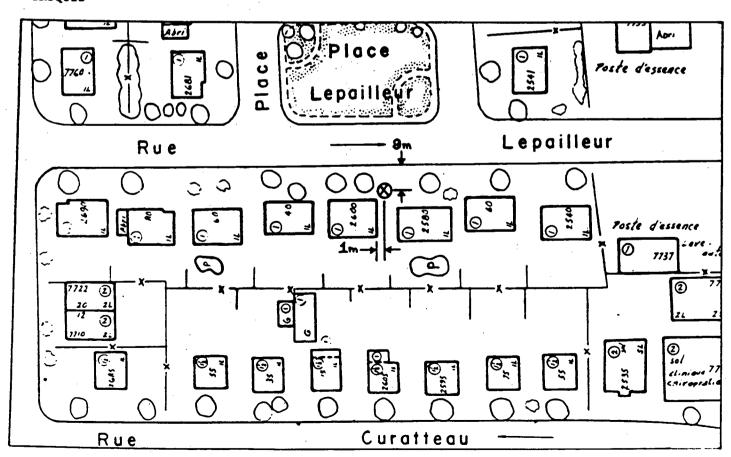
HEURE	DUREE	DESCRIPTION
		Source de built: Vait, corde à lines,
		buit de fond: outroute 25
		tracture de une voisir
	·	Circulation Su Tellen
		enlants seplace d'ine
i		galeir à 5 maises
		Travaux dans les autres remes
		·
	•	
	:	~

NOM DE L'OPERATEUR :

PROJET: Autorou	te 25				RELEVE: 10
ADRESSE: 2595	Curatte	9 U			DATE: 15/9/88
PERIODE D'ECHANTI	LLONNAGE:	· · · · · · · · · · · · · · · · · · ·	DEBUT:	22:00	FIN: 23:00 (16/9/g
APPAREIL: L4D8	9H, 800	71 B	ETALON N	0.: B& k 423	1
PRE-CALIBRATION:		3.8 dB(A)		IBRATION:	93.8 dB(A)
PONDERATION:	TEMP	ORELLE: F()	S()	FREQUENTIELLE	E: A(+) L()
VERIFICATION DES	PILES	DEBUT	VOLTS	FIN _	VOLTS
DONNEES METEOROLOG	IQUES	0 - 6	h 6 - 12	2 h 12 - 1	8 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
		•	1	ı	1

NOM DE L'OPERATEUR:

SIGNATURE:


PROJET:	trout. 25			RELEVE : 10
ADRESSE :	2595 Curotha			DATE : 16 /9 /88
	RIODE) : 10 0 10	•	,	
ROUTE NO.	durlin and (55)			
AUTOS	492			
CAM. LEGER	73			
CAM. LOURD	69			

EVENEMENTS SONORES

HEURE	DUREE	DESCRIPTION
13:40	~ 15mi	tondernes cuta large (forde < troffic)
5 16:29	- 5xc	quelai un parte ou se me tre
× 18:19		rentire des résidents du 1605 Curatire.
((auto, partie-, concesation) ~ 2 m
		

NOM DE L'OPERATEUR :

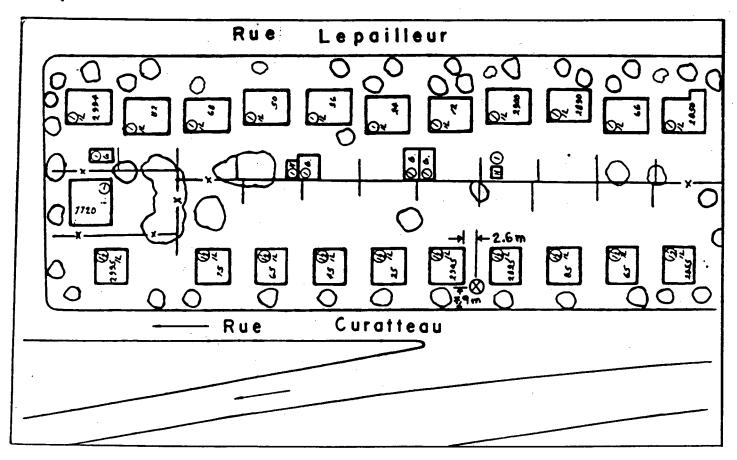
PROJET: Autorou	ite 25				RELEVE: 11
ADRESSE: 2600	Lepailleur	ſ			DATE: 16/9/88
PERIODE D'ECHANTI			DEBUT: 10:00		FIN: 10:45
APPAREIL: LED 800	B, B&K 700	06, HP71B	ETALON N	0.: B&K 4230	(1314195)
PRE-CALIBRATION:		93.8 dB(A)	POST-CAL	IBRATION:	93.8 dB(A)
PONDERATION:	TEMP	ORELLE: F()	S()	FREQUENTIELL	E: A() L()
VERIFICATION DES	PILES	DEBUT	VOLTS	PIN	VOLTS
DONNEES METEOROLO	GIQUES	0 - 6	h 6 - 1:	2 h 12 -	18 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)				

NOM DE L'OPERATEUR:

Gouvernament du cumm. Ministère des Pensports
Service de l'Environnement

			· · · · · · · · · · · · · · · · · · ·
DROYER			RELEVE : 11
PROJET:			
ADRESSE :	2600 harrilles		DATE : 16/9/88
COMPTAGE (PE	ERIODE) :		
ROUTE NO.	Legonilleux		
AUTOS	21		
CAM. LEGER	0		
CAM. LOURD	1		
EVENEMENTS SO	NORES		
HEURE	DUREE	DESCRIPTION	
10:13	!	divavaça à proximité	
10:19		Anicie du visident du 260	76
			·
			<u> </u>
			-
	<u> </u>		
			-
	:		

PROJET: Autoroute 25	RELE	RELEVE: 12			
ADRESSE: 2641 Place Le	DATE	: 16/9/88			
PERIODE D'ECHANTILLONNAGE		DEBUT: 11:00		FIN: 11:55	
APPAREIL: B4K7006, L4DE	100 B, HP 71B	ETALON NO	D&K 423	0 (1314 19	75)
PRE-CALIBRATION:	93.8 dB(A)	POST-CAL			3.8 dB(A)
PONDERATION: TEM	PORELLE: F()	s()	FREQUENTIELLI	E: A(L+)	L()
VERIFICATION DES PILES	DEBUT	VOLTS	FIN	VOL	TS
DONNEES METEOROLOGIQUES	0 - 6	h 6 - 12	h 12 – 1	18 h	18 - 24 h
HUMIDITE RELATIVE (%)					
TEMPERATURE (C)					-
VITESSE DU VENT (Km/h)					


NOM DE L'OPERATEUR:

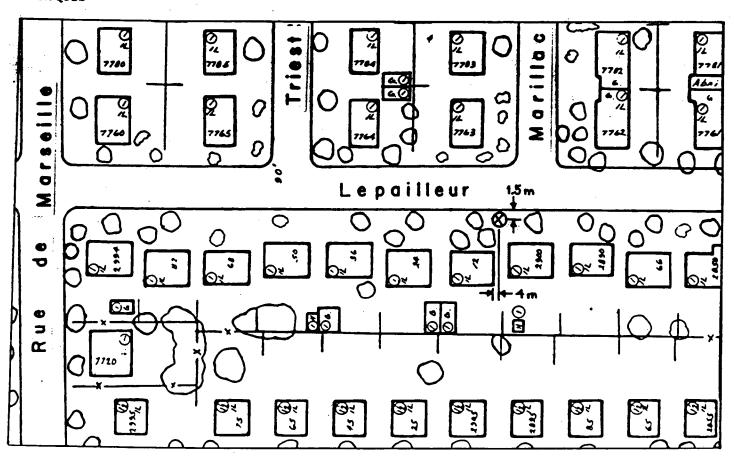
SIGNATURE:

Gouvernaineril du crasse Ministère des Transports
Service de l'Environnement

<u> </u>			
PROJET:		REI	LEVE : 12
ADRESSE :	2641 4/60	hapaille. DAS	re : 16/9/5y
	ERIODE) :		:
ROUTE NO.	law hooilen		
AUTOS	37 + 1 moto		
CAM. LEGER	1		
CAM. LOURD	0		
EVENEMENTS SO	NORES		
HEURE	DUREE	DESCRIPTION	
11:36	2 min.	coups de martena à 2680 hoyail	leu
•			
			· · · · · · · · · · · · · · · · · · ·
			, ,
:			
	· · · · · · · · · · · · · · · · · · ·	·	
i			

PROJET: Autoro	RELEVE: 13					
ADRESSE: 2905	Curattea	iu			DATE: 22/9/88	
PERIODE D'ECHANTI	LLONNAGE:		DEBUT:	13:00	FIN: 16:00	
APPAREIL: L D 80	10B, HP 718		ETALON N	0.: BEK4230	(1314195)	
PRE-CALIBRATION:	93	40/4)	POST-CAL	IBRATION:	93.8 dB(A)	
PONDERATION:	TEMPOREI	LE: F() S	()	FREQUENTIELLE	: A(L) L()	
VERIFICATION DES	PILES	DEBUT	VOLTS	PIN	VOLTS	
DONNEES METEOROLOG	GIQUES	13 - 14	tr 6 - 1:	2 h 12 - 1	8 h 18 - 24 h	
HUMIDITE RELATIVE	(%)	50				
TEMPERATURE	(C)	16.5				
VITESSE DU VENT	(Km/h)	3.6 à 14.	.8			

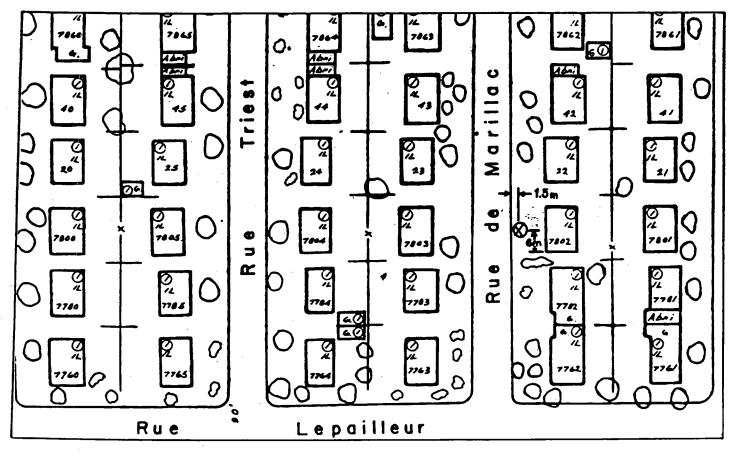
NOM DE L'OPERATEUR:


SIGNATURE:

Government ou con-	نعا
Service de l'Environneme	

PROJET:		RELEVE : 1
ADRESSE : 2905 (LITTION		DATE : 22/9/88
COMPTAGE (PERIODE) :		
ROUTE NO.	i	
AUTOS		
CAM. LEGER		
CAM. LOURD		

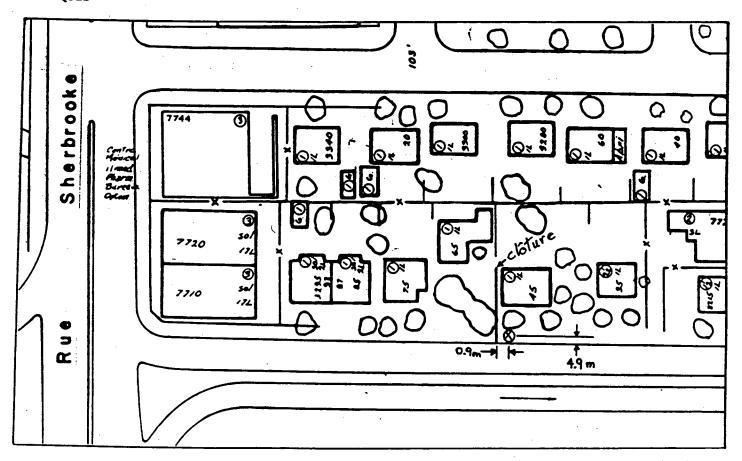
HEURE	DUREE	DESCRIPTION
13:04		Edware de rue
15:16	jusqu'é 16/4	Polares, de seus l'in l'étre au soluti (0-10 Kala envion) cons le turnes
•	7 / 0	cas 6 tunnel
	i	
	:	
	:	
		


PROJET: Autoroute 25	REL	EVE: 14			
ADRESSE: 2912 Lepaille	ur			DAT	E: 22/9/88
PERIODE D'ECHANTILLONNAGE:		DEBUT:		FIN	1:
APPAREIL: B4K7006, L4D 8	000B, HP71B	ETALON N	0.: 84K423	30 (1314	195)
PRE-CALIBRATION:	POST-CALIBRATION: 93.8 dB(A)				
PONDERATION: TEMPO	ORELLE: F()	6()	FREQUENTIELL	E: A(4)	- L()
VERIFICATION DES PILES	DEBUT	VOLTS	FIN	V0	LTS
DONNEES METEOROLOGIQUES	0 - 6	h 6 - 12	2 h 12 -	18 h	18 - 24 h
HUMIDITE RELATIVE (2)					
TEMPERATURE (C)					
VITESSE DU VENT (Km/h)					

NOM DE L'OPERATEUR:

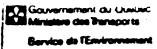
SIGNATURE:

PROJET: Autoroute 25					
				DATE: 22/9/88	
LLONNAGE:	:	DEBUT:	· _ · · · · · · · · · · · · · · · · · ·	FIN:	
06, L4D8		ETALON NO	D.: 84 K 4230	(1314195)	
	93.8 dB(A)	POST-CAL	BRATION:	93.8dB(A)	
TEMP	ORELLE: F()	S()	FREQUENTIELLE	E: A(4) L()	
PILES	DEBUT	VOLTS	FIN	VOLTS	
GIQUES	0 - 6	h 6 - 12	h 12 – 1	8 h 18 - 24 h	
(%)					
(C)					
(Km/h)	<u>:</u>				
	de Ma LLONNAGE: DOG, LdD (TEMP PILES GIQUES (2)	de Marillac LLONNAGE: DOG, L4D 800 B, HP 71 B 93.8 dB(A) TEMPORELLE: F() PILES DEBUT GIQUES 0 - 6 (2)	de Marillac LLONNAGE: DEBUT: DOG, LAD 800 B, HP 71B POST-CALI TEMPORELLE: F() S() PILES DEBUT VOLTS GIQUES 0 - 6 h 6 - 12 (2)	de Marillac LLONNAGE: DEBUT: DOG, L4D 800 B, HP 71B POST-CALIBRATION: TEMPORELLE: F() S() FREQUENTIELLE PILES DEBUT VOLTS FIN GIQUES 0 - 6 h 6 - 12 h 12 - 1 (2)	



NOM DE L'OPERATEUR:

Gowernement du couve. Ministère des Pansports
Service de l'Environnement

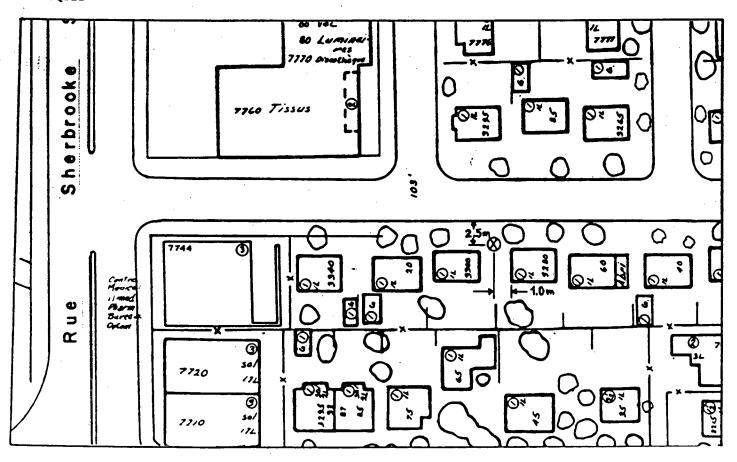

<u></u>	<u>`</u>		
PROJET:			RELEVE : 15
ADRESSE :	7802 d. 11.	Mac	DATE : 22/9/86
	ERIODE) :		
ROUTE NO.	de Marillac		
AUTOS	0		
CAM. LEGER	0		
CAM. LOURD	0		·
EVENEMENTS SO	NORES	·	
HEURE	DUREE	DESCRIP	TION
		:	
		·	
İ			
	·		
	•		

PROJET: Autoroute 25						R	RELEVE: 16	
ADRESSE: 3245	Curatte	au					D,	ATE: 9/9/88
PERIODE D'ECHANTI	LLONNAGE:	<u> </u>		DEBUT: 16:04				IN: 19:04
APPAREIL: L4080	ЮВ , НР	71B	· ·	ETAL	ON NO.:	84 K 4230) (13	14195)
PRE-CALIBRATION:			dB(A)	POST	-CALIBR	ATION:		93.8 dB(A)
PONDERATION:	TEMP	ORELLE:	F()	S()	FR	EQUENTI ELLE	: A(
VERIFICATION DES	PILES	DEB	UT .	VOLT	s	FIN		VOLTS
DONNEES METEOROLOG	SIQUES	1	0 - 6	h 6	- 12 h	12 - 1	8 h	18 - 24 h
HUMIDITE RELATIVE	(%)				·			
TEMPERATURE	(C)							
VITESSE DU VENT	(Km/h)		<u> </u>					

NOM DE L'OPERATEUR:

SIGNATURE:

222	<u> </u>		PELPUE			
PROJET:	A . 1. 11. 1. 1		RELEVE : 16			
ADRESSE :	3,45 C. 1. 700	··· (ici + #16)	DATE : 9/9/E			
		100 6 19:08:00				
ROUTE NO.	25	Voidoccas 22 Circolion 20				
AUTOS	Videonarita 1	561 212	·.			
CAM. LEGER	1662-16620	9 1				
CAM. LOURD		9 1				
evenements so	NORES					
HEURE	DUREE	DESCRIPTION				
17h 20	~17435	toudeuse élection ~ 150'				
(ho4 (dib)	19 09 (52)	vent				
17h00	~ 15 secondos	dijat du visident du 3295 (a	uto-			
131						
30						
A Thomas Committee of the Allendaria Allenda	iliuminaanu maninaan	and married or reversed entermoderated butter telement intermediate in the				
		N .				
<u>ul</u> :						
•						
	nteriolarumi laan isilatta	i frantistification and annual				

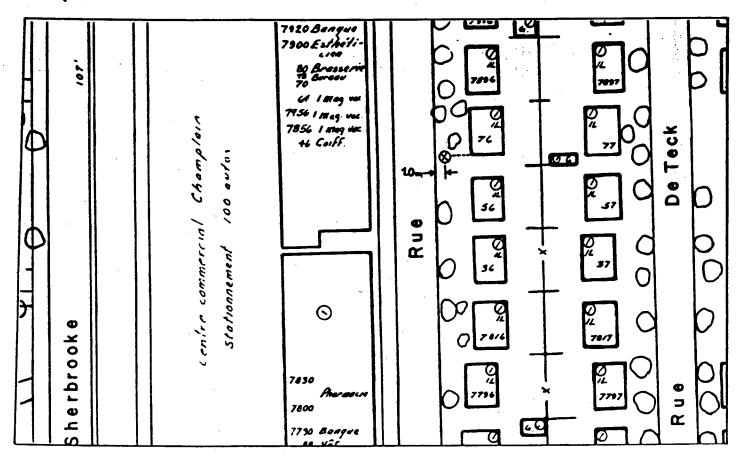

a belo a 125

NOM DE L'OPERATEUR :

17h23

520

PROJET: Autorout	RELEVE: 17				
ADRESSE: 3280	Lepailleur				DATE: 9/9/88
PERIODE D'ECHANTIL			DEBUT: 10	6:07	FIN: 16:47
APPAREIL: 84 K 700	6,14D800B,	HP718	ETALON NO).: B&K 423	0 (1314195)
PRE-CALIBRATION:	93.	15(1)	POST-CALI	BRATION:	93.8 dB(A)
PONDERATION:	TEMPOREL	LE: F() S	()	FREQUENTIELL	E: A(-) L()
VERIFICATION DES PI	ILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLOGI	QUES	0 - 6	h 6 – 12	h 12 – 1	18 h 18 - 24 h
HUMIDITE RELATIVE	(2)	·			
TEMPERATURE (c)				
VITESSE DU VENT (Km/h)	- 			

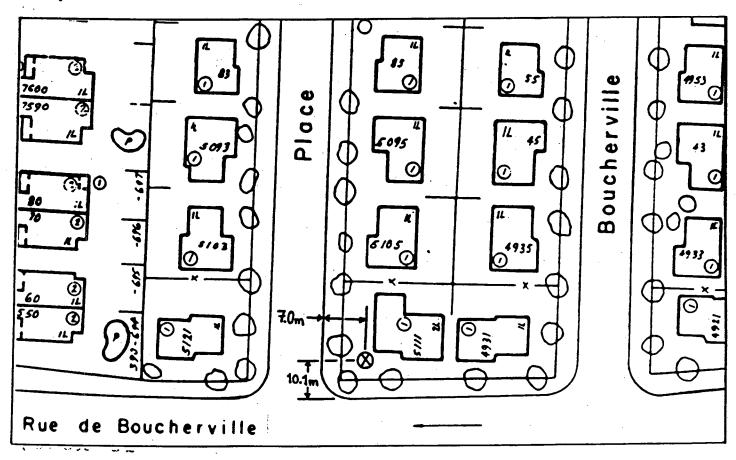

NOM DE L'OPERATEUR:

SIGNATURE:

2	Gouvernament du Cracus. Ministère des Transports
	Service de l'Environnement

<u> </u>								
PROJET: 37	70 Ligar Henr		RELEVE : 17					
ADRESSE :	T .		DATE : 7/9/81					
COMPTAGE (PE	RIODE) :							
ROUTE NO.	ho pailleur							
AUTOS	184							
CAM. LEGER	j 0							
CAM. LOURD	0							
EVENEMENTS SO	NORES							
HEURE	DUREE	DESCRIPTION						
		Sonce: Vent do la familla	& IMP					
		Buit de fant ato	vouto 25 :					
		oiseaux, circulation	we She broke					
		Souins						
16:16		Camian de déchargement à pre	sinck!					
		0 /						
		i	·					
			•					

PROJET: Autoro	ute 25				RELEVE: 18
ADRESSE: 7876 (DATE: 9/9/88				
PERIODE D'ECHANT		· · · · · · · · · · · · · · · · · · ·	DEBUT: 1:	7:10	FIN: 18:00
APPAREIL: BEK 70	06,L&D80	∞В, HР71В	ETALON NO).: B&K 4230	(1514195)
PRE-CALIBRATION:		93.8 dB(A)	POST-CALI	BRATION:	93.8 dB(A)
PONDERATION:	TEMPO	RELLE: F()	S()	FREQUENTIELLE	: A(L) L()
VERIFICATION DES	PILES	DEBUT	VOLTS	FIN	VOLTS
DONNEES METEOROLO	GIQUES	0 - 6	h 6 - 12	h 12 – 1	8 h 18 - 24 h
HUMIDITE RELATIVE	(2)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)			`	

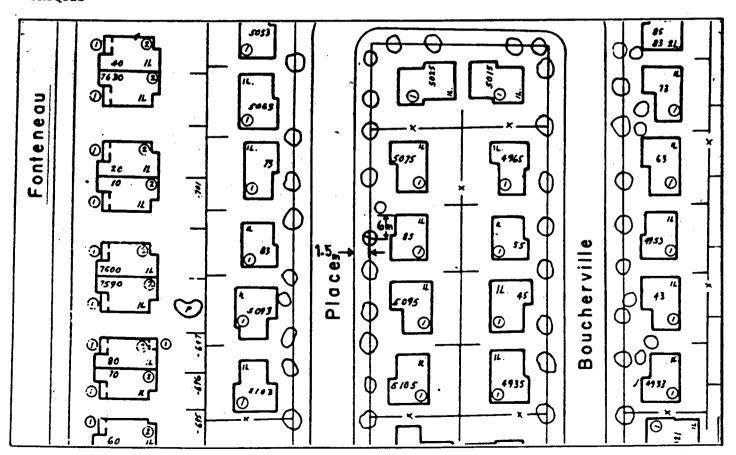

NOM DE L'OPERATEUR:

SIGNATURE:

2	Gouvernament du Liviusi. Ministère des Pensports
	Service de l'Environnement

	•	•
PROJET:		RELEVE : 17
ADRESSE :	7876 Gul	
	RIODE) :	
ROUTE NO.	Guntair Clian	
AUTOS	80	
CAM. LEGER	1	
CAM. LOURD	:	
EVENEMENTS SON	ORES	
HEURE	DUREE	DESCRIPTION
		Souch: Vent de banke (bein + fat (20-20k4)) 1
	·	O Sear /
į		au los
		3 ou 4 aviors
		25
<u> </u>		
<u> </u>		

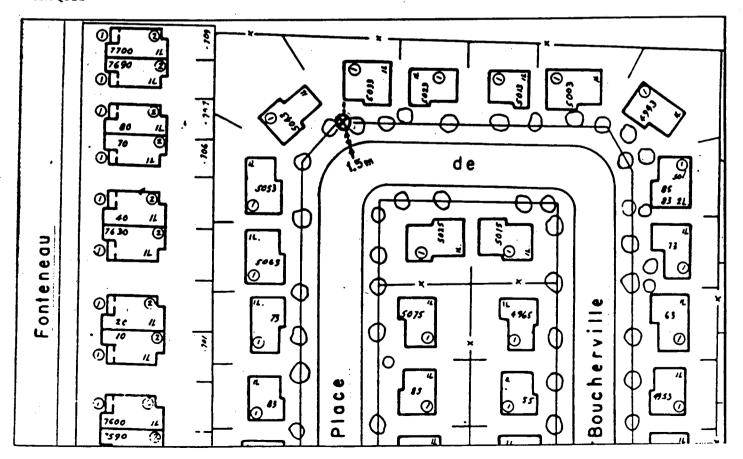
PROJET: Autoroute 25						R	ELEVE:	19	
ADRESSE: 5111 de Boucherville							D	ATE: 19	1/9/88
PERIODE D'ECHANTILLONNAGE:				DEBUT:	4:05		FIN:4:00(20/9/88)		
APPAREIL: 14D 80	ов, нр <i>т</i>	1B		ETALON	NO.:	B4k 4230	(13	14195)	
PRE-CALIBRATION:	<u> </u>		S(A)	POST-C	ALIBRA7	CION:		93.8	dB(A)
PONDERATION:	TEMP	ORELLE: F	() S()	FREC	UENTIELLE	: A(4) L()
VERIFICATION DES	PILES	DEBUT		VOLTS		FIN		VOLTS	
DONNEES METEOROLOG	GIQUES		0 - 6 h	6 -	12 h	12 - 1	8 h	18 -	24 h
HUMIDITE RELATIVE	(%)		90%						
TEMPERATURE	(C)		15.0						
VITESSE DU VENT	(Km/h)		3.6						



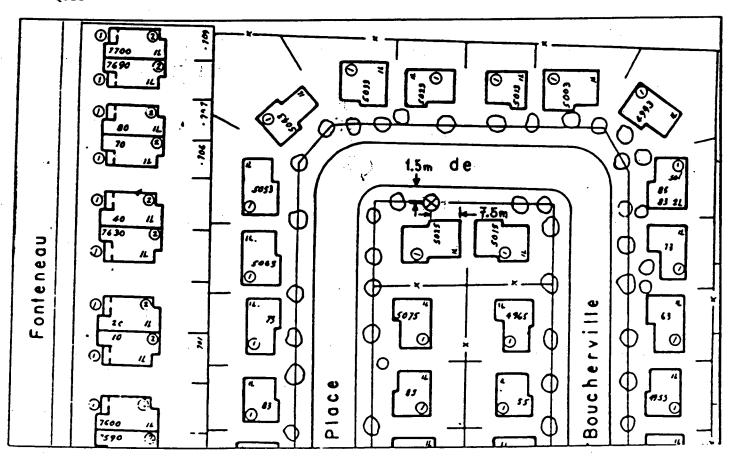
NOM DE L'OPERATEUR:

SIGNATURE:

PROJET:	· · · · · · · · · · · · · · · · · · ·			RELEVE :
ADRESSE :	DATE : 19/7			
	5111 to Roud RIODE) : 10:00 &	1 11:00		
ROUTE NO.	ui de servic nota	100 20 10-05mb (42	25 -> Sud (39)	25-0Neid (
AUTOS	940	1179	1449	1537
CAM. LEGER	15	97	172	176
CAM. LOURD	114	131	281	287
VENEMENTS SO	NORES			
HEURE	DUREE	DE	ESCRIPTION	
				·
	·	,		
		,		

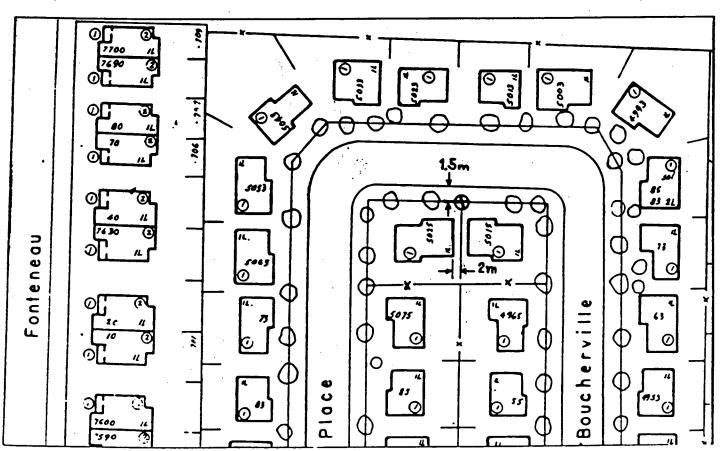

PROJET: Autoroute 25						RELEVE: 20 a	
ADRESSE: 5085	Da	ATE: 19/9/88					
PERIODE D'ECHANT		DEBUT:	18:15	F	in: 18:30		
APPAREIL: 84K 7	006, L¢D	8008, HP71B	ETALON	NO.: B&K 42	30 (13	14 195)	
PRE-CALIBRATION:		93.8 dB(A)	POST-CA	LIBRATION:		93.8 dB(A)	
PONDERATION:	TEMP	ORELLE: F()	5()	FREQUENTIEL	LE: A(→ L()	
VERIFICATION DES	PILES	DEBUT	VOLTS	PIN		VOLTS	
DONNEES METEOROLO	GIQUES	0 - 6	h 6 -	12 h 12 -	18 h	18 - 24 h	
HUMIDITE RELATIVE	(%)						
TEMPERATURE	(C)						
VITESSE DU VENT	(Km/h)					· .	

NOM DE L'OPERATEUR:


SIGNATURE:

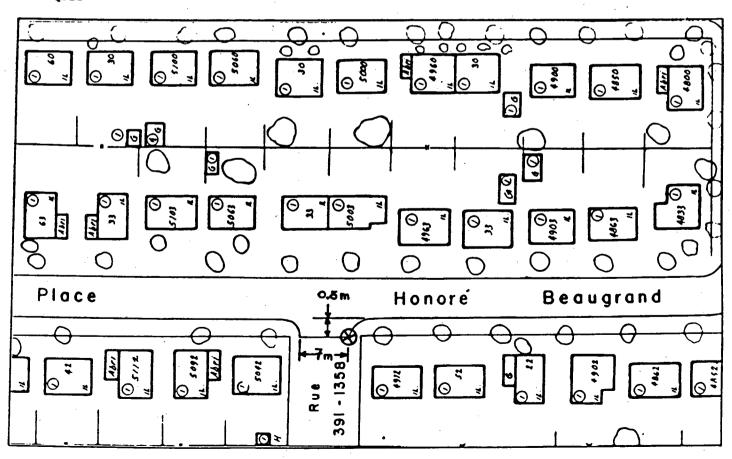
PROJET: Autoro	RELEVE: 20 b				
ADRESSE: 5033 P	DATE: 19/9/88				
PERIODE D'ECHANTII		DEBUT:	18:35	FIN: 18:50	
APPAREIL: DAK 700	06,1408	∞В, HР7IВ	ETALON N	0.: P&K 4230	(1314195)
PRE-CALIBRATION:		13.8 dB(A)	POST-CAL	IBRATION:	93.8 dB(A)
PONDERATION:	TEMPO	RELLE: F()	S()	FREQUENTIELLE	: A(\(\)
VERIFICATION DES F	PILES	DEBUT	VOLTS	PIN	VOLTS
DONNEES METEOROLOG	IQUES	0 - 6	h 6 - 1	2 h 12 - 1	8 h 18 - 24 h
HUMIDITE RELATIVE	(%)				
TEMPERATURE	(C)				
VITESSE DU VENT	(Km/h)				

NOM DE L'OPERATEUR:

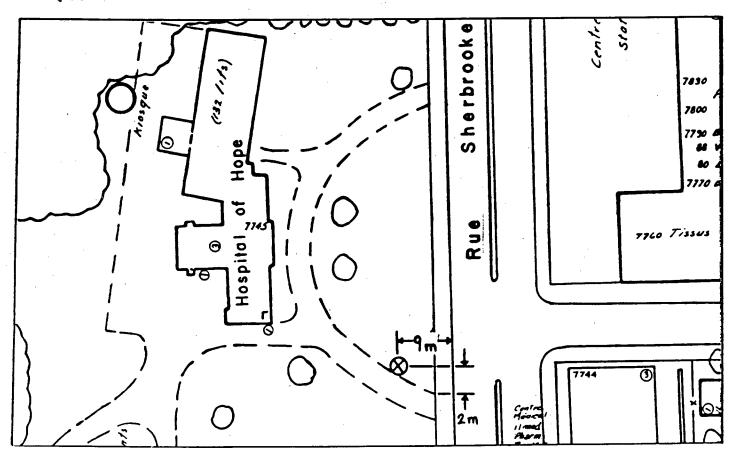

PROJET: Autoroute	RELEVE: 20 c				
ADRESSE: 5025 Place	DATE: 19/9/88				
PERIODE D'ECHANTILLONN	AGE:	DEBUT:	19:00	FIN: 19:15	
APPAREIL: DAK 7006, 1	4D 800B, HP7ID	ETALON N	0.: D&K 4230	0 (1314195)	
PRE-CALIBRATION:	93.8 dB(A)	POST-CAL	IBRATION:	93.8 dB(A)	
PONDERATION:	TEMPORELLE: F()	s()	FREQUENTIELLE	E: A(4) L()	
VERIFICATION DES PILES	DEBUT	VOLTS	FIN	VOLTS	
DONNEES METEOROLOGIQUES	0 - 6	h 6 - 13	2 h 12 - 1	8 h 18 - 24 h	
HUMIDITE RELATIVE (2)					
TEMPERATURE (C)					
VITESSE DU VENT (Km/h	1)				

NOM DE L'OPERATEUR:

SIGNATURE:


PROJET: Autoroute 25						RELE	RELEVE: 20 d	
ADRESSE: 5025 Place de Boucherville							: 19/9/88	
PERIODE D'ECHANTI	DEBU	T: -	19:20	FIN:	19:35			
APPAREIL: DAK 70	ETAL	ETALON NO.: 74 K 4230 (1314195)						
PRE-CALIBRATION:	<u>-</u> -	93.8 dB(A)	POST	-CALIBE	RATION:	93.8	dB(A)	
PONDERATION:	TEMP	ORELLE: F()	S()	FE	REQUENTIELLE	: A(4)	L()	
VERIFICATION DES	PILES	DEBUT	VOLT:	s	FIN	VOL	TS	
DONNEES METEOROLO	GIQUES	0 -	6 h 6	- 12 h	12 - 1	8 h	18 - 24 h	
HUMIDITE RELATIVE	(%)							
TEMPERATURE	(C)			<u> </u>			· · · · · · · · · · · · · · · · · · ·	
VITESSE DU VENT	(Km/h)							

NOM DE L'OPERATEUR:


SIGNATURE:

PROJET: Autoroute 25					RELEVE: 21	
ADRESSE: 4972 1	DATE: 19/9/88					
PERIODE D'ECHANTILLONNAGE: DEBUT: 20:00					FIN: 20:30	
APPAREIL: BEKTO	06,L4D8	0035, HP7135	ETALON NO	D&K 4230	(1314 195)	
PRE-CALIBRATION:		3.8 dB(A)	POST-CALI	BRATION:	93.8 dB(A)	
PONDERATION:	TEMPO	RELLE: F()	S()	FREQUENTIELLE	E: A(L) L()	
VERIFICATION DES	PILES	DEBUT	VOLTS	FIN	VOLTS	
DONNEES METEOROLOG	FIQUES	0 - 6	h 6 – 12	h 12 – 1	8 h 18 - 24 h	
HUMIDITE RELATIVE	(%)					
TEMPERATURE	(C)					
VITESSE DU VENT	(Km/h)					

NOM DE L'OPERATEUR:

PROJET: Autoroute				RELEVE: 22
ADRESSE: 7745 Sher	brooke			DATE: 9/9/88
PERIODE D'ECHANTILLONNAGE	FIN: 18:38			
APPAREIL: 84 × 7006, LED	800B, HP71B	ETALON NO	.: BEK 4230	(1314195)
PRE-CALIBRATION:	93.8 dB(A)	POST-CALI	BRATION:	93.8 dB(A)
PONDERATION: TEN	PORELLE: F()	S()	FREQUENTIELL	E: A(-) L()
VERIFICATION DES PILES	DEBUT	VOLTS	PIN	VOLTS
DONNEES METEOROLOGIQUES	0 - 6	h 6 - 12	h 12 -	18 h 18 - 24 h
HUMIDITE RELATIVE (%)		T .		
TEMPERATURE (C)				
VITESSE DU VENT (Km/h)				

NOM DE L'OPERATEUR:

SIGNATURE:

Gowernement ou cua	naa.
Mreuse des Transport	Is
Service de l'Environne	ment

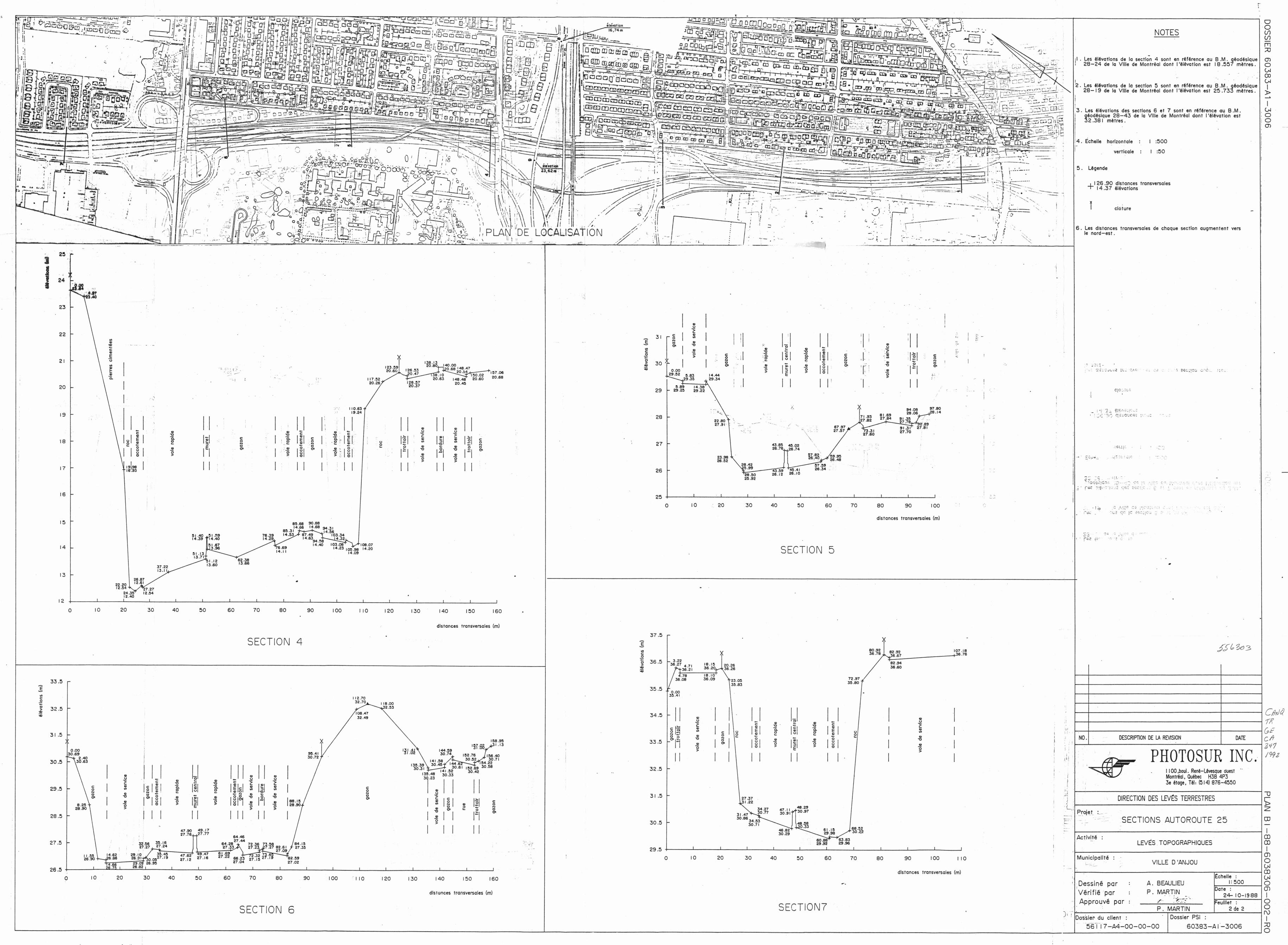
PROJET:		RELEVE : 22
ADRESSE :	7745 3W. brooke	DATE : 9/9/88
COMPTAGE (PE	RIODE): 18:18 à 18:28	
ROUTE NO.	Sluckinke)50k/L	
AUTOS	459	
CAM. LEGER	3	
CAM. LOURD	1 + 3a, Johnson	

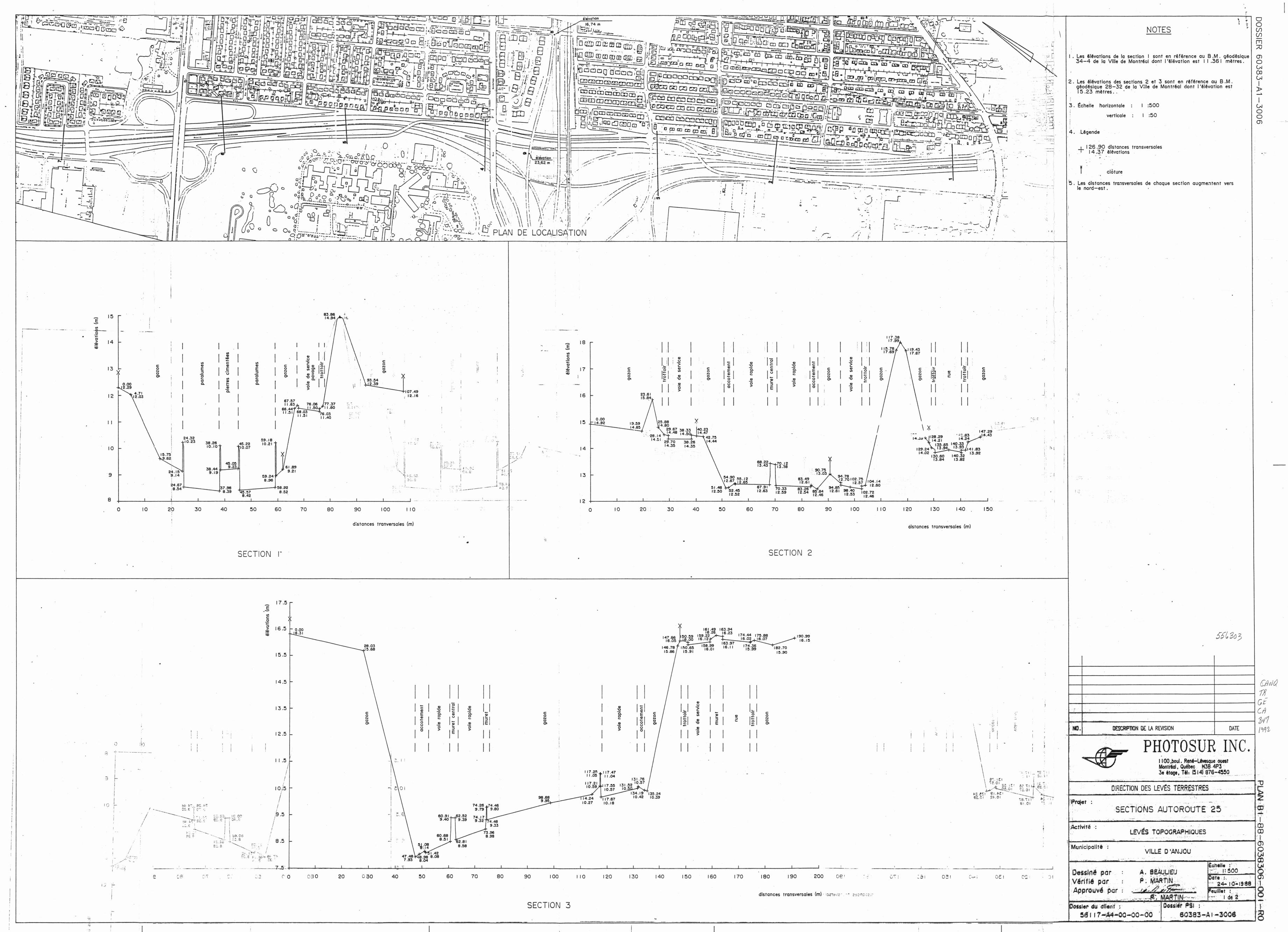
EVENEMENTS SONORES

HEURE	DUREE	DESCRIPTION
	1	Source: Vine Sherbreche
		,

NOM DE L'OPERATEUR :

Point	Date (jj-mmm-aa)	Heure (hh:mm)	Leq dBA	L95 dBA	L10 dBA	L50 dBA	L99 dBA	L1 dBA
1	12-sep-88	05:22	61	56	63	60	55	65
1	12-sep-88	06:12	64	61	65	63	59	67
1	12-sep-88	07:06	64	. 62	66	64	61	69
1	12-sep-88	08:05	64	61	65	63	60	68
1	12-sep-88	09:03	62	59	64	62	58	67
1	12-sep-88	10:02	63	58	64	61	56	72
1	12-sep-88	11:00	60	56	62	59	55	66
1	12-sep-88	12:02	60	56	62	59	55	65
1	12-sep-88	13:00	59	56	61	59	54	64
1	12-sep-88	13:59	62	58	63	61	56	68
1	12-sep-88	14:58	62	58	63	61	57	67
1	12-sep-88	16:01	61	57	62	59	56	67
1	12-sep-88	17:01	60	57	62	59	56	66
1	12-sep-88	17:59	61	57	63	60	56	68
1	12-sep-88	19:00	59	56	61	59	55	65
1	12-sep-88	20:00	58	54	60	57	53	63
1	12-sep-88	21:01	59	55	61	58	54	64
1	12-sep-88	22:00	59	56	61	58	54	65
1	12-sep-88	22:59	58	54	61	57	53	64
1	13-sep-88	00:01	57	52	59	56	51	62
1	13-sep-88	02:12	. 55	47	58	53	45	63
1	13-sep-88	03:13	56	50	59	55	49	63
1	13-sep-88	04:05	20	51	61	57	49	64
2 3	12-sep-88	16:00	6 6	55 57	65	6 5	53	72
4	12-sep-88	17:00	59	53	62	56.	52	67
4	14-sep-88	22:01	69 (7	60	71	65	59 57	79
4	14-sep-88	23:02	67 4.7	58 55	, 0	64	57 57	70
4	15-sep-88	00:01	67 6.0	55 57	69	62 50	53	78
4	15-sep-88		64 63	53 50	66 (5	59	51	76 75
4	15-sep-88 15-sep-88	02:00			65 45	5 7	49	75
4	15-sep-88	03:00 03:59	`64 66	51 52	65 68	58 59	50	75 78
4	15-sep-88	04:59	69	58	72	64 ·		!
4	15-sep-88	05:59	73	64	76 76	69	56 62	81 82
4	15-sep-88	06:59	74	66	78	71	65 65	83
4	15-sep-88	07:59	7 5	65	7 9	71	64	83
4	15-sep-88	08:59	7 5	63	7 9	70	62	83
4	15-sep-88	09:59	74	63	78	69	61	84
4	15-sep-88	10:59	74	63	7 9	69	61	83
4	15-sep-88	12:18	73	61	77	6B	59	82
4	15-sep-88	13:30	75	63	79	70	62	84
4	15-sep-88	14:06	75	64	79	71	63	84
4	15-sep-88	15:08	75	64	79	71	62	84
4	15-sep-88	16:12	75	64	79	71	63	85
4.	15-sep-88	17:10	75	64	76	70	63	83
		- 	-				 	


Ò


Point	Date (jj-mmm-aa)	Heure (hh:mm)	Leq dBA	L95 dBA	L10 dBA	L50 dBA	L99 dBA	L1 dBA
4	15-sep-88	18:08	72	63	74	68	62	81
4	15-sep-88	19:09	71	62	73	67	61	81
4	15-sep-88	20:07	71	61	72	66	60	81
4	15-sep-88	21:05	69	61	72	65	60	78
4.1	22-sep-88	08:01	75	65	7 9	70	64	84
4.1	22-sep-88	09:00	75	65	79	70	63	84
4.1	22-sep-88	10:04	75	65	79	71	64	84
5	22-sep-88	08:02	64	56	67	61	54	71
6	22-sep-88	09:00	60	53	64	57	51	71
7	09-sep-88	12:27	67		71	64	•	
7	09-sep-88	13:27	68		71	66		d
7	09-sep-88	14:27	68		. 72	66		
8	09-sep-88	12:17	66	56	63	60	55	72
9	09-sep-88	13:05	58	54	59	57	53	65
10	15-sep-88	23:02	- 68	59	71	64	58	79
10	16-sep-88	00:06	66	55	69	61	53	77
10	16-sep-88	01:04	64	51	66	58	49	75
10	16-sep-88	02:03	62	50	64	57	48	73
10	16-sep-88	03:03	64	50	65	57	48	77
10	16-sep-88	04:01	64	51	65	58	49	76
10	16-sep-88	04:59	68	57	70	63	55	80
10	16-sep-88	06:01	71_	63	74	68	61	81
10	16-sep-88	07:01	72	64	75	68	62	82
10	16-sep-88	08:01	72	63	75	68	62	82
10	16-sep-88	08:59	74	63	77	69	61	84
10	16-sep-88	09:59	74	62	78	69	61	84
10	16-sep-88	10:59	73	63	77	70	61	83
10	16-sep-88	12:00	73	62	76	69	60	83
10	16-sep-88	12:59	74	63	77	69	61	84
10	16-sep-88	14:59	74	63	77	70	62	83
10	16-sep-88	16:03	73	64	76	70	62	83
10	16-sep-88	17:01	72	63	75	69	62	82
10	16-sep-88	18:05	71	62	73	68	61	81
10	16-sep-88	19:03	70	62	73	67	60	79
10	16-sep-88	20:00	69	61	72	65	90	79
10	16-sep-88	21:03	69	61	72	65	59	78
10	16-sep-88	22:03	68	59	71	64	58	79
11	16-sep-88	10:00	55	50	58	53	49	65
12	16-sep-88	11:00	52	49	54	52	49	58
13	22-sep-88	13:00	73	68	75	71	66	81
13	22-sep-88	13:59	73 77	68	76 75	71	67	8.1
13	22-sep-88	15:02	73	67	75.	71	66	80
14	22-sep-88	13:00	62	57	64	60	56 50	72
15	22-sep-88	14:00	62	59	64	62	58	66
16	09-sep-88	16:04	67 4.7		69	66		
16	09-sep-88	17:04	- 67		69	66		

Point	Date (jj-mmm-aa)	Heure (hh:mm)	Leq dBA	L95 dBA	L10 dBA	L50 dBA	L99 dBA	L1 dBA
16	09-sep-88	18:04	66		68	65		
17	09-sep-88	16:07	64	58	67	61	57	72
18	09-sep-88	17:10	63	59	65	62	59	71
19	19-sep-88	04:05	64	50	68	60	48	74
19	19-sep-88	05:10	69	58	72	67	54	78
19	19-sep-88	06:12	72	66	75	71	65	79
19	19-sep-88	07:07	73	67	76	71	66	81
19	19-sep-88	OB: 01	73	66	76	71	64	81
19	19-sep-88	09:00	73	65	76	70	63	80
19	19-sep-88	09:59	73	63	77	70	61	81
19	19-sep-88	10:58	73	64	77	70	62	81
19	19-sep-88	12:00	72	63	75	69	60	Вþ
19	19-sep-88	13:00	73	65	76	70	63	81
19	19-sep-88	14:00	73	65	77	71	64	81
19	19-s ep- 88	15:00	75	65	76	70	63	82
19	19-sep-88	16:00	73	65	76	71	63	80
19	19-sep-88	17:00	72	65	75	71	64	80
19	19-sep-88	18:00	71	64	74	69	62	79
19	19-sep-88	19:02	70	62	73	68	60	79
19	19-sep-88	20:00	69	61	72	66	58	77
19	19-sep-88	21:00	69	60	72	66 .	58	76
19	19-sep-88	21:59	68	59	72	65	57	77
19	19-sep-88	22:59	67	57	71	64	55	76
19	20-sep-88	00:13	66	52	69	61	49	77
19	20-sep-88	00:59	64	50	67	58	48	74
19	20-sep-88		62	48	65	56	47	73
19	20-sep-88	02:59	64	49	65	57	48	77
20a	19-sep-88	18:15	59	54	60	56	53	66
20b	19-sep-88	18:35	54	51	55	53	50	61
20c	19-sep-88	19:00	53	51	54	52	51	61
20d	19-sep-88	19:20	54	51	54	53	51	61
21	19-sep-88	20:00	53	50	55	52	49	60
22	09-sep-88	18:18	71	65 	74	70	64	79

ANNEXE 2

SECTIONS COUPES DE L'AUTOROUTE 25

ANNEXE 3

RÉSULTATS DE LA SIMULATION DU CLIMAT SONORE

0,1 76 0,2 75 0,3 73 0,4 70 0,5 66 0,6 62 1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 <td< th=""><th></th><th>RECEPTEUR ISO</th><th>Leq(h) dBA</th></td<>		RECEPTEUR ISO	Leq(h) dBA
0,2 75 0,3 73 0,4 70 0,5 66 0,6 62 1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		0,1	76
0,4 70 0,5 66 0,6 62 1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			75
0,5 66 0,6 62 1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		0,3	73
0,6 62 1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		1	70
1,1 76 1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
1,2 74 1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75	•	1	
1,3 73 1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
1,4 70 1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
1,5 66 1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
1,6 62 2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		•	
2,1 76 2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		,	· ·
2,2 74 2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
2,3 72 2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
2,4 69 2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
2,5 66 2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
2,6 62 3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
3,1 73 3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
3,2 71 3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
3,3 68 3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		I '	
3,4 65 3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
3,5 62 3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75		l i	
3,6 58 4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
4,1 74 4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
4,2 71 4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
4,3 68 4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
4,4 65 4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			'
4,5 62 4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			
4,6 58 5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75	•	4,5	
5,1 73 5,2 72 5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			· ·
5,3 69 5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			73
5,4 67 5,5 63 5,6 60 6,1 77 6,2 75			72
5,5 63 5,6 60 6,1 77 6,2 75		5,3	69
5,6 60 6,1 77 6,2 75		5,4	67
6,1 77 6,2 75			63
6,2 75	٠		· ·
	-		
		6,3	72
6,4 71			
6,5 64			
6,6 65		6,6	65

RECEPTEUR	Leq(h)
ISO	dBA
	<i></i>
6,7	63
6,8	62
7,1	77
7,2	75
7,3	. 72
7,4	71
7,5	71
7,6	70
7,7	70
7,8	70
8,1	77
8,2	76
8,3	72
8,4	69
8,5	67
8,6	66
8,7	65
8,8	64
9,1	76
9,2	74
9,3	72
9,4	68
9,5	67
9,6 9,7	65
9,8	63
9,9	60
10,1	75
10,1	74
10,3	67
10,4	64
10,5	62
10,6	58
11,1	73
11,2	69
11,3	67
11,4	66
11,5	62
11,6	58
12,1	72
12,2	70
12,3	68

RECEPTEUR	Lag(b)
ISO	Leq(h)
130	dBA
10.4	(7
12,4	67
12,5	63
12,6	58
13,1	72
13,2	70
13,3	68
13,4	65
13,5	62
13,6	58
14,1	72
14,2	69
14,3	67
14,4	65
14,5	61
14,6	58
15,1	72
15,2	70
15,3	67
15,4	65
15,5	63
15,6	58
16,1	73
16,2	73
16,3	. 72
16,4	72
16,5	71
16,6	72
17,1	72
17,2	70
17,3	68
17,4	66
17,5	66
17,6	64
18,1	75
18,2	71
18,3	67
18,4	64
18,5	63
18,6	63 .
19,1	72
19,2	68
19,3	66

RECEPTEUR	Leq(h)
ISO	dBA
10.4	62
19,4 19,5	63 61
19,6	56
20,1	72
20,2	70
20,3	68
20,4	64
20,5	61
20,6	56
21,1	72
21,2	70
21,3	68
21,4	66
21,5	63
21,6	57
22,1	75
22,2	72
22,3	69
22,4	66
22,5	63
22,6	57
23,1	73
23,2	71
23,3	68 65
23,4 23,5	61
23,6	56
24,1	77
24,2	65
24,3	65
24,4	63
24,5	60
24,6	56
25,1	78
25,2	67
25,3	64
25,4	62
25,5	59
25,6	55
26,1	78
26,2	70
26,3	62

RECEPTEUR	Leq(h)
ISO	dBA
	<u> </u>
26.4	£1
26,4 26,5	61 59
26,6	55
27,1	77
27,1	68
27,3	60
27,4	60
27,5	57
27,6	54
28,1	77
28,2	58
28,3	60
28,4	59
28,5	58
28,6	55
29,1	75
29,2	71
29,3	67
29,4	63
29,5	60
29,6	56
30,1	73
30,2	70
30,3	68
30,4	64
30,5	61
30,6	56
31,1	72
31,2	63
31,3	64
31,4	63
31,5	62
31,6	56
32,1	73
32,2	74
32,3	75
32,4	83
32,5	68
32,6	55
	·

ANNEXE 4

RÉSULTATS DE LA SIMULATION DE LA RUE HONORÉ-BEAUGRAND

DECEDERA	
RECEPTEUR	Leq(h)
ISO	dBA
0.1	AE .
0,1	45
0,2 0,3	45 46
0,4	40 47
0,5	49
0,6	58
1,1	46
1,2	46
1,3	46
1,4	47
1,5	49
1,6	57
2,1	46
2,2	46
2,3	46
2,4	47
2,5	49
2,6	56
3,1	46
3,2	46
3,3	46
3,4	. 47
3,5	49
3,6	56
4,1	46
4,2	46
4,3	47
4,4	48
4,5	50 57
4,6 5,1	47
5,2	47
5,3	47
5,4	48
5,5	50°
5,6	58
6,1	47
6,2	47
6,3	47
6,4	48
6,5	51
6,6	. 50
6,7	53
6,8	59

RECEPTEUR	Leq(h)
ISO	dBA
·	
7,1	47
7,2	47
7,3	47
7,4	48
7,5	49
7,6	50
7,7	53
7,8	59
8,1	47
8,2	47
8,3	48
8,4	49
8,5	50
8,6	51
8,7	54
8,8	64
9,1	48
9,2	48
9,3	48
9,4	49
9,5	49
9,6	50
9,7	52
9,8	56
9,9	70
10,1	48
10,2	48
10,3	49
10,4	50
10,5	52
10,6	68
11,1	49
11,2 11,3	49 49
<u> </u>	
11,4 11,5	50 53
	53 62
11,6 12,1	49
12,1	49
12,3	50
12,4	51
12,5	54
12,6	59
13,1	49
15,1	47
	L

RECEPTEUR	Leq(h)
ISO	dBA
13,2	49
13,3	50
13,4	51
13,5	54
13,6	59
14,1	49
14,2	49
14,3	50
14,4	51
14,5	54
14,6	59
15,1	49
15,2	49
15,3	50
15,4	51
15,5	55
15,6	60
16,1	49
16,2	49
16,3	50
16,4	51
16,5	54
16,6	61 🚅
17,1	49
17,2	49
17,3	50
17,4	51
17,5	54
17,6	62
18,1	49
18,2	49
18,3	49
18,4	51
18,5	54
18,6	63
19,1	48
19,2	48
19,3	49
19,4	50
19,5	54
19,6	64
20,1	48
20,2 20,3	48 49
20,3	49
L	

RECEPTEUR	Leq(h)
ISO	dBA
·	
20,4	50
20,5	54
20,6	62
21,1	47
21,2	47
21,3	48
21,4	49
21,5	53
21,6	59
22,1	47
22,2	47
22,3	47
22,4	49
22,5	52
22,6	56
23,1	45
23,2	45
23,3	46
23,4	47
23,5	48
23,6	49
24,1	43
24,2	43
24,3	. 44
24,4	44
24,5	45
24,6	46
25,1	41
25,2	41
25,3	42
25,4	42
25,5	42
25,6	43
26,1	40
26,2	40
26,3	40
26,4	41
26,5	41
26,6	41
27,1	39
27,2	39 ·
27,3	39
27,4	39
27,5	39

RECEPTEUR ISO	Leq(h) dBA
27,6	40
28,1	38
28,2	38
28,3	38
28,4	38
28,5	38
28,6	38
29,1	37
29,2	37
29,3	37
29,4	37
29,5	37
29,6	. 37
30,1	36
30,2	36
30,3	36
30,4	36
30,5	36
30,6	36
31,1	35
31,2	35
31,3	35
31,4	35
31,5	35
31,6	35
32,1	34
32,2	34
32,3	34
32,4	34
32,5	34
32,6	34

٠

I

