#### **CALIBRATION OF THE 1995 TRANS MODEL**

#### Summary:

TRANS, a joint technical committee on transportation systems planning in the National Capital Region, (NCR) consists of representatives of the regional, provincial and federal governments having jurisdiction in the greater Ottawa-Hull area, as well as the two public operators. One of the key responsibilities of TRANS is the development and maintenance of the TRANS travel demand model.

The objective of this study is the calibration of the existing TRANS model to 1995 PM peak hour travel in the National Capital Region. The transportation demand model currently used by TRANS was calibrated on the 1986 OD survey and reflects 1986 travel behavior. In large metropolitan centers as the National Capital Region, transportation models are updated, or recalibrated every 10 years to take into account current travel behavior characteristics.

In 1995, TRANS carried out the 1995 OD survey to record 1995 travel demand on a household and individual person level. The survey was a 5 percent sample of households in urban areas and a 20 percent sample in rural areas. The information collected included details about the household, characteristics of each individual in the household as well as information about each trip made by persons aged 10 or more. The 1995 model calibration task utilizes the 1995 OD Survey database and applies the same general structure of the existing model.

The existing model is a traditional four stage travel demand model consisting of trip generation, distribution, modal split and trip assignment models. The software used to simulate travel demand is EMME2. Travel demand is simulated by inputting travel demand equations which use the demographic databank to estimate travel demand. Travel demand is in the form of matrices representing trips between traffic zones. These matrices are assigned onto the networks to obtain auto person, auto vehicle as well as transit travel on the road and transit networks respectively. The calibration to 1995 conditions involves updating the demographic databank, developing new equations to estimate travel demand matrices and auto and transit networks reflecting 1995 conditions.

This report is structured in the manner that the calibration process was carried out. Chapter 2 describes the process used to update the auto and transit networks and the volume delay functions. Chapter 3 outlines the calibration of the trip generation model. Chapter 4 describes the trip distribution model and Chapter 5 describes the development of the modal split model. Chapter 6 provides insights learned from this modeling exercise where further study can be carried out to enhance the model.

## Table of Contents

| 1. INTRODUCTION                                        | 1  |
|--------------------------------------------------------|----|
| 1.1 Study Objective                                    | 1  |
| 2. NETWORK CALIBRATION                                 | 3  |
| 2.1 Overview:                                          |    |
| 2.2 Convert Existing EMME2 Network to NAD 27 System    | 3  |
| 2.3 Expanding EMME2 Network into Rural Areas.          | 4  |
| 2.4 Centroid Connector Modifications                   | 4  |
| 2.5 Turn Penalties                                     | 4  |
| 2.6 Macros to Convert SC5 to 2021 OP and 1995 Networks | 4  |
| 2.7 Development of New Volume Delay Functions          | 5  |
| 2.7.1 Calibration of Auto Volume Delay Functions       | 8  |
| 2.7.2 Centroid Connector Volume Delay Functions        |    |
| 2.8 Transit Network Calibration                        | 11 |
| 2.8.1 Transit Volume Delay Functions                   | 11 |
| 2.8.2 2021 Transit Routes                              | 13 |
| 2.9 Assignment Results                                 | 13 |
| 2.10 Further Work on Networks                          |    |
| 3. TRIP GENERATION MODEL CALIBRATION                   | 17 |
| 3.1 Overview                                           | 17 |
| 3.2 Comparison of Demographic Data (1986 and 1995)     | 19 |
| 3.3 Comparison of Person Trips (1986 and 1995)         |    |
| 3.4 Analysis of 1995 OD Survey                         | 21 |
| 3.5 Trip Generation Equations                          | 22 |
| 3.6 Comparison of Models using 1995 Data               |    |
| 3.7 Conversion to Peak Hour                            | 26 |
| 4. TRIP DISTRIBUTION                                   |    |
| 4.1 Overview                                           |    |
| 4.2 Methodology                                        |    |
| 4.3 Simulation Results                                 |    |
| 5. MODAL SPLIT                                         |    |
| 5.1 Overview                                           |    |
| 5.2 Logit Model Preparation                            |    |
| 5.2.1 Data Preparation, Logit Models                   |    |
| 5.2.2 Specifying Logit Models                          |    |
| 5.2.3 Model Evaluation                                 |    |
| 5.3 Final Logit Formulations                           |    |
| 5.3.1 Work to Home Logit Model                         |    |
| 5.3.2 Aggregation                                      |    |
| 5.4 School to Home Logit Model                         |    |
| 5.4.1 Aggregation                                      |    |
| 5.5 All Other Trip Purposes, Inside the UTA Model      |    |
| 5.5.1 Trips Outside the UTA                            |    |
| 5.5.2 Intra-Zonal Trips                                |    |
| 5.5.3 External Trips                                   |    |
| 5.6 Modal Split Model Results                          |    |
| 5.7 Trip Assignment                                    |    |
| 6. EMME2 USER GUIDE FOR TRANS MODEL                    |    |
| 6.1 Overview                                           |    |
| 6.2 Environment for the TRANS Model                    |    |
| 6.2.1 Establishing Scenarios and Scenario Management   | 30 |

| 6.2.2 Matrices and Matrices Management                                       |  |
|------------------------------------------------------------------------------|--|
| 6.2.3 Annotation and Demarcation Files                                       |  |
| 6.2.4 Macros                                                                 |  |
| 6.3 Overview of Using the TRANS Model Within EMME2                           |  |
| 6.4 Application of the TRANS Model within EMME2                              |  |
| 6.4.1 Full Model Runs -Land Use Changes (Use LEVEL195.MAC and LEVEL121.MAC ) |  |
| 6.4.2 Major Network Changes (Use macro LEVEL2.MAC)                           |  |
| 6.4.3 Minor Network Changes (Use macro LEVEL3.MAC)                           |  |
| 7. Forecasting Application                                                   |  |
| 7.1 Data Needs                                                               |  |
| 7.1.1 Trip Generation Demographics                                           |  |
| 7.1.2 Modal Split Demographic                                                |  |
| 7.2 Networks and Attributes                                                  |  |
| 7.3 UTA Definition                                                           |  |
| 7.4 Quebec Transit Flag                                                      |  |
| 7.5 Travel Cost                                                              |  |
| 7.6 Under-Reporting of Trip Purposes                                         |  |
| 7.6.1 "Other to Home" Trips                                                  |  |
| 7.6.2 Work to Home Trips                                                     |  |
| 7.7 Simulation Results                                                       |  |
| 7.8 Comparison to Master Transportation Plan Results                         |  |
| 8. FURTHER RESEARCH INTO MODEL DEVELOPMENT                                   |  |

# **1. INTRODUCTION**

## 1.1 Study Objective

TRANS, a joint technical committee on transportation systems planning in the National Capital Region, (NCR) consists of representatives of the regional, provincial and federal governments having jurisdiction in the greater Ottawa-Hull area, as well as the two public transit operators. One of the key responsibilities of TRANS is the development and maintenance of the TRANS travel demand model.

The objective of this study is the calibration of the existing TRANS model to 1995 PM peak hour travel in the National Capital Region. The transportation demand model currently used by TRANS was calibrated on the 1986 OD survey and reflects 1986 travel behavior. In large metropolitan centers as the National Capital Region, transportation models are updated, or recalibrated every 10 years to take into account current travel behavior characteristics.

In 1995, TRANS carried out the 1995 OD survey to record 1995 travel demand on a household and individual person level. The survey was a 5 percent sample of households in urban areas and a 20 percent sample in rural areas. The information collected included details about the household, characteristics of each individual in the household as well as information about each trip made by persons aged 10 or more. The 1995 model calibration task utilizes the 1995 OD Survey database and applies the same general structure of the existing model.

The existing model is a traditional four stage travel demand model consisting of trip generation, distribution, model split and trip assignment models. The software used to simulate travel demand is EMME2. Travel demand is simulated by inputting travel demand equations which use the demographic databank to estimate travel demand. Travel demand is in the form of matrices representing trips between traffic zones. These matrices are assigned onto the networks to obtain auto person, auto vehicle as well as transit travel on the road and transit networks respectively. The calibration to 1995 conditions involves updating the demographic databank, developing new equations to estimate travel demand matrices and auto and transit networks reflecting 1995 conditions.

This report is structured in the manner that the calibration process was carried out. Chapter 2 describes the process used to update the auto and transit networks and the volume delay functions. Chapter 3 outlines the calibration of the trip generation model. Chapter 4 describes the trip distribution model and Chapter 5 describes the development of the model split model. Chapter 6 provides insights learned from this modeling exercise where further study can be carried out to enhance the model.

# **2. NETWORK CALIBRATION**

#### 2.1 Overview:

This chapter outlines the method used to develop the auto and transit networks. The approach used to obtain the 1995 networks began by developing an ultimate network containing all potential road and transit infrastructure improvements that could occur within the next 30 years. A system was then developed to "turn off" improvements until the desired 1995 network was in place. The advantage of this approach is that all networks that may be studied will have a common node and link system, making comparisons between alternatives possible using EMME2 software. The main tasks in developing the networks are:

- Converting the existing EMME2 networks to the NAD 27 coordinate system.
- Expanding the rural network to better replicate the road system in areas anticipated to develop within the 2021 time frame.
- Modifying the number and location of centroid connectors, allowing traffic to spread more uniformly throughout the network.
- Reviewing turn penalties for 1995 and 2021 networks.
- Developing new volume delay functions for the auto and transit modes.
- Revising the transit route descriptions such that transit time functions are based on congested roadway speeds.

#### 2.2 Convert Existing EMME2 Network to NAD 27 System

The existing EMME2 network was developed by digitizing several base maps covering urban areas within National Capital Region (NCR). Roads in the auto network include highways, arterials, several collectors and local roads where transit service exists. For the rural areas, a skeleton network was developed where links were inputted to represent desired lines of travel where the road system was sparsely developed. The transit network uses the road network supplemented with route descriptions indicating where bus routes travel as well as headways, lay-over times, etc.

For the new road network, the geographic location of roads and intersections were defined based on the coordinate system contained in the Regional Municipality of Ottawa-Carleton (RMOC) Microstation database. NAD 27 was used as the base since this was the system in use at the time this study was carried out. The existing EMME2 network was inputted into the Microstation environment and coordinates were obtained for all link's beginning and end points. The new coordinates were then fed back into the EMME2 software to re-position the network to the new coordinate system. With the EMME2 network contained in the Microstation environment, it was possible to refer to this system to determine coordinate locations for any new roads that may be required to input into the EMME2 software environment. Once this task was completed, it was possible to carry out the remaining network modifications as outlined in the remainder of this chapter.

#### 2.3 Expanding EMME2 Network into Rural Areas.

To provide suitable travel demand simulations outside the Greenbelt, additional links were coded into the network using Microstation to obtain the appropriate x-y coordinates. In the rural areas where the Microstation road network is currently not developed, conceptual nodes and links were added to provide better replication of the highway system outside the NCR where external travel enters and leaves the network via external nodes.

## 2.4 Centroid Connector Modifications

A review was made of the location and number of centroid connectors to determine if they adequately distributed current and future traffic onto the network. New centroid connectors were connected between zone centroids and the road network in a manner to limit the trips on a centroid connector to under 1000 trips. In most cases, between 2 and 4 connectors are used.

#### 2.5 Turn Penalties

A review was carried out on the 1995 turn penalties by comparing the penalties to RMOC bylaws in effect for 1995. Furthermore, modifications were made to the turn penalty files where an existing turn penalty became invalid due to a node numbering change between the new and existing networks. In the Communauté urbaine de l'Outaouais (CUO), turn penalties in the existing network were verified by field inspections.

To obtain the 2021 turn penalty file, a review was made to find turn restrictions that were in the 2021 RMOC Official Plan Review (OPR) network but not in the 1995 OPR network. These turn restrictions were then modified to conform with the new networks developed in this study combined with the new 1995 turn restrictions, giving the new 2021 turn movement file.

#### 2.6 Macros to Convert SC5 to 2021 OP and 1995 Networks

As described previously, the approach used to obtain the new 1995 network was based on the development of a future network that has all the proposed and/or studied road and transit options examined in the RMOC and CUO. Facilities in this network were then "turned off" to such that auto and transit trips were not assigned onto these facilities. However, with this method, it is assumed that the volume delay functions remain the same unless the user goes in and manually alters them.

A special volume delay function of 10 with a high delay is used to "turn off" roads to ensure no traffic is assigned to these facilities. The 2021 and 1995 networks contain the volume delay number other than 10 if the road is assumed to be in place by 1995 or 2021. Lanes which will be widened between 1995 and 2021 maintain the same volume delay function between 1995 and 2021, with only the number of lanes changing. If it is considered important to have different volume delay functions for a link in different scenarios, the user must go in and manually make this change.

The network conversions is accomplished by using the link UL3 field containing a road improvement tag. Three networks were developed for this modeling exercise:

- **sc5** is a network containing a wide range of potential new roads, road widenings and transit facilities considered as potential network options in the recent RMOC Official Plan Review.
- **2021** network is the network reflecting the road system that is anticipated to be in place by 2021 according to the OPR.
- **1995** network is the network in place during the fall of 1995 and the spring of 1996.

To convert sc5 to 2021 network, use macro sc5to21.mac. To obtain the 1995 network, run macro sc5to95.mac. The corresponding transit route description, turn penalties, etc. are also batched into the new 1995 and 2021 networks.

#### 2.7 Development of New Volume Delay Functions

Volume delay functions are equations used by the EMME2 software to determine travel times on roads that are sensitive to changes in roadway traffic volume. In order to provide more suitable simulation of travel demand on roadways, it was decided to develop new volume delay functions based on roadway lane capacity and posted speed limits rather than those currently used in the TRANS model. This method of using lane capacity and posted speed limits is currently in place in other cities as Regina and Vancouver.

The method developed to define a particular delay function for a road is based on the nominal capacity and posted speed used in the function equation. The first digit of the delay function name is the nominal capacity of the road divided by 200. The second digit is the first digit of the posted speed limit under 100 kph. Links with speeds of 100 kph use 0 as the second digit in the function name.

Posted speeds for the 1995 network were obtained by reviewing by-laws and with in-house knowledge of staff in the Mobility Services Division. Maps of the EMME2 network in Hull, Gatineau and Aylmer were passed on to staff in each of these communities for their input.

Speed limits were then inputted into the UL1 field and lane capacity into the UL2 field in the sc5 network. Exhibit 2.1 contains guidelines to assist in identifying nominal capacity of roads in the NCR. For future roads, a suitable posted speed and capacity were coded into the appropriate UL fields. An EMME2 macro named vdf.mac was developed to calculate the correct vdf function number into the vdf link field.

| Road           | On Street | Operation |     | Location |       | Freq.   | Few     | At Grade      | Raised | Grade Sep.    | Example                     | Capacity   |
|----------------|-----------|-----------|-----|----------|-------|---------|---------|---------------|--------|---------------|-----------------------------|------------|
| Classification | Parking   | 4         | CBD | Urban    | Rural | Signals | Signals | Intersections | Median | Intersections |                             | per Lane   |
| Centroid Con.  |           | 2 way     |     |          |       |         |         |               |        |               |                             | See note 1 |
| I and          | \$        | ment C    | _   |          |       |         |         | \$            |        |               |                             | 004        |
| LOCAL          | <         | 4 way     | _   |          |       |         |         | <             |        |               |                             | 001        |
| Collector      | х         | 2 way     | x   | х        |       | x       |         | х             |        |               | Percy                       | 400        |
| Collector      | х         | 2 way     | _   | х        | х     |         | x       | Х             |        |               | Jockvale Rd.                | 600        |
| Arterial       | x         | 2 way     | Х   |          |       | ×       |         | x             |        |               | Elgin (2 directions)        | 400        |
| Arterial       |           | 2 way     | х   |          |       | x       |         | Х             |        |               | Queen Street                | 600        |
| Arterial       |           | 2 way     | х   |          |       | x       |         | х             |        |               | Bank ( no left turns etc)   | 800        |
| Arterial       |           | 1 way     | x   |          |       | x       |         | Х             |        |               | Slater                      | 800        |
| Arterial       | х         | 2 way     | _   | х        |       | x       |         | x             |        |               | Wellington @ Parkdale       | 600        |
| Arterial       |           | 2 way     | _   | х        |       | х       |         | x             |        |               | Parkdale                    | 800        |
| Arterial       |           | 2 way     | _   | х        |       | х       |         | x             | Х      |               | Merivale @ Baseline         | 1000       |
| Arterial       |           | 2 way     | _   | х        | x     |         | x       | x             | x      |               | Hunt Club (western part)    | 1200       |
| Parkwav        |           | 2. wav    | _   | x        |       |         | X       | X             |        |               | O. Eliz. & Co. Bv Dr.       | 800        |
| Parkway        |           | 2 wav     | _   | ×        |       |         | ×       | : ×           | х      |               | Ottawa R. & Island P.       | 1000       |
| Parkway        |           | 2 way     | _   | х        |       |         |         |               | х      | Х             | Airport Parkway             | 1200       |
| Highway        |           | 2 way     | _   | x        |       | x       |         | х             |        |               | Hwy 31 @Hunt Club           | 800        |
| highway        |           | 2 way     | _   | х        |       |         | x       | x             |        |               | Hwy 16 @Hunt Club           | 1000       |
| Highway        |           | 2 way     | _   |          | х     | х       |         | x             |        |               | Hwy 16 at Woodroffe         | 1200       |
| Highway        |           | 2 way     | _   |          | x     |         |         | х             |        |               | Rural highways              | 1600       |
| Bus lane-urban |           | 2 way     | _   |          |       |         |         |               |        |               | Slater, Albert, Maisonneuve | See note 2 |
| Bus lane-Hwy   |           | 2 way     | _   |          |       |         |         |               |        |               | Hwy 17, Orleans             | See note 2 |
| Transitway     |           | 2 way     | _   |          |       |         |         |               |        |               | Transitway                  | See note 2 |
| Hwy 417        |           | 1 way     | x   | х        | x     |         |         |               | x      |               | ramps                       | 1200       |
| Hwy 417        |           | 2 way     | х   | х        |       |         |         |               | x      | x             | CBD - lanes - much weaving  | 1600       |
| Hwy 417        |           | 2 way     |     | х        | х     |         |         |               | х      | х             | lanes - little weaving      | 1800       |

Exhibit 2.1 - Guidelines to Assign Link Nominal Capacaties to NCR Roads

Notes

Centriod connector capacity set to 1000.
 Transit only facilities do not use lane capacity. To flag these facilities, a capacity of 1400 is reserved for these facilities.

The exceptions to the above rules are the following:

- Volume delay function (Fd) Fd10 is set such that the delay is infinite and no traffic is assigned to a link (used to turn new roads "on" or "off").
- Centroid connectors are reserved for functions fd11-19.
- FD 70-79 are reserved for future use and are presently used to flag transit bus only lanes and transitways.

An advantage of the new delay functions is that they are user friendly. The number describing the function allows the coder to quickly identify which function to use once the posted speed and lane capacity are established. The graphic capabilities of EMME2 can be used to do quick checks to ensure speeds, capacities and delay functions are suitable on a link and network basis.

Exhibit 2.2 tabulates the volume delay (FD) functions for easy reference and contains samples of the functions to clarify the relationship of how the equations alter given different posted speeds and lane capacities.

|                    |            | Nomi | nal Capaci | ty (vehicle | s per hour | /lane) | -          |      |      |
|--------------------|------------|------|------------|-------------|------------|--------|------------|------|------|
| Posted Speed (kph) | See Note 1 | 400  | 600        | 800         | 1000       | 1200   | See Note 2 | 1600 | 1800 |
| 20                 | 12         | 22   | 32         | 42          | 52         | 62     | 72         | 82   | 92   |
| 30                 | 13         | 23   | 33         | 43          | 53         | 63     | 73         | 83   | 93   |
| 40                 | 14         | 24   | 34         | 44          | 54         | 64     | 74         | 84   | 94   |
| 50                 | 15         | 25   | 35         | 45          | 55         | 65     | 75         | 85   | 95   |
| 60                 | 16         | 26   | 36         | 46          | 56         | 66     | 76         | 86   | 96   |
| 70                 | 17         | 27   | 37         | 47          | 57         | 67     | 77         | 87   | 97   |
| 80                 | 18         | 28   | 38         | 48          | 58         | 68     | 78         | 88   | 98   |
| 90                 | 19         | 29   | 39         | 49          | 59         | 69     | 79         | 89   | 99   |
| 100                | 10         | 20   | 30         | 40          | 50         | 60     | 70         | 80   | 90   |

Exhibit 2.2 - Methodology of Naming Volume Delay Functions (FD)

| General Comments: | Areas not shaded areas reflect DF functions frequently used in the TRANS model on roadways.<br>FD numbering is determined as follows:<br>The first number is the nominal capacity divided by 200<br>The second number is the first digit of the posted speed limit under 100 kph.<br>For example, FD45 is a road with a nominal capacity of 800 and posted speed of 50 kph.                                                                                                                                                                      |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Notes:            | <ul> <li>1 - FD10 has infinite delay and is used to switch off links in the network</li> <li>FD11 not used</li> <li>FD12 used for CBD centriods</li> <li>FD13 used for centriods just outside CBD</li> <li>FD14 not used</li> <li>FD15 for zones inside the Greenbelt</li> <li>FD16 for centriods just outside the Greenbelt</li> <li>FD17 not used</li> <li>FD18 for rural centriods</li> <li>FD19 for external zone centriods</li> <li>FD 70 -79 reserved for future use. At present they are used to flag transit only facilities.</li> </ul> |

| Sam | ple of | Volume | Delav | Function | Formulas |
|-----|--------|--------|-------|----------|----------|
|     |        |        |       |          |          |

| Function | Formula                                                                   |
|----------|---------------------------------------------------------------------------|
| fd10     | 100000                                                                    |
| fd11     | 1.1 * (length / 10) * (1+.6 * ((volau + volad) / (lanes * 1000)) ^4) * 60 |
| fd35     | 1.4 * (length / 50) * (1+.6 * ((volau + volad) / (lanes * 600)) ^4) * 60  |
| fd46     | 1.3 * (length / 60) * (1+.6 * ((volau + volad) / (lanes * 800)) ^4) * 60  |
| fd57     | 1.2 * (length / 70) * (1+.6 * ((volau + volad) / (lanes * 1000)) ^4) * 60 |
| fd89     | 1.1* (length / 90) * (1+.6 * ((volau + volad) / (lanes * 1600)) ^4) * 60  |
| fd90     | 1.1* (length / 100) * (1+.6 * ((volau + volad) / (lanes * 1800)) ^4) * 60 |

#### 2.7.1 Calibration of Auto Volume Delay Functions

Volume delay functions traditionally used in the EMME2 model are based on functions developed by the US Bureau of Public Roads (BPR). In the function, travel time along the road section is based on characteristics as free flow travel time and lane capacity. The form of the auto volume delay function is:

*Volume delay* = (*free flow travel time on road section*)+(*travel time due to congestion*)

In mathematical form this amount to:

#### ((length/free flow speed)\*60 min./hour)\*(1+A\*(road volume/(#lanes\*lane capacity)))^4

The congested delay time is estimated using the function to the power of 4. The steepness of the delay time curve is primarily governed by "A" which typically has values ranging form .2 to 1. The greater the value of "A", the steeper the curve and the more delay occurs as traffic volumes increase.

In the functions developed by the BPW for highway facilities, free flow speed is approximately equal to the posted speed limit. However, in urban areas, free flow speed is much slower than the free flow speed (assumed equal to the speed limit in our case) since significant time is spent stopped at traffic signals. For this reason, it was decided to insert a new coefficient "B" into the equation to reduce the free flow speed for a signalized urban street system.

#### $B^{(length/free flow speed)*60 min./hour)^{(1+A*(link volume/(#lanes*lane capacity))^4)}$

This implies that two coefficients require calibration, "B " to adjust for free flow speeds in the urban signalized street system and "A" to adjust for delay as traffic congestion increases. Calibration of the volume delay functions is an iterative process where trips are assigned to the network and the volume delay coefficients are modified such that travel speeds along roads approach those observed on the road system and at the same time simulated traffic volumes have values close to screenline counts.

#### Coefficient "A"

It was decided to estimate coefficient "A" first by setting coefficient B to 1.0. Coefficient "A" was calibrated by comparing screenline counts to simulated volumes on the network. Assignments to the 1995 auto network were carried out by assigning the PM peak hour auto vehicle matrix. This matrix was obtained by adding the 95 OD Survey observed auto vehicle trip table (excluding external-internal trips) to a 1995 matrix consisting of the auto vehicle trips to and from the NCR not captured by the 95 OD Survey which gives total auto vehicle travel demand. After doing a systematic analysis, the values for coefficient "A" were .6 for lower volumes roads with lane capacities between 400 to 1400,.8 for lane capacities of 1600 and 1.0 for lanes capacities of 1800.

During the calibration process, it was found necessary to increase the posted speed limit of NCC roads by 10 kph. This was necessary to compensate for their unique design compared to other roads in the NCR. NCC roadways are scenic routes aligned along attractions as waterfronts and tend to be non-linear routes with longer origin-destination distances than routes utilizing other public roadways. These roadways have few traffic signals and no private accesses. By increasing the posted speed limit in the model, it assumes traffic flows faster on these routes due to their unique design.

#### Coefficient "B "

With the coefficient "A" established, it was possible to obtain coefficient "B". Simulated travel times on the auto network was compared to travel time and speeds from two sources of information:

• RMOC, STO and MTQ in house travel time survey.

This in house survey was carried out in April 1997 to obtain information on auto travel times in the NCR area during the PM peak period. The participants consisted of staff from the RMOC, NCC, and CUO who were asked to record in-vehicle trip start and end times to the nearest minute. Over 170 origin-destination auto and transit trip times were obtained from this survey.

- OC Transpo Bus Travel Speed (with and without stopping for passengers). OC Transpo has facilities to record bus speeds while in active service. Information is collected on the time and speed of travel which can be separated into two components:
  - Average moving speed, which includes the time moving between bus stops.
  - Average total speed, which includes the time moving between stops, stop and go time, idle time, dwell time and excess time.

It was assumed the average moving speeds of autos along arterial roads would be marginally slower than the average moving speeds observed by OC Transpo. No additional surveys were carried to determine the difference between the average operating speed of buses and cars.

The numerical value of the "B" coefficient is multiplied by the length of the link, thereby calculating the free flow travel time based on a link set artificially longer. Therefore, a factor of 2 would cause a posted speed of 50 kph to have a maximum operating speed of 25 kph.

Estimates of the "B" coefficient were obtained by comparing a sample of posted speed limits to OC Transpo average moving speeds. It was found that the most suitable approach was to use one factor for each set of volume delay curves for a given lane capacity. Therefore, roads with a low capacity of 400 vehicles/hour which are used on roadways in the CBD and residential streets was given a factor of 1.7, changing the posted speed limit of 50 kph to a free flow operating speed of about 30 kph.

High capacity roadways as the Queensway and rural highways were given a factor of 1.1. This factor was obtained partly using judgment since OC Transpo operating speeds on these facilities is

not available and/or not applicable and by observing that longer trips in the RMOC in house survey were too fast unless this adjustment was made.

An auto assignment was carried out to obtain auto link speeds which were compared to the operating speeds on a random sample of links where OC Transpo speeds were recorded, see Exhibit 2.3. The results indicate that the mean simulated auto speed was 36 kph while the OC Transpo speed was 31 kph. The other statistical indicators indicate that the OC Transpo speeds are generally slower and less dispersed compared to the simulated auto speeds. It was concluded that the auto speeds obtained provided a satisfactory estimate of auto speeds.

| Exhibit 2.3 - | Link Speeds | Simulated vs OC Transpo |
|---------------|-------------|-------------------------|
|               |             |                         |

| Data Source | Mean | Minimum | Maximum | Standard Deviation |
|-------------|------|---------|---------|--------------------|
| Simulated   | 36   | 20      | 46      | 6.1                |
|             |      |         |         |                    |
| OC Transpo  | 31   | 18      | 42      | 4.9                |

Exhibit 2.4 illustrates the fit of estimated zonal travel times using the new volume delay functions to auto travel times 10 minutes and over reported in the in-house survey. For this comparison, EMME2 zone access time was set to 0 since the survey recorded in-vehicle travel times.

Exhibit 2.4 - Auto Time (Simulated Versus In - House Survey)

| Data Source       | Mean | Minimum | Maximum | Standard Deviation |
|-------------------|------|---------|---------|--------------------|
| Simulated         | 18   | 1       | 61      | 11.1               |
|                   |      |         |         |                    |
| In - House Survey | 20   | 10      | 60      | 9.3                |

The results indicate that there is a good fit for trips over 10 minutes recorded in the in-house survey. Trips under 10 minutes are difficult to predict since the trip travel time are heavily reliant on centroid length. The model estimated average trip time was 18 minutes while the survey average time as 20 minutes.

#### 2.7.2 Centroid Connector Volume Delay Functions

Centroid connectors are imaginary links from which all trips from a zone enter or exit the auto and transit networks. A systematic method was chosen to select a suitable speed for centroid connectors. The method is based on choosing a speed based on geographical location where the speed is assumed representative of auto travel along minor roadways in PM peak hour congested traffic. The speed on these links was assigned for RMOC links as follows:

- 20 kph for areas within the CBD
- 30 kph for areas just outside the CBD
- 50 kph for the remainder of the links within the greenbelt
- 60 kph for areas just outside the greenbelt
- 80 kph for the remainder of internal zones
- 90 kph for external zones

A similar approach was used to assign speeds to CUO centroid connectors. Centroid link connector capacity was set to 1000.

#### 2.8 Transit Network Calibration

The first task in calibrating the 1995 transit network was to review transit routing to ensure they reflect transit operation during the fall of 1995. The transit route descriptions used in the 1995 network for the Official Plan Review (OPR) were reviewed using September 1995 OC Transpo route map supplemented with individual route maps when necessary. 1995 CUO transit routes were reviewed to ensure that the routes maintained the paths as coded by CUO staff before the network was refined as discussed previously.

For roadways where buses operate on a lane designated for transit, the auto network was modified to reflect the number of lanes actually available for cars on roads as Albert and Slater. For Maisonneuve Boulevard in Hull which has a HOV lane used by cars and buses, the number of lanes per direction was set to 2.5 rather than 3 lanes.

#### 2.8.1 Transit Volume Delay Functions

A key concept in the model calibration was to have transit in-vehicle travel times sensitive to auto traffic when operating in mixed traffic. This would allow transit travel times to alter as roadway traffic increases. The existing TRANS model assumed that transit speeds would remain unaffected by changes to roadway congestion. The method used in the 1995 model calibration utilized transit travel time functions coded into the transit route descriptions. Two type of transit functions were developed:

- One type being sensitive to auto traffic congestion
- Another type having a constant transit operating speed (transitway and bus lanes).

Where the bus route operates in mixed traffic, the bus travel time function is based on the congested auto time multiplied by a factor to account for frequent stopping to load and unload passengers. The factors were estimated based on OC Transpo data by dividing average moving speed by average total speed. Where buses operate on transitways and roadway lanes restricted for buses, a speed of 48 kph was used for all transitways and 15 kph for bus only lanes.

EMME2 1995 route travel times were verified using route schedules and bus average running speeds. The transit travel time functions were considered calibrated once the scheduled time and speeds along the links sampled were considered to be acceptability close to one another. Exhibit 2.5 contains a sample of 143 routes with travel times obtained from EMME2 and transit schedules. The results indicate that the model estimates an average transit route travel time of 55 minutes while bus schedules give a mean time of 58 minutes. Much of the variance between the two samples occurs for routes with travel times over one hour which are usually regular service routes which carry a small proportion of peak hour transit users.

Exhibit 2.5 - Transit Route Travel Time Comparison

| Data Source | Mean | Minimum | Maximum | Standard Deviation |
|-------------|------|---------|---------|--------------------|
| Simulated   | 55   | 6       | 150     | 31                 |
|             |      |         |         |                    |
| Observed    | 58   | 13      | 183     | 35                 |

The following transit time functions were found to simulate transit satisfactorily:

- ttf70= auto time on link \* 1.6 -> this function is used where the transit route uses roads shared with private vehicles.
- ttf71 = (length/15) \* 60 -> this function is used on bus only lanes where it is assumed the bus travels at 15 kph along the roadway.
- ttf72= (length/48) \*60 -> this function is used for transitway links where it is assumed the bus travels at a constant speed of 48 kph.
- ttf73= auto time on link \* 2.5 -> this function is used where the transit route uses Bank Street from Wellington Street to Riverside Drive.
- ttf74= (length/70) \*60 -> this function is used for bus only lanes along the Queensway where buses travel at 70 kph.

#### 2.8.2 2021 Transit Routes

The development of the 2021 transit routes based on the new 2021 network and transit time functions was developed at this time such that both an auto and transit networks were available for both 1995 and 2021. The 2021 routes were obtained as follows:

Using the 1995 OPR and 2021 OPR transit routes, they were divided into five categories:

- Routes that were identical in both the 1995 OPR and 2021OPR networks.
- Routes that had minor changes between the 1995 OPR and 2021 OPR route descriptions.
- Routes that had major changes between the 1995 OPR and 2021 OPR route descriptions.
- New routes- that is routes that are in 2021 OPR but not in the 1995 OPR route descriptions.
- Deleted routes- routes that are in 1995 OPR file and not in the 2021 OPR file.

Once it was clear how the two route descriptions differed, it was possible to build the new 2021 routes as follows:

- Substitute the new 1995 route descriptions where the 1995 OPR and 2021 OPR routes were identical.
- If the route was slightly different the nodes would be analyzed to see where changes were required. If the route was extended or shortened to enter a transit station or a shopping center, or if the error was a result of updates in the network, the routes from the 1995 OPR file would be used.
- If the route in the 2021 OPR route description was significantly different from the 1995 OPR route descriptions, the 2021 OPR file would be used. These routes were updated to include the new volume delay functions.

If the route was not in the 1995 OPR route description but was in the 2021 OPR description, then the data from the 2021 OPR was used. These routes were updated to include the new volume delay functions.

• If the route was in the 1995 OPR route description but not in the 2021 OPR, the route was omitted from the 2021 route descriptions.

#### 2.9 Assignment Results

Exhibit 2.6 compares screenline counts with assigned auto volumes of the 1995 OD Survey on to the new 1995 network. The screenline volumes for RMOC facilities are an average of 1995 and 1996 summer counts. This is because the 1995 count program was sparse while the 1996 counts contained information at all screenline locations. In house studies at the RMOC indicate that summer counts are approximately equal to fall counts and therefore no adjustments were made to convert the RMOC data to fall. For the STO area, 1995 counts carried out in the fall were used.

The results indicate that the OD survey differ from the counts in a pattern whereby Ontario screenlines have the survey higher than the counts, while in Quebec, the survey is lower than the counts. The OD survey was carried out in a manner that did not bias the method to collect trip information between the two provinces. The differences between the survey and the counts is likely due more to differences in the way traffic counts were conducted.

#### 2.10 Further Work on Networks

The new 1995 network developed as outlined above could be further refined in the CUO network, particularly in the Hull area. A detailed review was not carried out to verify if additional turn penalties are warranted and should be coded into the networks.

For the 2021 network, it will be necessary to review the network in the area around the bridgeheads across the Ottawa River and the Rideau Canal. The new network does not take into account the new HOV lane on Portage Bridge, changes to the operation of MacKenzie King Bridge and traffic operational changes around the Rideau Centre and Ottawa University area. For the 2021 transit system, a review should be carried out to verify that the proposed east-west rail corridor is being simulated to the conditions seen appropriate for the study.

# Development of the 1995 TRANS Model

# Exhibit 2.6 1995 Auto and Transit PM Peak Hour Screenline Results

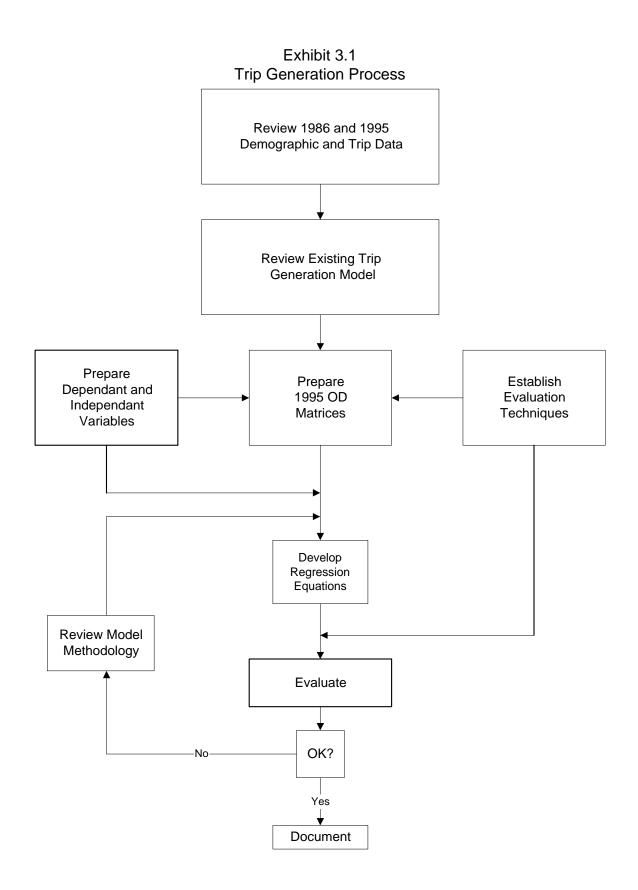
|                               |                    |                    |                    |                    |                    |                    |                    |                    |                    |                    | And a second sec |                    |
|-------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|                               | LOT .              | TOTAL PERSONS      | SNS                | AU                 | AUTO PERSONS       | SN                 | AU                 | AUTO VEHICLES      | ES                 | _                  | TRANSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| Screenline                    | Observed<br>Counts | Survey<br>Assigned | Survey /<br>Counts | Observed<br>Counts | Survey<br>Assigned | Survey /<br>Counts | Observed<br>Counts | Survey<br>Assigned | Survey /<br>Counts | Observed<br>Counts | Survey<br>Assigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Survey /<br>Counts |
| Ottawa River (LN2,3,4)        | 15,574             | 16,642             | 1.07               | 13,168             | 13,931             | 1.06               | 10,180             | 10,886             | 1.07               | 2,406              | 2,711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.13               |
| Rideau River (LN19,20,32,33)  | 28,284             | 30,970             | 1.09               | 21,792             | 22,008             | 1.01               | 16,509             | 17,521             | 1.06               | 6,492              | 8,962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.38               |
| CPR (LN27, 28, 29)            | 19,880             | 21,224             | 1.07               | 14,931             | 14,443             | 0.97               | 11,236             | 11,720             | 1.04               | 4,949              | 6,781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37               |
| Ottawa Central Area (LN35-38) | 35,356             | 36,488             | 1.03               | 19,495             | 19,907             | 1.02               | 13,523             | 14,822             | 1.10               | 15,861             | 16,581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.05               |
| Rideau Canal (LN34, 39)       | 29,370             | 26,903             | 0.92               | 20,707             | 19,252             | 0.93               | 15,301             | 15,009             | 0.98               | 8,663              | 7,651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.88               |
| Fallowfield (LN9, 43)         | 7,777              | 7,823              | 1.01               | 7,039              | 6,667              | 0.95               | 5,551              | 5,514              | 0.99               | 738                | 1,156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.57               |
| Eagleson (LN10)               | 8,897              | 10,263             | 1.15               | 7,897              | 8,961              | 1.13               | 6,049              | 7,116              | 1.18               | 1,000              | 1,302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.30               |
| Green Creek (LN16)            | 11,319             | 13,215             | 1.17               | 8,189              | 9,515              | 1.16               | 6,607              | 7,703              | 1.17               | 3,130              | 3,700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.18               |
| CNR West / Acres (LN11,12)    | 18,982             | 19,701             | 1.04               | 16,245             | 16,255             | 1.00               | 12,678             | 13,362             | 1.05               | 2,737              | 3,446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.26               |
| CNR East (LN13, 14, 15)       | 13,555             | 13.998             | 1.03               | 12,274             | 12,680             | 1.03               | 10,595             | 10.383             | Ŭ                  | 1281               | 1.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.03               |
| Western Parkway (LN24,25)     | 18,528             | 20,159             | 1.09               | 15,683             | 16,483             | 1.05               | 12,339             | 13,355             |                    | 2,845              | 3,676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.29               |
| Leitrim / Ramsayville (LN7,8) | 6,114              | 5.956              | 0.97               | 660.9              | 5.934              | 0.97               | 4,669              | 5.035              | _                  | 15                 | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.47               |
| le de Hull (LN60)             | 21.061             | 22,020             | 1.05               | 17,551             | 18,644             | 1.06               | 12.896             | 14,273             | 1.11               | 3.510              | 3.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.96               |
| Boul. Gamelin (LN 61)         | 14.297             | 10,418             | 0.73               | 13,003             | 9,661              | 0.74               | 9.853              | 7,496              | 0.76               | 1.294              | 757                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.59               |
| Ch. de la Montagne (LN62)     | 5.058              | 3.601              | 0.71               | 3.638              | 2,633              | 0.72               | 2,805              | 2,095              | 0.75               | 1.420              | 968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.68               |
| Deschenes (LN63)              | 5.211              | 4,099              | 0.79               | 4,041              | 3,185              | 0.79               | 2.959              | 2,457              | 0.83               | 1.170              | 914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78               |
| 064                           | 3,546              | 3,203              | 0.00               | 3,146              | 3,012              | 0.96               | 2,425              | 2,357              | 0.97               | 400                | 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.48               |
| 265                           | 13,577             | 13,963             | 1.03               | 11,885             | 12,308             | 1.04               | 8,370              | 9,518              | 1.14               | 1,692              | 1,655                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.98               |
| 066                           | 2.698              | 2.167              | 0.80               | 2.668              | 2,167              | 0.81               | 1.953              | 1.782              | 0.91               | 30                 | . '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0'00               |
| Montee Paiement (LN67)        | 9.171              | 8.587              | 0.94               | 8.081              | 7.70               | 0.96               | 5.953              | 5.994              | 1.01               | 1.090              | 817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.75               |
| Q68                           | 4,834              | 4,465              | 0.92               | 4,514              | 4,209              | 0.93               | 3,371              | 3,152              | 0.93               | 320                | 256                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.80               |
|                               |                    |                    |                    |                    | INBOUND            | P                  |                    |                    |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                               | TOT                | TOTAL PERSONS      | SNG                | AU                 | AUTO PERSONS       | SN                 | LUN                | AUTO VEHICLES      | ES                 |                    | TRANSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |
| Screenline                    | Observed           | Survey             | Survev /           | Observed           | Survev             | Survev /           | Observed           | Survey             | Survev /           | Observed           | Survev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Survev /           |
|                               | Counts             | Assigned           | Counts             | Counts             | Assigned           | Counts             | Counts             | Assigned           | Counts             |                    | Assigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Counts             |
| Ottawa River (LN2,3,4)        | 9,212              | L60'L              | 0.77               | 7,344              | 5,141              | 0.70               | 5,596              | 4,376              | 0.78               | 1,868              | 1,956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.05               |
| Rideau River (LN19,20,32,33)  | 22,151             | 19,825             | 0.89               | 19,662             | 17,639             | 0.90               | 14,774             | 14,655             | 0.99               | 2,489              | 2,186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.88               |
| CPR (LN27, 28, 29)            | 12,467             | 12,543             | 1.01               | 10,422             | 10,905             | 1.05               | 8,294              | 9,019              | 1.09               | 2,045              | 1,638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.80               |
| Ottawa Central Area (LN35-38) | 19,517             | 16,024             | 0.82               | 13,921             | 10,162             | 0.73               | 10,338             | 8,217              | 0.79               | 5,596              | 5,862                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.05               |
| Rideau Canal (LN34, 39)       | 20,575             | 18,267             | 0.89               | 15,562             | 14,075             | 0.90               | 11,893             | 11,841             | 1.00               | 5,013              | 4,192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.84               |
| Fallowfield (LN9, 43)         | 3,312              | 2,036              | 0.61               | 3,242              | 1,971              | 0.61               | 2,448              | 1,640              | 0.67               | 70                 | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.93               |
| Eagleson (LN10)               | 4,803              | 5,074              | 1.06               | 4,643              | 4,902              | 1.06               | 3,834              | 4,166              | 1.09               | 160                | 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.08               |
| Green Creek (LN16)            | 3,805              | 3,501              | 0.92               | 3,551              | 3,296              | 0.93               | 2,609              | 2,567              | 0.98               | 254                | 205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.81               |
| CNR West / Acres (LN11,12)    | 13,180             | 10,498             | 0.80               | 12,510             | 9,914              | 0.79               | 9,830              | 8,478              | 0.86               | 670                | 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.87               |
| CNR East (LN13, 14, 15)       | 8,442              | 6,235              | 0.74               | 8,016              | 6,082              | 0.76               | 6,570              | 5,076              |                    | 426                | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.36               |
| Western Parkway (LN24,25)     | 11,548             | 10,703             | 0.93               | 10,596             | 9,831              | 0.93               | 8,246              | 8,199              | 0.99               | 952                | 872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.92               |
| ceitrim / Ramsayville (LN7,8) | 3,028              | 1,924              | 0.64               | 3,017              | 1,907              | 0.63               | 2,180              | 1,609              | 0.74               | 11                 | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.55               |
| le de Hull (LN60)             | 7,236              | 6,796              | 0.94               | 6,486              | 6,298              | 0.97               | 5,166              | 5,211              | 1.01               | 750                | 498                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66               |
| Boul. Gamelin (LN 61)         | 7,580              | 4,095              | 0.54               | 6,800              | 3,695              | 0.54               | 5,310              | 3,068              | 0.58               | 780                | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.51               |
| Ch. de la Montagne (LN62)     | 2,280              | 1,175              | 0.52               | 1,960              | 1,113              | 0.57               | 1,537              | 842                | 0.55               | 320                | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19               |
| Deschenes (LN63)              | 1,758              | 1,115              | 0.63               | 1,732              | 1,096              | 0.63               | 1,343              | 879                | 0.65               | 26                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.73               |
| Q64                           | 986                | 576                | 0.58               | 941                | 551                | 0.59               | 742                | 492                | 0.66               | 45                 | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.56               |
| Q65                           | 4,727              | 3,265              | 0.69               | 4,547              | 3,072              | 0.68               | 3,456              | 2,554              | 0.74               | 180                | 193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.07               |
| Q66                           | 1,239              | 908                | 0.73               | 1,239              | 908                | 0.73               | 870                | 740                | 0.85               | 0                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00               |
| Montee Paiement (LN67)        | 5,311              | 2,404              | 0.45               | 5,236              | 2.343              | 0.45               | 2 777              | 1 913              | 0.51               | 35                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|                               |                    |                    |                    |                    |                    | 5                  |                    | CT/11              | 10.2               | 2                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.81               |

# **3. TRIP GENERATION MODEL CALIBRATION**

#### 3.1 Overview

This chapter outlines the development of the trip generation equations based on the 1995 OD survey. The study began by reviewing demographic and travel demand trends by trip purpose and mode as reported in the 1986 and 1995 OD surveys. A review was also carried out of the existing trip generation model. From this exercise, it was possible to gain insight into the style the new model would take and the key variables to include in the trip generation equations.

The RMOC and CUO Planning Department demographic data for 1995 as well as the 1995 OD survey data were the two data sources used for developing the new trip generation model. Analysis was carried out by comparing common data between the two data sources to identify, and if possible correct for biases in the 1995 OD survey that may influence the trip generation equations.


Based on the above study, the new 1995 trip generation equations were developed using auto person and public transit trips and the same trip purpose definitions as the existing model as listed below:

- Work to home
- School to home
- Other to home
- Leave home
- Non-home based

In most cases, the new trip generation model uses the same independent variables as the existing model. However, alternative equations were tested in an attempt to obtain equations that provided a more suitable fit to the data.

As with the existing model, the trip generation equations were developed for PM Peak period defined by the time interval 3:30 PM and 5:59 PM. However, in the new model, factors are applied to the outputs of the trip generation equations to convert to the PM peak hour of the auto mode (4:16 PM to 5:15 PM). In the existing model, factoring from the peak period to the peak hour was done after mode split. This new approach has the advantage of utilizing a large sample for developing the trip generation model and at the same time allows the rest of the model to reflect peak hour conditions that provides a more accurate simulation of trip distribution, mode split and ultimately PM peak hour trip assignment.

The process used for developing the trip generation model is summarized in Exhibit 3.1.



#### 3.2 Comparison of Demographic Data (1986 and 1995)

The key demographic variables for 1986 and 1995 that influence trip generation are illustrated in Exhibit 3.2. Note that total population increased 19 percent from 806,600 to 960,400 while the numbers in the individual age cohorts fluctuated. The 15-24 age group declined to 90 percent of the 1986 amount while the 45-64 and 5-14 groups increased by close to 30 percent over the 1986 figure. 1995 post secondary students are over twice the 1986 amount. A detailed explanation of how demographics changed between 1986 to 1995 is provided in the TRANS report "1995 NCR OD Survey- Highlights of the Demographic and Travel Patterns", May 1997.

| Variable                     | Variable name | 1986    | 1995    | Increase over 1986 |
|------------------------------|---------------|---------|---------|--------------------|
| Total Population             | РОР           | 806,600 | 960,400 | 1.19               |
| Popul. aged 5-14             | POP5-14       | 105,300 | 134,400 | 1.28               |
| Popul. aged 15-24            | POP15-24      | 139,800 | 126,500 | 0.90               |
| Popul. aged 25-44            | POP25-44      | 284,800 | 344,700 | 1.21               |
| Popul. aged 45-64            | POP45-65      | 151,500 | 195,100 | 1.29               |
| Popul. aged 65 & over        | POP65+        | 70,700  | 85,200  | 1.21               |
| Dwelling units               | DWEL          | 298,300 | 374,400 | 1.26               |
| Total Employment             | EMP           | 409,300 | 454,900 | 1.11               |
| Total Employment less Retail |               |         |         |                    |
| Employment                   | EMP (other)   | 357,900 | 393,900 | 1.10               |
| School Enrollment            |               |         |         |                    |
| Primary & Secondary          | SCHS          | 93,000  | 117,100 | 1.26               |
| Post Secondary               | SCHP          | 30,000  | 78,400  | 2.61               |
| GLA (gross leasible floor    | GLA           | 12,060  | 13,150  | 1.09               |
| area in 1000 sq ft.)         |               |         |         |                    |

#### Exhibit 3.2 - Demographics, 1986 and 1995

Source: 1986 data from 1986 emme2ban databank, except school enrollement from a query of the 1986 OD Survey database.

1995 data from 1995 OD Survey with the exception of

- GLA which was supplied from the Planning Deptment.
- Employment less retail derrived from the Planning Dept. estimate of the ratio of total employment to total employment less retail employment.

N/A - the 1986 value contained in the 1986 databank is for secondary school enrollement and excludes primary school enrollement.

#### 3.3 Comparison of Person Trips (1986 and 1995)

The existing TRANS model includes transit and auto persons consisting of the sum of auto drivers and auto passengers. Exhibit 3.3 compares the number of trips by mode and purpose for the PM peak period for 1986 and 1995. As illustrated, work trips, post secondary and non-home based trips increased slightly between 1986 to 1995, leave home trips increased substantially, primary and secondary trips remained the same, while other to home trips decreased. Total trips increased 1 percent from 478,200 to 482,900 in the PM peak period between 1986 and 1995. This suggests that the PM peak period person trip rates were lower in 1995 compared to 1986 since both population and employment grew substantially more than total PM peak period travel demand.

PM. peak period transit modal share dropped from 22% in 1986 trips to 15% in 1995. The only trip purpose showing an increase in transit use over 1986 conditions is post secondary school to home.

| Purpose             | Mode        | 1986 OD Surv | e y | 1995 Od Surv | e y |
|---------------------|-------------|--------------|-----|--------------|-----|
|                     |             | Trips        | %   | Trips        | %   |
| Work to Home        | Auto Person | 104,500      | 68  | 121,100      | 76  |
|                     | Transit     | 49,000       | 32  | 37,500       | 24  |
|                     | Total       | 153,500      | 100 | 158,600      | 100 |
| Primary & Secondary | Auto Person | 5,100        | 31  | 6,700        | 41  |
| School to Home      | Transit     | 11,100       | 69  | 9,500        | 59  |
|                     | Total       | 16,200       | 100 | 16,200       | 100 |
| Post-Secondary      | Auto Person | 4,900        | 54  | 5,300        | 49  |
| School to Home      | Transit     | 4,200        | 46  | 5,600        | 51  |
|                     | Total       | 9,100        | 100 | 10,900       | 100 |
| Other to Home       | Auto Person | 116,300      | 87  | 103,800      | 94  |
|                     | Transit     | 17,600       | 13  | 7,200        | 6   |
|                     | Total       | 133,900      | 100 | 111,000      | 100 |
| Leave Home          | Auto Person | 51,400       | 90  | 67,200       | 94  |
|                     | Transit     | 5,500        | 10  | 4,500        | 6   |
|                     | Total       | 56,900       | 100 | 71,700       | 100 |
| Non-Home Based      | Auto Person | 90,900       | 84  | 105,600      | 92  |
|                     | Transit     | 17,700       | 16  | 8,900        | 8   |
|                     | Total       | 108,600      | 100 | 114,500      | 100 |
| Total trips         | Auto Person | 373,100      | 78  | 409,700      | 85  |
| -                   | Transit     | 105,100      | 22  | 73,200       | 15  |
|                     | Total       | 478,200      | 100 | 482,900      | 100 |

#### Exhibit 3.3 Person Trips (1986 & 1995), Peak Period

#### 3.4 Analysis of 1995 OD Survey

The 1995 OD Survey data and Planning Department demographic data were input into SPSS files and aggregated by traffic zone. Trip records were filtered to include peak period trips which began between 3:30 PM to 5:59 PM, with origins and destinations within the National Capital Region made by auto users and public transit passengers. The exception was secondary school trips where trips made between 2:29 to 5:59 were included in the regression equations to increase the number of observations since poor regression results were found using the two and one half hour peak period. A factor was applied to the secondary school equations to convert to the 3:30 to 5:59pm period.

The data used to develop the trip generation models was derived from the 1995 OD Survey with the exception of GLA which was obtained from the Planning Department The following demographic variables used in the existing TRANS model equations were indirectly derived using 95 OD survey and Planning Department data:

- Total employment obtained by counting the number of occurrences of reported place of work zone contained in the 95 OD survey person trip file.
- Employment (other) obtained from the Planning Department estimate of the percent of employment (other) to total employment.
- School enrollment derived by summing the number of occurrences of reported "school zone" contained in the 95 OD survey person trip file. The data was stratified by student age to separate between secondary, post secondary, Ontario and Quebec school trips.

Exhibit 3.4 contains a statistical summary of the variables from the Planning Department and the 95 OD Survey data. In this table the means of the variables on a zonal level are compared. With the exception of school enrollment, the means between the two samples are quite similar, with

|                             | Mean           |           | Standard I     | Correlation |       |
|-----------------------------|----------------|-----------|----------------|-------------|-------|
| Variable                    | Planning Dept. | OD Survey | Planning Dept. | OD Survey   |       |
| Population, Age15 to 24     | 721            | 677       | 584            | 591         | 0.907 |
| Population, Age 25 to 44    | 1,802          | 1,789     | 1,499          | 1,517       | 0.946 |
| Population, Age 45_64       | 1,100          | 1,032     | 898            | 892         | 0.938 |
| Total Population            | 4,755          | 4,855     | 4,162          | 4,222       | 0.98  |
| Dwelling Units              | 1,855          | 1,853     | 1,610          | 1,602       | 0.987 |
| Total Employment            | 1,923          | 1,880     | 3,244          | 2,800       | 0.951 |
| Other Employment            | 1,684          | 1,628     | 3,109          | 2,676       | 0.959 |
| Sec. School Enrollment      | 746            | 388       | 859            | 687         | 0.829 |
| Post Sec. School Enrollment | 603            | 5,156     | 2,363          | 2,702       | 0.971 |

#### Exhibit 3.4 - Comparison of 1995 Demographics

Note: Above means are based on traffic zonal averages.

their mean values within 6 percent. The difference in the means for the school enrollment variable is partly due to the Planning Department estimates neglecting private schools. Furthermore, the OD Survey includes part time students making school trips in the peak period while the Planning Department estimate of 1995 school enrollment only includes full time students.

The standard deviation is used to measure the dispersion of the data. The data for all variables in the two samples is quite dispersed. This is indicated in the high values of the standard deviation when compared to their mean. The standard deviation for each variable between the two samples are also similar, indicating that both samples have similar dispersion of the values for each variable.

The correlation coefficient is a factor measuring the degree to which two variables are related. If the variables contained in the two samples were identical, the correlation coefficient would be one. Dwelling units has the highest correlation while secondary school enrollment has the lowest value of .829. This suggests that significant differences exist for secondary school enrollment between the 1995 OD Survey and the Planning Department estimate extrapolated from 1991 data. Since the OD survey did not collect information on gross leaseable area, no comparison of this variable was possible. It is possible that significant error occurs with this variable since it does not account for space in shopping centers with unoccupied space nor does it include strip development or large single centers as Price Club and stand alone super stores.

In conclusion, this analysis found that the 1995 OD survey provided an acceptable match to the Planning Department data in most instances. As more current data become available for 1995 employment, school enrollment and GLA, they should be compared with the 1995 OD survey to determine if adjustments to the trip generation equations are warranted. It is also recommended that the methodology used to quantify GLA be more inclusive of stand alone developments or that another variable be developed as an indicator to quantify retail draw to travelers.

#### 3.5 Trip Generation Equations

Trip generation equations were developed for each trip purpose currently used in the TRANS model. Equations selected for the 1995 calibration are highlighted in Exhibit 3.5. For comparison purposes, the existing TRANS model equations are also shown.

Several criteria were used to evaluate the trip generation equations:

- Goodness of fit measures, primarily the goodness of fit statistic R^2; the closer this indicator is to 1, the more reliable the equation.
- Comparison of the trip generation equations in the existing model.
- Reasonableness, which provided a balance between the statistical explanation of a relationship, and reasonable expectations.

With the exception of the leave home attraction equation, the new equations have higher R^2 values, indicating that they should provide a more reliable estimate of trip attractions and productions than the 1986 model. A main difference between the new trip generation equations

and the existing equations is that the new equations do not contain constants. This was done to ensure traffic zones containing no demographic data would not generate traffic.

The calibration of the work trip model involved developing six equations, three for the production model and three for the attraction model. Separate equations were developed for Ontario, Quebec and the central business district. It was found that this geographic area breakdown had unique rates for trip attraction and production for workers and therefore provided the most satisfactory fit to the 95 OD survey data. This was considered critical since this trip purpose significantly impacts on modal split. Therefore, if the work trip demand could be simulated appropriately, then it would also allow for a more reliable estimate of modal split.

| Trip Purpose          | Regression Details                                                                                                            | SPSS File          | Regression Equation                                                                                                                                                                                                                                                                   | R^2                                                       |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Work to Home          | Production, 1986 Existing Model<br>*Production, 1995 Calib.                                                                   | <u>odp_wh.sps</u>  | .4645*EMP(other) - 50<br>.446 * EMP(other) - for Ottawa and Hull central areas<br>.390 * EMP(other) - for Ontario<br>.433 * EMP(other) - for Ouebec                                                                                                                                   | 0.86<br><u>0.97</u><br><u>0.94</u><br><u>0.91</u>         |
|                       | Attraction, 1986 Existing Model<br>Attraction, 1995 Calib. (1)<br>*Attraction, 1995 Calib. (2)                                | oda3_wh.sps        | .3235*POP15-24 + .2755* POP25-44 + .1847* POP45-64<br>098 * POP15-24 + .336 * POP25-44 + .321* POP45-64<br>.178 * POP 25-44 + .192 * POP45-64 for Ottawa and Hull central areas<br>.348* POP 25-44 + .258 * POP45-64 - for Ontario<br>.405 * POP 25-44 + .117 * POP45-64 - for Quebec | 0.94<br>0.97<br><u>0.97</u><br><u>0.98</u><br><u>0.99</u> |
| Sec_ Sch to home      | Production, 1986 Existing Model<br>Production, 1995 Calib. (1)<br><b>*Production, 1995 Calib. (2)</b>                         | odp_ss3.sps        | (.3059 * SCHS + .0691 * POP25-44 + 29)*.365<br>(.231 * SCHS014 * POP25-44 ) * .6<br>** (.171 * SCHS ) * .6                                                                                                                                                                            | 0.61<br>0.68<br><u>0.7</u>                                |
|                       | Attraction, 1986 Existing Model<br>Attraction, 1995 Calib. (1)<br>Attraction, 1995 Calib. (2)<br>*Attraction, 1995 Calib. (3) | <u>oda_ss2.sps</u> | (.2684 * POP5-14 + .0422 * POP15-24 + .0337 * POP25-44 + 2) * .365<br>(0.102 * POP10-14 + .08123 * POP15-24 .0046 * POP25-44) * .6<br>(0.08555 * POP15-24 + .02249 * POP25-45 ) * .6<br><u>** (0.142 * POP15-24 ) * .6</u>                                                            | 0.81<br>0.78<br>0.77<br><u>0.75</u>                       |
| Post Sec_ Sch to home | Production, 1986 Existing Model<br><u>*Production, 1995 Calib.</u>                                                            | odp_su.sps         | .1861 * SCHP + 8<br>.117 * SCHP                                                                                                                                                                                                                                                       | 0.95<br><u>0.96</u>                                       |
|                       | Attraction, 1986 Existing Model<br>Attraction, 1995 Calib. (1)<br>* <u>Attraction, 1995 Calib. (2)</u>                        | oda_su2.sps        | .0396 * POP15-24 + .0246 * POP45-64<br>.103 * POP15-2401 * POP45-64<br><b>.074 * POP15-24 + .0059 * POP25-44</b>                                                                                                                                                                      | 0.53<br>0.83<br><u>0.83</u>                               |
| Other to Home         | Production, 1986 Existing Model<br><u>*Production, 1995 Calib.</u>                                                            | <u>odp_hbo.sps</u> | .044 * POP + .0978 * EMP + 3.164 * GLA + 72<br>.052 * POP + .0711 * EMP + 1.947 * GLA                                                                                                                                                                                                 | 0.8<br><u>0.85</u>                                        |
|                       | Attraction, 1986 Existing Model<br>* <u>Attraction, 1995 Calib.</u>                                                           | oda_hbo.sps        | .159 * POP + 21<br>.115 * POP                                                                                                                                                                                                                                                         | 0.87<br><u>0.96</u>                                       |
| Non Home Based        | Production, 1986 Existing Model<br>*Production, 1995 Calib.                                                                   | odp_lh.sps         | .0478 * DWEL + .1576 * EMP + .9515 * GLA + 72<br>.0542 * DWEL + .176 * EMP + .578 * GLA                                                                                                                                                                                               | 0.79<br><u>0.93</u>                                       |
|                       | Attraction, 1986 Existing Model<br>*Attraction, 1995 Calib.                                                                   | <u>oda_lh.sps</u>  | .064 * EMP + .1024 * DWEL + 2.824 * GLA + 70<br>.0902 * EMP + .128 * DWEL + 1.69 * GLA                                                                                                                                                                                                | 0.77<br><u>0.89</u>                                       |
| Leave Home            | Production, 1986 Existing Model<br>*Production, 1995 Calib.                                                                   |                    | .1697 * DWEL + 24<br><u>.187 * DWEL</u>                                                                                                                                                                                                                                               | 0.73<br><u>0.9</u>                                        |
|                       | Attraction, 1986 Existing Model<br>* <u>Attraction, 1995 Calib.</u>                                                           |                    | .026 * EMP + 1.387 * GLA + 114<br>. <u>062 * EMP + 1.06 * GLA</u>                                                                                                                                                                                                                     | 0.61<br><u>0.57</u>                                       |

| Exhibit 3.5 - Summary of Trip Generation | n Regression Formulations |
|------------------------------------------|---------------------------|
|------------------------------------------|---------------------------|

Notes: \* Equations underlined and bold printed were sellected for new model calibration.

The SPSS files contains the records used to carry out the regressions. The files are in c:\temp\tripgen directory

contain the appropriate zonal demographac data as well as trip attractions/ productions per zone.

\*\* Secondary school trips multiplied by .6 to convert trips from a 2:29-5:59 period to 3:29-5:59 period.

The existing TRANS model scondary school trip equation was multiplied by .365 to correct for an error in the origional model equation.

Some of the differences in the regression coefficients between the 1986 model and those obtained from the 1995 survey can be explained by the economic conditions in each of the two years. In 1986, the economy was much more robust than it was in 1995. The unemployment rate was lower, people felt more financially secure and were likely to make more shopping, social and personal business trips. These type of conditions alter the trip making habits of people and therefore alter trip generation rates as well. This is reflected in some of the higher values of the 1986 coefficients in the equations than those contained in the 1995 equations.

#### 3.6 Comparison of Models using 1995 Data

To gain insight into the differences between the existing trip generation equations and the new equations, they were inputted into EMME2 macros and run using 1995 zonal demographic data obtained or derived from the 1995 OD survey as described earlier in this report. The results are illustrated in Exhibit 3.6.

| Trip Purpose          | Production or | Existing Model       | New Model            | New Model (PM Pe    | ak Hour) |
|-----------------------|---------------|----------------------|----------------------|---------------------|----------|
|                       | Attraction    | PM Peak Period Trips | PM Peak Period Trips | PM Peak Hour Factor | Trips    |
|                       |               |                      |                      |                     |          |
| Work to Home          | Production    | 171,300              | 163,000              | 0.502               | 81,800   |
|                       | Attraction    | 171,900              | 162,000              | 0.502               | 81,300   |
| Sec_ Sch to home      | Production    | 8,900                | 12,000               | 0.238               | 2,900    |
|                       | Attraction    | 6,700                | 11,000               | 0.238               | 2,600    |
| Post Sec_ Sch to home | Production    | 16,700               | 9,000                | 0.347               | 3,100    |
|                       | Attraction    | 9,800                | 11,000               | 0.347               | 3,800    |
| Other to Home         | Production    | 146,900              | 108,000              | 0.433               | 46,800   |
|                       | Attraction    | 158,100              | 110,000              | 0.433               | 47,600   |
| Non Home Based        | Production    | 120,700              | 108,000              | 0.440               | 47,500   |
|                       | Attraction    | 122,600              | 111,000              | 0.440               | 48,800   |
| Leave Home            | Production    | 69,700               | 70,000               | 0.400               | 28,000   |
|                       | Attraction    | 59,500               | 42,000               | 0.400               | 16,800   |
| Total                 | Production    | 534,200              | 470,000              |                     | 210,100  |
|                       | Attraction    | 528,600              | 447,000              |                     | 200,900  |

#### Exhibit 3.6 - Trip Generation Results (PM Peak Period)

A comparison between the existing and new regression models indicate that:

- The existing model formulation over estimates 1995 work to home, other to home and nonhome based trips - the largest discrepancy occurs in the other to home trips.
- There is an error in the existing trip generation model for estimating secondary school trips. An attempt was made to correct this error by factoring these trips by .365 (.365 was a factor derived while carrying out the RMOC Transportation Master Plan Study), giving the value shown in the table above.

The number of PM peak period trips based on the 1995 regression equations is about 15% less than that obtained from the existing model formulation. The total number of peak period trips reported by ADI ( the consulting firm that carried out the 1995 OD Survey) in their report "1995 NCR OD Survey Database Validation and User Guide" was in the order of 495,000 trips. The difference between the ADI estimate of total trips and that obtained from the regressions were primarily due to the ADI data containing trips that were not applicable for the model development exercise such as:

- 2,500 trips with invalid traffic zone numbers,
- 9,600 internal-external trips
- and about 100 trips with incomplete information to carry out the regressions with missing data as the person's age, etc.

#### 3.7 Conversion to Peak Hour

As illustrated in Exhibit 3.6, factors were applied to the outputs of the new trip generation equations to obtain PM peak hour results. The factors were developed based on the ratio of peak hour trips to peak period trips for each trip purpose.

# 4. TRIP DISTRIBUTION

#### 4.1 Overview

This chapter outlines the calibration of the trip distribution model to the 1995 OD Survey. The study began by reviewing traditional trip distribution methods including those used in the existing model. Limitations of the existing model were identified and by testing alternate trip distribution approaches, the form of the new model evolved.

In the existing model, the gravity model was originally used only for the work trip purpose. During the Official Plan modeling work, it was decided to use the gravity model for the non-home based trip purpose rather than the Fratar method. For the remaining trip purposes, the Fratar method was used. The gravity models used a separate trip generation equation for trips with an origin in Ontario and a destination in Quebec and another equation for the remaining trips. When the existing model was first developed, the trip distribution equations were three dimensional, with the first dimension being origin totals, the second dimension being destination totals and the third dimension being forty trip length distribution intervals. The third dimension had the effect of fixing the proportion of total trips in each of the forty intervals. This third dimension was removed from the TRANS model for the Official Plan modeling work, making the model two dimensional. In the disutility equations, both auto and transit travel times were included.

In the 1995 model calibration, the gravity model was used for all trip purposes. The model uses four separate equations to reflect travel within and between Ontario and Quebec. Furthermore, the models are two dimensional. The disutility equations use both auto and transit travel times.

#### 4.2 Methodology

The basic premise of the gravity model is that the number of trips between zones is directly proportional to the number of trips produced by a zone, the number of trips attracted to a zone, and inversely proportional to a function quantifying the spatial separation between zones. The function quantifying the spatial separation between zones is usually a function of auto and transit travel time. The advantage of this type of model is that the trip distribution model is sensitive to the level of service of the transportation modes.

The formulation of the gravity model used in the 1995 model is:

$$Tij = OiDj(f(Cij)) / \sum_{j} Aj(f(Cij))$$
  
Where  $Tij$  = Total trips between origin *i* and destination *j*  
 $Oi$  = Total trips produced by origin zone *i*  
 $Dj$  = Total trips attracted by destination zone *j*  
 $f(Cij)$  = a measure of the spatial separation between zones *i* and *j*, or impedance.  
Aj = proportionality factor

The style of the impedance function used in the 1995 model is:  $f(Cij) = (autotime^{C1} \exp(-C2 * autotime)) + (transittime^{C1} \exp(-C3 * transittime))$  The new trip distribution models are two dimensional, with balancing being carried out to origin and destination totals. With the third dimension omitted (trip length frequency distribution), the model will be sensitive to changes in demographic patterns where trip length can fluctuate under different land use scenarios. Furthermore, auto and transit travel times are included in the impedance equations. This insures that the model is sensitive to level of service changes in both modes.

Each trip purpose uses separate impedance functions for trips from Ontario to Ontario, Quebec to Quebec, Ontario to Quebec and Quebec to Ontario. This was done to account for the impedance imposed on travel as a result of the limited road and transit capacity across the Ottawa River as well as infrastructure and socio-economic differences between the provinces.

Calibration of the trip distribution model involves quantifying coefficients in the impedance function. The desired result is to have coefficients that provides a distribution of trips between traffic zones similar to those observed in the 1995 OD survey for each trip purpose. The coefficients obtained for the 1995 model calibration are illustrated in Exhibit 4.1.

| Trip Purpose          | Area | Coefficient C1 | Coefficient C2 | Coefficient C3 |
|-----------------------|------|----------------|----------------|----------------|
| Work to Home          | 1    | 0.75           | -0.12          | -0.12          |
|                       | 2    | 0.75           | -0.06          | -0.06          |
|                       | 3    | 0.5            | -0.11          | -0.11          |
|                       | 4    | 0.5            | -0.08          | -0.08          |
| Leave Home            | 1    | 0.75           | -0.25          | -0.25          |
|                       | 2    | 0.75           | -0.25          | -0.25          |
|                       | 3    | 0.5            | -0.1           | -0.1           |
|                       | 4    | 0.5            | -1             | -1             |
| Non-Home Based        | 1    | 0.5            | -0.15          | -0.15          |
|                       | 2    | 0.5            | -0.2           | -0.2           |
|                       | 3    | 0.5            | -0.15          | -0.15          |
|                       | 4    | 0.5            | -0.3           | -0.3           |
| Other                 | 1    | 0.5            | -0.2           | -0.2           |
|                       | 2    | 0.5            | -0.2           | -0.2           |
|                       | 3    | 0.5            | -0.3           | -0.3           |
|                       | 4    | 0.5            | -0.2           | -0.2           |
| Secondary School      | 1    | 0.5            | -0.15          | -0.15          |
|                       | 2    | 0.5            | -0.15          | -0.15          |
|                       | 3    | 0.5            | -0.15          | -0.15          |
|                       | 4    | 0.5            | -0.25          | -0.25          |
| Post Secondary School | 1    | 0.5            | -0.15          | -0.15          |
|                       | 2    | 0.5            | -0.15          | -0.15          |
|                       | 3    | 0.5            | -0.25          | -0.25          |
|                       | 4    | 0.5            | -0.2           | -0.2           |

Notes: Impedance =(Auto Time^C1 \* Exp(-C2 \* Auto Time)) + (Transit Time^C1 \* Exp(-C3 \* Transit Time)) Area 1 is Ontario to Ontario, Area 2 is Quebec to Quebec Area 3 is Ontario to Quebec, Area 4 is Quebec to Ontario Two approaches were used in the model calibration for each trip purpose:

- 1. comparing modeled versus survey trip totals between clearly defined geographic areas. In this study, the Ottawa River was used to distinguish trips between Ontario and Quebec and also within each province, see Exhibit 4.2
- 2. Analyzing travel times by mode using histogram plots of auto and transit travel time weighted by the demand matrix.

Travel time used for auto is what the EMME2 model estimates as the zone to zone travel time. For transit, total travel time is used which includes access, egress, transfer and wait times. These out of vehicle times can cause transit travel time to vary significantly from observed travel times for short trips. This is because the EMME2 model may simulate longer access/egress times or the time waiting for the bus to arrive.

The histograms provide insight into the match of the total number of trips as well as where the simulated demand matrix differs from the observed demand matrix in terms of trip travel time by auto and transit. It is desirable to have the mean and standard deviation of the travel times of the model close as possible to the survey results, see Exhibit 4.3.

| Trip Purpose        | Source       | From Ontario | From Ontario | From Quebec | From Quebec | Total   | Model / |
|---------------------|--------------|--------------|--------------|-------------|-------------|---------|---------|
|                     |              | To Ontario   | To Quebec    | to Ontario  | To Quebec   |         | Survey  |
| Work to Home        | Model        | 55,892       | 10,157       | 2,320       | 11,124      | 79,493  |         |
|                     | Survey       | 54,607       | 9,906        | 3,197       | 9,737       | 77,447  | 1.03    |
| Sec. School to Home | Model        | 1,686        | 104          | 57          | 494         | 2,341   |         |
|                     | Survey       | 2,408        | 147          | 10          | 927         | 3,492   | 0.67    |
| Post Sec. School    | Model        | 2,870        | 417          | 10          | 805         | 4,102   |         |
| to Home             | Survey       | 2,537        | 338          | 10          | 945         | 3,830   | 1.07    |
| Other to Home       | Model        | 32,001       | 2,107        | 371         | 8,667       | 43,146  |         |
|                     | Survey       | 28,185       | 2,016        | 355         | 8,964       | 39,520  | 1.09    |
| Leave Home          | Model        | 21,028       | 9            | 988         | 4,563       | 26,588  |         |
|                     | Survey       | 18,541       | 318          | 1,066       | 5,398       | 25,323  | 1.05    |
| Non-Home Based      | Model        | 33,893       | 3,144        | 2,265       | 6,898       | 46,200  |         |
|                     | Survey       | 34,900       | 3,307        | 1,975       | 6,690       | 46,872  | 0.99    |
| Total               | Model        | 147,370      | 15,938       | 6,011       | 32,551      | 201,870 |         |
|                     | Survey       | 141,178      | 16,032       | 6,613       | 32,661      | 196,484 | 1.03    |
|                     | Model/Survey | 1.04         | 0.99         | 0.91        | 1.00        | 1.03    |         |

Exhibit 4.2 - Trip Distribution Results- Origin-Destination Patterns

| Trip Purpose        | Source | Aut   | o Time        | Trans | it Time       |
|---------------------|--------|-------|---------------|-------|---------------|
|                     |        | Mean  | Standard Dev. | Mean  | Standard Dev. |
| Work to Home        | Model  | 18.58 | 10.65         | 39.28 | 25.60         |
|                     | Survey | 18.50 | 10.71         | 38.60 | 24.92         |
|                     |        |       |               |       |               |
| Sec. School to Home | Model  | 12.70 | 8.39          | 29.48 | 21.45         |
|                     | Survey | 13.83 | 9.17          | 30.67 | 20.70         |
| Post Sec. School    | Model  | 16.59 | 10.28         | 34.07 | 24.15         |
| to Home             | Survey | 16.21 | 9.16          | 32.68 | 20.17         |
| Other to Home       | Model  | 11.60 | 7.70          | 25.80 | 18.98         |
|                     | Survey | 12.32 | 9.95          | 27.93 | 24.02         |
| Leave Home          | Model  | 10.00 | 6.54          | 24.83 | 20.56         |
|                     | Survey | 11.25 | 8.28          | 27.18 | 20.50         |
|                     | -      |       |               |       |               |
| Non-Home Based      | Model  | 12.06 | 8.37          | 26.51 | 20.89         |
|                     | Survey | 12.72 | 8.94          | 26.95 | 20.36         |

# Exhibit 4.3 - Trip Distribution Results- Travel Times

# 4.3 Simulation Results

A review of the estimated trip demand within and between the provinces in Exhibit 4.2 illustrates that:

- Modeled compared to survey total trips crossing from Ontario to Quebec are within 1 percent
- Trips from Quebec to Ontario are under estimated by 600 trips by the model, 9% lower than the survey.
- Trips within Ontario are over-estimated by 6000 trips, implying the model is high by 4%.
- Simulated compared to survey trips within Quebec are within 1%.
- The model to survey ratio for secondary school trips of .67 is a result of the difficulty of estimating the attraction and productions amounts of these in the trip generation model.

An analysis of the average travel times in Exhibit 4.3 indicate the following:

• Home Based Work Trips

The auto and transit travel times are a close match between the simulated and survey trip demand for this trip purpose. This trip purpose accounts for about 30% of the total peak hour auto trip demand and over 60 percent of the transit demand, implying that it is particularly important to have a good fit of the travel times for both modes.

• Secondary School to Home

The auto and transit travel times are quite different between the survey and the survey. This is partly due to the significantly lower number of model trips compared to the survey. The school trips account for only about 1 percent of the PM peak hour total person demand and according to the OD survey, about 10 percent of PM peak hour transit demand. This implies that this modeling error will have little impact on auto trip demand but will tend to have the model underestimate transit trip demand. The model appears to estimate shorter trip lengths based on auto trip time of 13.8 for the survey compared to 12.7 for the model; for transit the trip time mean is 30.7 compared to 29.5 for the model).

• Post Secondary School to Home

For this trip purpose, the model over-estimates both the auto and transit trip length. The standard deviation of the model travel times are higher than the survey, indicating that the modeled results are more dispersed.

• Other to Home

The auto and transit trip times of the model are a little lower with less dispersion compared to the survey

• Leave Home

The auto and transit times of the model are lower and less dispersed than the survey

• Non-Home Based

The auto travel times predicted by the model is lower than that compared to the survey. The transit time is slightly lower for the model compared to the survey.

# 5. MODAL SPLIT

#### 5.1 Overview

An objective of the 1995 modal split model re-calibration project was to develop a model based on the 1995 OD survey similar in style to the existing model based on the 1986 OD Survey. However, as re-calibration work progressed, it became clear that the style of the 1995 model would differ in several key areas. In particular, it was found that the logit model could be used successfully for both home based work and home based school inter-zonal trips (trips where the trip origin and destination are located in different zones) within the Urban Transit Area (UTA). Furthermore, the new logit models includes the modes auto person and transit rather than auto driver, auto passenger and transit. This mode choice selection was based on the logit model results for the home based work trips where it was found that unacceptable simulation results were obtained if the auto mode was separated into two modes. A car occupancy model was developed outside of the logit model to convert auto persons to auto vehicles in the new model.

For the remaining inter-zonal trip purposes inside the UTA, modal split was based on equations relating mode choice to ratios of transit to auto travel times. Different equations are provided based on whether auto travel times fall within specified auto travel time ranges. This differs from the existing model where one equation was used for all auto times within the UTA for non-work trips.

For all inter-zonal trips outside the UTA, equations were developed to estimate auto vehicle trips from auto person trips.

For intra-zonal trips (i.e., trips for which the origin and destination points are located in the same zone), modal split for each zone was based on observed mode choice in the 1995 OD survey.

Exhibit 5.1 highlights the main differences between the 1986 model and those developed based on the current study.

| Model      | Details          | Description                                                         |
|------------|------------------|---------------------------------------------------------------------|
| 1986 Model | 3 modes          | Auto Diver, Auto Passenger, Transit                                 |
|            | Logit Model      | Work to Home (UTA)                                                  |
|            | Diversion Curves | All Other Trips                                                     |
| 1995 Model | 3 modes          | Auto Vehicle, Auto Person, Transit<br>( Auto Vehicle by Regression) |
|            | Logit Model      | Work to Home (UTA)<br>School to Home (UTA)                          |
|            | Diversion Curves | All Other Trips                                                     |

# Exhibit 5.1 - Comparision of 1986 and 1995 Models

The first section of this chapter presents the methodology used to build, select and aggregate the most appropriate logit models for home based work and home based school trip purposes. A description follows the method used to develop the modal split models for the remaining trip purposes and the approach used to simulate intra-zonal mode split. The final section of the chapter is a comparison of observed versus simulated travel demand by mode.

#### 5.2 Logit Model Preparation

In practice, variables which are most suitable to include in the logit model equation is not known at the beginning of the model building process. At best, the person developing the model will have a list of variables they feel are suitable candidates for inclusion into the model. They must then go through the process of developing a databank containing all potential variables that could be used in the model. This process of fitting a model to the data is the calibration process. This is a process of estimating the values of the numerical coefficients in the models and testing different models to determine which one best explains the available data.

#### 5.2.1 Data Preparation, Logit Models

Because a modal split model attempts to replicate the mode choice decision of individuals, it is desirable to know as many factors as possible that influence their decision making behavior. Disaggregate logit models have been used successfully to perform this task. Logit models are mathematical techniques that reproduces the decisions of individuals, based on personal considerations of two types of factors: socio-economic characteristics of the individual and level of service variables describing the mode. To develop the model, a database is required which describes all the travel choices of a large number of people, and provides information about the specific conditions considered by each individual.

In this study, the primary data source to support the development of the modal split models was the 1995 TRANS OD Survey. The survey database contains the response information for each person included in the survey sample. From the survey, 12,000 trips by auto and transit were obtained in the PM peak hour by auto and transit. From this file, information was available about each person and their household such as household location, number of vehicles in the household, each person's employment or student status as well as their sex and age.

The OD survey also contains information about their PM peak hour trip such as trip purpose, the location of the trip origin and destination, trip start time (but not trip end time), mode used to make the trip, and whether a parking cost was incurred (but not the amount paid to park). Level-of-service variables as travel time and cost were not collected in the survey.

In the development of logit models, you require detailed information about all modes available to the traveler. To obtain this information, the EMME2 model was used to assign observed PM peak hour travel demand onto the auto and transit networks to estimate mode attributes such as time and travel cost. Furthermore, the theory of logit models make it necessary that the individuals being modeled have access to all modes under consideration. It was assumed that the auto mode was available to all users, since anyone could be an auto passenger if they were unable to be an

auto driver. Transit was assumed available to all trip makers provided their trip began and ended within the UTA.

Since the cost of travel was not collected in the survey, a method was developed to estimate this variable. Transit fare for 1995 was estimated by developing a fare matrix system, see Exhibit 5.2. Areas were identified where regular and premium transit serviced specific geographic areas in the National Capital Region. The transit fare required to travel between the areas in the matrix is a function of cash fares and monthly passes, taking into account the dual OC Transpo and STO fare structure for regular and express service.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Origin Area Destination Area                                                                                                                                                          |      |      |      |      |      |      |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|
| Area No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                           | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC inner UTA                                                                                                                                                                        | 1.35 | 1.73 | 1.73 | 3.1  | 3.1  | 3.1  | 1.35 | 1.73 | 3.1  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC outer UTA West& South                                                                                                                                                            | 1.35 | 1.35 | 1.73 | 1.35 | 3.1  | 3.1  | 1.35 | 1.73 | 3.1  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC outer UTA -east                                                                                                                                                                  | 1.35 | 1.73 | 1.35 | 3.1  | 3.1  | 3.1  | 1.35 | 1.73 | 3.1  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC Stitsville                                                                                                                                                                       | 1.35 | 1.35 | 1.73 | 1.35 | 3.1  | 3.1  | 1.35 | 1.73 | 3.1  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC Richmond                                                                                                                                                                         | 1.35 | 1.35 | 1.73 | 3.1  | 1.35 | 3.1  | 1.35 | 1.73 | 3.1  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMOC Rockland                                                                                                                                                                         | 1.35 | 1.73 | 1.73 | 3.1  | 3.1  | 1.35 | 1.35 | 1.73 | 3.1  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUO West of Gatineau River                                                                                                                                                            | 1.35 | 1.73 | 1.73 | 3.1  | 3.1  | 3.1  | 1.35 | 1.73 | 3.1  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUO East of Gatineau River                                                                                                                                                            | 1.35 | 1.73 | 1.73 | 3.1  | 3.1  | 3.1  | 1.35 | 1.35 | 3.1  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUO, Rural East Quebec                                                                                                                                                                | 3.1  | 3.1  | 3.1  | 3.1  | 3.1  | 3.1  | 3.1  | 3.1  | 1.35 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <ul> <li>3 105, 107-109, 139, 141 -144, 202-205, 235-247</li> <li>4 216-219</li> <li>5 134</li> <li>6 145</li> <li>7 146-164, 182-184, 254-258</li> <li>8 165-177, 248-253</li> </ul> |      |      |      |      |      |      |      |      |      |
| <ul> <li>Concept: The high fares of \$1.73 are for accessing green express buses.<br/>It is assumed that the green fare of \$1.73 is for outbound trips, while inbound trips have the regular fare of \$1.35. For across region service as from Orleans to area 2, the \$1.73 fare is assumed, since they would have to go to the central area and then transfer to a green route to complete their trip.</li> <li>emme2 zones assumed outside of the UTA for 1995 are: 132, 133, 135, 137 - 141, 146, 147, 177, 181-185, 186-200, 212-215, 227-230</li> </ul> |                                                                                                                                                                                       |      |      |      |      |      |      |      |      |      |

#### Exhibit 5.2 - Transit Fare Matrix

Travel costs for auto work trips consisted of an operating cost assumed to be the cost of fuel consumed and a parking cost. Fuel consumption costs were based on averages across Canada as reported by Canadian Automobile Association for 1995. For the model calibration, 5 cents per kilometer was used as the fuel cost based on an average fuel consumption rate of 9.2 liters /100km and a fuel price of 55 cents/liter. The parking cost was estimated by contacting major parking suppliers and finding out what the monthly cost was for parking all day. This amount was then divided by 20 to get a daily rate. This amount was then multiplied by the proportion of auto

drivers who paid for parking at the work place as recorded from the 1995 OD survey. This factoring process was necessary in order to be consistent with the approach used to aggregate this variable to a zonal level as discussed later in the section. The auto cost was then divided by auto occupancy as reported by the auto driver, giving the desired auto cost. If auto occupancy was not available, it was estimated based on analysis of vehicle occupancy rates.

Number of vehicles per household was recorded in the survey. This variable was re-coded to take on three values: 0 for a trip maker with no vehicles in the household, 1 when there is one vehicle in their household, and 2 when there is more than 1 vehicle in the household.

Total travel time was estimated using the EMME2 model to obtain the time in minutes to go from the trip origin to the trip destination. Out-of-vehicle travel time was also estimated. Transit outof-vehicle travel time was assumed to include the time to walk to the bus stop, wait for the bus, access the bus, transfer if necessary to another bus, egress the bus and then travel to the destination. For the auto mode, out-of-vehicle travel time was assumed as 0.

Several other variables were developed using the TRANS 1995 Survey data. Referred to as dummy variables, and based on geographic location of a trip's origin or destination zone, they reflect potentially significant differences in transportation service which may not be fully captured by more tangible service attributes such as travel time or cost. For this study a "Province" variable was developed to distinguish between residents by province. If the person resided in Ontario, the variable had a value of 0, if they lived in Quebec, the value was 1.

Intra-zonal trips were excluded from the logit model databases since these trips are accounted for separately as discussed later in this section.

For short trips under 2 km in length, the database was adjusted to provide a more appropriate estimate of trip time, distance and cost. This was done using the UTM coordinates from the 95 OD survey database and applying an appropriate factor to convert from a straight line distance to a distance likely traveled by car or transit. Once the corrected distance was estimated, an appropriate travel time and cost were developed.

#### 5.2.2 Specifying Logit Models

The model building exercise began by developing a priori model formulation which included a large number of variables considered to be of potential use. This model was much more elaborate than the final model obtained. However, it served to illustrate expectations regarding the anticipated role individual variables may have with influencing modal choice in the study area.

Application of the logit software was both an incremental and iterative process. The approach taken was to begin with a model containing the most essential level-of-service variables and to successfully add other variables or attempt variations on a previous model structure incorporating beneficial changes and discarding others.

#### 5.2.3 Model Evaluation

The outputs of logit estimation software include, along with the estimated values of the coefficients, a set of statistical indicators used to judge the quality of the models. The value of individual variables may be investigated through an examination of the coefficients of the modal utility equations, the t-statistics of those coefficients and the correlation among variables.

- Sign of the coefficients should reflect expected human behavior, based on intuition, common sense and experience. For example, an increase in travel time should be expected to decrease the perceived attractiveness of a mode.
- The t-statistic of a coefficient is the estimated value of the coefficient divided by the standard error of the estimate. The t-statistic is useful for deciding whether the variable associated with that coefficient contributes significantly to the ability of the model to explain the data. Experience suggests that it is a good policy to retain variables whose coefficients have a t-statistic greater than 1.0 or less than -1.0.
- Correlation between variables- Correlation between a pair of variables greater than 0.8 indicates that a particular effect is being accounted for twice, and that the model should be respecified.
- Goodness-of-fit indicator "Rho-bar squared". This statistic provides a single measure to rank the goodness-of-fit of the model to the sample. In theory, the value ranges between 0.0 (no fit) and 1 (perfect fit). A small sample size or inclusion of additional modal alternatives will decrease the "rho-bar squared", while inclusion of highly descriptive socio-economic variables will cause this indicator to increase.
- "Expected percent right" statistic reflects the estimated proportion of observed (or surveyed) choices which would be reproduced by the specified model. While a high "expected percent right" value is generally desirable, such high values may result from a high degree of modal uniformity despite a poorly specified model.

In conclusion, one should look at all the statistical measures and how they may inter-relate to one another to gain insight at the potential predictive powers of the logit model under study.

#### 5.3 Final Logit Formulations

As outlined above, statistical procedures are used to guide the selection of variables for selecting and testing the logit models. The statistical procedures are invaluable aids in model developments, but it is important to understand that the use of statistical methods alone cannot guarantee the development of a satisfactory model. Judgment and experience to identify likely sources of error in the model and to formulate modifications of the model that might remove the errors. The modified models can then be subjected to statistical tests to determine whether they are seriously erroneous. Thus, practical model development always involves alternating between statistical analysis and judgmental activities.

#### 5.3.1 Work to Home Logit Model

Exhibit 5.3 illustrates the model utility equations. The variables included in the equation are cost, total travel time and number of vehicles per household. No coefficients are shown in the auto mode equation for number of vehicles per household and Province since these variables are normalized to 0 based on the transit mode. Several notes should be made regarding these equations.

| Mode                          | Trip Cost                 | Total Travel Time                                                                                      | Number of Vehicles<br>per Household | Province | Constant |  |
|-------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|----------|----------|--|
| Auto Person                   | -0.8641                   | -0.0096                                                                                                | -0.0096                             |          |          |  |
|                               | (-27.9)                   | (-2.14)                                                                                                |                                     |          |          |  |
|                               | (, )                      | ( = /                                                                                                  |                                     |          |          |  |
| Transit                       | -0.8641                   | -0.0096                                                                                                | -1.738                              | -0.8367  | 0.9091   |  |
|                               | (-27.9)                   | (-2.14)                                                                                                | (-15.6)                             | (-5.64)  | (-5.41)  |  |
|                               | ·                         | ·                                                                                                      |                                     |          |          |  |
| Note: Number                  | rs in brackets are t-stat | istic for the variable?                                                                                | s coefficient.                      |          |          |  |
| Other Infroma                 | t Rho bar squared         | 0.57                                                                                                   |                                     |          |          |  |
|                               | Mode split(model)         | 23%                                                                                                    |                                     |          |          |  |
|                               | Mode split sample         | 26%                                                                                                    |                                     |          |          |  |
|                               | % predicted correct       | 89%                                                                                                    |                                     |          |          |  |
|                               | ~                         | abials first commution cost of 5 conts/lime and a nonline cost in conta                                |                                     |          |          |  |
| auto cost                     |                           | fuel consumption cost of 5 cents/km. and a parking cost in cents.<br>me illustrated in Exhibit 4.2.    |                                     |          |          |  |
|                               |                           |                                                                                                        |                                     |          |          |  |
| veh/hh                        |                           | =0 if veh/hh is 0, =1 if veh/hh is 1, =2 if veh/hh more than 1.<br>Ontario and 1 for Quebec residents. |                                     |          |          |  |
| Province                      |                           | •                                                                                                      |                                     |          |          |  |
| Travel Time -                 | - Time in minutes to the  | ravel from trip origin                                                                                 | to trip destination.                |          |          |  |
| Mode Split Sensivity Analysis |                           |                                                                                                        |                                     |          |          |  |
|                               | Variable                  | % Change in auto                                                                                       | person mode split                   | ]        |          |  |
|                               |                           | resulting from the following canges                                                                    |                                     |          |          |  |
|                               |                           | in the variables:                                                                                      |                                     |          |          |  |
|                               | Auto Time +10%            | -1.18%                                                                                                 |                                     |          |          |  |
|                               | Auto Cost +10%            | -2.65%                                                                                                 |                                     |          |          |  |
|                               | Veh/HH from 1 to 2        | 3.                                                                                                     | 48%                                 |          |          |  |
|                               | Ontario rather than       | -5                                                                                                     | .07%                                |          |          |  |
|                               | Quebec resident           |                                                                                                        |                                     |          |          |  |
|                               | 1                         | -                                                                                                      |                                     | 1        |          |  |
|                               | Transit Fare 10%          | 6.                                                                                                     | 53%                                 |          |          |  |

| Exhibit 5.3 - Home Based | Work Trip Logit Model |
|--------------------------|-----------------------|
|--------------------------|-----------------------|

The value of the t-statistics are all significant, having values less than -1 or greater than +1.0. The goodness of fit statistics of the model are as follows:

rho-bar squared = .57

expected percent right = 89%

The rho-bar squared value is dependent on the sample proportion selecting the auto mode (74%), implying that the minimum rho-squared value of about .25. The .57 value is significantly greater

than .25, indicating that the model provides a good fit to the observed mode choice as further indicated by the expected percent right value of 89%.

The values of the coefficients can be used to show the sensitivity of each variable on mode choice (see Exhibit 5.3) as outlined below:

- A 10 percent increase in auto travel time causes a 1.18 percent reduction in auto person mode split.
- A 10 percent increase in auto cost results in a 2.65 percent increase in transit mode choice.
- If the number of vehicles in the workers household increases from 1 to 2 or more, auto mode choice increases by 3.48 percent.
- The impact of place of residence is that Ontario residents tend to use transit about 5 percent more overall than Quebec residents.
- A 10 percent increase in transit fare will increase auto person mode split by 6.5 percent.
- A 10 percent increase in transit travel time increases auto person mode split by only 0.12 percent.

#### 5.3.2 Aggregation

The logit model developed was based on an individual person basis where each record in the sample was used to build the model representing a single trip made by each individual. In order to use the model within a traffic zone system, an aggregation process was required to combine the behavior of all the trip makers in a particular traffic zone into a homogenous unit representing all trip makers in that zone.

The estimates of travel time and Province do not require aggregation since they are already in a style that can be used on a zonal basis. However, cost and number of vehicles per household required aggregation, which was carried out as follows:

- Cost- parking cost was estimated at a zonal level by taking the parking cost at the place of work and multiplying by the percent of auto drivers who paid for parking at the work zone as reported in the 1995 OD Survey. This amount was added to the cost of fuel consumed. The auto cost was then divided by an estimate of vehicle occupancy.
- Vehicles per household. A market segmentation approach was used for this aggregation. Using the databank, the percent of PM peak hour work trip makers with no car, one car and more than 1 car in their household was obtained for each destination traffic zone. This percentage was then used to weight mode choice dependent on car ownership.

# 5.4 School to Home Logit Model

Exhibit 5.4 illustrates the equations for the school to home logit model. The variables included in the equations are Province, out-of-vehicle travel time and vehicles per household. No coefficients are shown for the auto person mode since the auto person coefficients are normalized to 0 based on the transit mode.

| Mode                     | Out of Vehicle                          | Number of Vehicles         | Province      | Constant          |
|--------------------------|-----------------------------------------|----------------------------|---------------|-------------------|
|                          | Travel time                             | per Household              |               |                   |
| Auto Person              |                                         |                            |               |                   |
| Transit                  | -0.0926                                 | -1.083                     | -0.527        | 2.85              |
|                          | (-2.87)                                 | (-5.59)                    | (-1.95)       | (-6.05)           |
| Note: Numbers in bracket | s are t-statistic for the varial        | ble's coefficient          |               |                   |
| Tote. Tumbers in blueket | s are t statistic for the varia         |                            |               |                   |
| Other Infromation:       | Rho bar squared                         | 0.16                       |               |                   |
|                          | Auto Mode split (model)                 | 50%                        |               |                   |
|                          | Auro Mode split (sample)<br>% predicted | 48%                        |               |                   |
|                          | correct                                 | 67%                        |               |                   |
| Out of vehicle           | Is 0 for auto mode. For tra             | nsit it is total traval ti | ma lass in va | hicle travel time |
| veh/household            | Has three groups, 0 for no              |                            |               |                   |
| ven/nousenoid            | more than 1 vehicle per ho              |                            |               | nousenoid, 2 ioi  |
| Province                 | Has a value of 0 for Ontar              |                            | esidents.     |                   |
|                          |                                         |                            |               |                   |
|                          | Split Sensivity Analys                  |                            | ]             |                   |
| Variable                 | % Change in auto pers                   | -                          | -             |                   |
|                          |                                         | nanges in the variable     | s:            |                   |
| Veh/HH from 1 to 2+      | 2.60%                                   | ,<br>)                     |               |                   |
| Ontario rather than      |                                         |                            |               |                   |
| Quebec resident          | -2.609                                  | 6                          |               |                   |
|                          | -2.007                                  | U                          |               |                   |
|                          |                                         |                            |               |                   |
| Transit Out of Vehicle   |                                         |                            |               |                   |

Exhibit 5.4 - School to Home Trip Logit Model

The definition of Province and number of vehicles per household is the same as for the work to home logit model. Out-of-vehicle travel time was assumed to be 0 for auto trips. For transit trips, vehicle travel time includes access and egress time as well as wait and transfer time.

The value of the t-statistics are all significant, having values less than -1.0. The goodness of fit statistics of the model are as follows:

Rho-bar squared = .16

expected percent right = 67%

The minimum value of Rho-bar squared for the sample with the observed mode split of 46 and 54 percent is about 0, indicating that the value of .16 is good with an expected percent correct of 67%.

The mode split sensitivity analysis results illustrated in Exhibit 5.4 indicate the following:

- If vehicles per household goes from 1 to "2 or more", auto use increases by 2.6%.
- If you live in Ontario, the province variable indicates auto use decreases by 2.6 %.
- A 10% increase in transit out of vehicle travel time will cause a 1 percent increase in auto mode choice.

#### 5.4.1 Aggregation

The approach to aggregate the variables contained in the school to home logit model is the same as outlined in the work to home model.

# 5.5 All Other Trip Purposes, Inside the UTA Model

The remaining trip purposes of "home based other", "other to home" and "non-home based" were grouped together to build a modal split model using a relationship based on the ratio of transit to auto travel time rather than a logit model. This is because the trip making behavior of these trip makers do not follow a distinguishable pattern of behavior, a key requirement for the use of a logit model.

It was found that two equations provided the best model. One equation is used to estimate model split when the auto trip time is under 15 minutes and another equation for trips that could be made by auto in 15 minutes or more. A plot of the observed model split is illustrated in Exhibits 5.5 & Exhibit 5.6. A linear regression was carried out on the observed data giving the two equations illustrated in Exhibit 5.7.

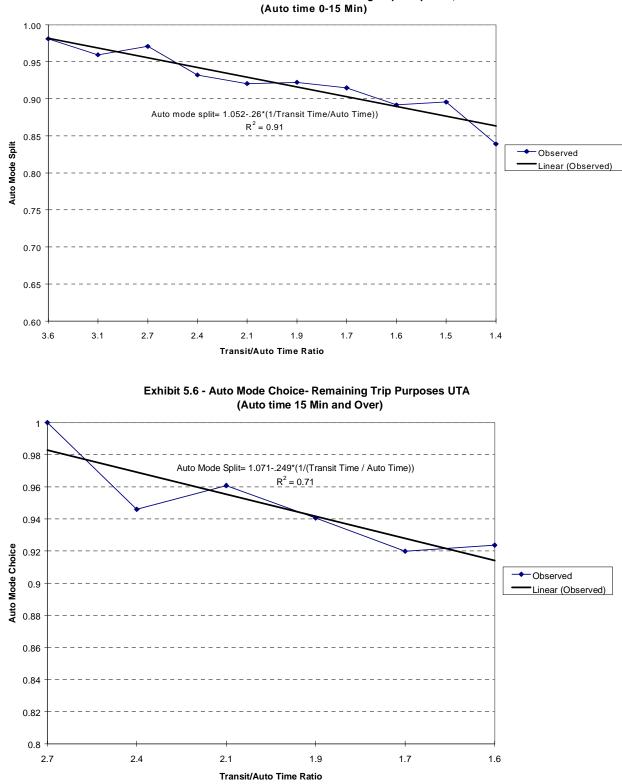



Exhibit 5.5 - Auto Mode Choice- Remaining Trip Purposes, UTA

# Exhibit 5.7-- Model Equations- Other Trip Purposes Inside UTA

| Auto Time Interval        | Equation                                             | R Squared |
|---------------------------|------------------------------------------------------|-----------|
| Auto Time 0-15 Minutes    | auto mode split=1.05226*(1/(TransitTime/Auto Time))  | 0.91      |
| Auto Time over 15 Minutes | auto mode split=1.071249*(1/(TransitTime/Auto Time)) | 0.71      |

Seventy-five percent of the trip makers in this combined trip purpose definition have an auto time in the interval of 0 to 15 minutes. This model has an R squared of .91, indicating that the equation explains 91% of the variability of the mode choice. Of the remaining 25 percent of the trip makers, they have an auto time of 15 minutes and over. The equation for these observations has an R squared statistic of .71. The two equations combined estimate auto person mode choice of 92.5% compared to 91.8% as contained in the survey.

#### 5.5.1 Trips Outside the UTA

By definition, trips outside the UTA do not have access to OC Transpo or STO public transit and therefore transit mode split should be zero. In actuality, some trips are reported as being made by transit outside the UTA. This is because there are several private companies providing bus service to residents in some of the smaller rural towns within the study area. No attempt was made to include these transit trips within the model framework.

Since public transit is not considered available in the model for the trips outside the UTA, the model only estimates auto occupancy. Regression equations were developed to estimate auto occupancy based on trip length, see Exhibit 5.8. The regressions are based on the 1995 OD Survey matrices of auto person and auto vehicles for the PM peak hour and not the auto occupancy variable recorded in the 1995 OD Survey. It was found that the auto occupancy question in the survey was not reliable since it could contain persons under 10 years of age in the vehicle while the trip data from which the model is based includes trips by persons aged 10 and over. The matrices from which the equations were built are based on the observed auto driver and auto person trip matrices.

| Trips being Modelled | Equation                                | R Squared |
|----------------------|-----------------------------------------|-----------|
| Work UTA             | Auto Occupancy = 1.24900259*distance    | 0.251     |
| Work Outside UTA     | Auto Occupancy = 1.071+.00275* distance | 0.55      |
| Other UTA            | Auto Occupancy = 1.25+.001186*distance  | 0.127     |
| Other Outside UTA    | Auto Occupancy = 1.29600187*distance    | 0.18      |
| School UTA           | Auto Occupancy = 3.677481*ln(distance)  | 0.84      |
| School Outside UTA   | Auto Occupancy = 3                      | estimated |

# Exhibit 5.8-- Auto Occupancy Equations

As can be seen with the low R squared values in the equations, the models have limited ability to predict auto occupancy based on distance. During the calibration process, it was found that the equations resulted in too many auto vehicle trips and as a result all of the auto occupancies were reduced by 4 percent.

#### 5.5.2 Intra-Zonal Trips

Intra-zonal trips are not assigned onto the road and transit network and therefore are insignificant from the perspective of their impact on the auto and transit networks. Since these trips are not assigned onto the network, the model does not provide estimates of modal attributes as travel time or distance. However, intra-zonal trips are included in the demand estimates for auto and transit and have to be estimated. For this reason, it was decided to estimate modal split for these trips based on the observed mode split by zone as contained in the 1995 OD Survey.

#### 5.5.3 External Trips

External trips have a trip origin and/or a trip destination outside the area included in the 95 OD Survey. The travel demand was estimated from a 1993 study carried out by TRANS and expanded to a 1995 amount. The demand is in the form of a matrix and was ultimately added to the travel demand estimates outlined above.

# 5.6 Modal Split Model Results

Exhibit 5.9 contains a comparison of the number of trips by mode and purpose as reported in the OD survey and estimated by the complete model run of the model (trip generation, distribution and mode split). The main findings from the comparison are the following:

- Total transit trips predicted by the model (30,404) is close to the values as reported in the 1995 OD survey (30,850). Transit modal choice estimated that the model is 13.5 percent compared to the survey amount of 13.8 percent.
- The model tends to underestimate intra-zonal trips which is a result of the trip distribution model. However, the model does provide a close estimate of inter-zonal auto vehicle and transit trips, but overestimates inter-zonal auto person trips. Once the inter-zonal trips are added to the intra-zonal trips, the total number of auto person and transit trips are close to the OD survey amounts. It is important to realize that the OD Survey inter-zonal auto vehicle trips are close to the model estimates which are the trips that are assigned onto the network.
- The number of total person school trips is low. This is in part due to the lower number of school trips obtained from the trip generation and the trip distribution balancing process resulting in 5658 trips compared to 7392 in the OD Survey.

Exhibit 5.9 - New Model Versus OD Survey Travel by Purpose and Mode

| Trip       | Source    |               | Total Trips |           |         | Inside      | UTA (Interzo | onal)   | Outside     | UTA (Interz | onal)   | Int         | razonal Trips | ;       |
|------------|-----------|---------------|-------------|-----------|---------|-------------|--------------|---------|-------------|-------------|---------|-------------|---------------|---------|
| Purpose    |           | Total Persons | Auto Person | Auto Veh. | Transit | Auto Person | Auto Veh.    | Transit | Auto Person | Auto Veh.   | Transit | Auto Person | Auto Veh.     | Transit |
| Work       | OD Survey | 78,780        | 59,551      | 49,238    | 19,229  | 49754       | 40685        | 18717   | 7800        | 6780        | 449     | 1,997       | 1,773         | 63      |
|            | Model     | 81,348        | 61,455      | 48,968    | 19,893  | 50819       | 40179        | 19847   | 9346        | 7844        | 0       | 1,290       | 945           | 46      |
| School     | OD Survey | 7,392         | 3,727       | 1,712     | 3,665   | 3125        | 1509         | 3623    | 415         | 197         | 21      | 187         | 6             | 21      |
|            | Model     | 5,658         | 2,754       | 1,298     | 2,904   | 2115        | 1122         | 2889    | 518         | 173         | 0       | 121         | 3             | 15      |
| Other      | OD Survey | 124,905       | 116,949     | 93,353    | 7,956   | 94032       | 74953        | 7754    | 8766        | 7066        | 56      | 14,151      | 11,334        | 146     |
|            | Model     | 125,989       | 118,383     | 89,484    | 7,607   | 100260      | 76564        | 7500    | 8984        | 6882        | 0       | 9,139       | 6,038         | 107     |
| Total      | OD Survey | 223,898       | 193,048     | 155,167   | 30,850  | 146911      | 117147       | 30094   | 16981       | 14043       | 526     | 16,335      | 13,113        | 230     |
| (see note) | Model     | 225,816       | 195,412     | 150,614   | 30,404  | 153194      | 117865       | 30236   | 18848       | 14899       | 0       | 10,549      | 6,986         | 168     |

Note: Total trips includes external travel demand of 12,821 auto persons and 10,864 auto vehicle trips. These trips are from a 1995 external trip matrix.

Exhibits 5.10 illustrates assigned average travel time by mode for the new model and the OD survey demands. For auto vehicles, the OD survey average trip time is 13.6 minutes while the model estimates an average time of 13.4 minutes. For auto person trips, the survey average trip time is 13.57 minutes while the model estimate is 13.38 minutes. For transit, the survey estimate is 29.16 minutes while the model estimate is 26.83 minutes. This difference of transit travel times implies the model has difficulty distinguishing between modes for some longer trips. It can also be a result of simulation errors in the trip distribution model where longer trips are underestimated in areas where transit is an attractive alternative to auto, primarily for work to home trips.

| Mode         | Source | Aut   | o Time        |
|--------------|--------|-------|---------------|
|              |        | Mean  | Standard Dev. |
| Auto Vehicle | Model  | 13.42 | 10.38         |
|              | Survey | 13.61 | 10.91         |
| Auto Persons | Model  | 13.39 | 10.29         |
|              | Survey | 13.57 | 10.83         |
| Transit      | Model  | 26.83 | 15.65         |
|              | Survey | 29.16 | 15.80         |

Exhibit 5.10 - Trip Assignment Results- Average Travel Times

# 5.7 Trip Assignment

With the modal split model developed, it was possible to do a complete model run and assign the estimated 1995 PM peak hour trip tables for auto persons, auto vehicles and transit passengers to the auto and transit networks. The results of the assignment and a comparison of the model to traffic counts are illustrated in Exhibit 5.11. A comparison of outbound trips of the model and observed counts reveal the following:

Total person trip estimates on screenlines in the RMOC are for the most part within 10 percent of the counts for outbound trips. Person trips in the CUO appear to be underestimated, with model estimates closer to the range of 80 to 100 percent of the counts.

The model overestimates auto vehicle trips heading outbound to the east areas outside the greenbelt by about 17% (i.e., Orleans) and underestimates auto vehicle trips 12 to 15 percent to the south areas outside the greenbelt as the South Urban Communities of Nepean and Gloucester.

In Quebec, the model appears to overestimate auto vehicles crossing screenline Q65 (Gatineau River) by 18 percent, but appears to estimate auto vehicles within 10 percent at the remaining screenlines.

Transit mode split is overestimated crossing the Rideau River by 31%, Eagleson by 19% and CNR by 26%. Green's Creek is underestimated by 19%.

In the CUO, transit appears to be underestimated for trips destined to the west and north as Aylmer and Mont Blue. Transit to the east appears to be slightly overestimated.

In general, inbound estimates of travel demand are marginally underestimated. In particular, total person trips crossing the Ottawa river is underestimated by about 30 percent.

A comparison of 1986 model calibration reveals that the re-calibrated 1995 model predicts travel demand as well as or slightly better than the 1986 model. Throughout the model re-calibration process, insight was obtained on where the current style of the model could be improved. The following chapter outlines areas where further work can be carried out to enhance the quality of the TRANS model.

| rate       |
|------------|
| Calib      |
| 1995       |
| from       |
| Results    |
| Assignment |
| Model /    |
| Hour       |
| M Peak     |
| sit PN     |
| Tran       |
| o and      |
| Auto       |
| 1995       |
| ÷          |
| - 57       |
| 5          |
| hibi       |
| <u> </u>   |

|                                 |          | TOTAL PERSONS | RSONS  |         |          | ATTO PERSONS | RSONS        |                 |          | ALITO VEHICLES                           | THICLES       |                 |          | TR A NSIT | SIT     |        |
|---------------------------------|----------|---------------|--------|---------|----------|--------------|--------------|-----------------|----------|------------------------------------------|---------------|-----------------|----------|-----------|---------|--------|
| kroenline                       | Oherrord | Survey        | Model  | Model / | Observed | Survey       | Model        | Model /         | Ohenrod  | Survey                                   | Model         | Model/          | Observed | Sarvey    | Model   | Model  |
|                                 | Counts   | Assigned      |        | Counts  | Counts   | Assigned     |              | Counts          | Counts   | Assigned                                 |               | Counts          | Counts   | Assigned  |         | Counts |
| Ditawa River (LN2, 3,4)         | 15,574   | 16,352        | 16,076 | 1.03    | 13,168   | 13,931       | 13,693       | 1.04            | 10,180   | 10,886                                   | 10,720        | 1.05            | 2,406    | 2,421     | 2,383   | 660    |
| Rideau River (LN19, 20, 32, 33) | 28,284   | 30,945        | 31,473 | 1.1.1   | 21,792   | 22,008       | 22,966       | 1.05            | 16,509   | 17,521                                   | 17,897        | 1.08            | 6,492    | 8,937     | 8,507   | 131    |
| CPR (LN27, 28, 29)              | 19,880   | 21,145        | 19,904 | 1.00    | 14,931   | 14,443       | 14,543       | 0.97            | 11,236   | 11,720                                   | 11,313        | 1.01            | 4,949    | 6,702     | 5,361   | 1.08   |
| Otawa Central Area (LN35-38)    | 16,185   | 16,395        | 15,218 | 0.94    | 8,637    | 8,624        | 8,542        | 0.99            | 5,927    | 6,545                                    | 6,638         | 1.12            | 7,548    | 177.7     | 6,676   | 0.88   |
| Rideau Canal (LN34, 39)         | 29,370   | 26,656        | 26,630 | 0.91    | 20,707   | 19,252       | 20,247       | 0.98            | 15,301   | 15,009                                   | 15,820        | 1.03            | 8,663    | 7,404     | 6,383   | 0.74   |
| Pallowfield (LN9, 43)           | 7.77.7   | 7,823         | 6,677  | 0.86    | 7,039    | 6,667        | 6,024        | 0.86            | 5,551    | 5,514                                    | 4,737         | 0.85            | 738      | 1,156     | 633     | 0.88   |
| Gagles on (LN10)                | 8,897    | 10,263        | 8,851  | 0.99    | 7,897    | 8,961        | 7,658        | 0.97            | 6,049    | 7,116                                    | 6,068         | 1.00            | 1,000    | 1,302     | 1,193   | 1.19   |
| Green Creek (LN16)              | 11,319   | 13,215        | 12,337 | 1.09    | 8,189    | 9,515        | 9,808        | 1.20            | 6,607    | 7,703                                    | 7,722         | 1.17            | 3,130    | 3,700     | 2,529   | 0.81   |
| CNR West / Acres (LNI1,12)      | 18,982   | 19,680        | 17,363 | 0.91    | 16,245   | 16,255       | 14,946       | 0.92            | 12,678   | 13,362                                   | 11,722        | 0.92            | 2,737    | 3,425     | 2,417   | 0.88   |
| CNR East (LN13,14,15)           | 13.555   | 13,935        | 13.262 | 0.98    | 12.274   | 12,680       | 11.650       | 0.95            | 10.595   | 10.383                                   | 9.259         | 0.87            | 1.281    | 1.255     | 1.612   | 126    |
| Western Parkway (LN24,25)       | 18.528   | 19,927        | 16,700 | 0.90    | 15.683   | 16,483       | 13.949       | 0.89            | 12.339   | 13.355                                   | 10,897        | 0.88            | 2.845    | 3,444     | 2.751   | 0.97   |
| ceitrim / Ramsavville (LN7.8)   | 6.114    | 5.956         | 5.363  | 0.88    | 6009     | 5.934        | 5.354        | 0.88            | 4.669    | 5.035                                    | 4.353         | 0.93            | 15       | 22        | 6       | 0.60   |
| le de Hull (LN60)               | 21.061   | 21.859        | 21.944 | 1.04    | 17.551   | 18.644       | 18.519       | 1.06            | 12.896   | 14.273                                   | 14.530        | 1.13            | 3.510    | 3.215     | 3.425   | 0.98   |
| 3cul. Gamelin (LN 61)           | 14.207   | 10.418        | 10.500 | 0.74    | 13.003   | 9.661        | 9.69.6       | 0.75            | 9.853    | 7.496                                    | 7.602         | 0.77            | 1.294    | 757       |         | 0.70   |
| Th. de la Montagne (LN62)       | 5.058    | 3.601         | 3.998  | 0.79    | 3.638    | 2.633        | 3.307        | 0.91            | 2.805    | 2.095                                    | 2.582         | 0.92            | 1.420    | 948       | 691     | 0.49   |
| Deschenes (LN63)                | 5.211    | 4.099         | 4.096  | 0.79    | 4.041    | 3.185        | 3.542        | 0.88            | 2.959    | 2.457                                    | 2.760         | 0.93            | 0.1.1    | 914       | 554     | 0.47   |
|                                 | 3.546    | 3.203         | 2.933  | 0.83    | 3.146    | 3.012        | 2.856        | 0.91            | 2.425    | 2.357                                    | 2.268         | 0.94            | 400      | 191       | 77      | 0.19   |
| 265                             | 13 577   | 13 900        | 14.611 | 1.08    | 11,885   | 12, 308      | 12.607       | 106             | 8 370    | 9 518                                    | 0.004         | 118             | 6691     | 1592      | 2 004   | 118    |
|                                 | 2.698    | 2.167         | 2.140  | 6.70    | 2.668    | 2.167        | 2.140        | 080             | 1.953    | 1.782                                    | 1.726         | 0.88            | 30       |           | 0       | 000    |
| Montee Paiement (LN67)          | 9.171    | 8.587         | 8.530  | 0.93    | 8081     | 04.7.7       | 7,414        | 0.92            | 5.953    | 5.994                                    | 5.843         | 0.98            | 06071    | 817       | 1.116   | 1.02   |
|                                 | 4,834    | 4,465         | 4,992  | 1.03    | 4,514    | 4,209        | 4,484        | 0.99            | 3,371    | 3,152                                    | 3,564         | 1.06            | 320      | 256       | 508     | 1.59   |
|                                 |          |               |        |         |          | INBOUND      |              |                 |          |                                          |               |                 |          |           |         |        |
|                                 |          | TOTAL PERSONS | RSONS  |         |          | AU7          | AUTO PERSONS | SN              |          |                                          | AUTO VEHICLES | HICLES          |          |           | TRANSIT |        |
| Screenline                      | Observed | Sirvey        | Model  | Model / | Observed | Survey       |              | Model   Model / | Observed | Survey                                   | Model         | Model   Model / | Observed | Survey    | Model   | Model  |
|                                 | Counts   | Assigned      | -      |         | Counts   | Assigned     |              | Counts          | Counts   | Assigned                                 | in the second | Counts          | Counts   | Assigned  | -       | Counts |
| Ottawa River (LN2.3.4)          | 9.212    | 6.643         | 6.374  | 0.69    | 7.344    | 5.141        | 5.686        | 0.77            | 5.596    | 4.376                                    | 4.436         | 0.79            | 1.868    | 1.502     | 889     | 0.37   |
| Rideau River (LN19, 20, 32, 33) | 22,151   | 19,740        | 20,424 | 0.92    | 19,662   | 17,639       | 18,361       | 0.93            | 14,774   | 14,655                                   | 14,312        | 0.97            | 2,489    | 2,101     | 2,063   | 0.83   |
| CPR (LN27, 28, 29)              | 12,467   | 12,521        | 12,446 | 1.00    | 10,422   | 10,905       | 11,188       | 1.07            | 8,294    | 610'6                                    | 8,753         | 1.06            | 2.045    | 1.616     | 1,258   | 0.62   |
| Otawa Central Area (LN35-38)    | 7,398    | 6,662         | 6,632  | 0.90    | 4,887    | 4,558        | 5,436        | 1.11            | 3,570    | 3,771                                    | 4,210         | 1.18            | 2,511    | 2,104     | 1,196   | 0.48   |
| Rideau Canal (LN34, 39)         | 20,575   | 17,758        | 19,471 | 0.95    | 15,562   | 14,075       | 16,284       | 1.05            | 11,893   | 11,841                                   | 12,589        | 1.06            | 5,013    | 3,683     | 3,187   | 0.64   |
| Pallow field (LN9, 43)          | 3,312    | 2,036         | 2,801  | 0.85    | 3,242    | 1,971        | 2,724        | 0.84            | 2,448    | 1,640                                    | 2,124         | 0.87            | 70       | 65        | 77      | 1.10   |
| Sagleson (LN10)                 | 4,803    | 5,074         | 4,720  | 0.98    | 4,643    | 4,902        | 4,424        | 0.95            | 3,834    | 4,166                                    | 3,511         | 0.92            | 160      | 172       | 296     | 1.85   |
| Green Creek (LNI6)              | 3,805    | 3,501         | 4,188  | 1.10    | 3,551    | 3,296        | 3,905        | 1.10            | 2,609    | 2,567                                    | 3,048         | 1.17            | 254      | 205       | 283     | 1.1.1  |
| DR West / Acres (LN11,12)       | 13,180   | 10,477        | 10,460 | 0.79    | 12,510   | 9,914        | 9.923        | 0.79            | 9,830    | 8,478                                    | 7,780         | 0.79            | 670      | 563       | 537     | 0.80   |
| CNR East (LNI3,14,15)           | 8,442    | 6.235         | 6,207  | 0.74    | 8.016    | 6,082        | 5.949        | 0.74            | 6.570    | 5.076                                    | 4,668         | 0.71            | 426      | 153       | 258     | 0.61   |
| Western Parkway (LN24, 25)      | 11.548   | 10,455        | 9,591  | 0.83    | 10.596   | 9,831        | 9,004        | 0.85            | 8,246    | 8,199                                    | 7,054         | 0.86            | 952      | 624       |         | 0.62   |
| citrim / Ramsavville (LN7,8)    | 3.028    | 1.924         | 1.866  | 0.62    | 3.017    | 1.907        | 1.845        | 0.61            | 2,180    | 1.609                                    | 1,483         | 0.68            | Ξ        | 17        | 21      | 1.91   |
| Je de Hull (LN60)               | 7,236    | 6,781         | 8,391  | 1.16    | 6,486    | 6,298        | 7,936        | 1.22            | 5,166    | 5,211                                    | 6,162         | 1.19            | 750      | 483       | 455     | 0.61   |
| Boul. Gamelin (LN 61)           | 7,580    | 4,095         | 4,436  | 0.59    | 6,800    | 3,695        | 4,184        | 0.62            | 5,310    | 3,068                                    | 3,251         | 0.61            | 780      | 400       | 252     | 0.32   |
| Ch. de la Montagne (LN62)       | 2,280    | 1,175         | 1,770  | 0.78    | 1,960    | 1,113        | 1,704        | 0.87            | 1,537    | 842                                      | 1,332         | 0.87            | 320      | 62        | 66      | 0.21   |
| Deschenes (LN63)                | 1.758    | 1.115         | 1,591  | 0.91    | 1,732    | 1,096        | 1,527        | 0.88            | 1,343    | 879                                      | 1.190         | 0.89            | 26       | 19        | 64      | 2.46   |
|                                 | 986      | 576           | 1,084  | 1.10    | £        | 551          | 1,046        | 1.11            | 742      | 492                                      | 819           | 1.10            | 45       | 25        | 38      | 0.84   |
|                                 | 4,727    | 3,265         | 4,895  | 1.04    | 4,547    | 3,072        | 4,702        | 1.03            | 3,456    | 2,554                                    | 3,658         | 1.06            | 180      | 193       |         | 1.07   |
|                                 | 1,239    | 908           | 1,006  | 0.81    | 1,239    | 908          | 1,006        | 0.81            | 870      | 740                                      | 197           | 0.92            | 0        | •         | 0       |        |
| Montee Paiement (LN67)          | 5.311    | 2.404         | 2 246  | 0.42    | 5236     | 2.343        | 2 13.4       | 0.41            | 2 777    | 1 913                                    | 1.6.41        | 0.42            | 36       |           | -       | 1.10   |
|                                 |          | 5             |        | 76.0    | 00000    | 20012        | 2,11.4       |                 | 10000    | CT C | 14/0/1        | 2000            | 2        | 0         | 711     | 1.49   |

# 6. EMME2 USER GUIDE FOR TRANS MODEL

# 6.1 Overview

This chapter describes the methodology used to operate the TRANS Model within the EMME2 environment. An overview is presented on how the model may be applied within EMME2 for various travel demand applications. This is followed by a description of the EMME2 operating system, the auto and transit networks, matrices, macros used to simulate travel demand and a description of annotation files developed during this model development study. Examples follow on how the model can be applied to examine a wide range of travel demand applications within EMME2.

A detailed explanation of the EMME2 software can be found in the "EMME/2 *User's Manual*", prepared by INRO Consultants Inc. The model development work was done using Version 8. All the reports presented in this document are based on Version 8. The macros were tested in Version 9 and were found to work without error. However, based on information provided by INRO, minor differences in the modeling results will occur due to minor variations in the auto and transit assignment algorithms.

The 1995 TRANS model, databases, macros and EMME/2 software reside with the Data Modeling and Forecasting Group, Planning Department, Region of Ottawa-Carleton. TRANS staff are responsible for access to the modeling environment. A copy of a CD rom containing the EMME2 databank and macros are available to TRANS member agencies.

# 6.2 Environment for the TRANS Model

The EMME2 operating system includes the EMME2 databank consisting of network scenarios and matrices. Outside the EMME2 databank a number of EMME2 macros have been developed which can be used to run the TRANS model as well as annotation (i.e. street names, graphics of zone boundaries etc.) files.

# 6.2.1 Establishing Scenarios and Scenario Management

Scenarios refer to establishing unique road and transit networks which include related attributes such as turn penalties and transit route descriptions as a basis for analysis. Exhibit 6.1contains a listing of pre-defined network scenarios in the EMME2 databank for use by TRANS Agencies.

| Scenario | Description      |                      | User Link Data         |                 |
|----------|------------------|----------------------|------------------------|-----------------|
| Number   |                  | UL1                  | UL2                    | UL3             |
| 3        | 1995 Network     | Screenline Tags      | Lane Capacity (veh/hr) | Improvement Tag |
| 4        | 2021 Network     | Screenline Tags      | Lane Capacity (veh/hr) | Improvement Tag |
| 5        | Ultimate Network | Posted Speed (Km/Hr) | Lane Capacity (veh/hr) | Improvement Tag |
| 100      | UL Databank 1    | Screenline Tags      | Link Traffic Zone Tag  |                 |

#### Exhibit 6.1 - EMME2 Scenario Descriptions

Refer to Chapter 2 for a detailed description of the background assumptions for each network and how they were developed. Each network contains specific "User Link Data" used by the macros (SC5TO95.MAC and SC5TO21.MAC) to create the 1995 and 2021 networks respectively. Appendix 1 contains a listing of the network improvements associated with the coded improvement tags in UL3. A new link traffic zone tag was developed to code which traffic zone a link is located. This tag could be useful for reporting total traffic volumes by geographic area.

Scenarios 3, 4, 5 and 100 represent the base year networks to be used by all TRANS Agencies and therefore should not be modified. The user is therefore encouraged to make a copy of these networks and then carry out the analysis on the copy. The databank as defined can accommodate an additional 16 scenarios. When this number is reached, you can either delete some of the new scenarios no longer needed or make a copy of the EMME2 databank and then delete some scenarios to allow for the development of additional scenarios.

# 6.2.2 Matrices and Matrices Management

Matrices are used to store data within EMME2. The data can take many forms as land use data, travel demand data as well as travel times and trip distances. Four matrix types are available:

- *ms*, refers to a scalar of dimension 1 by 1. The scalar may contain a factor, or the sum of another matrix. A typical example is the total number of trips in an *mf* matrix.
- mo, refers to a column vector of dimension n by 1. This array represents the sum of all origins, or the matrix row sum. A typical example is an array of trips for a specific purpose, originating in each zone.
- *md*, refers to a row vector of dimension 1 by *n*. This array represents the sum of all destinations, or the matrix column sum. A typical example is an array of trips for a specific purpose, destined to each zone.
- *mf*, refers to a square matrix of dimension *n* by *n*. The dimension *n* refers to the number of zones in the model. Typical examples are origin-destination trip tables.

Exhibit 6.2 to Exhibit 6.4 lists the matrices used in the TRANS model, including the matrix number, a flag indicated with a "\r" if it is protected from modification or deletion, the matrix description, how the matrix is used and the macro where the matrix is primarily used. Several matrices are required as input for the modeling process and do not change (the matrices that are flagged for protection- they are not modified or deleted ). Other matrices are generated as output during model runs. The following terms describe how the matrix is used in each macro.

- Input -- matrix is input but is unchanged by the macro.
- Output matrix is created and output by the macro.
- Information matrix exists as information source.

Also reported in the exhibits is the specific sub-model (i.e. trip generation, distribution...) where the matrix is used. The remaining matrices shown at the bottom of the Exhibits are not used in a model run and therefore can be used to store additional information.

Matrices can be batched in and out of the databank as required. You also have the option of coping the databank and then deleting matrices to allow for the addition of new matrices.

#### Exhibit 6.2 - MS Matrix Description

| Matrix ID    | Flag   | Description                                  | How Used          | Macros Used   |
|--------------|--------|----------------------------------------------|-------------------|---------------|
| ms02         | 1 10.9 | Sum mo2 Dwelling Units                       | All MS matrices   |               |
| ms03         |        | Sum mo3 Total Population                     | are used for      | are generated |
| ms05         |        | Sum mo5 Total Employment                     | information: they |               |
| ms07         |        | Sum mo7 Other Employment                     |                   | sum.odh.      |
| ms08         |        | Sum mo8 Sec. School Enrollment               | of key MF         | Sum Sum       |
| ms09         |        | Sum mo9 Post Sec. sch. Enrollment            | matrices.         |               |
| ms10         |        | Sum mo10 GLA                                 | matheoo.          |               |
| ms10         |        | Sum mo11Popul 5-14                           |                   |               |
| ms12         |        | Sum mo11Popul 10-14                          |                   |               |
| ms12         |        | Sum mo13 Popul. 15-24                        |                   |               |
| ms14         |        | Sum mo14 Popul 25-44                         |                   |               |
| ms15         |        | Sum mo15 Popul 45-64                         |                   |               |
| ms25         |        | Sum of ms25, work trips- gravity             |                   |               |
| ms26         |        | Sum of ms26, secondary school trips, Gravity |                   |               |
| ms27         |        | Sum of ms27, post sec. school trips, Gravity |                   |               |
| ms28         |        | Sum of ms28, other to home, Gravity          |                   |               |
| ms29         |        | Sum of ms29, NHB, Gravity                    |                   |               |
| ms30         |        | Sum mf30 Leave Home Trips Gravity            |                   |               |
| ms31         |        | Sum mf31 Auto Person Work Trips UTA          |                   |               |
| ms32         |        | Sum mf32 Auto Vehicle Work Trips UTA         |                   |               |
| ms33         |        | Sum mf33 Transit Work Trips UTA              |                   |               |
| ms35         |        | Work-Home Attn / Prodn                       |                   |               |
| ms36         |        | Sum mf36 Auto Person Sch. Trips UTA          |                   |               |
| ms37         |        | Sum mf37 Auto Vehicle Sch. Trips UTA         |                   |               |
| ms38         |        | Sum mf38 Transit Sch. Trips UTA              |                   |               |
| ms39         |        | NHB Attn / Prodn                             |                   |               |
| ms40         |        | Leave-Home Prodn / Attn                      |                   |               |
| ms40<br>ms41 |        | Sum mf41 Auto Person Other Trips UTA         |                   |               |
| ms42         |        | Sum mf42 Auto Veh. Other Trips UTA           |                   |               |
| ms43         |        | Sum mf43 Transit Other Trips UTA             |                   |               |
| ms46         |        | Sum mf46 Auto Per. Work Trips non-UTA        |                   |               |
| ms40         |        | Sum mf47 Auto Veh. Work trips Non-UTA        |                   |               |
| ms48         |        | Sum mf48 Auto Per. Sch. Trips Non-UTA        |                   |               |
| ms40<br>ms49 |        | Sum mf49 Auto Veh. Sch. Trips Non-UTA        |                   |               |
| ms50         |        | Sum mf50 Auto Per. Other Trips. Non-UTA      |                   |               |
| ms50         |        | Sum mf51 Auto Veh. Other Trip Non-UTA        |                   |               |
| ms52         |        | Sum mf52 Auto Person Trips Intrazonal        |                   |               |
| ms52<br>ms53 |        | Sum mf53 Auto Veh. Trips Intrazonal          |                   |               |
| ms54         |        | Sum mf54 Transit Trips Intrazonal            |                   |               |
| ms55         |        | Sum mf55 Ext. Vehicle Trips                  |                   |               |
| ms56         |        | Sum mf56 External Auto Person Trips          |                   |               |
| ms56<br>ms57 |        |                                              |                   |               |
|              |        | Sum mf57 Total Auto Person Trips             |                   |               |
| ms58         |        | Sum mf58 Total Auro Vehicle Trips            |                   |               |
| ms59         |        | Sum mf59 Total Transit Trips                 |                   |               |
| ms60-99      |        | Free to use as desired.                      |                   |               |

| Exhibit 6.3 mo and md M | atrix Description |
|-------------------------|-------------------|
|-------------------------|-------------------|

| Matrix ID    | Flag | Description                                     | How Used                   | Macro Used                 |
|--------------|------|-------------------------------------------------|----------------------------|----------------------------|
| mo01 & md01  | /r   | 1995 parking cost                               | Modal Split (Logit models) | ms_all95.mac, ms_all21.mac |
| mo02 & md02  | /r   | 1995 od dwelling units                          | Input -Land Use            | tripgen2.mac               |
| mo03 & md03  | /r   | 1995 od total population                        | Input -Land Use            | tripgen2.mac               |
| mo05 & md05  | /r   | 1995 total employment                           | Input -Land Use            | tripgen2.mac               |
| mo07 & md07  | /r   | 1995 Other Employment                           | Input -Land Use            | tripgen2.mac               |
| mo08 & md08  | /r   | 1995 Secondary School Enrollment                | Input -Land Use            | tripgen2.mac               |
| mo09 & md09  | /r   | 1995 Post-Secondary School Enrollment           | Input -Land Use            | tripgen2.mac               |
| mo10 & md10  | /r   | 1995 Gross Leasable Area                        | Input -Land Use            | tripgen2.mac               |
| mo11 & md11  | /r   | 1995 Population 5 - 14 Years                    | Input -Land Use            | tripgen2.mac               |
| mo12 & md12  | /r   | 1995 Population 10 - 14 Years                   | Input -Land Use            | tripgen2.mac               |
| mo13 & md13  | /r   | 1995 Population 15 - 24 Years                   | Input -Land Use            | tripgen2.mac               |
| mo14 & md14  | /r   | 1995 Population 25 - 44 Years                   | Input -Land Use            | tripgen2.mac               |
| mo15 & md15  | /r   | 1995 Population 45 - 64 Years                   | Input -Land Use            | tripgen2.mac               |
| mo20 & md20  | /r   | 1995 (MO)del calibration res Ont=0, PQ=1        | Input -Land Use            | tripgen2.mac               |
| mo25 & md25  | /r   | 1995 OD PMPKHR work (MO) Prod., (MD) Att.       | Information -95 OD Survey  |                            |
| mo26 & md26  | /r   | 1995 OD PMPKHR sec school (MO) Prod., (MD) Att. | Information -95 OD Survey  |                            |
| mo27 & md27  | /r   | 1995 OD PMPKHR post sec. (MO) Prod., (MD) Att.  | Information -95 OD Survey  |                            |
| mo28 & md28  | /r   | 1995 OD PMPKHR other-home (MO) Prod., (MD) Att. | Information -95 OD Survey  |                            |
| mo29 & md29  | /r   | 1995 OD PMPKHR nhb (MO) Prod., (MD) Att.        | Information -95 OD Survey  |                            |
| mo30 & md30  | /r   | 1995 OD PMPKHR leave home (MO) Prod., (MD) Att. | Information -95 OD Survey  |                            |
| mo35 & md35  |      | 1995 - Work-Home - (MO) Prod., (MD) Att.        | Output- Trip Generation    | tgwork3.odh                |
| mo36 & md36  |      | 1995 - P+SSchl-Home - (MO) Prod., (MD) Att.     | Output- Trip Generation    | tgpsschl.odh               |
| mo37 & md37  |      | 1995 - PostSec-Home - (MO) Prod., (MD) Att.     | Output- Trip Generation    | tgpsec.odh                 |
| mo38 & md38  |      | 1995 - Other-Home - (MO) Prod., (MD) Att.       | Output- Trip Generation    | tgother.odh                |
| mo39 & md39  |      | 1995 - NHB - (MO) Prod., (MD) Att.              | Output- Trip Generation    | tgnhb.odh                  |
| mo40 & md40  |      | 1995 - Leave-Home - (MO) Prod., (MD) Att.       | Output- Trip Generation    | tgleave.odh                |
| mo45 & md45  | /r   | 1995 - work % hh with 0 veh/hh logit            | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo46 & md46  | /r   | 1995 - work % hh with 1 veh/hh logit            | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo47 & md47  | /r   | 1995 - work % hh with >=2 veh/hh logit          | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo48 & md48  | /r   | 1995 - sch % hh with 0 veh/hh logit             | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo49 & md49  | /r   | 1995 - sch % hh with 1 veh/hh logit             | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo50 & md50  | /r   | 1995 - sch % hh with >=2 veh/hh logit           | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo55 & md55  | /r   | intrazonal mode split -auto person              | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo56 & md56  | /r   | intrazonal mode split -transit                  | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo57 & md57  | /r   | intrazonal car occupancy                        | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo62 & md62  | /r   | intrazonal auto time                            | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo63 & md63  | /r   | transit intrazonal time                         | Input- Mode Split          | ms_all95.mac, ms_all21.mac |
| mo64 to mo99 |      | Free to use as desired                          |                            |                            |
| md64-md99    |      | Free to use as desired                          |                            |                            |

Note: "/r" flag indiscates that the matrix is protected against modification and deletion. It is possible to change this protection status using module 3.12.

| Exhibit | 6.4 - | mf | Matrix | Description |
|---------|-------|----|--------|-------------|
|---------|-------|----|--------|-------------|

| Matrix ID      | Flag       | Description                                    | How Used                   | Macros Used                  |
|----------------|------------|------------------------------------------------|----------------------------|------------------------------|
| mf01           | /r         | od intrazonal a_t, t_t,a_d,t_d                 | See note 1                 | ms_all95.mac, ms_all21.mac   |
| mf02           |            | auto time                                      | Output- Auto Assignment    | assign.mac                   |
| mf03           |            | auto distance simulated                        | Output- Auto Assignment    | assign.mac                   |
| mf05           |            | transit ivtt                                   | Output- Transit Assignment | assign.mac                   |
| mf06           |            | transit aux time                               | Output- Transit Assignment | assign.mac                   |
| mf07           |            | Revised transit aux time                       | Calculated                 | assign.mac                   |
| mf08           |            | transit total wait time                        | Output- Transit Assignment | assign.mac                   |
| mf09           |            | first wait time                                | Output- Transit Assignment | assign.mac                   |
| mf10           |            | transit boarding time                          | Output- Transit Assignment | assign.mac                   |
| mf11           |            | Total number of transfers                      | Output- Transit Assignment | assign.mac                   |
| mf12           |            | transit trip length                            | Output- Transit Assignment | assign.mac                   |
| mf13           |            | transit distance revised                       | Output- Transit Assignment | assign.mac                   |
| mf14           |            | Transit total travel time (corrected for aux.) | Calculated                 | assign.mac                   |
| mf15           |            | PMPKHR Auto/Transit Time Ratio                 | Calculated                 | ms all95.mac, ms all21.mac   |
| mf16           | /r         | Internal Zones = 1                             | Input                      | ms_all95.mac, ms_all21.mac   |
| mf17           | /r         | Unit matrix, all cells = $1$                   | Input                      | ms_all95.mac, ms_all21.mac   |
| mf18           | /r         | PMPKHR Transit Fare                            | Input                      | ms_all95.mac, ms_all21.mac   |
| mf19           | <i>,</i> . | PMPKHR Work-Trip Gen Impedance                 | Output - Mode Split        | All trip distribution macros |
| mf20           |            | PMPKHR Other Trips mode split factors          | Output - Trip Distribution | ms all95.mac, ms all21.mac   |
| mf25           |            | PMPKHR Work Trip - Gravity (Sim)               | Output - Trip Distribution | tgwork3.odh                  |
| mf26           |            | PMPKHR Sec. School- Gravity (Sim)              | Output - Trip Distribution | tgpsschl.odh                 |
| mf27           |            | PMPKHR Post Sec. School-(Sim)                  | Output - Trip Distribution | tgpsec.odh                   |
| mf28           |            | PMPKHR Other-Home- Gravity (Sim)               | Output - Trip Distribution | tgother.odh                  |
| mf29           |            | PMPKHR NHB (Sim)                               | Output - Trip Distribution | tgnhb.odh                    |
| mf30           |            | PMPKHR Leave-Home - Gravity (Sim)              | Output - Trip Distribution | tgleave.odh                  |
| mf31           |            | PMPKHR Auto Person Work Trips UTA              | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf32           |            | PMPKHR Auto Vehicle Work Trips UTA             | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf33           |            | PMPKHR Transit Work Trips UTA                  | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf36           |            | PMPKHR Auto Person School trips UTA            | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf37           |            | PMPKHR Auto Vehicle School Trips UTA           | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf38           |            | PMPKHR Transit School Trips UTA                | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf41           |            | PMPKHR Auto Persons Other Trips UTA            | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf42           |            | PMPKHR Auto Vehicles Other Trips UTA           | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf43           |            | PMPKHR Transit Other Trips UTA                 | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf46           |            | PMPKHR Auto Person Work Trips Non-UTA          | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf47           |            | PMPKHR Auto Veh. Work Trips Non-UTA            | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf48           |            | PMPKHR Auto Person Sch. Trips NON-UTA          | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf49           |            | PMPKHR Auto veh. School Trips NON-UTA          | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf50           |            | PMPKHR Auto Person Other Trips NON-UTA         | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf51           |            | PMPKHR Auto Vehicle Other Trip Non-UTA         | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| mf52           |            | PMPKHR Auto Person Trips Intrazonal            | Input - Mode Split         | ms_all95.mac, ms_all21.mac   |
| mf53           |            | PMPKHR Auto Vehicle Trips- Intrazonal          | Input - Mode Split         | ms_all95.mac, ms_all21.mac   |
| mf54           |            | PMPKHR Auto Venicle Trips-Intrazonal           | Input - Mode Split         | ms_all95.mac, ms_all21.mac   |
| mf55           | /r         | 1995 external auto vehicle trip matix          | Input - Mode Spirt         | ms_all95.mac, ms_all21.mac   |
| mf56           | /r         | 1993 External auto vehicle trip matrix         | Input                      | ext93to21.mac                |
| mf57           | /1         | PMPKHR Auto Person Total Trips                 | Output - Mode Split        | ms all95.mac, ms all21.mac   |
| mf58           |            |                                                | Output - Mode Split        |                              |
| mf58<br>mf59   |            | PMPKHR Auto Vehicles Total Trips               |                            | ms_all95.mac, ms_all21.mac   |
| mf60 to mf99   |            | PMPKHR Transit Total Trips                     | Output - Mode Split        | ms_all95.mac, ms_all21.mac   |
| 11100 10 11199 |            | free to use as desired                         | <u> </u>                   |                              |

Note 1 :

Intrazonal travel times and distances by mode as obtained from OD survey with the aid of Microstation. They are stored in mo62,mo63,md62,md63 (ie: a\_t is auto time)

#### 6.2.3 Annotation and Demarcation Files

The EMME2 software uses network plots to present the results of a given model run. The use of annotations such as street names and river boundaries assist the user to identify road facilities with ease. Annotation files developed for TRANS Agencies are illustrated in Exhibit 6.5.

Exhibit 6.5 - Annotation and demarcation Files

| File Name | Description      |
|-----------|------------------|
| annota    | Street names     |
| annotb    | River boundaries |
| annotd    | Zone boundaries  |
| annote    | Zone numbers     |

The user can activate each of the annotation or demarcation files by typing in the file name followed by pushing the return key after the EMME2 plot is brought up on the screen. The exception to this is in module 2.12 where you must type in g and then the file name. See the EMME2 manual for further details on operating these type of files.

#### 6.2.4 Macros

A number of macros have been established to assist the user in carrying out EMME2 model applications. Exhibit 6.6 illustrates the macros available for use. The Exhibit lists the macro name, description and applicable user prompts.

The user should keep in mind that many possible approaches can be used to obtain the desired results of a modeling exercise. The macros contained in Exhibit 6.6 can be used to perform a wide range of modeling activities by editing the macros as required. It is strongly recommended that if the macro is altered, the macro name be altered and a description written within the macro describing changes to the original macro. It is also recommended that the user keep a record of which macros are run, as well as the date and time it was run. Monitoring the output of model runs can be done by reviewing output files and the values of the MS matrices containing the sum of key matrices. As well, the error file generated by emme2 in the working directory can also be checked.

Miscellaneous macros include those described in Chapter 2 to develop the year 1995 and 2021 networks from the "ultimate" network. Another macro used frequently is ASSIGNSM.MAC which creates two output files that are input into the Excel macro "run screenline macro" in the file SNLINE11.XLS. The user must run macro ASSIGNSM.MAC to obtain auto and transit link data text files. These text files must be modified in DOS to remove the first 14 lines of the EMME2 auto and transit output files before running SNLINE11.XLS.

#### Macro User Prompts

Most macros require input information following the macro name. These inputs are used to assist the user in defining information about their model run which are the primary means of documenting model results so that the user can identify and analyze model output throughout the analysis. For example, in the trip generation model, the user is requested to input %1% and %2%. The 1<sup>st</sup> input must not exceed 6 spaces- usually the year of the simulation is placed here. The 2<sup>nd</sup> input must not exceed 8 spaces and is used to provide a further description of the model run. For example, you could use PM\_LUSE3 indicating a PM model run using land use option 3.

#### Exhibit 6.6- Macro Description

| Model<br>Process     | Macro Name                    | Substitional<br>Parameters | Parameter<br>Description                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------|-------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trip<br>Generation   | tripgen2.mac                  | %1% %2%                    | 1= Matrix Name (1 to 6<br>characters ie: 1995)<br>2=description of model<br>run in 1-8 characters<br>ex: PMPKHR | This is the main macro that runs the trip generation model.<br>The user must supply %1% and %2% when running the macro.<br>ie: tripgen2.odh 1995 PMPKHR<br>This macro calls each of the submacros listed below:<br>tgwork3n.odh %1% %2% is the work trip generation model<br>tgpssch.odh %1% %2% is the work trip generation model<br>tgpsec.odh %1% %2% is the post secondary school trip generation model<br>tgother.odh %1% %2% is the other home based trip generation model.<br>tgleave.odh %1% %2% is the leave home trip generation model.<br>tgnhd.odh %1% %2% is the non-home based trip generation model.<br>Used to adjust 2021 Other to Home and Non-Home based trips<br>which were under-reported in 1995 compared to 1986- see text. |
| Trip<br>Distribution | tripdist.mac                  | %1% %2%                    | See TRIPGEN2.MAC parameter description.                                                                         | This is the main macro that runs the trip distribution model.<br>The user must supply %1% and %2% when running the macro.<br>ie: tripdist.mac 1995 PMPKHR. This macro calls each of the<br>submacros listed below:<br>td_grwk1.odh %1% %2% is the work trip distribution model<br>tdsch1.odh %1% %2% is the secondary and post secondary<br>school trip distribution model.<br>tdother1.odh %1% %2% is the other home based trip distribution model.<br>tdleave1.odh %1% %2% is the leave home trip distribution model.<br>tdnhb1.odh %1% %2% is the non-home based trip distribution model.                                                                                                                                                       |
| Mode Split           | ms_all95.mac<br>ma_allL21.mac | %1% %2%                    | See TRIPGEN2.MAC parameter description.                                                                         | These macros perform the entire modal split process. The user must<br>supply %1% %2% when running the macro. ie ms_all7 mac 1995 PMPKHR<br>sum.odh - Macro sums key matrices and places sums in appropriate ms matrix<br>report file called reports.sum. ms_all95 is for 1995 simulation, while<br>ms_all21.mac is for 2021 simulation.                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | sum.odh                       | %1%                        | 1 = scenario number you want the<br>summary data from.                                                          | sum.odh - Macro sums key matrices and places sums in appropriate ms matrix report file called reports.sum. (run in the modal split macro by default).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Note:

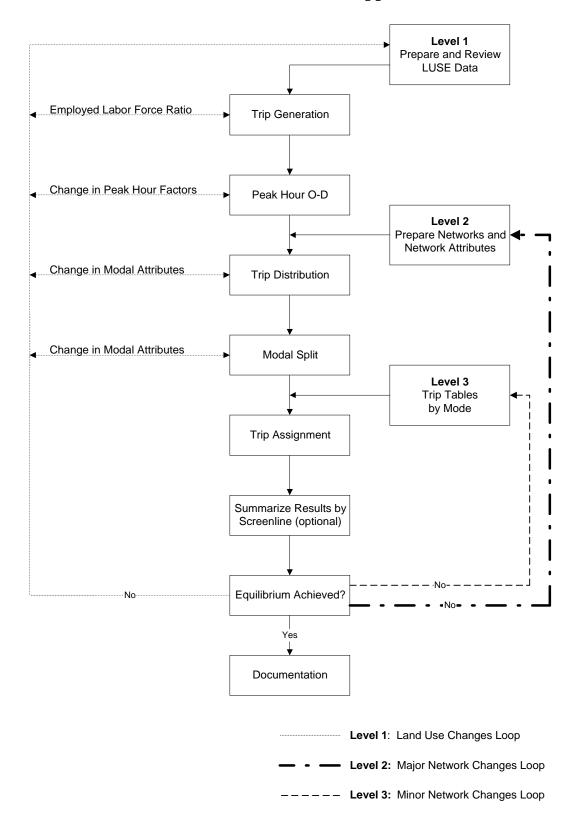
For details on how to use the macro parameters, go into the DOS editor and read the macro contents.

#### Exhibit 6.6- Macro Description, continued

| Model<br>Process                | Macro Name                                  | Substitional<br>Parameters | Parameter<br>Description                                                                                                                                                                                                                                                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------|---------------------------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assignment                      | assign.mac                                  | %1% - %8%                  | 1 = matrix ID, max 6 characters<br>2 = run description, max 8 characters<br>3 = auto vehicle matrix<br>4 = auto person matrix<br>5 = transit person matrix<br>6 = max. number of assig. iterations<br>7 = Assig. stop criteria, relative gap<br>8 = Assig. stop criteria, normal gap | This macro performs the auto and transit assignment. The user must supply<br>all the parameters as indicated.<br>This maco stores auto and transit travel time and cost matrices.<br>For example,cassign.mac 1995 luse2 58 57 59 40.3.3 runs the assignment<br>by saving 1995 as the matrix id, luse2 as the first part of the matrix description,<br>58 is the auto vehicle matrix, 57 is the auto person matrix, 59 is the transit matrix,<br>40 is the number of auto assignment iterations, .3 and .3 are assignment closing<br>criteria. |
|                                 | level3.mac                                  | %1% - %8%                  | see Assignment, assign.mac for<br>parameter descriptions.                                                                                                                                                                                                                            | Macro to run a simple auto and transit assignment without altering or<br>saving auto and transit time and distance matrices.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                 | assignsm.mac                                | %1% %2%                    | <ol> <li>three letters or numbers description<br/>used as a DOS file extension.</li> <li>scenario number you want the<br/>summary data from.</li> </ol>                                                                                                                              | Macro creates two batchout files, one for auto and another for transit. These files are used as input into the Excel file snline11.xls. The batchout files must be modified in DOS to remove the lines above the EMME2 line containing :"from to length modes link"                                                                                                                                                                                                                                                                           |
| Network<br>Macros               | sc5to95.mac<br>sc5to21.mac<br>snline11.xls  |                            |                                                                                                                                                                                                                                                                                      | Creates the 1995 base network from the ultimate network<br>Creates the 2021 base network from the ultimate network<br>Use Excel macro "run screenline macro" to summarize screenline volumes.                                                                                                                                                                                                                                                                                                                                                 |
| Miscellaneous<br>Macros         | 93to95ex.mac<br>93to21ex.mac<br>default.mac |                            |                                                                                                                                                                                                                                                                                      | Developes the 1995 external trip table from the 1993 external travel demand matrix.<br>Developes the 2021 external trip table from the 1993 external travel demand matrix.<br>Sets default values of emme2 modules to provide consistant results beteen<br>databanks used by TRANS Agencies.                                                                                                                                                                                                                                                  |
| Model<br>Applications<br>LEVEL1 | level195.mac<br>level121.mac                | %1% - %8%                  | see Assignment, assign.mac for<br>parameter descriptions.                                                                                                                                                                                                                            | Macro for land use changes. Model run from trip generation to assignment, 5 cycles.<br>level195.mac is for 1995 simulation, level121.mac is for 2021 simulation.                                                                                                                                                                                                                                                                                                                                                                              |
| LEVEL2                          | level295.mac<br>level221.mac                | %1% - %8%                  | see Assignment, assign.mac for<br>parameter descriptions.                                                                                                                                                                                                                            | Major network changes. Model run from trip distribution to assignment, 5 cycles.<br>level295.mac is for 1995 simulation, level221.mac is for 2021 simulation.                                                                                                                                                                                                                                                                                                                                                                                 |
| LEVEL3                          | level3.mac                                  | %1% - %8%                  | see Assignment, level3.mac for<br>parameter descriptions.                                                                                                                                                                                                                            | Auto and Transit assignment macro for minor network changes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Note:

For details on how to use the macro parameters, go into the DOS editor and read the macro contents.


# 6.3 Overview of Using the TRANS Model Within EMME2

The TRANS model is a traditional 4 step travel demand model utilizing trip generation, trip distribution, mode split and trip assignment models. The documentation contained in the previous chapters outlines the characteristics of these four sub-models. A brief description of the sub-models follows:

- *Trip generation*, in which trip productions and attractions at each zone are calculated as a function of the zone's land use characteristics. The results are expressed as an array of trips originating in each zone, and an array of trips destined to each zone.
- *Trip distribution*, in which the generated trips are distributed among the zones, as a function of zonal land use as well as road and transit network characteristics. The results are expressed as person-trip origin-destination matrices.
- *Modal split*, in which the total number of trips are apportioned by mode. Mode split is calculated for three modes: auto vehicle, auto person, and transit person. The results are expressed in terms of matrices for each mode.
- *Trip assignment*, in which the auto driver, auto person and transit person matrices are loaded onto specific road links and transit routes, respectively. The results are expressed in terms of directional auto volumes for each road link, and for transit by transit passengers by route, road link or transitway link.

The modeling application being used determines which of the four models you require running. Exhibit 6.7 provides a graphic illustrating the three modeling applications commonly used and described below:

- Land Use Changes This involves a complete model run to test the impact of land use options on the transportation system in a future year.
- Major Network Changes Tests the impact of major network alterations such as new bridge crossings over the Ottawa River, assuming that the land use remains unaltered but that trip distribution would alter significantly.
- Minor Network Changes Carries out a trip assignment to analyze the impact of minor network alterations such as road widening, road additions and transit route modifications. This involves assigning to the new network a base trip table obtained in either the Major Network Changes or Land Use Changes outlined above.



**Exhibit 6.7 TRANS Model Applications** 

# 6.4 Application of the TRANS Model within EMME2

The TRANS model is for the most part used to analyze travel demand in the three methods as outlined earlier in this chapter. Each of the methods will be described below.

#### 6.4.1 Full Model Runs -Land Use Changes (Use LEVEL195.MAC and LEVEL121.MAC)

To analyze a planning horizon as 1995 or 2021, a full model run is required since a new land use scenario is being investigated. This involves running the model beginning with the trip generation model and ending with the trip assignment model, see Exhibit 6.6 and 6.7. Different macros are required depending on the year being simulated since several components of the modal split macro differ between 1995 and 2021. To run a 1995 simulation, use LEVEL195.MAC, to run the 2021 simulation use LEVEL121.MAC. If a different horizon year is required, the user must modify the modal split sub-macro used in the appropriate LEVEL1 macro to account for the required UTA definition as well as alter land use and networks as necessary.

Special care is required to apply the model to forecast travel past 1995. As Exhibit 6.7 illustrates, the modeling process for a future year involves using several feedback loops depicted as dotted lines throughout the modeling process. They define points at which user input and judgement are required when operating the model. Chapter 7 outlines the assumptions used to simulate 2021 demand.

The user is required to input into the macro default values to control the auto assignment stopping criteria. For LEVEL1 simulations, past experience indicates that the following defaults be used.

Number of iterations:40Stopping criterion :relative gap0.3Stopping criterion:normal gap0.3

#### 6.4.2 Major Network Changes (Use macro LEVEL2.MAC)

Major network alterations are assumed to impact on trip distribution, modal split and assignment. In this case each of the three models will be run until an equilibrium is established, see Exhibit 6.7. The number of cycles required before equilibrium is reached is dependant on the severity of alterations to the network. Indicators you can use to determine that the model is stabilizing is the differences in the auto and transit demand matrices between the cycles as well as differences between the assigned volumes on the networks at screenlines. The macro is set up to cycle 5 times.

#### 6.4.3 Minor Network Changes (Use macro LEVEL3.MAC)

If you are interested in finding the impact of widening or building a new arterial road, then you could modify the road and transit network and then carry out a trip assignment. It is assumed that there is no need to run the modal split model in this case since the network changes will not

significantly alter modal choice. In this case you would run the macro LEVEL3.MAC. The macro carries out the auto assignment followed by the transit assignment. The transit assignment utilizes the auto delay on roadways within the transit volume delay functions, implying that the auto assignment must be done before the transit assignment. It is good practice to do both the auto and transit assignment even if only the auto assignment is required. EMME2 will inform you if any errors occur in the transit network which could have an impact on the modeling work at a later date. The criteria to control when the auto assignment stops should be considered depending on the model application. If you are primarily interested in traffic volumes, then the following macro parameters below can be used:

| Number of iterations: | 20               |
|-----------------------|------------------|
| Stopping criterion:   | relative gap 0.3 |
| Stopping criterion:   | normal gap 0.3   |

On the other hand, if you are interested in link travel times for an analysis where all the link travel times will be weighted later by the number of trips and then summed to give a single value of travel time for a particular network, then tighter limits could be placed on the auto assignment as follows:

| Number of iterations: | 100          |      |
|-----------------------|--------------|------|
| Stopping criterion:   | relative gap | 0.05 |
| Stopping criterion:   | normal gap   | 0.05 |

# 7. Forecasting Application

This section outlines the process used to apply the 1995 model to the 2021 horizon year. Forecasting travel demand past the year the model was calibrated requires certain precautions. The purpose of this section is to outline the steps taken to modify the model to forecast future travel demand so that the user can apply a similar approach to model other time horizons.

#### 7.1 Data Needs

#### 7.1.1 Trip Generation Demographics

In order to use the model to forecast travel demand, you require demographic data prepared at the zonal level for use in the trip generation equations. The 2021 demographics estimates were obtained from the RMOC and CUO Planning Departments and are compared to 1995 values in Exhibit 7.1. Note that the 45 to 64 age group more than doubles, the age group of 65 and over increases threefold, while the remaining age groups for persons ages between 5 and 44 remain in the same order of magnitude as those observed in 1995. The number of households increases 1.5 times while population increases at a lower amount of 1.39 times, indicating that the number of persons per household decreases with time. Total employment increases by 54 percent. The employment growth (54%) is higher than the population growth (34%) of persons in the age cohorts (15-64) who would likely hold the majority of jobs. The higher growth in employment figures suggest that more jobs could result if people hold more than one job, the proportion of women entering the workforce continues to increase or people aged over 64 continue to work in the future. Since the work trip generation equations do not include the 65+ age co-hort, it is possible that work trips may be under-estimated in the 2021 forecast. This topic is dealt with further in section 7.6.2.

| Variable                  | Variable name | 1995    | 2021      | Increase over 1995 |
|---------------------------|---------------|---------|-----------|--------------------|
| Total Population          | POP           | 960,400 | 1,331,000 | 1.39               |
| Popul. aged 5-14          | POP5-14       | 134,400 | 111,400   | 0.83               |
| Popul. aged 15-24         | POP15-24      | 126,500 | 136,100   | 1.08               |
| Popul. aged 25-44         | POP25-44      | 344,700 | 347,800   | 1.01               |
| Popul. aged 45-64         | POP45-64      | 195,100 | 407,000   | 2.09               |
| Popul. aged 65 and over   |               | 85,000  | 276,000   | 3.25               |
| Dwelling units            | DWEL          | 374,400 | 562,300   | 1.50               |
| Total Employment          | EMP           | 454,900 | 698,300   | 1.54               |
| School Enrollment         |               |         |           |                    |
| Primary & Secondary       | SCHS          | 117,100 | 78,300    | 0.67               |
| Post Secondary            | SCHP          | 78,400  | 58,500    | 0.75               |
| GLA (gross leasible floor | GLA           | 13,150  | 18,113    | 1.38               |
| area in 1000 sq ft.)      |               |         |           |                    |

Exhibit 7.1 - Demographics, 1995 and 2021

# 7.1.2 Modal Split Demographic

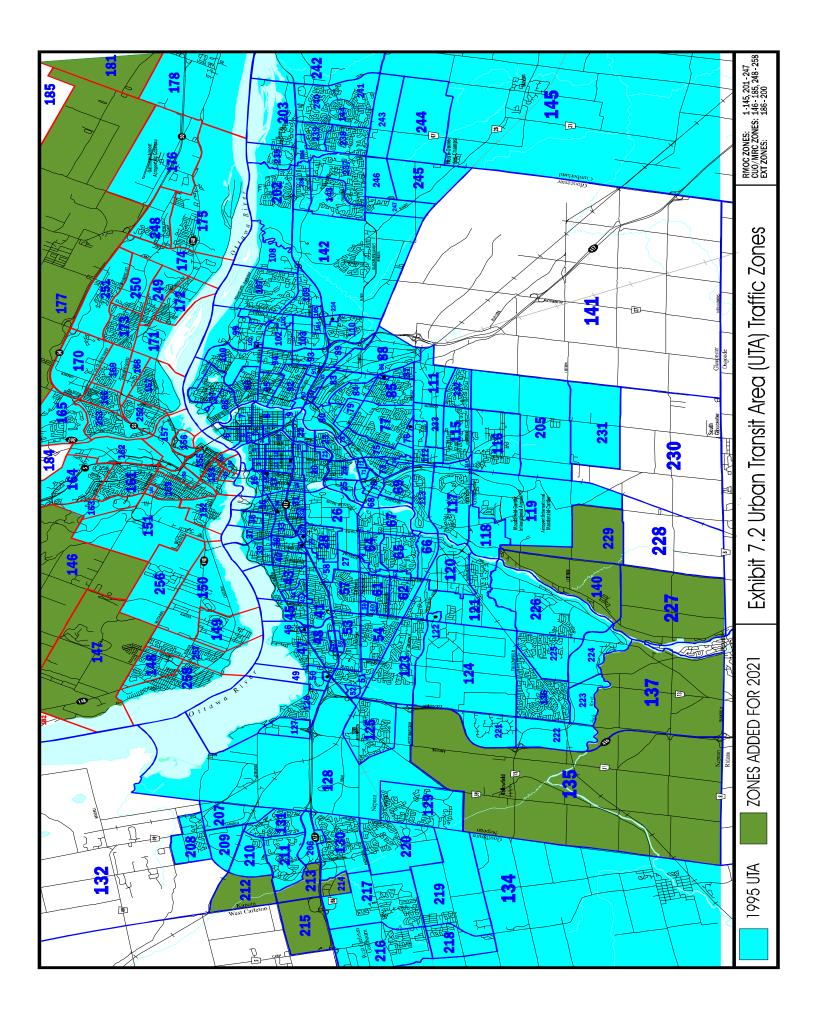
Number of vehicles per household is a demographic variable used in the modal split models. Separate estimates of this variable are required for both the work trip and school trip modal split models. This variable was not prepared by the Planning Departments and therefore another means was used to estimate this data. It was found that the most satisfactory estimate was obtained from logit models developed on a person level and aggregated to a zonal level, estimating the percentage of households in a traffic zone with 0, 1 or 2 or more vehicles per household. The model was developed using the 1995 OD Survey as the data source. Further details on the development of this model is provided in Appendix 2.

# 7.2 Networks and Attributes

The 2021 auto and transit networks were based on the work carried out in the Transportation Master Plans of the RMOC and CUO. Appendix 1 contains a listing of the road and transit improvements assumed in the networks for the year 2021.

# 7.3 UTA Definition

It was assumed that the area serviced by public transit would increase between 1995 and 2021. The additional zones obtaining transit service in 2021 compared to 1995 are zones 135, 137, 140, 146, 147, 177, 181, 212 to 215 and 227, see Exhibit 7.2.


# 7.4 Quebec Transit Flag

During the model calibration process, it was found that the variable Province was required in the work and school modal split models to account for the differences in transit service attributes in

the RMOC and CUO for the year 1995. In 1995, transit mode share was greater in the RMOC than the CUO. This is in part due to the size of the CUO and the associated transit infrastructure that can be provided for an area containing a population of about 250,000 residents compared to the 750,000 RMOC population. In keeping with the assumptions used in the RMOC Transportation Master Plan Study, it was assumed that the CUO transit system would be comparable to that of the RMOC by the year 2021. Therefore, for the 2021 model simulation, it is assumed that the Quebec and RMOC value of the Province flag are set to 0, thereby increasing transit use in the CUO over 1995 conditions.

# 7.5 Travel Cost

It was assumed the cost of travel in the peak hour remains the same for 2021 as existed in 1995 for both auto and transit. It is important to maintain the relative costs between the two modes in correct perspective. By using the 1995 costs, this is accomplished. If you wanted to assume that fuel and parking costs increased 10% for 2021 while transit fare remained unchanged, then the auto cost should be factored upwards by 10%. Travel cost is only used in the work trip logit model and therefore does not influence mode split for the remaining trip purposes.



# 7.6 Under-Reporting of Trip Purposes

#### 7.6.1 "Other to Home" Trips

Analysis was carried out to determine if new factors are required to convert from the peak period to the peak hour for 2021 trip generation attractions and productions. To gain insight into this issue, trip rates for the 24 hour, pm peak period and peak hour were analyzed based on the 1986 and 1995 OD Survey databases, (see Exhibit 7.3).

The analysis focuses on trip rates involves quantifying the number of trips for a given time period and trip purpose and then dividing this amount by the population aged 10 and over in the year under study. A comparison of the 24 hour trip rates indicates that the NHB (non-home based) trip rate for 1995 was 73 percent of the 1986 rate, while all the other trip purposes had trip rates for 1995 within plus or minus 5% of the 1986 rates. This lower trip rate for NHB trips is also apparent in the other time periods contained in the exhibit. This tends to suggest that non-home based trips may have been under-reported in the 1995 phone survey compared to the 1986 mail survey or that in 1995 fewer trips of this type were made per capita compared to 1986. It is possible that the 1986 survey approach may have been more accurate at reporting these discretionary trips. To account for this discrepancy in the trip rate trend, the 2021 non-home based work trips were factored upwards by 20% in the macro FACTOR.MAC.

Another discrepancy between the 1986 and 1995 trip rates occurs in the trip rates for transit. A comparison of the transit trip rates for school for all time periods indicates that the rates for the two years for the geographic areas remained relatively constant. For the work trip purpose, the 1995 transit rates decline by about 40% over the 1986 rates in the NCR for all time periods.

For "Other" and NHB trip purposes in the 24 hour and off peak periods, transit trip rates in 1995 were about half of the 1986 rates. In the PM peak hour, the transit trip rates for 1995 decreased 70% for "Other" trips and 60% for NHB trip purposes over the 1986 rates. This significant decrease in transit use is possibly due to the 1995 transit fare policies in the RMOC where persons using single tickets or paying by cash (i.e. discretionary transit users) paid a premium to use transit in the peak period while in 1986 no premium was charged. If the RMOC transit fare did not discriminate against peak period travel, it could be assumed that the "Other" and NHB trips would have similar decreases in trip rates between 1986 and 1995 as observed in the off-peak period. In general, the off-peak period decrease in transit trips for "Other" and NHB trips was in the order of 50%. If 50% was used as the decrease in transit trips in the peak hour for "Other" and NHB trips would have occurred in the 1995 PM peak hour.

Therefore, it was assumed that if the 1995 model was to be applied to a future year, the diversion curves for mode split in the modal split model should be altered to increase transit model split accordingly. This was done by running the 1995 model and modifying the constant in the modal split diversion curve equations until an additional 2000 transit trips were obtained in the first equation (auto trips under 15 minutes) and the second curve until 500 additional transit trips occurred. The decision to assign 2000 transit trips to the first curve (auto trips under 15 minutes)

Exhibit 7.3 - 1986 and 1995 Trip Rates by Time Periods

| Time               | Trip                   |                                                                                              |                                                                                                                            | Auto                                                                                                                       |                                                                                                      |                                                                                                                   | Transi                                                                                                            | t                                                                                                    | 5                                                                                                        | Sum, All N                                                                                               | lodes        | Sum.                                                                                                              | Auto & Tr                                                                                                         | ansit                |
|--------------------|------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|
| Period             | Purpose                | Area                                                                                         | 1986                                                                                                                       | 1995                                                                                                                       | 95/86                                                                                                | 1986                                                                                                              | 1995                                                                                                              | 95/86                                                                                                | 1986                                                                                                     | 1995                                                                                                     | 95/86        | 1986                                                                                                              | 1995                                                                                                              | 95/86                |
| PM Peak            | LH                     | RMOC                                                                                         | 0.029                                                                                                                      | 0.029                                                                                                                      | 1.02                                                                                                 | 0.002                                                                                                             | 0.001                                                                                                             | 0.81                                                                                                 | 0.034                                                                                                    | 0.036                                                                                                    |              | 0.030                                                                                                             | 0.031                                                                                                             |                      |
| Hour               |                        | CUO                                                                                          | 0.030                                                                                                                      | 0.030                                                                                                                      | 1.01                                                                                                 | 0.001                                                                                                             | 0.001                                                                                                             | 0.49                                                                                                 | 0.033                                                                                                    | 0.035                                                                                                    |              | 0.031                                                                                                             | 0.031                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.029                                                                                                                      | 0.029                                                                                                                      | 1.02                                                                                                 | 0.002                                                                                                             | 0.001                                                                                                             | 0.75                                                                                                 | 0.034                                                                                                    | 0.036                                                                                                    | 1.06         | 0.030                                                                                                             | 0.031                                                                                                             | 1.00                 |
|                    | NHB                    | RMOC                                                                                         | 0.067                                                                                                                      | 0.057                                                                                                                      | 0.85                                                                                                 | 0.013                                                                                                             | 0.005                                                                                                             | 0.41                                                                                                 | 0.088                                                                                                    | 0.069                                                                                                    |              | 0.080                                                                                                             | 0.062                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.071                                                                                                                      | 0.063                                                                                                                      | 0.90                                                                                                 | 0.006                                                                                                             | 0.002                                                                                                             | 0.37                                                                                                 | 0.082                                                                                                    | 0.069                                                                                                    |              | 0.076                                                                                                             | 0.065                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.068                                                                                                                      | 0.059                                                                                                                      | 0.86                                                                                                 | 0.011                                                                                                             | 0.004                                                                                                             | 0.40                                                                                                 | 0.086                                                                                                    | 0.069                                                                                                    | 0.80         | 0.079                                                                                                             | 0.063                                                                                                             | 0.80                 |
|                    | OTHER                  | RMOC                                                                                         | 0.063                                                                                                                      | 0.053                                                                                                                      | 0.84                                                                                                 | 0.013                                                                                                             | 0.004                                                                                                             | 0.31                                                                                                 | 0.082                                                                                                    | 0.065                                                                                                    |              | 0.075                                                                                                             | 0.057                                                                                                             |                      |
|                    |                        | CUO<br>NCR                                                                                   | 0.050<br>0.060                                                                                                             | 0.067<br>0.056                                                                                                             | 1.35<br>0.94                                                                                         | 0.004<br>0.011                                                                                                    | 0.002<br>0.003                                                                                                    | 0.44<br>0.31                                                                                         | 0.058<br>0.076                                                                                           | 0.075<br>0.068                                                                                           | 0.89         | 0.054<br>0.070                                                                                                    | 0.069<br>0.060                                                                                                    | 0.85                 |
|                    | SCHOOL                 | RMOC                                                                                         | 0.000                                                                                                                      | 0.004                                                                                                                      | 1.05                                                                                                 | 0.005                                                                                                             | 0.003                                                                                                             | 0.92                                                                                                 | 0.070                                                                                                    | 0.008                                                                                                    | 0.09         | 0.070                                                                                                             | 0.000                                                                                                             | 0.65                 |
|                    | SCHOOL                 | CUO                                                                                          | 0.005                                                                                                                      | 0.004                                                                                                                      | 1.67                                                                                                 | 0.003                                                                                                             | 0.003                                                                                                             | 1.18                                                                                                 | 0.012                                                                                                    | 0.017                                                                                                    |              | 0.003                                                                                                             | 0.000                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.003                                                                                                                      | 0.005                                                                                                                      | 1.26                                                                                                 | 0.005                                                                                                             | 0.004                                                                                                             | 0.96                                                                                                 | 0.011                                                                                                    | 0.013                                                                                                    | 1.12         | 0.008                                                                                                             | 0.009                                                                                                             | 1.09                 |
|                    | WORK                   | RMOC                                                                                         | 0.067                                                                                                                      | 0.071                                                                                                                      | 1.06                                                                                                 | 0.041                                                                                                             | 0.027                                                                                                             | 0.65                                                                                                 | 0.121                                                                                                    | 0.109                                                                                                    |              | 0.108                                                                                                             | 0.098                                                                                                             |                      |
|                    | -                      | CUO                                                                                          | 0.074                                                                                                                      | 0.085                                                                                                                      | 1.15                                                                                                 | 0.020                                                                                                             | 0.015                                                                                                             | 0.77                                                                                                 | 0.096                                                                                                    | 0.106                                                                                                    |              | 0.094                                                                                                             | 0.100                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.069                                                                                                                      | 0.075                                                                                                                      | 1.09                                                                                                 | 0.036                                                                                                             | 0.024                                                                                                             | 0.66                                                                                                 | 0.115                                                                                                    | 0.108                                                                                                    | 0.94         | 0.105                                                                                                             | 0.098                                                                                                             | 0.94                 |
|                    | Total                  | NCR                                                                                          | 0.229                                                                                                                      | 0.224                                                                                                                      | 0.98                                                                                                 | 0.064                                                                                                             | 0.037                                                                                                             | 0.58                                                                                                 | 0.322                                                                                                    | 0.293                                                                                                    | 0.91         | 0.293                                                                                                             | 0.261                                                                                                             | 0.89                 |
| PM Peak            | LH                     | RMOC                                                                                         | 0.071                                                                                                                      | 0.074                                                                                                                      | 1.04                                                                                                 | 0.006                                                                                                             | 0.004                                                                                                             | 0.62                                                                                                 | 0.085                                                                                                    | 0.093                                                                                                    |              | 0.077                                                                                                             | 0.078                                                                                                             |                      |
| Period             |                        | CUO                                                                                          | 0.066                                                                                                                      | 0.071                                                                                                                      | 1.07                                                                                                 | 0.003                                                                                                             | 0.002                                                                                                             | 0.52                                                                                                 | 0.075                                                                                                    | 0.083                                                                                                    |              | 0.069                                                                                                             | 0.073                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.070                                                                                                                      | 0.073                                                                                                                      | 1.05                                                                                                 | 0.006                                                                                                             | 0.003                                                                                                             | 0.60                                                                                                 | 0.083                                                                                                    | 0.091                                                                                                    | 1.10         | 0.075                                                                                                             | 0.077                                                                                                             | 1.02                 |
|                    | NHB                    | RMOC                                                                                         | 0.156                                                                                                                      | 0.129                                                                                                                      | 0.83                                                                                                 | 0.030                                                                                                             | 0.013                                                                                                             | 0.42                                                                                                 | 0.203                                                                                                    | 0.160                                                                                                    |              | 0.186                                                                                                             | 0.142                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.149                                                                                                                      | 0.142                                                                                                                      | 0.95                                                                                                 | 0.013                                                                                                             | 0.007                                                                                                             | 0.51                                                                                                 | 0.177                                                                                                    | 0.161                                                                                                    |              | 0.163                                                                                                             | 0.149                                                                                                             |                      |
|                    | OTUED                  | NCR                                                                                          | 0.154                                                                                                                      | 0.133                                                                                                                      | 0.86                                                                                                 | 0.026                                                                                                             | 0.011                                                                                                             | 0.43                                                                                                 | 0.196                                                                                                    | 0.160                                                                                                    | 0.82         | 0.180                                                                                                             | 0.144                                                                                                             | 0.80                 |
|                    | OTHER                  | RMOC                                                                                         | 0.145                                                                                                                      | 0.124                                                                                                                      | 0.86                                                                                                 | 0.028                                                                                                             | 0.010                                                                                                             | 0.37                                                                                                 | 0.186                                                                                                    | 0.156<br>0.163                                                                                           |              | 0.111                                                                                                             | 0.101                                                                                                             |                      |
|                    |                        | CUO<br>NCR                                                                                   | 0.043<br>0.137                                                                                                             | 0.144<br>0.129                                                                                                             | 3.38<br>0.95                                                                                         | 0.013<br>0.024                                                                                                    | 0.004<br>0.009                                                                                                    | 0.35<br>0.37                                                                                         | 0.132<br>0.173                                                                                           | 0.163                                                                                                    | 0.96         | 0.099<br>0.108                                                                                                    | 0.102<br>0.101                                                                                                    | 0.93                 |
|                    | SCHOOL                 | RMOC                                                                                         | 0.011                                                                                                                      | 0.013                                                                                                                      | 1.10                                                                                                 | 0.024                                                                                                             | 0.003                                                                                                             | 0.81                                                                                                 | 0.062                                                                                                    | 0.068                                                                                                    | 0.30         | 0.036                                                                                                             | 0.033                                                                                                             | 0.35                 |
|                    | CONCOL                 | CUO                                                                                          | 0.011                                                                                                                      | 0.013                                                                                                                      | 1.97                                                                                                 | 0.023                                                                                                             | 0.020                                                                                                             | 1.01                                                                                                 | 0.057                                                                                                    | 0.092                                                                                                    |              | 0.025                                                                                                             | 0.036                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.011                                                                                                                      | 0.015                                                                                                                      | 1.32                                                                                                 | 0.022                                                                                                             | 0.019                                                                                                             | 0.84                                                                                                 | 0.061                                                                                                    | 0.074                                                                                                    | 1.22         | 0.034                                                                                                             | 0.034                                                                                                             | 1.00                 |
|                    | WORK                   | RMOC                                                                                         | 0.134                                                                                                                      | 0.141                                                                                                                      | 1.05                                                                                                 | 0.083                                                                                                             | 0.051                                                                                                             | 0.62                                                                                                 | 0.240                                                                                                    | 0.213                                                                                                    |              | 0.217                                                                                                             | 0.192                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.153                                                                                                                      | 0.180                                                                                                                      | 1.17                                                                                                 | 0.036                                                                                                             | 0.029                                                                                                             | 0.81                                                                                                 | 0.196                                                                                                    | 0.220                                                                                                    |              | 0.189                                                                                                             | 0.209                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.139                                                                                                                      | 0.151                                                                                                                      | 1.08                                                                                                 | 0.072                                                                                                             | 0.046                                                                                                             | 0.64                                                                                                 | 0.229                                                                                                    | 0.215                                                                                                    | 0.94         | 0.211                                                                                                             | 0.196                                                                                                             | 0.93                 |
|                    | Total                  | NCR                                                                                          | 0.511                                                                                                                      | 0.501                                                                                                                      | 0.98                                                                                                 | 0.149                                                                                                             | 0.087                                                                                                             | 0.59                                                                                                 | 0.743                                                                                                    | 0.698                                                                                                    | 0.94         | 0.608                                                                                                             | 0.551                                                                                                             | 0.91                 |
| Off-Peak           | LH                     | RMOC                                                                                         | 0.353                                                                                                                      | 0.352                                                                                                                      | 1.00                                                                                                 | 0.045                                                                                                             | 0.025                                                                                                             | 0.57                                                                                                 | 0.428                                                                                                    | 0.436                                                                                                    |              | 0.398                                                                                                             | 0.377                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.292                                                                                                                      | 0.347                                                                                                                      | 1.19                                                                                                 | 0.021                                                                                                             | 0.011                                                                                                             | 0.50                                                                                                 | 0.331                                                                                                    | 0.403                                                                                                    | 4.00         | 0.313                                                                                                             | 0.358                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.338                                                                                                                      | 0.351                                                                                                                      | 1.04                                                                                                 | 0.039                                                                                                             | 0.022                                                                                                             | 0.55                                                                                                 | 0.404                                                                                                    | 0.427                                                                                                    | 1.06         | 0.377                                                                                                             | 0.372                                                                                                             | 0.99                 |
|                    | NHB                    | RMOC<br>CUO                                                                                  | 0.457<br>0.375                                                                                                             | 0.318<br>0.277                                                                                                             | 0.70<br>0.74                                                                                         | 0.056<br>0.019                                                                                                    | 0.022<br>0.008                                                                                                    | 0.39<br>0.40                                                                                         | 0.578<br>0.434                                                                                           | 0.404<br>0.329                                                                                           |              | 0.514<br>0.394                                                                                                    | 0.340<br>0.285                                                                                                    |                      |
|                    |                        | NCR                                                                                          | 0.373                                                                                                                      | 0.277                                                                                                                      | 0.74                                                                                                 | 0.019                                                                                                             | 0.008                                                                                                             | 0.40                                                                                                 | 0.434                                                                                                    | 0.329                                                                                                    | 0.71         | 0.394                                                                                                             | 0.285                                                                                                             | 0.67                 |
|                    | OTHER                  | RMOC                                                                                         | 0.384                                                                                                                      | 0.300                                                                                                                      | 1.08                                                                                                 | 0.047                                                                                                             | 0.018                                                                                                             | 0.60                                                                                                 | 0.465                                                                                                    | 0.506                                                                                                    | 0.71         | 0.431                                                                                                             | 0.320                                                                                                             | 0.07                 |
|                    | OTTIER                 | CUO                                                                                          | 0.277                                                                                                                      | 0.385                                                                                                                      | 1.39                                                                                                 | 0.047                                                                                                             | 0.020                                                                                                             | 0.43                                                                                                 | 0.309                                                                                                    | 0.441                                                                                                    |              | 0.297                                                                                                             | 0.394                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.358                                                                                                                      | 0.407                                                                                                                      | 1.14                                                                                                 | 0.040                                                                                                             | 0.023                                                                                                             | 0.57                                                                                                 | 0.428                                                                                                    | 0.489                                                                                                    | 1.14         | 0.399                                                                                                             | 0.430                                                                                                             | 1.08                 |
|                    | SCHOOL                 | RMOC                                                                                         | 0.047                                                                                                                      | 0.039                                                                                                                      | 0.82                                                                                                 | 0.037                                                                                                             | 0.041                                                                                                             | 1.13                                                                                                 | 0.129                                                                                                    | 0.147                                                                                                    |              | 0.083                                                                                                             | 0.080                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.041                                                                                                                      | 0.044                                                                                                                      | 1.06                                                                                                 | 0.022                                                                                                             | 0.015                                                                                                             | 0.68                                                                                                 | 0.119                                                                                                    | 0.134                                                                                                    |              | 0.063                                                                                                             | 0.059                                                                                                             |                      |
|                    |                        | NCR                                                                                          | 0.046                                                                                                                      | 0.040                                                                                                                      | 0.88                                                                                                 | 0.033                                                                                                             | 0.035                                                                                                             | 1.05                                                                                                 | 0.126                                                                                                    | 0.144                                                                                                    | 1.14         | 0.078                                                                                                             | 0.074                                                                                                             | 0.95                 |
|                    | WORK                   | RMOC                                                                                         | 0.167                                                                                                                      | 0.218                                                                                                                      | 1.31                                                                                                 | 0.064                                                                                                             | 0.045                                                                                                             | 0.71                                                                                                 | 0.256                                                                                                    | 0.298                                                                                                    |              | 0.231                                                                                                             | 0.263                                                                                                             |                      |
|                    |                        | CUO                                                                                          | 0.213                                                                                                                      | 0.291                                                                                                                      | 1.36                                                                                                 | 0.034                                                                                                             | 0.024                                                                                                             | 0.73                                                                                                 | 0.264                                                                                                    | 0.337                                                                                                    |              | 0.247                                                                                                             | 0.315                                                                                                             |                      |
|                    | Tatal                  | NCR<br>NCR                                                                                   | 0.178                                                                                                                      | 0.237                                                                                                                      | 1.33                                                                                                 | 0.057                                                                                                             | 0.040                                                                                                             | 0.70                                                                                                 | 0.258                                                                                                    | 0.308                                                                                                    | 1.19         | 0.235                                                                                                             | 0.277                                                                                                             | 1.18                 |
|                    | Total                  | NUR                                                                                          |                                                                                                                            | 1.342                                                                                                                      | 0.99                                                                                                 | 0.216                                                                                                             | 0.137                                                                                                             | 0.63                                                                                                 | 1.760                                                                                                    | 1.753                                                                                                    | 1.00         | 1.574                                                                                                             | 1.479                                                                                                             | 0.94                 |
| Ale ale days       | 1.1.1                  |                                                                                              |                                                                                                                            |                                                                                                                            | 4.00                                                                                                 | 0.000                                                                                                             | 0.005                                                                                                             | 0 55                                                                                                 |                                                                                                          |                                                                                                          |              | 0.586                                                                                                             |                                                                                                                   |                      |
| Weekday            | LH                     | RMOC                                                                                         | 0.523                                                                                                                      | 0.522                                                                                                                      | 1.00                                                                                                 | 0.063                                                                                                             | 0.035                                                                                                             | 0.55                                                                                                 | 0.632                                                                                                    | 0.640                                                                                                    |              |                                                                                                                   | 0.556                                                                                                             |                      |
| Weekday<br>24 Hour | LH                     | RMOC<br>CUO                                                                                  | 0.523<br>0.451                                                                                                             | 0.522<br>0.518                                                                                                             | 1.15                                                                                                 | 0.030                                                                                                             | 0.014                                                                                                             | 0.46                                                                                                 | 0.509                                                                                                    | 0.595                                                                                                    | 1.04         | 0.481                                                                                                             | 0.532                                                                                                             | 0.98                 |
|                    |                        | RMOC<br>CUO<br>NCR                                                                           | 0.523<br>0.451<br>0.505                                                                                                    | 0.522<br>0.518<br>0.521                                                                                                    | 1.15<br>1.03                                                                                         | 0.030<br>0.055                                                                                                    | 0.014<br>0.029                                                                                                    | 0.46<br>0.53                                                                                         | 0.509<br>0.603                                                                                           | 0.595<br>0.629                                                                                           | 1.04         | 0.481<br>0.561                                                                                                    | 0.532<br>0.550                                                                                                    | 0.98                 |
|                    | LH                     | RMOC<br>CUO<br>NCR<br>RMOC                                                                   | 0.523<br>0.451<br>0.505<br>0.688                                                                                           | 0.522<br>0.518<br>0.521<br>0.520                                                                                           | 1.15<br>1.03<br>0.76                                                                                 | 0.030<br>0.055<br>0.094                                                                                           | 0.014<br>0.029<br>0.039                                                                                           | 0.46<br>0.53<br>0.42                                                                                 | 0.509<br>0.603<br>0.871                                                                                  | 0.595<br>0.629<br>0.649                                                                                  | 1.04         | 0.481<br>0.561<br>0.782                                                                                           | 0.532<br>0.550<br>0.559                                                                                           | 0.98                 |
|                    |                        | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO                                                            | 0.523<br>0.451<br>0.505                                                                                                    | 0.522<br>0.518<br>0.521<br>0.520<br>0.502                                                                                  | 1.15<br>1.03                                                                                         | 0.030<br>0.055                                                                                                    | 0.014<br>0.029                                                                                                    | 0.46<br>0.53                                                                                         | 0.509<br>0.603<br>0.871<br>0.709                                                                         | 0.595<br>0.629                                                                                           | 1.04<br>0.76 | 0.481<br>0.561<br>0.782<br>0.650                                                                                  | 0.532<br>0.550                                                                                                    | 0.98                 |
|                    |                        | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR                                                     | 0.523<br>0.451<br>0.505<br>0.688<br>0.613                                                                                  | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516                                                                         | 1.15<br>1.03<br>0.76<br>0.82<br>0.77                                                                 | 0.030<br>0.055<br>0.094<br>0.037<br>0.080                                                                         | 0.014<br>0.029<br>0.039<br>0.017                                                                                  | 0.46<br>0.53<br>0.42<br>0.46<br>0.42                                                                 | 0.509<br>0.603<br>0.871<br>0.709<br>0.832                                                                | 0.595<br>0.629<br>0.649<br>0.580                                                                         |              | 0.481<br>0.561<br>0.782<br>0.650<br>0.750                                                                         | 0.532<br>0.550<br>0.559<br>0.519                                                                                  |                      |
|                    | NHB                    | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO                                                            | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670                                                                         | 0.522<br>0.518<br>0.521<br>0.520<br>0.502                                                                                  | 1.15<br>1.03<br>0.76<br>0.82                                                                         | 0.030<br>0.055<br>0.094<br>0.037                                                                                  | 0.014<br>0.029<br>0.039<br>0.017<br>0.033                                                                         | 0.46<br>0.53<br>0.42<br>0.46                                                                         | 0.509<br>0.603<br>0.871<br>0.709                                                                         | 0.595<br>0.629<br>0.649<br>0.580<br>0.631                                                                |              | 0.481<br>0.561<br>0.782<br>0.650                                                                                  | 0.532<br>0.550<br>0.559<br>0.519<br>0.549                                                                         |                      |
|                    | NHB                    | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC                                             | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540                                                                | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556                                                                | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03                                                         | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075                                                                | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039                                                                | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52                                                         | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663                                                       | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684                                                       |              | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614                                                                | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594                                                                |                      |
|                    | NHB                    | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO                                      | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.396                                                       | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.546                                                       | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38                                                 | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033                                                       | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013                                                       | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40                                                 | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.450                                              | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.623                                              | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429                                                       | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594<br>0.559                                                       | 0.73                 |
|                    | NHB                    | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO                | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.396<br>0.505<br>0.081<br>0.076                            | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.546<br>0.553<br>0.083<br>0.099                            | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38<br>1.10<br>1.02<br>1.31                         | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033<br>0.065<br>0.112<br>0.063                            | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013<br>0.032<br>0.102<br>0.051                            | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40<br>0.50<br>0.91<br>0.80                         | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.450<br>0.612<br>0.324<br>0.302                   | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.623<br>0.668<br>0.368<br>0.375                   | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429<br>0.570<br>0.194<br>0.139                            | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594<br>0.559<br>0.585<br>0.185<br>0.150                            | 0.73                 |
|                    | NHB<br>OTHER<br>SCHOOL | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR         | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.595<br>0.081<br>0.076<br>0.080                            | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.556<br>0.553<br>0.083<br>0.099<br>0.087                   | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38<br>1.10<br>1.02<br>1.31<br>1.09                 | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033<br>0.065<br>0.112<br>0.063<br>0.100                   | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013<br>0.032<br>0.102<br>0.051<br>0.089                   | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40<br>0.50<br>0.91<br>0.80<br>0.88                 | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.450<br>0.612<br>0.324<br>0.302<br>0.319          | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.623<br>0.668<br>0.368<br>0.375<br>0.370          | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429<br>0.570<br>0.194<br>0.139<br>0.180                   | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594<br>0.559<br>0.585<br>0.185<br>0.150<br>0.176                   | 0.73                 |
|                    | NHB                    | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>RMOC<br>RMOC       | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.540<br>0.396<br>0.505<br>0.081<br>0.076<br>0.080<br>0.501 | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.546<br>0.553<br>0.083<br>0.099<br>0.087<br>0.539          | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38<br>1.10<br>1.02<br>1.31<br>1.09<br>1.08         | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033<br>0.065<br>0.112<br>0.063<br>0.100<br>0.241          | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013<br>0.032<br>0.102<br>0.051<br>0.089<br>0.151          | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40<br>0.50<br>0.91<br>0.80<br>0.88<br>0.63         | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.450<br>0.612<br>0.324<br>0.302<br>0.319<br>0.817 | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.623<br>0.668<br>0.368<br>0.375<br>0.370<br>0.773 | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429<br>0.570<br>0.194<br>0.139<br>0.180<br>0.742          | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594<br>0.559<br>0.585<br>0.185<br>0.150<br>0.176<br>0.690          | 0.73                 |
|                    | NHB<br>OTHER<br>SCHOOL | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>RMOC<br>CUO | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.396<br>0.505<br>0.081<br>0.076<br>0.080<br>0.501<br>0.559 | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.546<br>0.553<br>0.083<br>0.099<br>0.087<br>0.539<br>0.666 | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38<br>1.10<br>1.02<br>1.31<br>1.09<br>1.08<br>1.19 | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033<br>0.065<br>0.112<br>0.063<br>0.100<br>0.241<br>0.111 | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013<br>0.032<br>0.102<br>0.051<br>0.089<br>0.151<br>0.080 | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40<br>0.50<br>0.50<br>0.80<br>0.88<br>0.63<br>0.71 | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.612<br>0.324<br>0.302<br>0.319<br>0.817<br>0.702 | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.368<br>0.368<br>0.375<br>0.370<br>0.773<br>0.790 | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429<br>0.570<br>0.194<br>0.139<br>0.180<br>0.742<br>0.671 | 0.532<br>0.550<br>0.519<br>0.549<br>0.594<br>0.559<br>0.585<br>0.185<br>0.185<br>0.150<br>0.176<br>0.690<br>0.746 | 0.73<br>1.03<br>0.98 |
|                    | NHB<br>OTHER<br>SCHOOL | RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>CUO<br>NCR<br>RMOC<br>NCR<br>RMOC        | 0.523<br>0.451<br>0.505<br>0.688<br>0.613<br>0.670<br>0.540<br>0.540<br>0.396<br>0.505<br>0.081<br>0.076<br>0.080<br>0.501 | 0.522<br>0.518<br>0.521<br>0.520<br>0.502<br>0.516<br>0.556<br>0.546<br>0.553<br>0.083<br>0.099<br>0.087<br>0.539          | 1.15<br>1.03<br>0.76<br>0.82<br>0.77<br>1.03<br>1.38<br>1.10<br>1.02<br>1.31<br>1.09<br>1.08         | 0.030<br>0.055<br>0.094<br>0.037<br>0.080<br>0.075<br>0.033<br>0.065<br>0.112<br>0.063<br>0.100<br>0.241          | 0.014<br>0.029<br>0.039<br>0.017<br>0.033<br>0.039<br>0.013<br>0.032<br>0.102<br>0.051<br>0.089<br>0.151          | 0.46<br>0.53<br>0.42<br>0.46<br>0.42<br>0.52<br>0.40<br>0.50<br>0.91<br>0.80<br>0.88<br>0.63         | 0.509<br>0.603<br>0.871<br>0.709<br>0.832<br>0.663<br>0.450<br>0.612<br>0.324<br>0.302<br>0.319<br>0.817 | 0.595<br>0.629<br>0.649<br>0.580<br>0.631<br>0.684<br>0.623<br>0.668<br>0.368<br>0.375<br>0.370<br>0.773 | 0.76         | 0.481<br>0.561<br>0.782<br>0.650<br>0.750<br>0.614<br>0.429<br>0.570<br>0.194<br>0.139<br>0.180<br>0.742          | 0.532<br>0.550<br>0.559<br>0.519<br>0.549<br>0.594<br>0.559<br>0.585<br>0.185<br>0.150<br>0.176<br>0.690          | 0.73                 |

Note: Population used for trip rates are persons aged 10 and over.

and 500 to the second curve maintains the same proportion of total "other" trips between the two diversion curves. To account for the assumed increase in transit trips, the modifications mentioned above were incorporated into the 2021 modal split macro (ms\_all21.mac).

#### 7.6.2 Work to Home Trips

The economy in 1995 was not as robust as in 1986 with the NCR experiencing high unemployment rates and slow economic growth compared to 1986. For this reason, a comparison was made of employed labor force and population aged 24 to 65 in 1986, 1995 and that estimated for 2021 (see Exhibit 7.4).

|                                   |         | Year    |           |
|-----------------------------------|---------|---------|-----------|
| Variable                          | 1986    | 1995    | 2021      |
| Population 25-44                  | 284,800 | 344,700 | 347,800   |
| Population 45-65                  | 151,500 | 195,100 | 407,000   |
| Population (24-65)                | 436,300 | 539,800 | 754,800   |
| Population (24 and over)          | 561,500 | 699,500 | 1,083,500 |
| Total Employment                  | 409,300 | 454,900 | 698,300   |
| Ratio of Population (24- 65)      | 0.938   | 0.843   | 0.925     |
| to total Employment               |         |         |           |
| Ratio of Population (24 and over) | 1.372   | 1.538   | 1.552     |
| to total Employment               |         |         |           |

# Exhibit 7.4 - Work Trip Analysis

The results indicate that the ratio of population to employment for 1995 may be low compared to 1986 and 2021. The daily work trip rates in Exhibit 7.3 for all modes indicate that work trips decreased from 1986 to 1995 by 3 percent in the 24 hour period and 6 percent in the peak hour. This trend could be in part due to the changing characteristics of the workforce where part-time workers are comprising a larger component of the work force and are traveling outside the pm peak hour and period time intervals. The characteristics of the work force is dynamic and will change over time. Many assumptions could be made to alter the trip rate for work trips in the future on a per capita basis. For example, will a large proportion of the people between the ages 65 to 75 be a part of the 2021 workforce compared to today? For this study, it was decided to marginally increase the peak hour work trips by 5 percent for 2021 in the macro FACTOR.MAC.

# 7.7 Simulation Results

Exhibit 7.5 illustrates the travel demand by mode and purpose for the 1995 model. Note that the numbers in this table differ from those in Exhibit 5.9. This is because as the model development work progressed, modifications were made to the 1995 network and to the school trip generation model. In addition logit model estimates of vehicles per household were used in the modal split model rather than those obtained directly from the 95 OD survey. This last item was included to ensure that the vehicle per household models provided satisfactory results for the base year and also allows for consistent comparisons to future model simulation runs.

| Exh 7.5 - 1995 Model Versus 2021 Model Travel by Purpose and Mod<br>Revised nework and new school trip gen. equation |
|----------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------|

| Total Person         Auto Veh.         Transit         Auto Person         Auto Person <t< th=""><th>Trip</th><th>Source</th><th></th><th>Total Trips</th><th></th><th></th><th>Inside</th><th>Inside UTA (Interzonal)</th><th>inal)</th><th>Outside</th><th><b>Dutside UTA</b> (Interzonal)</th><th>onal)</th><th>Int</th><th>ntrazonal Trips</th><th></th></t<> | Trip       | Source    |               | Total Trips |         |         | Inside      | Inside UTA (Interzonal) | inal)   | Outside     | <b>Dutside UTA</b> (Interzonal) | onal)   | Int         | ntrazonal Trips |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------|-------------|---------|---------|-------------|-------------------------|---------|-------------|---------------------------------|---------|-------------|-----------------|---------|
| OD Survey         78,780         59,551         49,728         19,729         49754         40685         18717         7800           Model         81,293         61,720         49,166         19,573         51073         40370         19527         9371           Model         81,293         61,720         49,166         19,573         51073         40370         19527         9371           OD Survey         7,392         3,727         1,712         3,665         3125         1509         3623         415           Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           Model         7,432         3,583         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purpose    |           | Total Persons | Auto Person |         | Transit | Auto Person |                         | Transit | Auto Person | Auto Veh.                       | Transit | Auto Person | Auto Veh.       | Transit |
| Model         81,293         61,720         49,166         19,573         51073         40370         19527         9371           OD Survey         7,392         3,727         1,712         3,665         3125         1509         3623         415           Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           OD Survey         126,923         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Work       | OD Survey |               | 59,551      | 49,238  | 19,229  | 49754       | 40685                   | 18717   | 7800        | 6780                            | 449     | 1,997       | 1,773           | 63      |
| OD Survey         7,392         3,727         1,712         3,665         3125         1509         3623         415           Model         7,432         3,583         1,637         3,849         2818         1419         3623         415           Model         7,432         3,583         1,637         3,849         2818         1419         3634         645           OD Survey         124,905         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Model     | 81,293        | 61,720      | 49,166  | 19,573  | 51073       | 40370                   | 19527   | 9371        | 7861                            | 0       | 1,276       | 935             | 46      |
| OD Survey         7,392         3,727         1,712         3,665         3125         1509         3623         415           Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           OD Survey         124,905         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981           Model         223,460         106,166         21,000         21,000         21,000         21,000         21,117         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |           |               |             |         |         |             |                         |         |             |                                 |         |             |                 |         |
| Model         7,432         3,583         1,637         3,849         2818         1419         3834         645           OD Survey         124,905         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981           Model         223,460         106,166         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002         21,002                                                                                                                                                                                                                                                                                                                                                                                                                                                          | School     | OD Survey |               | 3,727       | 1,712   | 3,665   | 3125        | 1509                    | 3623    | 415         | 197                             | 21      | 187         | 9               | 21      |
| OD Survey         124,905         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981           Model         222,460         406.166         21.202         21.202         21.16         21.202         21.167         21.167         21.002         16.016         10026                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | Model     | 7,432         | 3,583       | 1,637   | 3,849   | 2818        | 1419                    | 3834    | 645         | 215                             | 0       | 120         | ю               | 15      |
| OD Survey         124,905         116,949         93,353         7,956         94032         74953         7754         8766           Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981           Model         223,460         106,166         155,167         30,850         146911         117147         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |           |               |             |         |         |             |                         |         |             |                                 |         |             |                 |         |
| Model         125,923         118,062         89,251         7,861         99998         76365         7754         9019           OD Survey         223,898         193,048         155,167         30,850         146911         117147         30094         16981           Model         223,460         106,166         21,302         155,167         30,850         146911         117147         30094         16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Other      | OD Survey |               | 116,949     | 93,353  | 7,956   | 94032       | 74953                   | 7754    | 8766        | 7066                            | 56      | 14,151      | 11,334          | 146     |
| OD Survey 223,898 193,048 155,167 30,850 146911 117147 30094 16981<br>Model 223,480 106,166 150,019 21,292 152000 119154 21115 10025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | Model     | 125,923       | 118,062     | 89,251  | 7,861   | 86666       | 76365                   | 7754    | 9019        | 6912                            | 0       | 9,045       | 5,974           | 107     |
| OD Survey 223,898 193,048 155,167 30,850 146911 117147 30094 16981                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |           |               |             |         |         |             |                         |         |             |                                 |         |             |                 |         |
| Model 277 460 106 160 018 21 282 152880 118151 21115 10025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total      |           |               | 193,048     | 155,167 | 30,850  | 146911      | 117147                  | 30094   | 16981       | 14043                           | 526     | 16,335      | 13,113          | 230     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (see note) | Model     | 227,469       | 196,186     | 150,918 | 31,283  | 153889      | 118154                  | 31115   | 19035       | 14988                           | 0       | 10,441      | 6,912           | 168     |

Note: Total trips includes external travel demand of 12,821 auto persons and 10,864 auto vehicle trips. These trips are from a 1995 external trip matrix.

# Exhibit 7.6 - 1995 Model Versus OD Survey Travel by Purpose and Mode Revised nework and new school trip gen. equation

|            | Ke                    | Revised nework ar         | ork and     | new sch   | ool trip | na new scnool trip gen. equation | ation                   |         |             |                          |         |             |                  |         |
|------------|-----------------------|---------------------------|-------------|-----------|----------|----------------------------------|-------------------------|---------|-------------|--------------------------|---------|-------------|------------------|---------|
| Trip       | Source                |                           | Total Trips | -         |          | Inside                           | Inside UTA (Interzonal) | inal)   | Outside     | Outside UTA (Interzonal) | onal)   | Int         | Intrazonal Trips |         |
| Purpose    |                       | Total Persons Auto Person | Auto Person | Auto Veh. | Transit  | Auto Person                      | Auto Veh.               | Transit | Auto Person | Auto Veh.                | Transit | Auto Person | Auto Veh.        | Transit |
| Work       | 95 model              | 81,293                    | 61,720      | 49,166    | 19,573   | 51073                            | 40370                   | 19527   | 9371        | 7861                     | 0       | 1,276       | 935              | 46      |
|            | 2021 model            | 110,569                   | 79,960      | 63,556    | 30,609   | 69640                            | 55117                   | 30564   | 8592        | 7154                     | 0       | 1,728       | 1,285            | 45      |
|            | 2021 / 95             | 1.36                      | 1.30        | 1.29      | 1.56     | 1.36                             | 1.37                    | 1.57    | 0.92        | 0.91                     | 0       | 1.35        | 1.38             | 0.97    |
|            |                       |                           |             |           |          |                                  |                         |         |             |                          |         |             |                  |         |
| School     | 95 model              | 7,432                     | 3,583       | 1,637     | 3,849    | 2818                             | 1419                    | 3834    | 645         | 215                      | 0       | 120         | ę                | 15      |
|            | 2021 model            | 7,674                     | 3,838       | 1,839     | 3,836    | 3128                             | 1652                    | 3821    | 548         | 183                      | 0       | 162         | 4                | 15      |
|            | 2021 / 95             | 1.03                      | 1.07        | 1.12      | 1.00     | 1.11                             | 1.16                    | 1.00    | 0.85        | 0.85                     | 0       | 1.35        | 1.38             | 0.97    |
|            |                       |                           |             |           |          |                                  |                         |         |             |                          |         |             |                  |         |
| Other      | 95 model              | 125,923                   | 118,062     | 89,251    | 7,861    | 86666                            | 76365                   | 7754    | 9019        | 6912                     | 0       | 9,045       | 5,974            | 107     |
|            | 2021 model            | 196,443                   | 178,955     | 135,528   | 17,487   | 158320                           | 120861                  | 17384   | 8391        | 6452                     | 0       | 12,244      | 8,215            | 103     |
|            | 2021 / 95             | 1.56                      | 1.52        | 1.52      | 2.22     | 1.58                             | 1.58                    | 2.24    | 0.93        | 0.93                     | 0       | 1.35        | 1.38             | 0.97    |
|            |                       |                           |             |           |          |                                  |                         |         |             |                          |         |             |                  |         |
| Total      | 95 model              | 227,469                   | 196,186     | 150,918   | 31,283   | 153889                           | 118154                  | 31115   | 19035       | 14988                    | 0       | 10,441      | 6,912            | 168     |
| (see note) | (see note) 2021 model | 337,255                   | 285,323     | 219,731   | 51,932   | 231088                           | 177630                  | 51769   | 17531       | 13789                    | 0       | 14,134      | 9,504            | 163     |
|            | 2021 / 95             | 1.48                      | 1.45        | 1.46      | 1.66     | 1.50                             | 1.50                    | 1.66    | 0.92        | 0.92                     | 0       | 1.35        | 1.38             | 0.97    |

1995 model results differ from those in Exhibit 5.9 since the new numbers reflect the new school trip generation equations and most recent 1995 network. 2021 Total trips includes external travel demand of 22,570 auto persons and 18,808 auto vehicle trips. These trips are from a 2021 external trip matrix. Note: 1995 Total trips includes external travel demand of 12,821 auto persons and 10,864 auto vehicle trips. These trips are from a 1995 external trip matrix.

Exhibit 7.6 compares the 1995 simulation with 2021 traffic demand forecasts by trip purpose and mode. Total person trips increased 48% between 1995 to 2021, total auto person trips increased by 45% and transit by 66%. Total work trips increased by 36%, school trips increased marginally by 3% while "Other" trips increased 56%.

Exhibits 7.7 and 7.8 illustrate the 1995 and 2021 assignment results as well as traffic counts. Comparison of Exhibit 7.7 with Exhibit 5.11 illustrates the differences in the two 1995 travel demand estimates.

# 7.8 Comparison to Master Transportation Plan Results

In 1996, RMOC staff carried out extensive work using the old version of the TRANS model to develop the current Transportation Master Plan (TMP). Using the new TRANS model, a model run was carried out using the same land use and final road and transit networks as identified in the TMP. A comparison of the simulation results is contained in Exhibit 7.9. The exhibit reports a simulated demand and a revised demand based on TDM and other assumptions to reduce auto travel demand that were used in the MTP study.

In all cases, the V/C ratio of the new model is under .9, and in all instances with the exception of Manotick screenline, where the V/C ratio is greater than the TMP value. Transit screenline modal split is higher in the new model at Leitrum, CNR\_East, Rideau North, Rideau Center- Queensway and at the CPR Line. Transit mode split drops across the Interprovincial screenline from 31% to 23%. at Rideau South and Eagleson screenlines. No transit trips are reported in the new model at Russelll-417 since no transit routes cross this line. In the new model, the rapid transit line from Kanata to VIA Rail Station replaces several transit routes in the old model that traveled along Walkley Road and then went northbound along Highway 417 crossing the Russell-417 screenline.

Analysis of travel demand on the CUO side, the new model tends to reduce travel crossing the Ottawa River compared to the old model. 2021 outbound total person trips in the old model was 23,950 compared to 19,400 in the new model. Note that both the old model and new model include a new bridge crossing in the Masson area. The 1995 outbound total person trips across the Ottawa River was 16,300, implying the new model estimates traffic growth of 19% while the old model growth was 47%. Transit also decreases from 7700 in the old model to 4600 trips with the new model. In general, the new model tends to keep CUO travel demand within the CUO more than the old model. This is evident in the significant increase of inbound total person travel across most CUO screenlines. This is in part a result of the new trip distribution model.

| Exhibit 7.7 - 1995 Auto and Transit PM Peak Hour- Outbound | and Tran        | sit PM F      | <sup>p</sup> eak Ho | ur- Ou  | tbound           |          |              |         |          |               |        |         |          |          |        |         |
|------------------------------------------------------------|-----------------|---------------|---------------------|---------|------------------|----------|--------------|---------|----------|---------------|--------|---------|----------|----------|--------|---------|
|                                                            |                 | FOTAL PERSONS | RSONS               |         |                  | AUT(     | AUTO PERSONS | SNG     |          | AUTO VEHICLES | IICLES |         |          | TRANSIT  | SIT    |         |
| Screenline                                                 | Observed Survey | Survey        | Model               | Model / | Observed         | Survey   | Model        | Model / | Observed | Survey        | Model  | Model / | Observed | Survey   | Model  | Model / |
|                                                            | Counts          | Assigned      |                     | Counts  | Counts           | Assigned |              | Counts  | Counts   | Assigned      |        | Counts  | Counts   | Assigned |        | Counts  |
| Ottawa River (LN2,3,4)                                     | 15,574          | 16,642        | 16,323              | 1.05    | 13,168           | 13,931   | 13,318       | 1.01    | 10,180   | 10,886        | 10,425 | 1.02    | 2,406    | 2,711    | 3,005  | 1.25    |
| Rideau River (LN19,20,32,33)                               | 28,284          | 30,970        | 30,974              | 1.10    | 21,792           | 22,008   | 22,469       | 1.03    | 16,509   | 17,521        | 17,467 | 1.06    | 6,492    | 8,962    | 8,505  | 1.31    |
| CPR (LN27, 28, 29)                                         | 19,880          | 21,224        | 20,078              | 1.01    | 14,931           | 14,443   | 14,461       | 0.97    | 11,236   | 11,720        | 11,244 | 1.00    | 4,949    | 6,781    | 5,617  | 1.13    |
| Ottawa Central Area (LN35-38)                              | 35,356          | 36,488        | 35,748              | 1.01    | 19,495           | 19,907   | 20,369       | 1.04    | 13,523   | 14,822        | 15,828 | 1.17    | 15,861   | 16,581   | 15,379 | 0.97    |
| Rideau Canal (LN34, 39)                                    | 29,370          | 26,903        | 26,436              | 0.90    | 20,707           | 19,252   | 19,756       | 0.95    | 15,301   | 15,009        | 15,408 | 1.01    | 8,663    | 7,651    | 6,680  | 0.77    |
| Fallowfield (LN9, 43)                                      | 7,777           | 7,823         | 7,714               | 0.99    | 7,039            | 6,667    | 6,944        | 0.99    | 5,551    | 5,514         | 5,481  | 0.99    | 738      | 1,156    | 770    | 1.04    |
| Eagleson (LN10)                                            | 8,897           | 10,263        | 8,448               | 0.95    | 7,897            | 8,961    | 7,137        | 0.90    | 6,049    | 7,116         | 5,652  | 0.93    | 1,000    | 1,302    | 1,311  | 1.31    |
| Green Creek (LN16)                                         | 11,319          | 13,215        | 12,424              | 1.10    | 8,189            | 9,515    | 9,648        | 1.18    | 6,607    | 7,703         | 7,582  | 1.15    | 3,130    | 3,700    | 2,776  | 0.89    |
| CNR West / Acres (LN11,12)                                 | 18,982          | 19,701        | 18,167              | 0.96    | 16,245           | 16,255   | 15,474       | 0.95    | 12,678   | 13,362        | 12,159 | 0.96    | 2,737    | 3,446    | 2,693  | 0.98    |
| CNR East (LN13,14,15)                                      | 13,555          | 13,998        | 12,568              | 0.93    | 12,274           | 12,680   | 11,067       | 0.90    | 10,595   | 10,383        | 8,773  | 0.83    | 1,281    | 1,318    | 1,501  | 1.17    |
| Western Parkway (LN24,25)                                  | 18,528          | 20,159        | 17,321              | 0.93    | 15,683           | 16,483   | 14,327       | 0.91    | 12,339   | 13,355        | 11,216 | 0.91    | 2,845    | 3,676    | 2,994  | 1.05    |
| Leitrim / Ramsayville (LN7,8)                              | 6,114           | 5,956         | 5,051               | 0.83    | 6,099            | 5,934    | 5,042        | 0.83    | 4,669    | 5,035         | 4,103  | 0.88    | 15       | 22       | 6      | 0.60    |
| Ile de Hull (LN60)                                         | 21,061          | 22,020        | 22,595              | 1.07    | 17,551           | 18,644   | 18,677       | 1.06    | 12,896   | 14,273        | 14,648 | 1.14    | 3,510    | 3,376    | 3,918  | 1.12    |
| Boul. Gamelin (LN 61)                                      | 14,297          | 10,418        | 10,611              | 0.74    | 13,003           | 9,661    | 9,674        | 0.74    | 9,853    | 7,496         | 7,586  | 0.77    | 1,294    | 757      | 937    | 0.72    |
| Ch. de la Montagne (LN62)                                  | 5,058           | 3,601         | 4,142               | 0.82    | 3,638            | 2,633    | 3,476        | 0.96    | 2,805    | 2,095         | 2,709  | 0.97    | 1,420    | 968      | 666    | 0.47    |
| Deschenes (LN63)                                           | 5,211           | 4,099         | 4,121               | 0.79    | 4,041            | 3,185    | 3,562        | 0.88    | 2,959    | 2,457         | 2,773  | 0.94    | 1,170    | 914      | 559    | 0.48    |
| Q64                                                        | 3,546           | 3,203         | 2,934               | 0.83    | 3,146            | 3,012    | 2,835        | 0.90    | 2,425    | 2,357         | 2,250  | 0.93    | 400      | 191      | 66     | 0.25    |
| Q65                                                        | 13,577          | 13,963        | 14,682              | 1.08    | 11,885           | 12,308   | 12,529       | 1.05    | 8,370    | 9,518         | 9,843  | 1.18    | 1,692    | 1,655    | 2,153  | 1.27    |
| Q66                                                        | 2,698           | 2,167         | 2,151               | 0.80    | 2,668            | 2,167    | 2,146        | 0.80    | 1,953    | 1,782         | 1,727  | 0.88    | 30       |          | 5      | 0.17    |
| Montee Paiement (LN67)                                     | 9,171           | 8,587         | 8,523               | 0.93    | 8,081            | 7,770    | 7,326        | 0.91    | 5,953    | 5,994         | 5,771  | 0.97    | 1,090    | 817      | 1,197  | 1.10    |
| Q68                                                        | 4,834           | 4,465         | 5,067               | 1.05    | 4,514            | 4,209    | 4,493        | 1.00    | 3,371    | 3,152         | 3,564  | 1.06    | 320      | 256      | 574    | 1.79    |
|                                                            |                 |               |                     |         |                  |          |              |         |          |               |        |         |          |          |        |         |
| Inbound                                                    |                 |               |                     |         |                  |          |              |         |          |               |        |         |          |          |        |         |
|                                                            |                 | FOTAL PERSONS | RSONS               |         |                  | AUT(     | AUTO PERSONS | SNG     |          | AUTO VEHICLES | IICLES |         |          | TRANSIT  | SIT    |         |
| Screenline                                                 | Observed Survey | Survey        | Model               | Model / | Model / Observed | Survey   | Model        | Model / | Observed | Survey        | Model  | Model / | Observed | Survey   | Model  | Model / |
|                                                            | Counts          | Assigned      |                     | Counts  | Counts           | Assigned |              | Counts  | Counts   | Assigned      |        | Counts  | Counts   | Assigned |        | Counts  |
| Ottawa River (LN2,3,4)                                     | 9,212           | 7,097         | 6,338               | 0.69    | 7,344            | 5,141    | 5,421        | 0.74    | 5,596    | 4,376         | 4,229  | 0.76    | 1,868    | 1,956    | 917    | 0.49    |

|                               |                 | TOTAL PERSONS | RSONS  |         |          | AUT        | AUTO PERSONS | SNC     |          | AUTO VEHICLES | IICLES |         |          | TRANSIT  | SIT   |         |
|-------------------------------|-----------------|---------------|--------|---------|----------|------------|--------------|---------|----------|---------------|--------|---------|----------|----------|-------|---------|
| Screenline                    | Observed Survey | Survey        | Model  | Model / | Observed | Survey     | Model        | Model / | Observed | Survey        | Model  | Model / | Observed | Survey   | Model | Model / |
|                               | Counts          | Assigned      |        | Counts  | Counts   | Assigned   |              | Counts  | Counts   | Assigned      |        | Counts  | Counts   | Assigned |       | Counts  |
| Ottawa River (LN2,3,4)        | 9,212           | 7,097         | 6,338  | 0.69    | 7,344    | 5,141      | 5,421        | 0.74    | 5,596    | 4,376         | 4,229  | 0.76    | 1,868    | 1,956    | 917   | 0.49    |
| Rideau River (LN19,20,32,33)  | 22,151          | 19,825        | 20,456 | 0.92    | 19,662   | 17,639     | 18,267       | 0.93    | 14,774   | 14,655        | 14,228 | 0.96    | 2,489    | 2,186    | 2,189 | 0.88    |
| CPR (LN27, 28, 29)            | 12,467          | 12,543        | 12,437 | 1.00    | 10,422   | 10,905     | 11,157       | 1.07    | 8,294    | 9,019         | 8,722  | 1.05    | 2,045    | 1,638    | 1,280 | 0.63    |
| Ottawa Central Area (LN35-38) | 19,517          | 16,024        | 17,238 | 0.88    | 13,921   | 10,162     | 12,024       | 0.86    | 10,338   | 8,217         | 9,278  | 0:00    | 5,596    | 5,862    | 5,214 | 0.93    |
| Rideau Canal (LN34, 39)       | 20,575          | 18,267        | 20,055 | 0.97    | 15,562   | 14,075     | 16,218       | 1.04    | 11,893   | 11,841        | 12,513 | 1.05    | 5,013    | 4,192    | 3,837 | 0.77    |
| Fallowfield (LN9, 43)         | 3,312           | 2,036         | 3,061  | 0.92    | 3,242    | 1,971      | 2,982        | 0.92    | 2,448    | 1,640         | 2,330  | 0.95    | 70       | 65       | 79    | 1.13    |
| Eagleson (LN10)               | 4,803           | 5,074         | 4,700  | 0.98    | 4,643    | 4,902      | 4,411        | 0.95    | 3,834    | 4,166         | 3,505  | 0.91    | 160      | 172      | 289   | 1.81    |
| Green Creek (LN16)            | 3,805           | 3,501         | 4,261  | 1.12    | 3,551    | 3,296      | 3,953        | 1.11    | 2,609    | 2,567         | 3,086  | 1.18    | 254      | 205      | 308   | 1.21    |
| CNR West / Acres (LN11,12)    | 13,180          | 10,498        | 11,195 | 0.85    | 12,510   | 9,914      | 10,631       | 0.85    | 9,830    | 8,478         | 8,344  | 0.85    | 670      | 584      | 564   | 0.84    |
| CNR East (LN13,14,15)         | 8,442           | 6,235         | 5,794  | 0.69    | 8,016    | 6,082      | 5,514        | 0.69    | 6,570    | 5,076         | 4,320  | 0.66    | 426      | 153      | 280   | 0.66    |
| Western Parkway (LN24,25)     | 11,548          | 10,703        | 9,856  | 0.85    | 10,596   | 9,831      | 9,062        | 0.86    | 8,246    | 8,199         | 7,099  | 0.86    | 952      | 872      | 794   | 0.83    |
| Leitrim / Ramsayville (LN7,8) | 3,028           | 1,924         | 1,782  | 0.59    | 3,017    | 1,907      | 1,762        | 0.58    | 2,180    | 1,609         | 1,413  | 0.65    | 11       | 17       | 20    | 1.82    |
| Ile de Hull (LN60)            | 7,236           | 6,796         | 8,432  | 1.17    | 6,486    | 6,298      | 7,943        | 1.22    | 5,166    | 5,211         | 6,167  | 1.19    | 750      | 498      | 489   | 0.65    |
| Boul. Gamelin (LN 61)         | 7,580           | 4,095         | 4,515  | 0.60    | 6,800    | 3,695      | 4,231        | 0.62    | 5,310    | 3,068         | 3,283  | 0.62    | 780      | 400      | 284   | 0.36    |
| Ch. de la Montagne (LN62)     | 2,280           | 1,175         | 1,712  | 0.75    | 1,960    | 1,113      | 1,645        | 0.84    | 1,537    | 842           | 1,286  | 0.84    | 320      | 62       | 67    | 0.21    |
| Deschenes (LN63)              | 1,758           | 1,115         | 1,576  | 0.90    | 1,732    | 1,096      | 1,508        | 0.87    | 1,343    | 879           | 1,176  | 0.88    | 26       | 19       | 68    | 2.62    |
| Q64                           | 986             | 576           | 1,089  | 1.10    | 941      | 551        | 1,050        | 1.12    | 742      | 492           | 822    | 1.11    | 45       | 25       | 39    | 0.87    |
| Q65                           | 4,727           | 3,265         | 4,901  | 1.04    | 4,547    | 3,072      | 4,705        | 1.03    | 3,456    | 2,554         | 3,658  | 1.06    | 180      | 193      | 196   | 1.09    |
| Q66                           | 1,239           | 908           | 1,009  | 0.81    | 1,239    | 806<br>806 | 1,008        | 0.81    | 870      | 740           | 799    | 0.92    | 0        |          | -     |         |
| Montee Paiement (LN67)        | 5,311           | 2,404         | 2,271  | 0.43    | 5,236    | 2,343      | 2,147        | 0.41    | 3,777    | 1,913         | 1,649  | 0.44    | 75       | 61       | 124   | 1.65    |
| Q68                           | 2,374           | 1,864         | 2,314  | 0.97    | 2.294    | 1.847      | 2.268        | 0.99    | 1.657    | 1.414         | 1.780  | 1.07    | 80       | 17       | 46    | 0.58    |

| Screenline                    |                    |                    |        |                                   |          |                    |              |                     |                    |                    |               | ,                 |                      |                    |               |                   |
|-------------------------------|--------------------|--------------------|--------|-----------------------------------|----------|--------------------|--------------|---------------------|--------------------|--------------------|---------------|-------------------|----------------------|--------------------|---------------|-------------------|
| Screenline                    |                    | Ш                  | RSONS  |                                   |          | AUTC               | 5            |                     |                    |                    | AUTO VEHICLES | ICLES             | ;                    | -                  | <b>RANSIT</b> |                   |
|                               | Observed<br>Counts | Survey<br>Assianed | Model  | Model / Observed<br>Counts Counts |          | Survey<br>Assianed | Model        | Model / (<br>Counts | Observed<br>Counts | Survey<br>Assianed | Model         | Model /<br>Counts | Observed<br>Counts / | Survey<br>Assianed | Model         | Model /<br>Counts |
| Ottawa River (LN2,3,4)        | 15,574             | 16,642             | 19,389 | 1.24                              |          |                    | 14,844       | 1.13                | 10,180             | 10,886             | 11,572        | 1.14              |                      | 2,711              | 4,545         | 1.89              |
| Rideau River (LN19,20,32,33)  | 28,284             | 30,970             | 41,293 | 1.46                              | 21,792   |                    | 30,104       | 1.38                | 16,509             | 17,521             | 23,381        | 1.42              | 6,492                | 8,962              | 11,189        | 1.72              |
| CPR (LN27, 28, 29)            |                    | 21,224             | 26,225 | 1.32                              | 14,931   |                    | 17,641       | 1.18                | 11,236             | 11,720             | 13,714        | 1.22              | 4,949                | 6,781              | 8,584         | 1.73              |
| Ottawa Central Area (LN35-38) |                    | 36,488             | 46,721 | 1.32                              |          | 19,907             | 24,237       | 1.24                | 13,523             | 14,822             | 18,803        | 1.39              | 15,861               | 16,581             | 22,484        | 1.42              |
| Rideau Canal (LN34, 39)       | 29,370             | 26,903             | 33,346 | 1.14                              |          | 19,252             | 24,542       | 1.19                | 15,301             | 15,009             | 19,160        | 1.25              | 8,663                | 7,651              | 8,804         | 1.02              |
| Fallowfield (LN9, 43)         | 7,777              | 7,823              | 14,549 | 1.87                              | 7,039    | 6,667              | 12,423       | 1.76                | 5,551              | 5,514              | 9,780         | 1.76              | 738                  | 1,156              | 2,126         | 2.88              |
| Eagleson (LN10)               | 8,897              | 10,263             | 13,393 | 1.50                              | 7,897    | 8,961              | 11,038       | 1.40                | 6,049              | 7,116              | 8,758         | 1.45              | 1,000                | 1,302              | 2,355         | 2.36              |
| Green Creek (LN16)            | 11,319             | 13,215             | 16,201 | 1.43                              |          | 9,515              | 12,360       | 1.51                | 6,607              | 7,703              | 9,734         | 1.47              | 3,130                | 3,700              | 3,841         | 1.23              |
| CNR West / Acres (LN11,12)    | 18,982             | 19,701             | 27,997 | 1.47                              |          | 16,255             | 22,835       | 1.41                | 12,678             | 13,362             | 17,997        | 1.42              | 2,737                | 3,446              | 5,162         | 1.89              |
| CNR East (LN13,14,15)         | 13,555             | 13,998             | 20,850 | 1.54                              | 12,274   | 12,680             | 18,085       | 1.47                | 10,595             | 10,383             | 14,300        | 1.35              | 1,281                | 1,318              | 2,765         | 2.16              |
| Western Parkway (LN24,25)     | 18,528             | 20,159             | 22,588 | 1.22                              |          | 16,483             | 18,412       | 1.17                | 12,339             | 13,355             | 14,494        | 1.17              | 2,845                | 3,676              | 4,176         | 1.47              |
| Leitrim / Ramsayville (LN7,8) | 6,114              | 5,956              | 12,208 | 2.00                              |          | 5,934              | 11,588       | 1.90                | 4,669              | 5,035              | 9,292         | 1.99              | 15                   | 22                 | 620           | 41.33             |
| Ile de Hull (LN60)            | 21,061             | 22,020             | 21,534 | 1.02                              |          | 18,644             | 16,475       | 0.94                | 12,896             | 14,273             | 12,802        | 0.99              | 3,510                | 3,376              | 5,059         | 1.44              |
| Boul. Gamelin (LN 61)         | 14,297             | 10,418             | 8,878  | 0.62                              |          | 9,661              | 7,688        | 0.59                | 9,853              | 7,496              | 5,984         | 0.61              | 1,294                | 757                | 1,190         | 0.92              |
| Ch. de la Montagne (LN62)     | 5,058              | 3,601              | 6,381  | 1.26                              | 3,638    | 2,633              | 4,582        | 1.26                | 2,805              | 2,095              | 3,530         | 1.26              | 1,420                | 968                | 1,799         | 1.27              |
| Deschenes (LN63)              | 5,211              | 4,099              | 6,617  | 1.27                              | 4,041    | 3,185              | 5,272        | 1.30                | 2,959              | 2,457              | 4,109         | 1.39              | 1,170                | 914                | 1,345         | 1.15              |
| Q64                           | 3,546              | 3,203              | 3,214  | 0.91                              | 3,146    | 3,012              | 2,941        | 0.93                | 2,425              | 2,357              | 2,322         | 0.96              | 400                  | 191                | 273           | 0.68              |
| Q65                           | 13,577             | 13,963             | 16,148 | 1.19                              | 11,885   | 12,308             | 12,505       | 1.05                | 8,370              | 9,518              | 9,727         | 1.16              | 1,692                | 1,655              | 3,643         | 2.15              |
| Q66                           | 2.698              | 2.167              | 2.132  | 0.79                              | 2.668    | 2.167              | 1.986        | 0.74                | 1.953              | 1.782              | 1.564         | 0.80              | 30                   |                    | 146           | 4.87              |
| Montee Paiement (LN67)        | 9.171              | 8.587              | 9.541  | 1.04                              | 8.081    | 7.770              | 7.631        | 0.94                | 5.953              | 5,994              | 5.984         | 1.01              | 1.090                | 817                | 1.910         | 1.75              |
| Q68                           | 4,834              | 4,465              | 6,325  | 1.31                              | 4,514    | 4,209              | 5,294        | 1.17                | 3,371              | 3,152              | 4,196         | 1.24              | 320                  | 256                | 1,031         | 3.22              |
| Inbound                       |                    |                    |        |                                   |          |                    |              |                     |                    |                    |               |                   |                      |                    |               |                   |
|                               |                    | TOTAL PEI          | RSONS  |                                   |          | AUTC               | AUTO PERSONS | ٨S                  |                    |                    | AUTO VEHICLES | ICLES             |                      |                    | <b>RANSIT</b> |                   |
| Screenline                    | Observed           | Survey             | Model  | Model / C                         | Observed | Survey             | Model        | Model / 0           | Observed           | Survey             | Model         | Model /           | Observed             | Survey             | Model         | Model /           |
|                               | Counts             | Assigned           |        |                                   | ~        | Assigned           |              |                     | Counts             | Assigned           |               | Counts            |                      | Assigned           |               | Counts            |
| Ottawa River (LN2,3,4)        | 9,212              | 7,097              | 12,223 | 1.33                              | 7,344    | 5,141              | 9,954        | 1.36                | 5,596              | 4,376              | 7,761         | 1.39              | 1,868                | 1,956              | 2,269         | 1.21              |
| Rideau River (LN19,20,32,33)  | 22,151             | 19,825             | 26,876 | 1.21                              | 19,662   | 17,639             | 23,722       | 1.21                | 14,774             | 14,655             | 18,464        | 1.25              | 2,489                | 2,186              | 3,154         | 1.27              |
| CPR (LN27, 28, 29)            |                    | 12,543             | 14,083 | 1.13                              | 10,422   | 10,905             | 12,347       | 1.18                | 8,294              | 9,019              | 9,656         | 1.16              | 2,045                | 1,638              | 1,736         | 0.85              |
| Ottawa Central Area (LN35-38) |                    | 16,024             | 23,552 | 1.21                              | 13,921   | 10,162             | 15,229       | 1.09                | 10,338             | 8,217              | 11,730        | 1.13              | 5,596                | 5,862              | 8,323         | 1.49              |
| Rideau Canal (LN34, 39)       | 20,575             | 18,267             | 24,298 | 1.18                              | 15,562   | 14,075             | 19,443       | 1.25                | 11,893             | 11,841             | 14,980        | 1.26              | 5,013                | 4,192              | 4,855         | 0.97              |
| Fallowfield (LN9, 43)         | 3,312              | 2,036              | 6,188  | 1.87                              | 3,242    | 1,971              | 5,727        | 1.77                | 2,448              | 1,640              | 4,454         | 1.82              | 70                   | 65                 | 461           | 6.59              |
| Eagleson (LN10)               | 4,803              | 5,074              | 7,658  | 1.55                              | 4,643    | 4,902              | 6,993        | 1.51                | 3,834              | 4,166              | 5,545         | 1.45              | 160                  | 172                | 665           | 4.16              |
| Green Creek (LN16)            | 3,805              | 3,501              | 5,973  | 1.57                              | 3,551    | 3,296              | 5,259        | 1.48                | 2,609              | 2,567              | 4,122         | 1.58              | 254                  | 205                | 714           | 2.81              |
| CNR West / Acres (LN11,12)    | 13,180             | 10,498             | 16,782 | 1.27                              | 12,510   | 9,914              | 15,532       | 1.24                | 9,830              | 8,478              | 12,191        | 1.24              | 670                  | 584                | 1,250         | 1.87              |
| CNR East (LN13,14,15)         | 8,442              | 6,235              | 11,140 | 1.32                              | 8,016    | 6,082              | 10,225       | 1.28                | 6,570              | 5,076              | 8,011         | 1.22              | 426                  | 153                | 915           | 2.15              |
| Western Parkway (LN24,25)     | 11,548             | 10,703             | 11,311 | 0.98                              | 10,596   | 9,831              | 10,279       | 0.97                | 8,246              | 8,199              | 8,076         | 0.98              | 952                  | 872                | 1,032         | 1.08              |
| Leitrim / Ramsayville (LN7,8) | 3,028              | 1,924              | 4,639  | 1.53                              | 3,017    | 1,907              | 4,447        | 1.47                | 2,180              | 1,609              | 3,524         | 1.62              | 11                   | 17                 | 192           | 17.45             |
| Ile de Hull (LN60)            | 7,236              | 6,796              | 9,034  | 1.25                              | 6,486    | 6,298              | 8,293        | 1.28                | 5,166              | 5,211              | 6,390         | 1.24              | 750                  | 498                | 741           | 0.99              |
| Boul. Gamelin (LN 61)         | 7,580              | 4,095              | 5,748  | 0.76                              | 6,800    | 3,695              | 5,316        | 0.78                | 5,310              | 3,068              | 4,091         | 0.77              | 780                  | 400                | 432           | 0.55              |
| Ch. de la Montagne (LN62)     | 2,280              | 1,175              | 2,356  | 1.03                              | 1,960    | 1,113              | 2,052        | 1.05                | 1,537              | 842                | 1,585         | 1.03              | 320                  | 62                 | 304           | 0.95              |
| Deschenes (LN63)              | 1,758              | 1,115              | 3,915  | 2.23                              | 1,732    | 1,096              | 3,638        | 2.10                | 1,343              | 879                | 2,838         | 2.11              | 26                   | 19                 | 277           | 10.65             |
| Q64                           | 986                | 576                | 1,243  | 1.26                              | 941      | 551                | 1,168        | 1.24                | 742                | 492                | 914           | 1.23              | 45                   | 25                 | 75            | 1.67              |
| Q65                           | 4,727              | 3,265              | 9,135  | 1.93                              | 4,547    | 3,072              | 8,306        | 1.83                | 3,456              | 2,554              | 6,459         | 1.87              | 180                  | 193                | 829           | 4.61              |
| Q66                           | 1,239              | 908                | 1,880  | 1.52                              | 1,239    | 908                | 1,835        | 1.48                | 870                | 740                | 1,452         | 1.67              | 0                    | •                  | 45            |                   |
| Montee Paiement (LN67)        | 5,311              | 2,404              | 3,794  | 0.71                              | 5,236    | 2,343              | 3,236        | 0.62                | 3,777              | 1,913              | 2,495         | 0.66              | 75                   | 61                 | 558           | 7.44              |
| Q68                           | 2,374              | 1,864              | 4,007  | 1.69                              | 2,294    | 1,847              | 3,709        | 1.62                | 1,657              | 1,414              | 2,911         | 1.76              | 80                   | 17                 | 298           | 3.73              |

| Exhibit 7.9 - 2021 Demand, MTP Model For | Demano  | i, MTP Mode      | Forecast (O  | ecast (Old Model) | (            |              |                                        |          |                     |      |
|------------------------------------------|---------|------------------|--------------|-------------------|--------------|--------------|----------------------------------------|----------|---------------------|------|
|                                          |         | Simulated Demand | and          |                   |              | Revised Der  | Revised Demand and Screenline Capacity | Capacity |                     | _    |
| Screenline                               | Transit | Auto Persons     | Auto Vehicle | Transit           | Auto Persons | Auto Vehicle | Transit Mode Split                     | PCU      | Capacity- (PCU) V/C | V/C  |
| Interprovincial                          | 7,699   | 16,249           | 13,079       | 7,172             | 15,818       | 11,631       | 31%                                    | 13,376   | 15,036              | 0.89 |
| Rideau South                             | 1,455   | 9,168            | 7,465        | 2,168             | 8,031        | 6,084        | 21%                                    | 6,996    | 7,135               | 0.98 |
| Manotick                                 | 230     | 2,030            | 1,600        | 325               | 1,845        | 1,368        | 15%                                    | 1,573    | 2,982               | 0.53 |
| Rideau-Manotick                          | 1,685   | 11,198           | 9,065        | 1,899             | 10,468       | 7,931        | 15%                                    | 9,120    | 10,117              | 0.90 |
| Leitrim                                  | 526     | 9,216            | 7,398        | 1,438             | 7,914        | 6,135        | 15%                                    | 7,055    | 8,167               | 0.86 |
| Eagleson                                 | 4,455   | 14,754           | 12,251       | 4,812             | 14,012       | 11,171       | 26%                                    | 12,847   | 14,464              | 0.89 |
| CNR_West                                 | 4,520   | 15,642           | 12,692       | 4,986             | 14,369       | 10,886       | 26%                                    | 12,519   | 13,905              | 0.90 |
| CNR_East                                 | 3,131   | 11,354           | 9,190        | 3,544             | 10,362       | 7,791        | 25%                                    | 8,960    | 10,999              | 0.81 |
| Russell-417                              | 1,011   | 5,628            | 4,897        | 970               | 5,228        | 4,549        | 16%                                    | 5,231    | 6,998               | 0.75 |
| Greens_Creek                             | 4,841   | 15,653           | 12,884       | 6,101             | 13,570       | 10,016       | 31%                                    | 11,518   | 12,553              | 0.92 |
| Rideau North                             | 1,921   | 8,006            | 6,381        | 2,578             | 6,952        | 5,227        | 27%                                    | 6,011    | 6,500               | 0.92 |
| Rideau Cen-Qway                          | 8,164   | 19,032           | 15,404       | 10,736            | 15,372       | 11,735       | 41%                                    | 13,495   | 16,769              | 0.80 |
| CPR Line                                 | 8,000   | 19,609           | 15,714       | 7,615             | 15,822       | 11,896       | 32%                                    | 13,680   | 16,079              | 0.85 |
| Bilberry Creek                           | 2,764   | 12,108           | 9,960        | 3,332             | 10,945       | 8,383        | 23%                                    | 9,640    | 10,637              | 0.91 |
| Fallowfield                              | 3,452   | 14,049           | 11,437       | 4,232             | 12,569       | 9,975        | 25%                                    | 11,471   | 13,036              | 0.88 |
| 2021 Demand, New TRANS Model             | ew TRAN | S Model          |              |                   |              |              |                                        |          |                     |      |
|                                          |         | Simulated Demand | and          |                   |              | Revised Der  | Revised Demand and Screenline Capacity | Capacity |                     |      |
| Screenline                               | Transit | Auto Persons     | Auto Vehicle | Transit           | Auto Persons | Auto Vehicle | Transit Mode Split                     | PCU      | Capacity- (PCU) V/C | V/C  |
| Interprovincial                          | 4,545   | 14,844           | 11,572       | 4,234             | 14,450       | 10,291       | 23%                                    | 11,834   | 15,036              | 0.79 |
| Rideau South                             | 748     | 7,676            | 5,081        | 1,115             | 6,724        | 4,141        | 14%                                    | 4,762    | 7,135               | 0.67 |
| Manotick                                 | 217     | 2,437            | 1,909        | 307               | 2,215        | 1,632        | 12%                                    | 1,877    | 2,982               | 0.63 |
| Rideau-Manotick                          | 965     | 10,113           | 6,990        | 1,088             | 9,454        | 6,116        | 10%                                    | 7,033    | 10,117              | 0.70 |
| Leitrim                                  | 620     | 7,317            | 5,789        | 1,695             | 6,283        | 4,801        | 21%                                    | 5,521    | 8,167               | 0.68 |
| Eagleson                                 | 2,355   | 11,038           | 8,758        | 2,544             | 10,483       | 7,986        | 20%                                    | 9,184    | 14,464              | 0.63 |
| CNR_West                                 | 2,772   | 12,654           | 9,918        | 3,058             | 11,624       | 8,507        | 21%                                    | 9,783    | 13,905              | 0.70 |
| CNR_East                                 | 2,765   | 9,858            | 7,659        | 3,130             | 8,997        | 6,493        | 26%                                    | 7,467    | 10,999              | 0.68 |
| Russell-417                              | 0       | 5,450            | 4,360        | 0                 | 5,063        | 4,050        | %0                                     | 4,658    | 6,998               | 0.67 |
| Greens_Creek                             | 3,841   | 13,349           | 10,511       | 4,841             | 11,573       | 8,171        | 29%                                    | 9,397    | 12,553              | 0.75 |
| Rideau North                             | 2,264   | 4,888            | 3,757        | 3,038             | 4,244        | 3,078        | 42%                                    | 3,539    | 6,500               | 0.54 |
| Rideau Cen-Qway                          | 8,239   | 18,644           | 14,543       | 10,835            | 15,059       | 11,079       | 42%                                    | 12,741   | 16,769              | 0.76 |
| CPR Line                                 | 8,584   | 17,641           | 13,714       | 8,171             | 14,234       | 10,382       | 36%                                    | 11,939   | 16,079              | 0.74 |
| Bilberry Creek                           | 2,098   | 9,433            | 7,465        | 2,529             | 8,527        | 6,283        | 23%                                    | 7,225    | 10,637              | 0.68 |
| Fallowfield                              | 2,126   | 10,544           | 8,315        | 2,606             | 9,433        | 7,252        | 22%                                    | 8,340    | 13,036              | 0.64 |

Exhibit 7.9 - 2021 Demand Analysis : Old vs New TRANS Model

## 8. FURTHER RESEARCH INTO MODEL DEVELOPMENT

From the model re-calibration project, the following areas were identified where further study could be directed to enhance the TRANS model.

There is a problem with the quality of the GLA land use estimates for 1995. The data is dated and primarily accounts for retail space at larger shopping centers. The data excludes a significant amount of strip development along major roads as Merivale Road and Innes Road. The data excludes stand alone facilities as super stores which are becoming important retail centers more so now than in the past. It is believed that the problem with this variable was a key factor in the limited success of the trip generation and trip distribution of retail related trips.

Further work is required in quantifying total, retail and non-retail employment. The model was developed by estimating non-retail employment for the work trip generation equations based on the ratio of 1986 total employment to retail employment.

The trip distribution model uses four functions that places different travel disutility between travel across the Ottawa River as well as travel within Quebec and Ontario. This approach provided the most appropriate fit to the 1995 data. No attempt was made to develop separate trip generation and distribution functions for rural versus urban. Some of the rural zones in Quebec have a significant population and employment opportunities which may tend to distort the new model since these zones are large and tend to be located far from the center of Hull. Hull is a smaller urban area than Ottawa and does not have the draw that Ottawa has on it's rural areas. Hull rural areas may be more independent implying that separate models may be appropriate to overcome this problem.

From the onset of the modal split model development, it was considered desirable to have two auto modes, single occupant vehicle and shared ride as well as transit. It was found that the model could not be developed in this manner since it was not possible to distinguish between cost and travel time of the auto modes the way the database was developed. The database was developed without taking into account linked trips. An example of a linked trip is an auto driver leaving work to pick up a passenger and then continuing home. In the current database, the auto driver makes two trips, a work-to-other trip (serve passenger) and then an other-to-home trip. If the trips were linked, it would be recorded as a work-to-home trip. It would also be able to compare the trip time and cost this person incurs as compared with the passenger. If the database is rebuilt in this manner, it may be possible to develop the two auto modes for the work trip. This would increase the amount of work trips and decrease trips in the other trip categories. New trip generation, distribution as well as modal split models would have to be developed.

It may be useful to include walk and bike modes in the model. Recent work was done in conjunction with Carleton University into the development of logit models for these modes based on the PM peak period. If this were done it would be necessary to develop new trip generation,

trip distribution and model split models. The model would likely be based on the PM peak period and then factored to the peak hour.

The new 1995 network developed as outlined in the report could be further refined in the CUO network, particularly in the Hull area. A detailed review is recommended to verify if additional turn penalties should be coded into the network.

It is recommended that traffic counts be carried out at major roadways feeding traffic into the National Capital Region. This data will be required to verify external travel demand used in the model and to obtain appropriate trends in external traffic long term growth.

A study should be carried out to determine the need to have special trip generators for the Mac Donald Cartier Airport, the CN train station and any other unique land use facilities where travel demand to and from the sites was not captured to the full extent using the 95 OD Survey.

For the 2021 network, it will be necessary to review the network in the area around the bridgeheads across the Ottawa River and the Rideau Canal. The new network does not take into account the new HOV lane on Portage Bridge, changes to the operation of MacKenzie King Bridge and traffic operational changes around the Rideau Centre and Ottawa University area.

## **APPENDIX 1**

List of EMME2 Road Improvement Tags and Major Transit Route Changes

|--|

| SOUTHEAST: Gloucester-Letrium,       | Emme2 Tag                         | Stage            | Length | Number of Lanes |      |               |             |
|--------------------------------------|-----------------------------------|------------------|--------|-----------------|------|---------------|-------------|
| Facility                             | Limits                            |                  |        | (km)            | 1995 | 2021          | Beyond 2021 |
| RDS-Roads                            |                                   |                  |        |                 |      |               |             |
| Airport Parkway                      | Brookfield-Airport                | 59211            | 5-10   | 6.4             | 2    | 4             |             |
| Armstrong/Strandherd                 | Bridge over Rideau River          | tagged in Nep. S |        | na              | 0    | 4 auto, 2 bus |             |
| Armstrong                            | Rideau River-River Rd             | 72110            |        | 0.4             | 0    | 4             |             |
| Armstrong                            | River Rd-Bowesville               | 61211            |        | 5.9             | 2    | 4             |             |
| Armstrong                            | Bowesville-Hwy 31                 | 61311            |        | 4.3             | 0/2  | 2             |             |
| Bowesville                           | Armstrong-Leitrim                 | 56110            |        | 2.4             | 0/2  | 2             |             |
| Bowesville                           | Leitrim-Airport Parkway           | 56110            | 5-10   | 2.1             | 0/2  | 2             |             |
| Conroy                               | Bank-Hunt Club                    | 57211            |        | 3.4             | 2    | 4             |             |
| Conroy                               | Hunt Club-Walkley                 | 57211            | 5-10   | 2.4             | 2    | 4             |             |
| Highway 31                           | Mitch Owens-Leitrim               | 54211            |        | 6               | 2    | 4/5           |             |
| Hunt Club                            | Hawthorne-Hwy 417                 | 22120            |        | 1.3             | 0    | 4             |             |
| Limebank                             | Armstrong-Leitrim                 | 69211            |        | 2               | 2    | 4             |             |
| Limebank                             | Leitrim-River Rd                  | 69211            |        | 2.7             | 2    | 4             |             |
| River Road                           | Limebank-Hunt Club                | 91212            | 5-10   | 1.6             | 2    | 4             |             |
|                                      |                                   |                  |        | 40.9            |      |               |             |
| RDS-Transit                          |                                   |                  |        |                 |      |               |             |
| Airport Parkway                      | Brookfield-Airport (BOL)          |                  |        | 6.4             | 4    | 6             |             |
| Park&Ride                            | @Leitrum                          |                  | 5-10   | na              | na   | na            |             |
|                                      |                                   |                  |        | 6.4             |      |               |             |
| Other Future Roads                   |                                   |                  |        |                 |      |               |             |
| Fallowfield Bridge                   | Fallowfield-Leitrim               | tagged in Nep. S |        | 2.1             | 0    | 0             | 4           |
| Hunt Club Extension                  | Hwy 417-Baseline Rd               | 22220            |        | 0.4             | 0.0  | 0             | 4           |
| Outer Trans. Corridor - North Option | Hazeldean-Russell/Rockdale        | tagged in Nep. S |        | 55.1            | 0    | 0             | 2           |
| Outer Trans. Corridor - South Option | Hazeldean-Russell/Rockdale        | tagged in Nep. S |        | 62.3            | 0    | 0             | 2           |
|                                      |                                   |                  |        | 119.9           |      |               |             |
| Other Future Transit                 |                                   |                  |        |                 |      |               |             |
| Transitway                           | Southeast Transitway-Rideau River |                  |        |                 |      |               |             |

| SOUTHWEST - Nepean                   |                            | Emme2 Tag | Stage | Length | Number of Lanes |               |             |
|--------------------------------------|----------------------------|-----------|-------|--------|-----------------|---------------|-------------|
| Facility                             | Limits                     |           | -     | (km)   | 1995            | 2021          | Beyond 2021 |
| RDS-Roads                            |                            |           |       |        |                 |               |             |
| Fallowfield                          | Hwy 416-Prince of Wales    | 1211      |       | 8.1    | 2               | 4             |             |
| Greenbank                            | Strandherd-Alvern          | 3211      |       | 2.1    | 2               | 4             |             |
| Greenbank                            | Fallowfield-Hunt Club      | 2211      |       | 4.2    | 2               | 4             |             |
| Highway 416                          | Hwy 16-Queensway           | 80110     |       | 19.0   | 4               | 4             |             |
| Jockvale                             | Hwy 16-Cambrian            | 103300    |       | 1.7    | 2               | 4             |             |
| Jockvale                             | Cambrian-Strandherd        | 103200    |       | 1.7    | 0               | 2             |             |
| Prince of Wales                      | Woodroffe-Merivale         | 46211     |       | 3.6    | 2               | 4             |             |
| Prince of Wales                      | Merivale-Fisher            | 46211     |       | 6.5    | 2               | 4             |             |
| Strandherd                           | Fallowfield-Greenbank      | 71110     |       | 3.4    | 0               | 4             |             |
| Strandherd                           | Greenbank-Woodroffe        | 70211     |       | 2.3    | 2               | 4             |             |
| Strandherd                           | Woodroofe-Rideau River     | 72110     |       | 1.4    | 0               | 4             |             |
| Strandherd/Armstrong                 | Bridge over Rideau River   | 72110     |       | 0.4    | 0               | 4 auto, 2 bus |             |
| Woodroffe                            | Strandherd-Fallowfield     | 6211      |       | 3.6    | 2/4             | 4             |             |
| Woodroffe                            | Fallowfield-Slack          | 6211      |       | 2.5    | 2               | 4             |             |
| Woodroffe                            | Sportsplex-Baseline        | 104200    |       | 2.5    | 4/5             | 6             |             |
| Woodroffe                            | Hwy 16-Bren Maur           | 109200    |       | 0.4    | 2               | 0             |             |
|                                      |                            |           |       | 63.5   |                 |               |             |
| RDS-Transit                          |                            |           |       |        |                 |               |             |
| Park&Ride                            | @Fallowfield               |           | 0-5   | na     | na              | na            |             |
| Park&Ride                            | @South of Strandherd       |           |       | na     | na              | na            |             |
| Transitway                           | Baseline-CNR Line          |           | 5-10  | 1.1    | 0               | 2             |             |
| Transitway                           | CNR Line-Sportsplex        |           |       | 1.0    | 0               | 2             |             |
| Transitway                           | Sportsplex-Fallowfield     |           |       | 3.0    | 0               | 2             |             |
| Transitway                           | Fallowfield-Strandherd     |           | 5-10  | 3.8    | 0               | 2             |             |
| Woodroffe BOL                        | CNR Line-Sportsplex        |           | 5-10  | 1.0    | 4               | 6             |             |
| Woodroffe BOL                        | Slack-Fallowfield          |           | 5-10  | 2.5    | 2               | 4             |             |
|                                      |                            |           |       | 12.4   |                 |               |             |
| Other Future Roads                   |                            |           |       |        |                 |               |             |
| Fallowfield Bridge                   | Fallowfield-Leitrim        | 4120      |       | 2.1    | 0               | 0             | 4           |
| Merivale                             | Hwy 16-Amberwood           | 8211      |       | 2.4    | 2               | 2             | 4           |
| Outer Trans. Corridor - North Option | Hazeldean-Russell/Rockdale | 78120     |       | 55.1   | 0               | 0             | 2           |
| Outer Trans. Corridor - South Option | Hazeldean-Russell/Rockdale | 79110     |       | 62.3   | 0               | 0             | 2           |
|                                      |                            |           |       | 62.3   |                 | 1             | 1           |
| Other Future Transit                 |                            |           |       |        |                 | 1             |             |

| EAST - Gloucester, Cumberland |                                            | Emme2 Tag | Stage | Length | Number of Lanes |      |             |
|-------------------------------|--------------------------------------------|-----------|-------|--------|-----------------|------|-------------|
| Facility                      | Limits                                     |           |       | (km)   | 1995            | 2021 | Beyond 2021 |
| RDS-Roads                     |                                            |           |       |        |                 |      |             |
| BBHBP                         | Innes/Walkley Connection to Navan          | 16211     |       | 2.2    | 4               | 6    |             |
| BBHBP Extension               | Navan-Trim                                 | 18110     |       | 6.9    | 0               | 2    |             |
| Highway 417/17                | Cyrville Rd-Montreal                       | 81211     |       | 5.8    | 4               | 5    |             |
| Innes                         | Hwy 417-Blair (for EA Innes Rd West P-53)  | 16211     |       | 1.3    | 4               | 6    |             |
| Innes                         | Orleans-Jeanne D'Arc                       | 15211     | 5-10  | 2.5    | 2               | 4    |             |
| Innes                         | Jeanne D'Arc-Tenth Line                    | 15211     | 5-10  | 1.4    | 2               | 4    |             |
| Innes                         | Tenth Line-Trim                            | 15211     |       | 3.0    | 2               | 4    |             |
| Mer Bleue                     | Innes-BBHBP Ext.                           | 36211     |       | 1.0    | 2               | 4    |             |
| Navan                         | BBHBP-BBHBP Ext.                           | 13211     |       | 1.5    | 2               | 4    |             |
| St Joseph                     | Tenth Line-Trim                            | 23211     |       | 1.7    | 2               | 4    |             |
| Trim                          | Innes-Hwy 17                               | 38211     |       | 3.7    | 2               | 4    |             |
| Walkley                       | Hwy 417-Base Line                          | 50110     |       | 0.5    | 2               | 4    |             |
| Walkley                       | Base Line-BBHBP                            | 48110     |       | 2.0    | 0               | 2    |             |
|                               |                                            |           |       | 33.5   |                 |      |             |
| RDS-Transit                   |                                            |           |       |        |                 |      |             |
| Blair BOL                     | Transitway-Innes                           |           |       | 1.7    | 2               | 4    |             |
| Highway 17 BOL (EB)           | Blair Station-Place d'Orleans              |           | 0-5   | 9.0    | 5               | 6    |             |
| Park&Ride                     | @Innes                                     |           |       | na     | na              | na   |             |
| Park&Ride                     | @Navan                                     |           |       | na     | na              | na   |             |
| Park&Ride                     | Hwy 17@Trim                                |           |       | na     | na              | na   |             |
| Transitway                    | Hurdman-Hwy 417                            |           |       | 5.0    | 0               | 2    |             |
| Transitway                    | Hwy 417-Page                               |           |       | 6.8    | 0               | 2    |             |
| Transitway                    | Page-Trim                                  |           |       | 6.2    | 0               | 2    |             |
|                               |                                            |           |       | 28.7   |                 |      |             |
| Other Future Roads            |                                            |           |       |        |                 |      |             |
| Champlain Road Extension      | Rockcliffe Parkway Extension-Champlain     | 27110     |       | 0.6    | 0               | 0    | 2           |
| Highway 17                    | Montreal-Trim                              | 81311     |       | 9.3    | 4               | 4    | 6           |
| Innes                         | Trim-Frank Kenny                           | 15311     |       | 1.0    | 2               | 2    | 4           |
| Orleans Blvd Extension        | Navan-Innes                                | 37110     |       | 1.2    | 0               | 0    | 4           |
| Ottawa River Bridge           | @Trim Road                                 | 88110     |       | 2.9    | 0               | 0    | 4           |
| Rockcliffe Parkway Extension  | Champlain-Tenth Line Rd                    | 32110     |       | 1.5    | 0               | 0    | 2           |
| Rockcliffe Parkway Extension  | Rockcliffe Pkwy near Green Creek-Champlain | 75110     |       | 4.5    | 0               | 0    | 2           |
|                               |                                            |           |       | 6.0    |                 |      |             |
| Other Future Transit          | None                                       |           |       |        |                 |      |             |

| QUEBEC                    | Emme2 Tag                                  | Stage | Length | Number of Lanes |      |      |             |
|---------------------------|--------------------------------------------|-------|--------|-----------------|------|------|-------------|
| Facility Limits           |                                            | _     | -      | (km)            | 1995 | 2021 | Beyond 2021 |
| RDS-Roads                 |                                            |       |        |                 |      |      |             |
| Autoroute Deschenes (NB)  | McConnell Laramee-Autoroute de l'Outaouais | 95100 |        | 17.0            | 0    | 2    |             |
| Autoroute Deschenes (SB)  | McConnell Laramee-Autoroute de l'Outaouais | 95100 |        | 17.2            | 0    | 2    |             |
| Autoroute Deschenes Ramps | @Pink                                      | 95100 |        | 0.4             | 0    | 2    |             |
| Autoroute Deschenes Ramps | @de la Gatineau                            | 95100 |        | 0.1             | 0    | 2    |             |
| Autoroute Deschenes Ramps | @Autoroute 105                             | 95100 |        | 0.2             | 0    | 2    |             |
| Autoroute Deschenes Ramps | @des Erables                               | 95100 |        | 0.3             | 0    | 2    |             |
| Autoroute Deschenes Ramps | @Autoroute de l'Outaouais                  | 95100 |        | 0.2             | 0    | 1    |             |
| Aylmer                    | de la Colline-Montcalm                     | 95400 |        | 9.2             | 2    | 4    |             |
| McConnell-Laramee         | Earley-Klock/Broad                         | 95700 |        | 1.4             | 2    | 4    |             |
| McConnell-Laramee (EB)    | de la Montagne-St. Joseph                  | 95200 |        | 2.6             | 0    | 2    |             |
| McConnell-Laramee (WB)    | de la Montagne-St. Joseph                  | 95200 |        | 2.4             | 0    | 2    |             |
| McConnell-Laramee Ramps   | @St. Joseph                                | 95200 |        | 0.5             | 0    | 1    |             |
| Pink                      | Terry Fox-de la Montagne                   | 95500 |        | 9.8             | 2    | 4    |             |
| Verendrye Est             | Labrosse-Lorrain                           | 95000 |        | 2.7             | 0    | 4    |             |
| Verendrye Ouest           | Greber-Montee Paiement                     | 95600 |        | 2.2             | 2    | 4    |             |
| Verendrye Ouest           | Principale-Cannes                          | 95300 |        | 1.9             | 0    | 2    |             |
|                           |                                            |       |        | 68.0            |      |      |             |

| INSIDE GREENBELT                  |                                             | Emme2 Tag    | Stage | Length |      | Number of Lan | es          |
|-----------------------------------|---------------------------------------------|--------------|-------|--------|------|---------------|-------------|
| Facility                          | Limits                                      | Emme Ing     | Stuge | (km)   | 1995 | 2021          | Beyond 2021 |
| RDS-Roads                         |                                             |              |       | ()     | 1770 | 2021          | 2021        |
| Airport Parkway Ramps             | @Hunt Club                                  | no penalty   | 0-5   | 1.0    | 0    | 1             |             |
| Airport Parkway Ramps             | @Walkley                                    | no penalty   | 0-5   | 1.0    | 0    | 1             |             |
| Albert                            | Booth-Empress                               | 106200       | 0-5   | 1.0    | 4    | 4 auto, 2 bus |             |
| Alta Vista Parkway                | Walkley-Nicholas                            | 60110        |       | 5.5    | 0    | 4 4 4 4       |             |
| Baseline                          | Richmond-Greenbank                          | 7211         |       | 2.3    | 2    | 4             | -           |
| Blair                             | Innes-Meadowbrook                           | 108200       |       | 1.2    | 2    | 4             |             |
| Bronson                           | G. Dunbar BrCanal                           | 52211        |       | 1.2    | 4    | 6             |             |
| Bronson                           | Laurier-Wellington                          | 53110        |       | 0.5    | 0    | 6             |             |
|                                   |                                             | 35211        |       | 0.3    | 2    | 4             |             |
| Coventry                          | Belfast-Approximately 100m E of St. Laurent | 58211        |       | 2.9    | 2    | 4             |             |
| Cyrville & Cummings<br>Hawthorne  | Innes-Ogilvie<br>Hunt Club-Russell          | 67211, 68110 | 0-5   | 2.9    | 2    | 4             |             |
|                                   |                                             | 21211, 68110 | 0-5   |        | 4    |               |             |
| Hunt Club                         | Hwy 416-CNR Line                            |              |       | 8.1    | 4    | 6             |             |
| Hunt Club                         | CNR Line-Prince of Wales                    | 21211        |       | 0.6    |      | 6             |             |
| Hunt Club                         | Prince of Wales-Bowesville                  | 21211        |       | 1.1    | 4    | 6             |             |
| Hunt Club                         | Bowesville-Airport Parkway                  | 20212        |       | 2.7    | 4    | 6             |             |
| Hunt Club                         | Airport Parkway-Bank                        | 19211        |       | 0.9    | 4    | 6             |             |
| Innes                             | Hwy 417-Blair                               | 17211        |       | 1.5    | 4    | 6             |             |
| Merivale                          | Slack-Amberwood                             | 8311         |       | 1.0    | 2    | 4             |             |
| Queensway                         | Vanier-Pickering                            | 82211        |       | 0.5    | 6    | 8             |             |
| Queensway (EB)                    | St. Laurent-Hwy 417                         | 82211        |       | 1.1    | 3    | 4             | ļ           |
| River Road                        | McArthur-Montreal                           | not in model |       | 0.2    | 2    | 4             |             |
| Riverside                         | Hogs Back-Heron                             | 105200       |       | 0.5    | 4    | 6             |             |
| Various Cycling Facilities        | various                                     |              | 0-5   | var    | var  | var           |             |
| Various Cycling Facilities        | various                                     |              | 5-10  | var    | var  | var           |             |
| Various Cycling Facilities        | various                                     |              |       | var    | var  | var           |             |
| Walkley                           | Russell-Sheffield                           | 49211        |       | 0.7    | 2    | 4             |             |
|                                   |                                             |              |       | 34.9   |      |               | 1           |
| RDS Transit                       |                                             |              |       |        |      |               |             |
| Baseline BOL                      | Woodroffe-Prince of Wales                   | 107200       |       | 5.0    | 4    | 6             |             |
| Carling BOL                       | Western Pkwy-Woodroffe E                    |              |       | 1.1    | 4    | 6             |             |
| CBD Bypass BOL&TP                 | various                                     |              |       | ?      | var  | var           |             |
| CN Rail Corridor                  | SE Transitway-Train Station                 |              |       | ?      | na   | na            |             |
| CN Rail Corridor                  | Kanata North-SE Transitway                  |              |       | ?      | na   | na            |             |
| CP Ellwood Rail Sub               | Lebretton Flats-Billings Bridge (pilot)     |              | 5-10  | 7.5    | na   | na            |             |
| CP Ellwood Rail Sub               | Lebretton Flats-Billings Bridge             |              |       | 7.5    | na   | na            |             |
| E-W CNR Rail Corridor             | Carling-Russell                             | 89110        |       | 18.2   | na   | na            |             |
| Fisher BOL                        | Dynes-NCC Driveway                          | 0,110        |       | 2.6    | 2    | 4             |             |
| Heron BOL                         | Bronson-Bank                                |              |       | 1.2    | 4    | 6             |             |
| Transitway Station                | @McKenzie King Bridge                       |              | 0-5   | na     | na   | na            |             |
| Transitway Station                | @Lebreton                                   | 1            | 5-10  | na     | na   | na            | 1           |
| Various Transit Priority          | various                                     |              | 0-5   | var    | var  | var           |             |
| Various Transit Priority          | various                                     |              | 5-10  | var    | var  | var           |             |
| Walkley BOL                       | Russell-Heron                               | +            | 5-10  | 2.6    | 4    | 6             | ł           |
| Warkiey BOL                       | Kussen-1101011                              |              |       |        | +    | 0             |             |
|                                   |                                             | +            |       | 40.7   |      | +             | l           |
| Other Future Roads                |                                             | 11110        |       | 1.4    | ^    |               | <u> </u>    |
| Blair                             | Innes-Walkley Rd Ext.                       | 11110        |       | 1.4    | 0    | 0             | 2           |
| Blair Road Extension              | Rockcliffe Parkway-Blair                    | 12110        |       | 0.2    | 0    | 0             | 2           |
| Catherine Street Extension (WB)   | Booth-Champlain Arterial Ext.               | 87110        |       | 0.5    | 0    | 0             | 3           |
| Catherine Street Extension (WB)   | Elgin-Nicholas                              | 84120        |       | 1.1    | 0    | 0             | 3           |
| Chamberlain Street Extension (EB) | Booth-Champlain Arterial Ext.               | 86110        |       | 0.5    | 0    | 0             | 3           |
| Champlain Arterial Extension      | Ottawa River Parkway-Carling                | 65110        |       | 2.0    | 0    | 0             | 4           |
| Industrial Avenue Extension       | Riverside-Alta Vista Parkway                | 14120        |       | 0.9    | 0    | 0             | 4           |
| Kirkwood Extension                | Scott-Richmond                              | 44110        |       | 0.3    | 0    | 0             | 2           |
| Lees Avenue Extension (EB)        | Elgin-Main                                  | 85120        |       | 0.4    | 0    | 0             | 3           |
| Preston Street Extension          | Ottawa River Parkway-Scott                  | 47220        |       | 0.4    | 0    | 0             | 2           |
| Russell Road Extension            | Walkley-Russell                             | 64221        |       | 0.6    | 0    | 0             | 2           |
| Scott Street Extension            | Scott-Richmond                              | 30110        |       | 0.3    | 0    | 0             | 4           |
| Vanier Parkway Extension          | King Edward-Vanier Parkway                  | 9110         |       | 1.2    | 0    | 0             | 4           |
| tuner runnug Estension            |                                             |              |       |        |      |               |             |
|                                   |                                             |              |       | 9.6    |      |               |             |

| WEST - Kanata & Stittsville |                              | Emme2 Tag    | Stage | Length |             |               |             |  |
|-----------------------------|------------------------------|--------------|-------|--------|-------------|---------------|-------------|--|
| Facility                    | Limits                       |              |       | (km)   | 1995 2021 B |               | Beyond 2021 |  |
| RDS-Roads                   |                              |              |       |        |             |               |             |  |
| Campeau                     | Terry Fox-March              | 100200       |       | 2.7    | 2           | 4             |             |  |
| Carling                     | March-Herzberg               | 26211        | 5-10  | 1.4    | 2           | 4             |             |  |
| Carling                     | Herzberg-Moodie              | 26211        | 5-10  | 4.3    | 2           | 4             |             |  |
| Castlefrank                 | Bridge over Hwy 417          | 62110, 63211 |       | 1.0    | 0           | 6 (auto)      |             |  |
| Eagleson                    | Stonehaven-Hope Side         | 33211        |       | 2.1    | 2           | 4             |             |  |
| Hazeldean                   | Regional Rd 5-Terry Fox      | 24211        | 5-10  | 4.4    | 2           | 4             |             |  |
| Highway 417                 | Terry Fox-Hwy 416            | 83211        |       | 7.5    | 4           | 4 auto, 2 bus |             |  |
| Hope Side Road              | Eagleson-Richmond            | 93211        |       | 2.0    | 2           | 4             |             |  |
| Hope Side Road              | Moodie-Hwy 416 Corridor      | 55110        |       | 2.0    | 0           | 2             |             |  |
| Hope Side Road              | Richmond-Moodie              | 55110        |       | 2.0    | 0           | 2             |             |  |
| Hope Side Road              | Hwy 416 Corridor             | 92211        |       | 2.2    | 2           | 4             |             |  |
| Katimavik                   | Castlefrank-Eagleson         | 101200       |       | 1.4    | 2           | 4             |             |  |
| March                       | Solandt-Klondike             | 34311        | now   | 1.9    | 2           | 4             |             |  |
| March                       | Klondike-RR9                 | 34311        |       | 3.0    | 2           | 4             |             |  |
| March                       | Hertberg-Terry Fox           | 34211        |       | 3.3    | 4           | 6             |             |  |
| Moodie                      | Richmond-Moodie              | 102200       |       | 0.5    | 0           | 2             |             |  |
| Terry Fox                   | Campeau-Richardson Side Road | 40110        |       | 3.8    | 2           | 4             |             |  |
| Terry Fox                   | Eagleson-Winchester          | 43110        |       | 3.6    | 0           | 2             |             |  |
| Terry Fox                   | Eagleson-Hwy 417             | 41211, 42211 |       | 2.3    | 2           | 4             |             |  |
| Terry Fox                   | Campeau-Existing Terry Fox   | 40310        |       | 2.2    | 0           | 2             |             |  |
|                             |                              |              |       | 53.6   |             |               |             |  |
| RDS-Transit                 |                              |              |       |        |             |               |             |  |
| Highway 417 BOL             | Acres-Eagleson (WB)          |              |       | 6.5    | 4           | 6             |             |  |
| Park&Ride                   | @Kanata Town Centre          |              |       | na     | na          | na            |             |  |
| Park&Ride                   | @Carp                        |              |       | na     | na          | na            |             |  |
| Transitway                  | Woodroffe-Pinecrest          |              |       | 2      | 0           | 2             |             |  |
| Transitway                  | Pinecrest-Acres              |              | 0-5   | 2      | 0           | 2             |             |  |
| Transitway                  | Kanata Town Centre           |              |       | 2.5    | 0           | 2             |             |  |
| Transitway Station          | @Kanata Town Centre          |              |       | na     | na          | na            |             |  |
|                             |                              |              |       | 13.0   |             |               |             |  |
| Other Future Roads          |                              |              |       |        |             |               |             |  |
| Timm Drive                  | Moodie-Richmond              | 73120        |       | 1.7    | 0           | 0             | 2           |  |
|                             |                              |              |       | 1.7    |             |               |             |  |
| Other Future Transit        | None                         |              |       |        |             |               |             |  |

#### Major Transit Route Changes Between 1995 and 2021

|              | Route Additions                                                                                        |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Route Number | Description                                                                                            |  |  |  |  |  |  |  |
| 2s           | Downtown (Bank and Somerset) - Blair Station via Montreal Road                                         |  |  |  |  |  |  |  |
| 8n           | Heron Gate Mall - Hull via Alta Vista Drive / Transitway                                               |  |  |  |  |  |  |  |
| 8s           | Hull - Heron Gate Mall via Alta Vista Drive / Transitway                                               |  |  |  |  |  |  |  |
| 418          | South Keys Station - Kanata via Barhaven                                                               |  |  |  |  |  |  |  |
| 425          | Hurdman Station - Orleans South via Transitway / Innes Road / Blackburn Hamlet Bypass                  |  |  |  |  |  |  |  |
| 463          | Kanata - Lebreton Station via Queensway / Ottawa River Pkwy / Transitway                               |  |  |  |  |  |  |  |
| 47           | Lebreton - Gloucester (Conroy and Leitrim) via Transitway                                              |  |  |  |  |  |  |  |
| 495          | Kanata - Orleans Station via Queensway / Transitway / Innes Road / Blackburn Hamlet Bypass / Trim Roa  |  |  |  |  |  |  |  |
| 496          | Stittsville (Main Street) - Barhaven (Jockvale Road) via Fallowfield Road                              |  |  |  |  |  |  |  |
| 83           | Hull - Heron Gate Mall via Transitway / Walkley Road                                                   |  |  |  |  |  |  |  |
| 86e          | Lebreton - Southvale Crescent via Transitway / Industrial Avenue / Russell Road                        |  |  |  |  |  |  |  |
| 86w          | Hurdman Station - Baseline Station via Transitway / Fisher Avenue / Meadowlands Road                   |  |  |  |  |  |  |  |
| 94           | Hull - Airport via Transitway / Airport Parkway                                                        |  |  |  |  |  |  |  |
| 142          | Gloucester South, local route (Greenboro Station / Hwy 31 / Conroy Road)                               |  |  |  |  |  |  |  |
| 142d         | Gloucester South, local route (Greenboro Station / Hwy 31 / Conroy Road)                               |  |  |  |  |  |  |  |
| 146w         | Gloucester South, local route (Billings Bridge Station - Greenboro Station)                            |  |  |  |  |  |  |  |
| 156x         | Lincoln Fields - Britannia, local route                                                                |  |  |  |  |  |  |  |
| 174x         | Carlingwood Mall - Greenbank and Canfield Road via Woodroffe Avenue                                    |  |  |  |  |  |  |  |
| 178          | Nepean Centre, local loop along Woodroffe Avenue                                                       |  |  |  |  |  |  |  |
| 180          | Hawthorne Road (near Hunt Club Road) - Hurdman Station via Russell Road / Elmvale Mall / St. Laurent E |  |  |  |  |  |  |  |
| 182x         | Kanata - Shirleys Bay via March Road / Carling Avenue                                                  |  |  |  |  |  |  |  |
| 194          | Cite College - Hurdman Station via St. Laurent Blvd / Elmvale Mall / Transitway                        |  |  |  |  |  |  |  |
| 199x         | Blair Station - Hurdman Station via Industrial Avenue / Star Top Road / Cyrville Road / Blair Road     |  |  |  |  |  |  |  |
| 441          | Alta Vista Transitway along Leitrim Road between Conroy Road and Alert Road                            |  |  |  |  |  |  |  |
| 900          | Rapid Transit Line from Ottawa South (Leitrim Road) - Ottawa River (CP Alignment)                      |  |  |  |  |  |  |  |
| 902          | Rapid Transit Line from Ottawa - East Quebec                                                           |  |  |  |  |  |  |  |
| 910          | Rapid Transit Line from North Kanata - VIA Train Station (CN Alignment)                                |  |  |  |  |  |  |  |

| Cancelled | Poutos |
|-----------|--------|
| Cancelled | Routes |

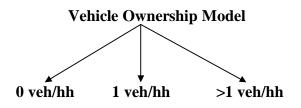
| Route Number | Description                                                                                          |
|--------------|------------------------------------------------------------------------------------------------------|
| 8            | Heron Gate Mall - Hull via Alta Vista Drive / Transitway                                             |
| 42           | Lebreton Station - Ottawa South (Hunt Club Road) via Transitway                                      |
| 95x          | Baseline Station - Blair Station via Transitway                                                      |
| 96           | Carlingwood Mall - Airport via Transitway                                                            |
| 112          | Billings Bridge Station - Hurdman Station via Walkley Road / St. Laurent Blvd / Transitway           |
| 112x         | Don Reid Drive - Hurdman Station via St. Laurent Blvd / Transitway                                   |
| 117          | St. Laurent Station - Billings Bridge Station via Transitway / Walkley Road / St. Laurent Blvd       |
| 142n         | Gloucester South, local route (starting and ending at Greenboro Station)                             |
| 142s         | Gloucester South, local route (starting and ending at Greenboro Station)                             |
| 146          | Greenboro Station - Billings Bridge Station, local route                                             |
| 177          | Baseline Station - Nepean South, along Woodroffe Avenue                                              |
| 189          | Lebreton Station - Riverside Drive via Bronson Avenue                                                |
| 192          | Elmvale Mall - Hurdman Station via Sheffield Road / Transitway                                       |
| 192x         | Hawthorne Road - Hurdman Station via Sheffield Road / Elmvale Mall / Transitway                      |
| 193          | Orleans, local route (along Queensway and St. Joseph Blvd)                                           |
| 196          | Airport - Greenboro Station via Airport Parkway / Transitway                                         |
| 197          | Local Route between Bank Street and Riverside Drive (starting and ending at Billings Bridge Station) |

Note: These routes do not include routes with minor changes between 1995 and 2021 (virtually all routes are affected by new bus lanes, transitway extensions along existing roads, etc.)

# **APPENDIX 2**

Logit Model for Estimating Zonal Auto Ownership

### **Development of Vehicle per Household Models**


### 1. Overview

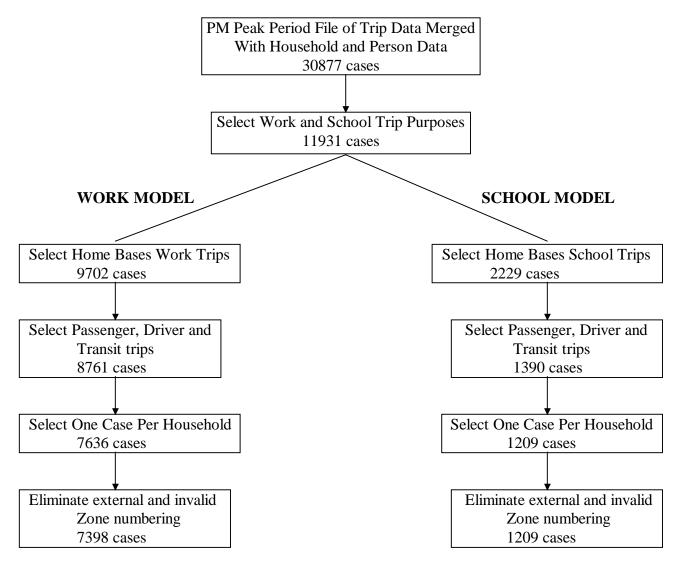
The purpose of this study was to develop models for estimating future vehicle ownership by traffic zone as input into the TRANS modal split models. Logit models were selected for this modeling task since they can include explanatory variables indicating the characteristics of the land use such as household size, number of workers in the household and employment density that can influence zonal vehicle ownership. By including these type of variables in the model, future vehicle ownership will be sensitive to changing demographic patterns.

Two models were developed, one for estimating vehicle ownership for persons making work to home trips and another model for persons making school to home trips. Separate models were required since each model takes into account a unique group of trip makers in the traffic zone. Only those persons making the particular trip purpose by auto and transit were included in the database from which the models were developed. This was necessary to ensure the model was built using the sample of persons in households making the trips under study.

Once the models were developed, they were aggregated to the zonal level and used to estimate the percentage of households in a traffic zone containing no vehicles, one vehicle or more than one vehicle. This information was then fed into the modal split models to determine modal split for work and school trips.

#### Exhibit 1.1 Logit Model for Vehicle Ownership




## 2. Database Preparation

The 1995 Origin Destination Survey was the principal data source for developing the models. In the survey, data was collected at the household, person and trip level, see Exhibit 2.1. **Exhibit 2.1 1995 OD Survey Data** 

| Household Data   | Person Data                | Trip Data                |
|------------------|----------------------------|--------------------------|
| Location         | Gender                     | Desination location      |
| Dwelling type    | Age                        | Trip purpose             |
| Number of people | Driver's license           | Start time               |
| Number of autos  | Work                       | Mode of travel           |
|                  | Place of employment        | Number of auto occupants |
|                  | Pay to park at work        | Transit routes used      |
|                  | Student status             |                          |
|                  | School location            |                          |
|                  | Start location of 1st trip |                          |

The model was built by selecting from the OD survey persons making a trip in the pm peak period (3:30- 5:59pm). The peak period was used for building the model rather than the peak hour in order to obtain an adequate sample of individuals for building the model. The file was then filtered by removing non - work and non - school trips and trips made by modes other than auto and transit. Each of the samples was further filtered such that a household was only represented once in the work model file and in the school model file. Invalid and external zones were then removed from the database.





### 3. Model Calibration

A literature search was carried out to gain insight into the variables to include in the model equations. Alternative methods of representing variables (e.g. log of a variable) were also investigated. From this investigation, area types as UTA, province and CBD were included in the model as well as trip origin employment density, number of persons employed per household, and destination population density. In addition, several age co-horts are included in the models.

Variables such as number of persons in a household, number of persons employed in a household, and area type influence the number of vehicles owned in a household. If there are more people employed in the household then there is a more likely chance of having more vehicles in the household because the income in the household may be higher. On the contrary, if the family income is lower due to few or no people employed in the household then there is a more likely chance of having one or no vehicle owned in the household. If that is the case then some members of the household will result to using the transit system.

The following list gives the variables used in both models and their definitions:

- Num\_pers (number of persons per household): Defined by the 1995 OD Survey.
- Or\_e\_den (the origin zone employment density): The total employment from the OD Survey over the zone area.
- Uta\_flag (urban transit area flag): A dummy variable: 1 if a zone is within the urban transit area, else it is 0. See map.
- Cbd\_flag (central business district flag): A dummy variable: 1 if a zone is within the central business district (consisting of traffic zones 1-25, 153, 155, 201, 254, 255), else it is 0.
- No\_15\_24: The number of persons aged 15-24 divided by the number of persons per household.
- Num\_emp: The number of persons employed in a household.
- De\_p\_den (the destination zone population density): The total population from the OD Survey over the zone area.
- Province (province flag): Quebec is labeled as 1 and Ontario is 0.
- Age5\_14: The number of persons in a household between the ages 5 and 14.
- Age15\_24: The number of persons in a household between the ages of 15 and 24.

• Age25\_44: The number of persons in a household between the ages of 25 and 44.

### 3.1 Work Trip Model

The most suitable model for simulating vehicle ownership for persons making work to home trips is illustrated in Exhibit 3.1. Note that since the model contains only multinomial variables, the 0 vehicle per household model is normalized to zero. When this 0 is placed into the logit exponential probability function, the appropriate probability of 0 vehicles per household is obtained.

| Ext                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exhibit 3.1 Work Model Results            |                     |                    |                  |                  |                  |                 |                  |                |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------|--------------------|------------------|------------------|------------------|-----------------|------------------|----------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Choice                                    | num_pers            | or_e_den           | uta_flag         | cbd_flag         | no_15_24         | num_emp         | de_p_den         | С              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 veh/hh                                  | 0*                  | 0                  | 0                | 0                | 0                | 0               | 0                | 0              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 veh/hh                                  | 0.577**<br>7.611*** | -0.00874<br>-2.755 | -2.109<br>-2.932 | -0.639<br>-3.079 | -1.212<br>-5.078 | 0.904<br>5.856  | -0.133<br>-4.505 | 2.634<br>3.565 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >1 veh/hh                                 | 0.900<br>11.661     | -0.0204<br>-6.176  | -3.110<br>-4.322 | -0.932<br>-4.034 | -1.449<br>-5.752 | 2.003<br>12.607 | -0.275<br>-8.328 | 1.420<br>1.915 |  |
| 0 veh/hhZero vehicles in a household1 veh/hOne vehicle in a household>1 veh/hNore than one vehicle in a householdNum_pers.Number of persons per householdOr_e_denOrigin employment densityuta_flagCoded as 1 if zone is within the UTA, else 0cbd_flagCoded as 1 if zone is within the CBD, else 0no_15_24Ratio of the number of persons aged 15-24 over the<br>number of employed per householdNum_empDestination population density**Coefficients are normalized to zero.***t-statistic.Summary of Statistics :*** |                                           |                     |                    |                  |                  |                  |                 |                  |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of choices $= 3$                   |                     |                    |                  |                  |                  |                 |                  |                |  |
| Number of 0 veh/hh $= 279 (3.77\%)$ Number of 1 veh/hh $= 2920 (39.47\%)$                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |                     |                    |                  |                  |                  |                 |                  |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of >1 veh/hh $= 4199 (56.76\%)$    |                     |                    |                  |                  |                  |                 |                  |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total number of choices $= 7398 (100 \%)$ |                     |                    |                  |                  |                  |                 |                  |                |  |
| Rhosq $= 0.3834$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                           |                     |                    |                  |                  |                  |                 |                  |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rhobarsq $= 0.3825$                       |                     |                    |                  |                  |                  |                 |                  |                |  |

## 3.2 School Trip Model

Exhibit 3.2 contains the calibrated model for estimating vehicle ownership for school to home trip makers.

| Exhibit 3.2 Sc                   | hool Mod           | el Results     |                              |                  |                  |                    |                |                  |  |  |
|----------------------------------|--------------------|----------------|------------------------------|------------------|------------------|--------------------|----------------|------------------|--|--|
| Choice                           | num_pers           | province       | de_p_den                     | age5_14          | age15_24         | age25_44           | num_emp        | С                |  |  |
| 0 veh/hh                         | 0*                 | 0              | 0                            | 0                | 0                | 0                  | 0              | 0                |  |  |
| 1 veh/hh                         | .536**<br>3.487*** | 0.867<br>2.972 | -0.00012<br>-2.333           | -0.342<br>-1.689 | -0.746<br>-4.192 | 0.263<br>1.781     | 0.807<br>5.482 | 0.235<br>0.593   |  |  |
| >l veh/hh                        | 1.103<br>6.671     | 0.793<br>2.596 | -0.00040<br>-6.574           | -0.783<br>-3.676 | -1.090<br>-5.808 | 0.276<br>1.758     | 1.406<br>9.029 | -1.048<br>-2.360 |  |  |
| 0 veh/hh                         |                    |                |                              | hicles in a l    |                  |                    |                |                  |  |  |
| 1 veh/hh                         |                    | •••            |                              | icle in a ho     |                  |                    |                |                  |  |  |
| >1 veh/hh                        |                    | •••            |                              | an one veh       |                  |                    |                |                  |  |  |
| Num_pers.                        |                    | •••            |                              | of persons       | -                |                    | _              |                  |  |  |
| Province                         |                    | •••            |                              | -                |                  | for Ontario        | 0.             |                  |  |  |
| De_p_den<br>Age5_14              |                    | •••            |                              | tion popula      |                  | y.<br>I in a house | hald           |                  |  |  |
| Age3_14<br>Age15_24              |                    | •••            |                              |                  | ē                | 4 in a house       |                |                  |  |  |
| Age15_24<br>Age25_44             |                    | •••            |                              | 1                | 0                | 14 in a hous       |                |                  |  |  |
| Num_emp                          |                    |                |                              | of employ        | -                |                    | senoid.        |                  |  |  |
| *                                |                    |                |                              | ents are no      | 1                |                    |                |                  |  |  |
| **                               |                    |                |                              | ent of vari      |                  |                    |                |                  |  |  |
| ***                              |                    |                | t-statisti                   | c.               |                  |                    |                |                  |  |  |
| Summary of St                    |                    | _              |                              |                  |                  |                    |                |                  |  |  |
| Number of choi                   |                    | -              | = 3                          |                  |                  |                    |                |                  |  |  |
| Number of 0 ve                   |                    |                | 129 (10.67%)<br>459 (27.99%) |                  |                  |                    |                |                  |  |  |
| Number of 1 ve<br>Number of >1 v |                    |                | 8 (37.88%)<br>2 (51.45%)     |                  |                  |                    |                |                  |  |  |
| Total number of >1 v             |                    |                | 2 (31.43%)<br>09 (100 %)     |                  |                  |                    |                |                  |  |  |
| Rhosq                            |                    | = 12<br>= 0.3  | · ,                          |                  |                  |                    |                |                  |  |  |
| Rhobarsq                         |                    | = 0.3          |                              |                  |                  |                    |                |                  |  |  |

## 4. Model Evaluation

Evaluating the quality of logit models involves individual judgement and statistical analysis. The output of the logit estimation software includes estimated values of the coefficients of various variables, t-statistics of those coefficients and the correlation among variables. This set of statistical indicators can be used to judge the quality of the model.

#### 4.1 T-Statistic

The t-statistic of a coefficient is useful for determining whether the variable contributes significantly in explaining vehicle ownership per household. A t-statistic of more than 1.65 or less than -1.65 indicates significance of more than 95 percent confidence interval. A t-statistic of greater than 2.3 or less than -2.3 shows significance of more than 99 percent confidence interval. All the variables used in the model are significant at the 99% confidence interval as shown in Exhibits 3.1 and 3.2. This illustrates that all the variables contribute significantly to the model to describe vehicle ownership per household.

#### 4.2 Correlation Matrix

The variables included in the model are checked to ensure no significant correlation exists between variables in the utility functions. The criteria used in this study was to assume variables were not correlated if the correlation coefficient was under 0.8. The correlation matrix for the developed models are shown in Exhibit 4.1 for the work model and Exhibit 4.2 for the school model. The correlation statistics indicates that none of the variables are significantly correlated.

**Exhibit 4.1 Work Correlation Matrix** 

|          | num_pers | or_e_den | uta_flag | cbd_flag | no_15_24 | num_emp |
|----------|----------|----------|----------|----------|----------|---------|
| or_e_den | -0.003   |          |          |          |          |         |
| uta_flag | -0.095   | 0.065    |          |          |          |         |
| cbd_flag | -0.115   | 0.0004   | 0.131    |          |          |         |
| no_15_24 | 0.323    | -0.001   | -0.009   | -0.014   |          |         |
| num_emp  | 0.289    | 0.020    | -0.074   | -0.051   | 0.145    |         |
| de_p_den | -0.146   | 0.049    | 0.536    | 0.476    | -0.015   | -0.122  |

#### Exhibit 4.2 School Correlation Matrix

|          | num_pers | province | de_p_den | age5_14 | age15_24 | age25_44 |
|----------|----------|----------|----------|---------|----------|----------|
| province | -0.041   |          |          |         |          |          |
| de_p_den | -0.153   | -0.207   |          |         |          |          |
| age5_14  | 0.543    | -0.0081  | -0.044   |         |          |          |
| age15_24 | 0.367    | 0.00025  | 0.033    | -0.258  |          |          |
| age25_44 | 0.260    | 0.064    | 0.0094   | 0.300   | 0.212    |          |
| num_emp  | 0.388    | 0.021    | -0.182   | -0.135  | 0.306    | 0.028    |

#### 4.3 Goodness of fit:

This measure resembles the squared multiple correlation coefficient  $(R^2)$  in the linear statistical model. If the model perfectly predicts the choices of all individuals in the sample, the likelihood function will have the value 1. Equally, if all the parameters in a logit model are 0, the model predicts that all the choices for any individual are equally likely. Here the model does not explain the choice variations and the likelihood function is much smaller.

The value of  $\rho^2$  varies between 0 (no fit) and 1 (perfect fit). Given these parameters, there are no explanations for the goodness-of-fit for intermediate values for different circumstances. In fact for this type of automobile ownership model, a value around 0.4 is considered as perfect fit.

In the work model, the values of rho-square and rho-bar-square are 0.3834 and 0.3825 respectively. The school model has rho-square and rho-bar-square of .32 and .315. By including a greater number of socio-economic variables, the rho-squared will tend to increase.

### 4.4 Review of Individual Variables:

The value of the individual variables can be determined through an analysis of the coefficients of these variables. The sign of the coefficients should reflect the expected human behavior based on judgement and experience. The estimated coefficient is the best approximation available for its real value. These coefficients should only be included if they are significant with respect to their t-statistic.

#### 4.4.1 Work Model

- *Number of persons per household* has the greatest value of t-statistic in the work model. This indicates its significance in the work model. Households with a larger number of persons tend to have more vehicles for convenience. This is proven by the signs of the coefficients. The positive sign indicates as the number of persons in the household increases, the chances of choosing 1 veh/hh and >1 veh/hh increases compared to 0 veh/hh respectively.
- *Number of persons employed* in the household is significant and the positive sign indicates as the number of people in the household employed increases the more likely 1 veh/hh and >1 veh/hh are chosen respectively. This is supported with the notion that when there are more people employed in a household, there is a greater chance of having more income and the possibility of purchasing more than one vehicle increases.
- Origin employment density variable is significant within the 99% confidence interval. These trips originate in the employment zone since these trips are from work to home. If the origin employment density is high, more people will likely have only one vehicle in the household. The opposite is true for a low origin employment density. These zones are usually found outside the central business district and tend to have a higher population density. A low origin employment density indicates that >1 veh/hh is favoured over 0 veh/hh.
- *Destination population density* variable has a negative value. If the destination population density is high, more people will likely have zero or one vehicle in the household. The opposite is true for

a low population density. These zones are usually found outside the urban transit area or a fare distance from the central business district and a vehicle is the quickest way to travel. A low destination population density indicates that >1 veh/hh is favoured over 0 veh/hh.

- *Uta\_flag* has a negative coefficient indicating that 0 veh/hh is favoured more for zones inside the urban transit area. The likelihood of choosing 1 veh/hh and >1 veh/hh increases for zones outside the uta. There is no bus service to these zones, so if any travel needs to be done to inside the uta a vehicle is required. This increases the likelihood of having a vehicle outside the uta.
- *Cbd\_flag* suggests that if a person lives within the central business district there is less likely of a chance of owning a vehicle because most employment zones fall within the central business district. When there are longer distances to be traveled, a vehicle is preferred, therefore there is a more likely chance of choosing 1 veh/hh and >1 veh/hh.
- Number of persons aged 15-24 over the number of persons in the household variable is used to indicate indirectly how age affects vehicle ownership. The negative sign indicates as this number increases, the more likely chance of 0 veh/hh being chosen. >1 veh/hh would increase if the value for this variable was lower and there were higher values for the younger and older ratios. A lower age group may increase vehicle ownership for the convenience of the family. A higher age group would have more licensed drivers in the household making the independence of owning a vehicle a greater priority.

#### 4.4.2 School Model

- *Number of persons in household* is an important variable because of its high t-statistic. The positive sign indicates as the number of persons in the household increases, the chances of choosing 1 veh/hh and >1 veh/hh increases compared to 0 veh/hh respectively. As the number of persons in a household increases, it is more convenient to own at least one vehicle.
- *Number of persons employed in the household* is one of the higher significant variables in the school model. The positive sign indicates that as the number of people in the household employed increases the more likely 1 veh/hh and >1 veh/hh are chosen respectively. This is proven when there are more people employed in a household, there is a greater chance of having more income and the possibility of purchasing more than one vehicle increases.
- **Destination population density** variable has a negative value. If the destination population density is high, more people will likely have zero or one vehicle in the household. The opposite is true for a low population density. These zones are usually found outside the urban transit area or a fare distance from the central business district and a vehicle is the quickest way to travel. A low destination population density indicates that >1 veh/hh is favoured over 0 veh/hh.
- *Province* is an important variable. The positive sign of the province variable shows that people in Quebec prefer to own a vehicle. This is consistent with the travel characteristics of the region. People living in Quebec and working in down town in Ottawa and elsewhere in Ontario prefer to share the vehicle then drive alone.

- *Number of persons aged 5-14* variable is the least significant variable in the model. Although, it is still significant at the 99% confidence interval. The negative sign indicates that as this number increases, the more likely chance of 0 veh/hh being chosen. >1 veh/hh increases when there are more older persons in the household in comparison to this age group.
- *Number of persons aged 15-24* variable is the most significant variable between the age categories. The negative sign shows that as this number increases, the more likely chance of 0 veh/hh being chosen. >1 veh/hh would increase when this age group drops in number with respect to the other age groups in the household.
- *Number of persons aged 25-44* variable has a negative sign which shows that as this number increases, the more likely chance of 1 and >1 veh/hh being chosen. 0 veh/hh would increase if there are more children in comparison to this age group in the household.

## 5. Validation :

The quality of the model to predict vehicle ownership is analyzed using the macro and micro approaches. In macro validation, the choice distribution, given by the developed model, are compared with the actual distribution of choices from the database. This will show the difference in predicted vehicle ownership and actual vehicle ownership share. In micro validation, the choice prediction of every trip record is compared with the actual choice of the individual. This will give the percent right prediction of the model. This is an unambiguous indicator of model's reliability.

### 5.1 Macro validation

The choice distribution given by the developed model and actual vehicle ownership of the database is recorded in the exhibit below:

|           |                             | WORK                         |       | SCHOOL                      |                              |       |  |
|-----------|-----------------------------|------------------------------|-------|-----------------------------|------------------------------|-------|--|
| Choice    | Number of<br>observed cases | Number of<br>Predicted cases | Error | Number of<br>observed cases | Number of<br>Predicted cases | Error |  |
| 0 veh/hh  | 279                         | 38                           | -241  | 129                         | 65                           | -64   |  |
| 1 veh/hh  | 2920                        | 2348                         | -572  | 458                         | 433                          | -25   |  |
| >1 veh/hh | 4199                        | 5012                         | 813   | 622                         | 711                          | 89    |  |

#### Exhibit 5.1 Macro Validation

As shown in the above exhibit for the work model, the number of predicted cases for 0 veh/hh is 38 while the actual observed cases is 279. Thus the model under-estimates 241. Similarly the number of predicted cases for 1 veh/hh was 2348 and for over 1 vehicle per household 5012 cases.

The same interpretation can be made for the school model where the model predicts 65, 433 and 711 compared to 129, 458 and 622 observed cases per vehicle ownership choice.

#### 5.2 Micro Validation

The number of cases predicted correctly for zero, one and more than one vehicle in a household is represented in Exhibit 5.2.

|           |                | WORK                |         | SCHOOL         |                     |         |  |
|-----------|----------------|---------------------|---------|----------------|---------------------|---------|--|
| Choice    | Number of      | Number of cases     | Percent | Number of      | Number of cases     | Percent |  |
|           | Observed cases | Predicted correctly | Correct | Observed cases | Predicted correctly | Correct |  |
| 0 veh/hh  | 279            | 23                  | 8%      | 129            | 35                  | 27%     |  |
| 1 veh/hh  | 2920           | 1414                | 48%     | 458            | 251                 | 55%     |  |
| >1 veh/hh | 4199           | 3481                | 83%     | 622            | 509                 | 82%     |  |
| Total     | 7398           | 4918                | 66%     | 1209           | 1209                | 66%     |  |

Exhibit 5.2 Micro validation

0

For the work model, 0 veh/hh has 23 cases predicted correctly and the observed number of cases is 279. Thus the percent correct value is 8%. Similarly, the percent of cases correctly predicted for 1 and over 1 veh/hh are 48% and 83% respectively. The overall percent predicted correct is 66%.

For school model, the number of cases correctly predicted for 0, 1 and more than 1 veh/hh are 27%, 55%, and 82% respectively. The overall percent predicted correct is 66.

## 6. Sensitivity Analysis

The sensitivity analysis is appropriate for evaluating the impact of socio-economic factors on different circumstances. The analysis is carried out to determine how vehicle ownership may change with variations to the socio-economic conditions. This can usually provide an indication to how the model interprets each individual attribute in the database. The logit model provides an opportunity for analyzing how the socio-economic factors affect an individual's choice.

When estimating the sensitivity analysis, the average value of each variable is obtained. These values are put into the utility equations to obtain initial probability percentages for each choice. Separately, each variable in both equations was increased and decreased by 10%. These new percentages were compared to the initial ones by taking a difference between them. For the dummy variables, they were initially either assumed 0 or 1. To find their sensitivity, they were changed to 1 or 0. Exhibit 6.1 summarizes the results obtained for both models.

|                            | WOR       | K         |            |                            | SCHO      | OL        |            |
|----------------------------|-----------|-----------|------------|----------------------------|-----------|-----------|------------|
| VARIABLES                  | 0 VEHICLE | 1 VEHICLE | >1 VEHICLE | VARIABLES                  | 0 VEHICLE | 1 VEHICLE | >1 VEHICLE |
| num_pers ↑ 10%             | -0.36%    | -2.25%    | 2.61%      | num_pers ↑ 10%             | -1.46%    | -4.25%    | 5.70%      |
| num_pers↓10%               | 0.44%     | 2.22%     | -2.66%     | num_pers ↓ 10%             | 1.86%     | 4.01%     | -5.87%     |
| or_e_den ↑ 10%             | 0.03%     | 0.36%     | -0.39%     | province $0 \rightarrow 1$ | -3.04%    | 3.14%     | -0.10%     |
| or_e_den ↓ 10%             | -0.04%    | -0.35%    | 0.39%      | de_p_den ↑ 10%             | 0.38%     | 1.53%     | -1.92%     |
| de_p_den ↑ 10%             | 0.07%     | 0.69%     | -0.76%     | de_p_den ↓ 10%             | -0.37%    | -1.54%    | 1.90%      |
| de_p_den ↓ 10%             | -0.08%    | -0.68%    | 0.75%      | age5_14 ↑ 10%              | 0.22%     | 0.63%     | -0.85%     |
| uta_flag 1→0               | -1.65%    | -21.30%   | 22.94%     | age5_14 ↓ 10%              | -0.21%    | -0.6%     | 0.85%      |
| $cbd_flag 0 \rightarrow 1$ | 2.02%     | 6.11%     | -8.13%     | age15_24 ↑ 10%             | 0.88%     | 0.94%     | -1.82%     |
| num_emp ↑ 10%              | -0.40%    | -4.36%    | 4.77%      | age15_24 ↓ 10%             | -0.8%     | -1.01%    | 1.77%      |
| num_emp↓10%                | 0.49%     | 4.36%     | -4.85%     | age25_44 ↑ 10%             | -0.1%     | 0.03%     | 0.10%      |
| no_15_24 ↑ 10%             | 0.04%     | 0.08%     | -0.12%     | age25_44 ↓ 10%             | 0.14%     | -0.03%    | -0.11%     |
| no_15_24 ↓10%              | -0.04%    | -0.08%    | 0.12%      | num_emp ↑ 10%              | -0.93%    | -1.94%    | 2.87%      |
|                            |           |           |            | num_emp↓10%                | 1.08%     | 1.85%     | -2.93%     |

Exhibit 6.1 Sensitivity Analysis

## 7. Aggregation

The logit model was developed on an individual person basis where each record in the sample was used to build the model representing vehicle ownership. In order to use the model within a traffic zone system, an aggregation process was required to combine the vehicle ownership by household in a particular traffic zone.

Using the 1995 OD Survey, the percent of households in a traffic zone having no vehicle, one vehicle and more than one vehicle was obtained for the PM peak period work trip makers and school trip makers. The vehicle ownership models were then run to obtain zonal estimates of vehicle ownership.

After determining the percentage of households in each zone owning no vehicle, one vehicle, and more than one vehicle, statistical parameters were computed for each vehicle ownership category. These parameters are presented in Exhibits 7.1 and 7.2 for work trips and school trips, respectively. It should be noted that traffic analysis zones with limited survey data were eliminated from the statistical comparison described below. Instead, it was decided that the accuracy of the models be evaluated using only those zones with reliable vehicle ownership data. The number of traffic zones included in the analysis is indicated in Exhibits 7.1 and 7.2 below.

| Sample  | Vehicle<br>Ownership<br>(veh/hh) | Mean<br>(% of<br>HH's) | Median | Standard<br>Deviation | Skewness<br>Statistic | Kurtosis<br>Statistic | Number of<br>Valid<br>Observations | Assumed<br>Sample<br>Distribution |
|---------|----------------------------------|------------------------|--------|-----------------------|-----------------------|-----------------------|------------------------------------|-----------------------------------|
| 1995    | 0                                | 5.59                   | 2.00   | 8.00                  | 1.90                  | 3.62                  | 159                                | Non-Normal                        |
| O-D     | 1                                | 45.41                  | 46.00  | 15.28                 | -0.14                 | -0.17                 | 159                                | Normal                            |
| Survey  | 2+                               | 49.10                  | 49.00  | 18.88                 | -0.001                | -0.45                 | 159                                | Normal                            |
| Model   | 0                                | 4.34                   | 2.11   | 9.75                  | 7.29                  | 63.86                 | 159                                | Non-Normal                        |
| Results | 1                                | 45.52                  | 47.16  | 12.95                 | -0.91                 | 0.80                  | 159                                | Normal                            |
|         | 2+                               | 50.14                  | 50.28  | 16.48                 | -0.13                 | 0.66                  | 159                                | Normal                            |

Exhibit 7.1 Statistical Parameters for Zonal Vehicle Ownership - Work Trips

Exhibit 7.2 Statistical Parameters for Zonal Vehicle Ownership - School Trips

| Sample  | Vehicle<br>Ownership<br>(veh/hh) | Mean<br>(% of<br>HH's) | Median | Standard<br>Deviation | Skewness<br>Statistic | Kurtosis<br>Statistic | Number of<br>Valid<br>Observations | Assumed<br>Sample<br>Distribution |
|---------|----------------------------------|------------------------|--------|-----------------------|-----------------------|-----------------------|------------------------------------|-----------------------------------|
| 1995    | 0                                | 11.10                  | 6.70   | 14.15                 | 1.39                  | 1.53                  | 122                                | Non-Normal                        |
| O-D     | 1                                | 42.74                  | 42.90  | 18.44                 | -0.06                 | -0.32                 | 122                                | Normal                            |
| Survey  | 2+                               | 46.17                  | 50.00  | 23.37                 | -0.12                 | -0.44                 | 122                                | Normal                            |
| Model   | 0                                | 7.49                   | 5.01   | 7.60                  | 2.60                  | 9.63                  | 122                                | Non-Normal                        |
| Results | 1                                | 46.76                  | 47.19  | 11.98                 | -0.25                 | -0.55                 | 122                                | Normal                            |
|         | 2+                               | 45.75                  | 47.69  | 17.49                 | -0.25                 | -0.48                 | 122                                | Normal                            |

The accuracy of the two models can be assessed by comparing the means of the observed and modeled vehicle ownership samples for each vehicle ownership category. Exhibit 7.3 presents the results of such a comparison.

| Type of<br>Trip | Vehicle<br>Ownership<br>(veh/hh) | Difference in<br>Sample Means<br>(Model - Observed) |
|-----------------|----------------------------------|-----------------------------------------------------|
| Work            | 0                                | -1.25                                               |
|                 | 1                                | 0.11                                                |
|                 | 2+                               | 1.04                                                |
| School          | 0                                | -3.61                                               |
|                 | 1                                | 4.02                                                |
|                 | 2+                               | -0.42                                               |

**Exhibit 7.3 Difference in Sample Means** 

The school trip model is less reliable than the work trip model, particularly for households owning less than two vehicles. However, even if the difference in means is quite small, it is necessary to determine whether the difference is statistically significant or whether the difference can be attributed to random error.

Before choosing an appropriate statistical test, the sample distributions must be known. From the results in Exhibits 7.1 and 7.2, it can be concluded that the one vehicle and more than one vehicle per household samples are normally distributed, regardless of whether the sample was estimated using the newly developed models or observed from the 1995 O-D Survey. Consequently, the

relationship between the model results and the observed vehicle ownership data can be determined using a paired samples t test. The results of this test are shown in Exhibit 7.4.

| Туре   | Vehicle   | Pair  | ed Differenc | ed Differences (Model-Observed) |       |       | Degrees | Significance |
|--------|-----------|-------|--------------|---------------------------------|-------|-------|---------|--------------|
| of     | Ownership | Mean  | Standard     | 95% Confidence Interval         |       |       | of      | (2-tailed)   |
| Trip   | (veh/hh)  |       | Deviation    | Lower                           | Upper |       | Freedom |              |
| Work   | 1         | 0.11  | 13.03        | -1.93                           | 2.16  | 0.11  | 158     | 0.91         |
|        | 2+        | 1.04  | 12.53        | -0.93                           | 3.00  | 1.04  | 158     | 0.30         |
| School | 1         | 4.03  | 18.30        | 0.75                            | 7.31  | 2.43  | 121     | 0.02         |
|        | 2+        | -0.42 | 18.84        | -3.80                           | 2.96  | -0.25 | 121     | 0.81         |

Exhibit 7.4 Results of the Paired Samples T Test

In this table, the significance value represents the probability that the difference between the means of the modeled and observed vehicle ownership samples can be attributed to chance. If the two-tailed significance value is less than 0.05, the modeled vehicle ownership sample can be considered statistically different from the observed data at a 95% confidence interval. Conversely, as the significance value increases above 0.05, the two samples can be assumed to be increasingly similar, since any difference in the means of the two samples is likely due to coincidence.

Statistically speaking, the hypothesis that the two samples have similar means can only be rejected or not rejected. Thus, if the hypothesis is rejected (i.e. the two-tailed significance value is less than 0.05), the analyst can conclude that the model is poor. On the other hand, if the hypothesis is not rejected (i.e. the two-tailed significance value is greater than 0.05), the analyst can conclude only that there is no reason to assume the model is poor. While the model may be accurate, there is no way to prove this conclusively.

For the work trip model, the significance values for the one vehicle per household and more than one vehicle per household samples are relatively high, leading to the conclusion that the work trip model is reliable when results are aggregated to the zonal level. Since work trips comprise a large proportion of the total number of trips within an urban area, it is important that the work trip model be sufficiently accurate.

For the school trip model, the paired samples t test indicates that the model predicts households owning more than one vehicle with reasonable accuracy. Since over 45% of the households which make school trips have more than one vehicle, it is important that the model be able to predict such households correctly. From the high significance value associated with this level of vehicle ownership, it can be concluded that the model is reliable when predicting more than one vehicle per household. However, the modeled vehicle ownership sample for one vehicle per household cannot be considered statistically similar to the observed vehicle ownership sample since the significance value is less than 0.05, indicating that the model is weaker in this area.

Because the no vehicle per household samples are not distributed normally, a paired samples t test could not be used to compare the model results with the observed distribution. Instead, a Wilcoxon signed ranks test was used, which analyzes the difference between paired values. If the significance is found to be low, the analyst can reject the idea that the difference between the medians of the two samples is a coincidence. In this case, a high significance value is desired in

order to prove that the two samples (modeled and observed vehicle ownership) are similar, and thus have similar medians.

Unfortunately, the Wilcoxon signed ranks test indicates a low significance value for both the school and work trip models. The two-tailed significance value for the school trip model is 0.011, while the corresponding value for the work trip model is 0.008. Because these values are less than 0.05, the hypothesis that the two samples have similar medians can be rejected at a more than 95% confidence interval, indicating that the model predictions are statistically different from the observed data. However, although the models are less reliable in their ability to predict households with no vehicles, such households comprise a relatively small proportion of the total population. Since the models are able to predict households with one or more vehicles accurately when aggregating data on a zonal basis, it can be concluded that the models are generally reliable for forecasting purposes, particularly when modeling work trips which dominate peak period travel.

# **APPENDIX 3**

**Revised School Trip Generation Model** 

During the model calibration process, additional work was carried out on the trip generation equations for the secondary school trip purpose. The main difference in the regressions This age go-hort was not available in the previous land use databanks for EMME2. For this study it was obtained directly form the 95 OD survey. The percentage that the 10-14 age group was of the 5 to 14 age group in 1995 was used to estimate 2021 population in the 10-14 age group. Another difference is that the old equations contained a sample of trips from 2:30pm to 5:59 pm with the intention of increasing the sample size to increase the quality of the regression equation. The trips were later factored by .6 to adjust to the peak period. In the new equations, the sample includes trips from 3:30pm to 5:59pm.

#### **Trip Generation Regression Formulations**

| Version                                                                                                 | Trip Purpose     | Regression Details                                                                                                                                                                                                                            | Regression Equation                                                                                                                                                                                                                                                                                                                | R^2                                                               |
|---------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Updated Version<br>of the School trip<br>Generation Model                                               | Sec_ Sch to home | Production, 1986 Existing Model<br>Production, 1995 Calib. (1)<br><b>*Production, 1995 Calib. (2)</b>                                                                                                                                         | (.3059 * SCHS + .0691 * POP25-44 + 29)*.365<br>( .231 * SCHS014 * POP25-44 ) * .6<br>(.142 * OD_SCHS )                                                                                                                                                                                                                             | 0.61<br>0.68<br><u>0.594</u>                                      |
| as reported in<br>model results in<br>Section 7 of<br>Development of<br>the 1995 TRANS<br>Model, Aug/99 |                  | Attraction, 1986 Existing Model<br>Attraction, 1995 Calib. (1)<br>Attraction, 1995 Calib. (2)<br><u>*Attraction, 1995 Calib. (3)</u>                                                                                                          | (.2684 * POP5-14 + .0422 * POP15-24 + .0337 * POP25-44 + 2) * .365<br>(0.102 * POP10-14 + .08123 * POP15-24 .0046 * POP25-44) * .6<br>( 0.08555 * POP15-24 + .02249 * POP25-45 ) * .6<br>( 0.07072 * POP15-24 + .121 * OD_P1014 )                                                                                                  | 0.81<br>0.78<br>0.77<br><b>0.773</b>                              |
| Former Model as<br>reported in<br>Exhibit 3.5 in<br>Development of<br>the 1995 TRANS<br>Model, Aug/99   | Sec_ Sch to home | Production, 1986 Existing Model<br>Production, 1995 Calib. (1)<br><b>*Production, 1995 Calib. (2)</b><br>Attraction, 1986 Existing Model<br>Attraction, 1995 Calib. (1)<br>Attraction, 1995 Calib. (2)<br><b>*Attraction, 1995 Calib. (3)</b> | (.3059 * SCHS + .0691 * POP25-44 + 29)*.365<br>(.231 * SCHS014 * POP25-44 ) * .6<br>** (.171 * SCHS ) * .6<br>(.2684 * POP5-14 + .0422 * POP15-24 + .0337 * POP25-44 + 2) * .365<br>(0.102 * POP10-14 + .08123 * POP15-24 .0046 * POP25-44 ) * .6<br>(0.08555 * POP15-24 + .02249 * POP25-45 ) * .6<br>** (0.142 * POP15-24 ) * .6 | 0.61<br>0.68<br><b>0.7</b><br>0.81<br>0.78<br>0.77<br><b>0.75</b> |

Notes: \* Equations underlined and bold printed were sellected for new model calibration.

The SPSS files contains the records used to carry out the regressions. The files are in c:\temp\tripgen directory

contain the appropriate zonal demographac data as well as trip attractions/ productions per zone.

\*\* Secondary school trips multiplied by .6 to convert trips from a 2:29-5:59 period to 3:29-5:59 period.

The existing TRANS model scondary school trip equation was multiplied by .365 to correct for an error in the origional model equation.