Détermination du module réversible des matériaux granulaires au ministère des Transports du Québec

MATÉRIAUX ET INFRASTRUCTURES

> ÉTUDES ET RECHERCHES EN TRANSPORT

> > Québec ##

Félix Doucet, ing., M. Sc. A. Ministère des Transports du Québec

et

Bruno Auger, tech. spéc. Ministère des Transports du Québec

Réalisé pour le compte du ministère des Transports du Québec

Août 2014

PRÉPARÉ PAR LA DIRECTION DU LABORATOIRE DES CHAUSSÉES DU MINISTÈRE DES TRANSPORTS DU QUÉBEC La présente étude a été réalisée et financée par le ministère des Transports du Québec.

Collaborateurs

Denis St-Laurent, ing., M. Sc., Service des chaussées, Direction du laboratoire des chaussées, ministère des Transports du Québec

Claude Robert, ing., M. Sc., Service des matériaux d'infrastructures, Direction du laboratoire des chaussées, ministère des Transports du Québec

Maxime Laplante-Boivin, ing. jr, Service des matériaux d'infrastructures, Direction du laboratoire des chaussées, ministère des Transports du Québec

Soucieux de protéger l'environnement, le ministère des Transports du Québec favorise l'utilisation de papier fabriqué à partir de fibres recyclées pour la production de ses imprimés et encourage le téléchargement de cette publication.

© Gouvernement du Québec, ministère des Transports du Québec, 2014

ISBN 978-2-550-73079-8 (PDF)

Dépôt légal – 2015 Bibliothèque et Archives nationales du Québec

Tous droits réservés. La reproduction de ce document par procédé mécanique ou électronique, y compris la microreproduction, et sa traduction, même partielles, sont interdites sans l'autorisation écrite des Publications du Québec.

FICHE ANALYTIQUE

Titre et sous-titre du rapport		Numéro du rapport Transports Québec		
Détermination du module réversible des matériaux granulaires		RTQ-15-01		
au ministère des Transports du Québec	-	Date de publication du rapport (ann	ée-mois)	
		2015-07		
Titre du projet de recherche		Numéro du dossier	Numéro du projet	
Détermination du module réversible des matériaux granulaires au ministère des Transports du Québec			Sans objet	
Responsable de recherche		Date du début de la recherche	Date de fin de la recherche	
Félix Doucet, ing., M. Sc. A.		2005-03	2014-03	
Auteurs du rapport		2000 00	2011.00	
Félix Doucet et Bruno Auger				
Chargé de projet, direction		Coût total de l'étude		
Félix Doucet, Direction du laboratoire des chaussées		300 000 \$		
Service des matériaux d'infrastructures Direction du laboratoire des chaussées Ministère des Transports du Québec 2700, rue Einstein Service Direction Ministère des Transports du Québec 270		le ou recherche financée par (nom et adresse de l'organisme) vice des matériaux d'infrastructures ection du laboratoire des chaussées istère des Transports du Québec 10, rue Einstein ébec (Québec) G1P 3W8		

Problématique

Le ministère des Transports du Québec (MTQ) a entrepris, il y a une dizaine d'années, le développement de son expertise dans le domaine de la mécanique des matériaux de chaussées souples en laboratoire. Un premier rapport a été publié en 2010 sur la « Détermination du module complexe des enrobés au ministère des Transports du Québec », ce qui complétait une première phase de développement. Le présent rapport sur la « Détermination du module réversible des matériaux granulaires au ministère des Transports du Québec » complète une deuxième phase du même volet de développement, soit la détermination du module de rigidité des matériaux de chaussées.

Objectifs

Le MTQ a développé la méthode d'essai LC 22-400 pour la « Détermination du module réversible des matériaux granulaires ». Ce rapport présente la théorie liée à l'essai, le développement de l'équipement triaxial à chargements répétés et le mode de préparation des éprouvettes. Une étude de répétabilité, qui démontre la qualité des essais et l'importance de mesurer les déformations sur les éprouvettes, a également été effectuée.

Méthodologie

Le module réversible de 35 matériaux granulaires (MG) du Québec, soit 10 MG 20 de pierre concassée, 11 MG 20 de pierre concassée avec plus de 5 % de particules passant le tamis 80 µm, 8 MG 20 de gravier concassé et 6 MG 112 de sable, a été déterminé à trois teneurs en eau pour constituer une banque de données. Les modèles individuels et généraux obtenus sont comparables aux valeurs contenues dans la littérature. Le modèle de Uzan est utilisé pour modéliser le module de Young réversible, ainsi que les modules volumique et de cisaillement réversibles. L'applicabilité du modèle de Boyce est aussi vérifiée et le coefficient de Poisson moyen est déterminé. Il est démontré que la teneur en eau a peu d'influence sur le module réversible des matériaux granulaires de chaussée.

Résultats et recommandations Le MTQ dispose donc d'une méthode d'essai fiable et docu matériaux granulaires. Une banque de données sur le modi également disponible pour réaliser les expertises sur les matéria	ule réversible des	matériaux gran	ulaires au Québ
Mots clés Module de Young réversible, coefficient de Poisson réversible, module volumique réversible, module de cisaillement réversible, contrainte déviatorique, déformation réversible, essai triaxial à chargements répétés, matériaux granulaires, chaussée, élastoplasticité, mécaniste.	Nombre de pages 228	Nombre de références bibliographiques	Langue du docume Françai Anglais Autre (spécifier)

SOMMAIRE

Le ministère des Transports du Québec (MTQ) a entrepris, il y a une dizaine d'années, le développement de son expertise dans le domaine de la mécanique des matériaux de chaussées souples en laboratoire. Un premier rapport a été publié en 2010 sur la « Détermination du module complexe des enrobés au ministère des Transports du Québec », ce qui complétait une première phase de développement. Le présent rapport sur la « Détermination du module réversible des matériaux granulaires au ministère des Transports du Québec » complète une deuxième phase du même volet de développement, soit la détermination du module de rigidité des matériaux de chaussées.

Le MTQ a développé la méthode d'essai LC 22-400 pour la « Détermination du module réversible des matériaux granulaires ». Ce rapport présente la théorie liée à l'essai, le développement de l'équipement triaxial à chargements répétés et le mode de préparation des éprouvettes. Une étude de répétabilité, qui démontre la qualité des essais et l'importance de mesurer les déformations sur les éprouvettes, a également été effectuée.

Le module réversible de 35 matériaux granulaires (MG) du Québec, soit 10 MG 20 de pierre concassée, 11 MG 20 de pierre concassée avec plus de 5 % de particules passant le tamis 80 µm, 8 MG 20 de gravier concassé et 6 MG 112 de sable, a été déterminé à trois teneurs en eau pour constituer une banque de données. Les modèles individuels et généraux obtenus sont comparables aux valeurs contenues dans la littérature. Le modèle de Uzan est utilisé pour modéliser le module de Young réversible, ainsi que les modules volumique et de cisaillement réversibles. L'applicabilité du modèle de Boyce est aussi vérifiée et le coefficient de Poisson moyen est déterminé. Il est démontré que la teneur en eau a peu d'influence sur le module réversible des matériaux granulaires de chaussée.

Le MTQ dispose donc d'une méthode d'essai fiable et documentée pour la détermination du module réversible des matériaux granulaires. Une banque de données sur le module réversible des matériaux granulaires au Québec est également disponible pour réaliser les expertises sur les matériaux et le dimensionnement des chaussées au Québec.

TABLE DES MATIÈRES

1	Intro	oduction	15
2	Thé	orie	17
	2.1	Matériaux granulaires	17
	2.2	Module réversible	
	2.3	Méthodes d'essai	
	2.4	Représentation	26
	2.5	Modélisation	29
3	Ess	ai triaxial à chargements répétés	33
	3.1	Équipement triaxial à chargements répétés	33
	3.2	Préparation des éprouvettes	37
	3.3	Instrumentation des éprouvettes	
	3.4	Variation de la teneur en eau	
	3.5	Résistance au cisaillement	57
4	Étu	de de répétabilité	61
	4.1	Répétabilité des éprouvettes	61
	4.2	Répétabilité du conditionnement	
	4.3	Répétabilité du module de Young et du coefficient de Poisson réversible	
	4.4	Répétabilité des modules volumique et de cisaillement réversibles	65
5	Rés	ultats individuels	73
	5.1	Matériaux granulaires caractérisés	73
	5.2	Préparation des éprouvettes	
	5.3	Résultats de module de Young et de coefficient de Poisson réversibles	84
	5.4	Résultats de modules volumique et de cisaillement réversibles	96
6	Мо	dèles généraux	111
	6.1	Modèles de module de Young réversible	111
	6.2	Modèles de modules volumique et de cisaillement réversibles	
	6.3	Valeurs de la littérature	127
7	Coi	nclusion	135
R	Référen	ces	139
Α	nnexe	1 : Module réversible des matériaux granulaires de pierres concassées	. 143
Α	nnexe	2 : Module réversible des matériaux granulaires de pierres concassées fines .	. 173
Α	nnexe	3 : Module réversible des matériaux granulaires de graviers concassés	. 197
Α	nnexe	4 : Module réversible des matériaux granulaires de sables	. 215

LISTE DES TABLEAUX

Tableau	1	Méthodes d'essai normalisées pour la détermination du module réversible des
		matériaux granulaires
Tableau	2	États de contrainte prescrits par la méthode d'essai LC 22-400 pour la détermination du module réversible
Tableau	3	États de contrainte prescrits par la méthode d'essai LC 22-400 pour la
Tableau	J	modélisation du module réversible31
Tableau	4	Caractéristiques physiques des éprouvettes utilisées pour l'étude de
		répétabilité [Gs : 2,89, Abs : 0,9 %, w_{opt} : 4,5 %, $\rho_{d \; max}$: 2233 kg/m³]61
Tableau	5	Déformations permanentes (ϵ_p) mesurées lors du conditionnement des éprouvettes pour l'étude de répétabilité (σ_d = 105 kPa, σ_3 = 105 kPa)62
Tableau	6	Degrés de saturation (S) des éprouvettes aux teneurs en eau initiale, saturée
Tableau	U	et drainée pour l'étude de répétabilité62
Tableau	7	Coefficients de régression des modèles de module de Young réversible (E _r)
T	_	pour l'étude de répétabilité63
Tableau	8	Coefficients de régression des modèles généraux de module de Young
		réversible (E _r) pour l'étude de répétabilité64
Tableau	9	Coefficients de Poisson réversible (v _r) moyens pour l'étude de répétabilité65
Tableau	10	Coefficients de régression des modèles de Boyce de modules volumique et de
		cisaillement réversibles (K _r , G _r) pour l'étude de répétabilité66
Tableau	11	Coefficients de régression des modèles de Boyce généraux de modules
		volumique et de cisaillement réversibles (K _r , G _r) pour l'étude de répétabilité67
Tableau	12	Coefficients de régression des modèles de puissance de modules volumique
Tabload		et de cisaillement réversibles (K _r , G _r) pour l'étude de répétabilité69
Tableau	12	Coefficients de régression des modèles de puissance généraux de modules
Tableau	13	volumique et de cisaillement réversibles (K _r , G _r) pour l'étude de répétabilité69
Tablacu	11	
rableau	14	Identification et caractéristiques physiques des matériaux granulaires
-	4-	caractérisés74
ı ableau	15	Fuseaux granulométriques de spécification pour les matériaux granulaires
		caractérisés (NQ 2560-114)
		Granulométrie des matériaux granulaires caractérisés
Tableau	17	Caractéristiques physiques des éprouvettes de matériaux granulaires pour la
		détermination du module réversible83
Tableau	18	Déformations permanentes (ϵ_p) mesurées lors du conditionnement des
		éprouvettes (σ_d = 105 kPa, σ_3 = 105 kPa)84
Tableau	19	Coefficients de régression des modèles de module de Young réversible (E _r)
		des matériaux granulaires à la teneur en eau initiale90
Tableau	20	Coefficients de régression des modèles de module de Young réversible (E _r)
		des matériaux granulaires à la teneur en eau saturée91
Tahleau	21	Coefficients de régression des modèles de module de Young réversible (E _r)
Tabicau	۱ ک	des matériaux granulaires à la teneur en eau drainée92
Tablasu	22	
		Coefficients de Poisson réversible (v _r) des matériaux granulaires96
lableau	23	Coefficients de régression des modèles de Boyce de modules volumique et de
		cisaillement réversibles (K _r , G _r) à la teneur en eau initiale102
Tableau	24	Coefficients de régression des modèles de Boyce de modules volumique et de
		cisaillement réversibles (K _r , G _r) à la teneur en eau saturée103
Tableau	25	Coefficients de régression des modèles de Boyce de modules volumique et de
		cisaillement réversibles (K _r , G _r) à la teneur en eau drainée104

Tableau 26	Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles (K _r , G _r) à la teneur en eau initiale105
Tableau 27	Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles (K _r , G _r) à la teneur en eau saturée106
Tableau 28	Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles (K_r,G_r) à la teneur en eau drainée107
	Modèles généraux de module de Young réversible (E _r) à la teneur en eau saturée pour différents types de matériaux granulaires111
	Module de Young réversible (E _r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée117
Tableau 31	Modèles généraux de modules volumique et de cisaillement réversibles (K _r , G _r) à la teneur en eau saturée pour différents groupes de matériaux granulaires
	Module volumique réversible (K _r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée pour différents groupes de matériaux granulaires126
Tableau 33	Module de cisaillement réversible (G _r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée pour différents groupes de matériaux granulaires
Tableau 34	Module de Young réversible (E _r) à la teneur en eau optimale des matériaux granulaires du logiciel <i>Pavement ME Design</i> (AASHTOWare, 2013) selon les systèmes de classification AASHTO et USCS
Tableau 35	Module de Young réversible (E_r) des matériaux granulaires du logicier <i>Pavement ME Design</i> (AASHTOWare, 2013) et modèles généraux (σ_d = 70 kPa, σ_3 = 35 kPa)131

LISTE DES FIGURES

Figure 1	Plan de développement pour la détermination du comportement mécanique
	des matériaux de chaussées souples en laboratoire16
Figure 2	Carte des provinces géologiques du Québec (Bourque, 1997)17
Figure 3	Contraintes en un point dans un matériau granulaire lors du passage d'une
	roue (Lekarp et coll., 2000) Erreur! Signet non défini.
Figure 4	Modules de Young linéaire, non linéaire et réversible lors du chargement répété
	d'un matériau granulaire19
Figure 5	Déformation réversible et permanente lors du chargement répété d'un matériau granulaire
Figure 6	Contrainte déviatorique répétée et déformations réversibles axiale et radiale
	lors du chargement répété d'un matériau granulaire (LC 22-400)20
Figure 7	États de contraintes appliquées lors du conditionnement des éprouvettes et des
-	essais triaxiaux avec confinement constant (CCP) ou variable (VCP) (Doucet,
	2006)23
Figure 8	Chargements et déplacements mesurés lors d'un essai triaxial à chargements répétés (LC 22-400)24
Figure 9	Module de Young réversible d'un matériau granulaire à différents états de
J	contrainte totale
Figure 10	Module de Young réversible d'un matériau granulaire à différents états de
	contrainte totale dans un plan logarithmique27
Figure 11	Modules de Young, volumique et de cisaillement réversibles d'un matériau
J	granulaire à différents états de contrainte totale28
Figure 12	Coefficient de Poisson réversible d'un matériau granulaire en fonction de la
J	déformation axiale réversible (Doucet et Doré, 2004)29
Figure 13	Équipement triaxial à chargements répétés33
•	Cellule triaxiale à chargements répétés34
	Écran de contrôle de l'essai triaxial à chargements répétés35
	Schéma de la cellule triaxiale à chargements répétés (LC 22-400)36
	Marteau vibrant installé sur un rail vertical38
	Moule en deux sections utilisé pour le compactage avec plateaux de
	chargement, géotextiles et papiers filtres39
Figure 19	Marteau vibrant lors du compactage d'une couche de matériau granulaire à
9	l'intérieur du moule
Figure 20	Démoulage de l'éprouvette de matériau granulaire sur la base de . l'équipement
ga. o _o	triaxial à chargements répétés41
Figure 21	Installation de la membrane sur l'éprouvette à l'aide d'un tendeur
rigaro 21	de membrane
Figure 22	Membrane étanche sur l'éprouvette de matériau granulaire43
•	Compacité d'éprouvettes de matériaux granulaires préparées à l'aide d'un
riguic 20	marteau vibrant
Figure 24	Capteur de déplacement radial installé sur l'éprouvette
	Installation des capteurs de déplacement axiaux
Figure 26	Contoure de déplacement evieux et redial installée our l'éprouvette
	Capteurs de déplacement axiaux et radial installés sur l'éprouvette48
rigure 27	Module de Young réversible mesuré avec différents espacements de LVDT axiaux, avec et sans LVDT radial
Eiguro 20	Module de Young réversible mesuré avec différents espacements de LVDT
i igui e 20	axiaux, avec et sans LVDT radial, dans un plan logarithmique49
	aniaun, avec et sans Evid i Taulai, uans un plan loganitimique49

	Balance sur le chariot élévateur avec la cellule triaxiale
	Cellule triaxiale saturée avec le niveau d'eau au centre de l'éprouvette53
Figure 31	Distribution de la saturation à l'intérieur d'une éprouvette de matériau
	granulaire aux teneurs en eau initiale, saturée et drainée54
Figure 32	Exemple de l'influence de la teneur en eau sur le module de Young réversible d'un matériau granulaire (Doucet et Doré, 2004)55
Figure 33	Courbe caractéristique de rétention d'eau générale de 21 matériaux granulaires canadiens (Doucet et Doré, 2004)
Figure 34	Influence du degré de saturation sur l'écart de module de Young réversible avec la teneur en eau saturée (Doucet et Doré, 2004)
Figure 35	Influence de la succion matricielle sur l'écart de module de Young réversible avec la teneur en eau saturée (Doucet et Doré, 2004)
Figure 36	Essais de résistance au cisaillement triaxial sur un matériau granulaire MG 20 à différentes pressions de confinement
Figure 37	États de contrainte de la méthode LC 22-400 comparativement à la . résistance
	au cisaillement d'un matériau granulaire MG 2059
Figure 38	Modèles linéaires de module de Young réversible à la teneur en eau saturée pour l'étude de répétabilité
Figure 39	Modèles de puissance de module de Young réversible à la teneur en eau
	saturée pour l'étude de répétabilité65
Figure 40	Modèle de Boyce général de module volumique réversible à la teneur en eau saturée pour l'étude de répétabilité
Figure 41	Modèle de Boyce général de module de cisaillement réversible à la teneur en eau saturée pour l'étude de répétabilité
Figure 42	Modèle de puissance général de module volumique réversible à la teneur en eau saturée pour l'étude de répétabilité70
Figure 43	Modèle de puissance général de module de cisaillement réversible à la . teneur en eau saturée pour l'étude de répétabilité71
Figure 44	Localisation de l'échantillonnage des matériaux granulaires de pierres concassées MG 20 PC
Figure 45	Localisation de l'échantillonnage des matériaux granulaires de pierres concassées fines MG 20 PCM
Figure 46	Localisation de l'échantillonnage des matériaux granulaires de graviers concassés MG 20 GC
Figure 47	Localisation de l'échantillonnage des matériaux granulaires de sables MG 112 S
Eiguro 19	Granulométrie des matériaux granulaires de pierres concassées MG 20 PC79
	Granulométrie des matériaux granulaires de pierres concassées fines
	MG 20 PCM79
Figure 50	Granulométrie des matériaux granulaires de graviers concassés MG 20 GC 80
	Granulométrie des matériaux granulaires de sables MG 112 S80
Figure 52	Granulométrie moyenne des matériaux granulaires81
Figure 53	Module de Young réversible des matériaux granulaires en pierre concassée MG 20 PC à la teneur en eau saturée85
Figure 54	Module de Young réversible des matériaux granulaires en pierre concassée
Figure 55	fine MG 20 PCM à la teneur en eau saturée
Figure 56	MG 20 GC à la teneur en eau saturée86 Module de Young réversible des matériaux granulaires en sable MG 112 S à la
•	teneur en eau saturée86

Figure 57	Module de Young réversible dans un plan logarithmique des matériaux
	granulaires en pierre concassée MG 20 PC à la teneur en eau saturée87
Figure 58	Module de Young réversible dans un plan logarithmique des matériaux
	granulaires en pierre concassée fine MG 20 PCM à la teneur en eau saturée 87
Figure 59	Module de Young réversible dans un plan logarithmique des matériaux
	granulaires en gravier concassé MG 20 GC à la teneur en eau saturée88
Figure 60	Module de Young réversible dans un plan logarithmique des matériaux
-	granulaires en sable MG 112 S à la teneur en eau saturée88
Figure 61	Ratios moyens de module de Young réversible à la teneur en eau saturée pour
Ü	les matériaux granulaires en pierres concassées MG 20 PC94
Figure 62	Ratios moyens de module de Young réversible à la teneur en eau saturée pour
9	les matériaux granulaires en pierres concassées fines MG 20 PCM94
Figure 63	Ratios moyens de module de Young réversible à la teneur en eau saturée pour
i igui e ee	les matériaux granulaires en graviers concassés MG 20 GC
Figure 64	Ratios moyens de module de Young réversible à la teneur en eau saturée pour
riguic 0+	les matériaux granulaires en sables MG 112 S95
Eiguro 65	Modèles de module volumique réversible pour les matériaux granulaires en
rigule 05	pierres concassées MG 20 PC à la teneur en eau saturée
Ciaura CC	· ·
rigure 66	Modèles de module volumique réversible pour les matériaux granulaires en
F: 07	pierres concassées fines MG 20 PCM à la teneur en eau saturée
Figure 67	Modèles de module volumique réversible pour les matériaux granulaires en
F: 00	graviers concassés MG 20 GC à la teneur en eau saturée
Figure 68	Modèles de module volumique réversible pour les matériaux granulaires en
	sables MG 112 S à la teneur en eau saturée98
Figure 69	Modèles de module de cisaillement réversible pour les matériaux granulaires
	en pierres concassées MG 20 PC à la teneur en eau saturée99
Figure 70	Modèles de module de cisaillement réversible pour les matériaux granulaires
	en pierres concassées fines MG 20 PCM à la teneur en eau saturée99
Figure 71	Modèles de module de cisaillement réversible pour les matériaux granulaires
	en graviers concassés MG 20 GC à la teneur en eau saturée100
Figure 72	Modèles de module de cisaillement réversible pour les matériaux granulaires
	en sables MG 112 S à la teneur en eau saturée100
Figure 73	Ratios moyens de modules volumique et de cisaillement réversibles pour les
	matériaux granulaires de pierres concassées MG 20 PC109
Figure 74	Ratios moyens de modules volumique et de cisaillement réversibles pour les
	matériaux granulaires de pierres concassées fines MG 20 PCM109
Figure 75	Ratios moyens de modules volumique et de cisaillement réversibles pour les
Ü	matériaux granulaires de graviers concassés MG 20 GC110
Figure 76	Ratios moyens de modules volumique et de cisaillement réversibles pour les
	matériaux granulaires de sables MG 112 S110
Figure 77	Modèle général linéaire de module de Young réversible à la teneur en eau
ga	saturée pour les pierres concassées MG 20 PC112
Figure 78	Modèle général linéaire de module de Young réversible à la teneur en eau
i igaio i o	saturée pour les pierres concassées fines MG 20 PCM112
Figure 70	Modèle général linéaire de module de Young réversible à la teneur en eau
riguic 75	saturée pour les graviers concassés MG 20 GC113
Figure 20	Modèle général linéaire de module de Young réversible à la teneur en eau
i igui e oo	saturée pour les sables MG 20 S113
Eiguro 91	Modèle général de puissance de module de Young réversible à la teneur en
i igui e o i	eau saturée pour les pierres concassées MG 20 PC114
	tau saluite puul les pielles culicassees MG 20 PC

Figure 82	Modèle général de puissance de module de Young réversible à la teneur en eau saturée pour les pierres concassées fines MG 20 PCM114
Figure 83	Modèle général de puissance de module de Young réversible à la teneur en
i igui e oo	eau saturée pour les graviers concassés MG 20 GC115
Figure 84	Modèle général de puissance de module de Young réversible à la teneur en
	eau saturée pour les sables MG 112 S115
Figure 85	Modèles généraux de puissance de module de Young réversible à la teneur .en
J	eau saturée pour les différents types de matériaux granulaires116
Figure 86	Ratios moyens généraux de module de Young réversible entre les teneurs en
	eau drainée et saturée pour les matériaux granulaires118
Figure 87	Modèle général de module volumique réversible à la teneur en eau saturée
	pour les pierres concassées MG 20 PC120
Figure 88	Modèle général de module volumique réversible à la teneur en eau saturée
	pour les pierres concassées fines MG 20 PCM120
Figure 89	Modèle général de module volumique réversible à la teneur en eau saturée
	pour les graviers concassés MG 20 GC121
Figure 90	Modèle général de module volumique réversible à la teneur en eau saturée
	pour les sables MG 112 S121
Figure 91	Modèle général de module de cisaillement réversible à la teneur en eau
	saturée pour les pierres concassées MG 20 PC122
Figure 92	Modèle général de module de cisaillement réversible à la teneur en eau
	saturée pour les pierres concassées fines MG 20 PCM
Figure 93	Modèle général de module de cisaillement réversible à la teneur en eau
	saturée pour les graviers concassés MG 20 GC
Figure 94	Modèle général de module de cisaillement réversible à la teneur en eau
E: 0.E	saturée pour les sables MG 112 S
Figure 95	Modèles généraux de module volumique réversible à la teneur en eausaturée
F: 00	pour différents groupes de matériaux granulaires
Figure 96	Modèles généraux de module de cisaillement réversible à la teneur en eau
Figure 07	saturée pour différents groupes de matériaux granulaires
rigule 97	Ratios moyens généraux de modules volumique et de cisaillement réversibles
	entre les teneurs en eau drainée et saturée pour différents groupes de matériaux granulaires
Figure 08	Modèle de module de Young réversible pour les matériaux granulaires de
i igui e 90	Yoder et Witczak (1975) comparativement aux modèles généraux128
Figure 90	Module de Young des graves non traitées GNT pour le dimensionnement des
riguic 55	chaussées du guide LCPC et SETRA (1994) comparativement aux modèles
	généraux
Figure 100	Modules de Young réversibles typiques du logiciel <i>Pavement ME Design</i>
i igui e 100	(AASHTOWare, 2013) comparativement aux modèles généraux
Figure 101	Modèles de module de Young réversible pour les matériaux granulaires de
90.0 101	CHAUSSÉE 2 (MTQ, 2006) comparativement aux modèles généraux132
Figure 102	2 Modèle moyen de module de Young réversible pour les matériaux granulaires
90.0 .02	C-LTPP avec son écart type comparativement aux modèles généraux133

1 INTRODUCTION

L'étude de la mécanique des matériaux s'intéresse aux relations entre les contraintes et les déformations dans les matériaux. Le comportement mécanique des matériaux de chaussée soumis à l'action du trafic et du climat se décrit d'abord par leur module de rigidité, qui définit leur réaction lors de l'application d'une charge en fonction des conditions environnementales. Par la suite, la performance dans le temps des matériaux de chaussée soumis au passage répété des véhicules et à des conditions climatiques variables est déterminée selon leur résistance à l'endommagement.

Le ministère des Transports du Québec (MTQ) a entrepris, il y a une dizaine d'années, le développement de son expertise dans le domaine de la mécanique des matériaux de chaussées souples en laboratoire (Doucet et St-Laurent, 2008). Un premier rapport a été publié en 2010 sur la « Détermination du module complexe des enrobés au ministère des Transports du Québec », ce qui complétait une première phase de développement (Doucet et Auger, 2010). Le présent rapport sur la « Détermination du module réversible des matériaux granulaires au ministère des Transports du Québec » complète une deuxième phase du même volet de développement, soit la détermination du module de rigidité des matériaux de chaussées.

La Figure 1 présente le plan de développement des essais en laboratoire pour la détermination du comportement mécanique des matériaux de chaussées souples. Ainsi, la publication du présent rapport sur le module réversible des matériaux granulaires (phase 1b) vient compléter le premier volet sur la détermination du module de rigidité des matériaux de chaussées. Le deuxième volet sur la détermination de la résistance à l'endommagement est présentement en cours de développement, principalement en ce qui concerne la résistance à la fatigue des enrobés (phase 2a) et la résistance à la déformation permanente des matériaux granulaires (phase 2b).

2. RÉSISTANCE À L'ENDOMMAGEMENT 1. MODULE DE RIGIDITÉ **M**ATÉRIAUX **ENROBÉS ENROBÉS** MATÉRIAUX MATÉRIAUX **GRANULAIRES GRANULAIRES** Méthodes d'essai 1a. Module 1b. Module 2a. Fatigue 2b. Déformation complexe réversible permanente 2c. Déformation permanente 2d. Fissuration thermique

MÉCANIQUE DES MATÉRIAUX DE CHAUSSÉES SOUPLES

Figure 1 Plan de développement pour la détermination du comportement mécanique des matériaux de chaussées souples en laboratoire

Ce rapport présente la théorie pertinente pour la détermination du module réversible des matériaux granulaires, l'élaboration de la méthode d'essai LC 22-400 « Détermination du module réversible des matériaux granulaires » et une étude de la répétabilité de l'essai. Un équipement triaxial à chargements répétés avec pression de confinement constante est utilisé pour réaliser les essais de module réversible.

De plus, des résultats de module réversible sont présentés pour 35 matériaux granulaires du Québec et des modèles généraux sont déterminés et comparés aux valeurs que l'on retrouve généralement dans la littérature. Les modèles de Uzan (1985) et de Boyce (1980) sont utilisés pour modéliser les résultats de module de Young réversible (E_r), de module volumique réversible (K_r) et de module de cisaillement réversible (E_r). Le coefficient de Poisson réversible (V_r) est également déterminé.

2 THÉORIE

2.1 Matériaux granulaires

Les couches de fondation et de sous-fondation routières au Québec sont généralement constituées de granulats non liés appelés « matériaux granulaires ». La granulométrie et les caractéristiques physiques des matériaux granulaires varient selon l'usage, comme le spécifie la norme NQ 2560-114 « Travaux de génie civil – Granulats ».

Les matériaux granulaires sont généralement produits localement par le concassage de granulats provenant de carrières ou de sablières. La composition pétrographique de ces matériaux varie de manière importante sur le vaste territoire du Québec, qui inclut les Appalaches au sud du fleuve Saint-Laurent, les Basses-Terres (Plate-forme) du Saint-Laurent dans la portion la plus densément peuplée, ainsi que les provinces du Grenville et du Supérieur au nord du Saint-Laurent, comme le montre la carte de la Figure 2.

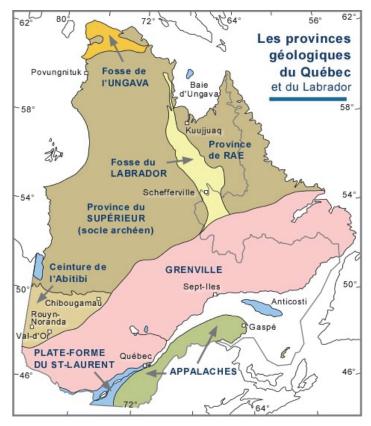


Figure 2 Carte des provinces géologiques du Québec (Bourque, 1997)

Le comportement mécanique des matériaux granulaires de fondation et de sous-fondation de chaussée est fortement influencé par la nature des granulats. Les roches des Appalaches sont un assemblage de roches sédimentaires plus ou moins friables et de roches volcaniques qu'on retrouve principalement dans la région d'Asbestos et de

Thetford Mines (renfermant les mines d'amiante), ainsi que dans la région du parc de la Gaspésie. Les Basses-Terres du Saint-Laurent se composent essentiellement de roches sédimentaires de type « calcaire » et « dolomie », entrecoupées de minces filons de roches volcaniques. Les provinces du Grenville et du Supérieur comprennent surtout des roches granitiques et la ceinture de l'Abitibi est composée d'une alternance de roches volcaniques (renfermant les mines d'or et de cuivre).

De plus, le comportement mécanique des matériaux granulaires est influencé par leur masse volumique et leur teneur en eau. La masse volumique en place est contrôlée lors de leur mise en œuvre, alors que la teneur en eau varie en fonction des conditions climatiques. Dans un climat nordique comme celui du Québec, le gel et le dégel des routes influencent également le comportement mécanique des matériaux granulaires.

Par ailleurs, les matériaux granulaires sont principalement sollicités par le trafic qui applique un état de contrainte complexe à la chaussée. La Figure 3 montre la rotation des contraintes principales majeure (σ_1) et mineure (σ_3) en un point dans un matériau granulaire lors du passage d'une roue. Le graphique montre la variation des contraintes verticale et horizontale en compression au même point, ainsi que la contrainte en cisaillement qui est nulle sous la roue. Cette rotation du plan des contraintes principales est un mécanisme difficile à reproduire en laboratoire et des applications de contrainte simplifiées doivent être utilisées pour s'en approcher.

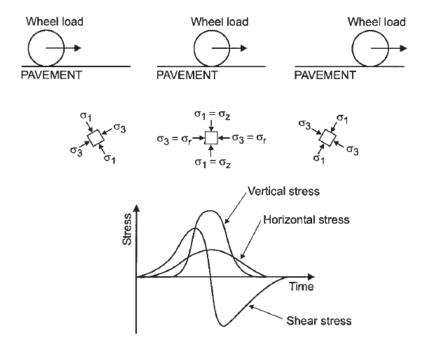


Figure 3 Contraintes en un point dans un matériau granulaire lors du passage d'une roue (Lekarp et coll., 2000)

2.2 Module réversible

Le module de Young (E) est la mesure de la rigidité d'un matériau élastique. Il est le rapport entre la contrainte et la déformation dans un axe de chargement. Ce rapport est une constante dans le domaine linéaire, mais varie en fonction de l'état de contrainte (ou de déformation) dans le domaine non linéaire.

Le comportement mécanique à petites déformations (ϵ < 1000 $\mu\epsilon$) des matériaux granulaires est reconnu comme élastoplastique non linéaire (Lekarp et coll., 2000). Lors du déchargement d'un matériau élastoplastique, la majorité de la déformation est réversible (déformation élastique), mais une déformation permanente peut subsister dans le matériau (déformation plastique). La Figure 4 schématise de manière idéalisée le chargement et le déchargement d'un matériau granulaire. Le module de Young linéaire (E) et le module non linéaire (E_{nl}) sont représentés, ainsi que le module réversible (E_r), qui est le rapport entre la contrainte déviatorique (E_r) appliquée et la déformation réversible (E_r) obtenue, sans tenir compte de la déformation permanente (E_r).

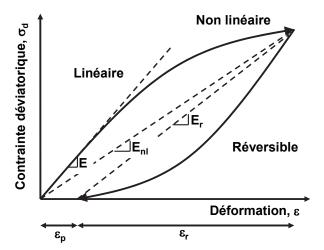


Figure 4 Modules de Young linéaire, non linéaire et réversible lors d'un chargement répété idéalisé sur un matériau granulaire

Lorsque la contrainte appliquée est faible comparativement à la résistance au cisaillement du matériau granulaire et que le chargement est appliqué de nombreuses fois, la déformation devient presque totalement réversible (Huang, 1993), comme le montre la Figure 5. Dans ce cas, le E_r du matériau granulaire peut être utilisé comme module élastique pour le dimensionnement des chaussées.

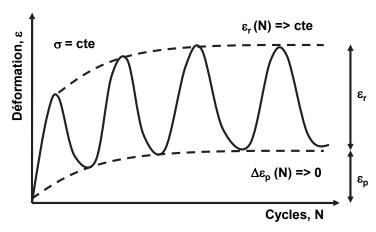


Figure 5 Déformation réversible et permanente lors de chargements répétés idéalisés sur un matériau granulaire

La Figure 6 montre l'application d'une contrainte déviatorique répétée ($\Delta\sigma_d$) sur un matériau granulaire et les déformations réversibles axiale (ϵ_{1r}) et radiale (ϵ_{3r}) mesurées. Une contrainte au repos (σ_{do}) est maintenue en tout temps pour conserver un bon contact de chargement avec l'éprouvette. Le chargement répété est de la forme de la moitié d'un sinus verse (haversine) en compression (σ (1 - $cos(\omega t)$)/2).

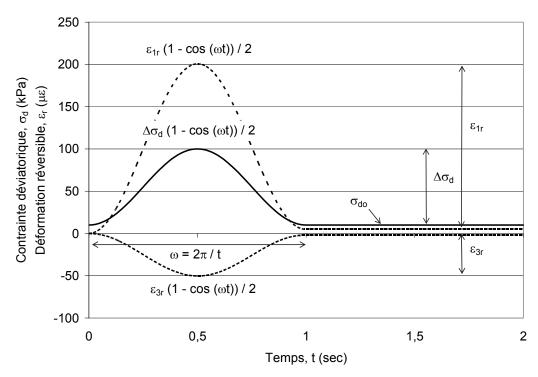


Figure 6 Contrainte déviatorique répétée et déformations réversibles axiale et radiale lors du chargement répété d'un matériau granulaire (LC 22-400)

En posant l'hypothèse que le matériau est homogène isotrope, les lois d'élasticité sont simplement définies par le module de Young (E) et le coefficient de Poisson (v). Le

module de Young réversible (E_r) et le coefficient de Poisson réversible (v_r) sont généralement utilisés comme paramètres élastiques pour le dimensionnement des chaussées. Lors de chargements répétés avec un confinement constant ($\Delta\sigma_3$ = 0), le E_r est le ratio entre la contrainte déviatorique répétée ($\Delta\sigma_d$) et la déformation axiale réversible (ϵ_{1r}) présenté à l'Équation 1. Le v_r est le ratio entre la déformation radiale réversible (ϵ_{3r}) et la déformation axiale réversible (ϵ_{1r}) présenté à l'Équation 2.

Équation 1 : $E_r = \frac{\Delta \sigma_d}{\varepsilon_{1r}}$

Équation 2: $v_r = -\frac{\mathcal{E}_{3r}}{\mathcal{E}_{1r}}$

où E_r : module de Young réversible (kPa),

ν_r : coefficient de Poisson réversible,

 $\Delta \sigma_d$: contrainte déviatorique répétée ($\Delta \sigma_1$ - $\Delta \sigma_3$) (kPa),

 ϵ_{1r} : déformation axiale réversible (m/m), ϵ_{3r} : déformation radiale réversible (m/m).

Par ailleurs, lorsque la contrainte de confinement est variable ($\Delta\sigma_3\neq0$), il est plus simple de séparer le comportement volumique du comportement en cisaillement pour l'analyse en déterminant le module volumique réversible (K_r) et le module de cisaillement réversible (G_r). Le K_r est le ratio entre la contrainte moyenne répétée (Δp) et la déformation volumique réversible (ϵ_{vr}), présenté à l'Équation 3, alors que le K_r est le ratio entre la contrainte de cisaillement répétée (Δq) et la déformation de cisaillement réversible (ϵ_{sr}), présenté à l'Équation 4. Le K_r et le

Équation 3: $K_r = \frac{\Delta p}{\varepsilon_{vr}}$

Équation 4: $G_r = \frac{\Delta q}{3\varepsilon_{sr}}$

où K_r : module volumique réversible (kPa),

G_r: module de cisaillement réversible (kPa),

 Δp : contrainte moyenne répétée ($\Delta \sigma_1 + 2\Delta \sigma_3$)/3 (kPa), Δq : contrainte de cisaillement répétée ($\Delta \sigma_1 - \Delta \sigma_3$) (kPa), ϵ_{vr} : déformation volumique réversible ($\epsilon_{1r} + 2\epsilon_{3r}$) (m/m),

 ε_{sr} : déformation de cisaillement réversible ((2/3)(ε_{1r} - ε_{3r})) (m/m).

2.3 Méthodes d'essai

Il existe deux méthodes d'essai normalisées reconnues internationalement pour la détermination du module réversible des matériaux granulaires, soit la méthode de l'American Association of State Highway and Transportation Officials (AASHTO T 307-99) et la méthode du Comité Européen de Normalisation (EN 13286-7). Les deux méthodes d'essai utilisent un équipement triaxial à chargements répétés de grande dimension. Le Tableau 1 présente les similitudes et les disparités entre les deux méthodes.

Tableau 1 Méthodes d'essai normalisées pour la détermination du module réversible des matériaux granulaires

Spécifications	AASHTO T 307-99	EN 13286-7
Diamètre minimal	5 x diamètre maximal particules	5 x diamètre maximal particules
Hauteur	2 x diamètre éprouvette	2 x diamètre éprouvette
Compaction	Marteau vibrant	Vibrocompression ou marteau vibrant
Masse volumique	En place	100 %, 97 %, 95 % ρ _{d opm}
Teneur en eau	En place	-4 %, -2 % et -1 % ω _{opm}
Pression confinement	Constante	Variable ou constante
Mesure déformations	Externe	Sur l'éprouvette
Vitesse chargement	10 Hz (0,9 s repos)	0,2 à 10 Hz
Conditionnement	500 ou 1000 cycles	20 000 cycles
États de contrainte	15 états	20 ou 30 états

Une différence importante entre les deux méthodes d'essai concerne l'application des états de contrainte. Les deux méthodes prévoient une série d'états de contrainte avec un confinement constant, ce qui donne sensiblement la même réponse une fois le comportement modélisé (Doucet, 2006). Par contre, la méthode européenne prévoit également des essais avec confinement variable jugés plus représentatifs de la sollicitation du matériau dans la chaussée. Le confinement variable donne une réaction du matériau très différente puisque les chemins de contrainte appliqués sont très différents. La Figure 7 montre les différents chemins de contrainte prescrits par la méthode américaine avec confinement constant (CCP) et la méthode européenne avec confinement variable (VCP).

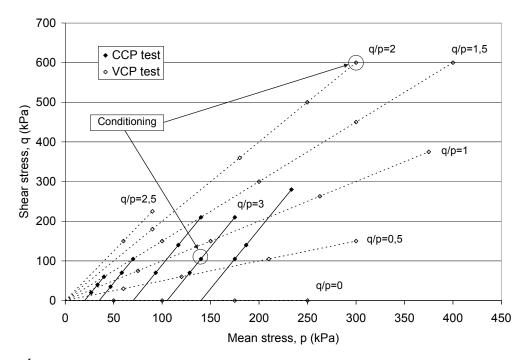


Figure 7 États de contraintes appliquées lors du conditionnement des éprouvettes et des essais triaxiaux avec confinement constant (CCP) ou variable (VCP) (Doucet, 2006)

Le MTQ a mis au point la méthode d'essai LC 22-400 pour la « Détermination du module réversible des matériaux granulaires » (Doucet, 2005). Cette méthode d'essai s'inspire à la fois de la méthode américaine et de la méthode européenne. La Figure 8 montre le chargement répété (ΔP_d) appliqué sur l'éprouvette ainsi que les déplacements axiaux (Δh) et la variation de circonférence (Δc) mesurés lors de l'essai triaxial à chargements répétés. La pression de confinement (σ_3) est maintenue constante tout le tour de l'éprouvette puisque l'équipement utilisé ne permet pas l'application d'une pression variable. L'Équation 5 est utilisée pour déterminer la contrainte déviatorique répétée ($\Delta \sigma_d$), l'Équation 6 pour la déformation axiale réversible (ϵ_{3r}).

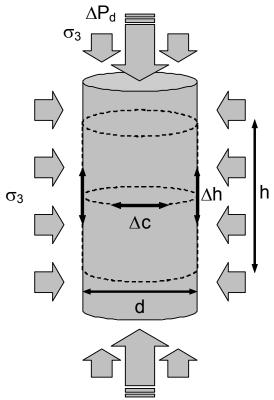


Figure 8 Chargements et déplacements mesurés lors d'un essai triaxial à chargements répétés (LC 22-400)

Équation 5 : $\Delta \sigma_d = \frac{4\Delta P_d}{\pi d^2}$

Équation 6 : $\varepsilon_{1r} = \frac{\Delta h}{h}$

Équation 7: $\varepsilon_{3r} = \frac{\Delta c}{\pi d}$

où $\Delta\sigma_{\text{d}}$: contrainte déviatorique répétée (kPa),

 σ_3 : pression de confinement (kPa), ϵ_{1r} : déformation axiale réversible (m/m), ϵ_{3r} : déformation radiale réversible (m/m),

ΔP_d : charge axiale répétée (kN),
 d : diamètre de l'éprouvette (m),
 Δh : déplacement axial réversible (m),

h : hauteur pour la mesure de Δ h (0,200 m), Δ c : variation de la circonférence réversible (m).

Le Tableau 2 montre les états de contrainte prescrits par la méthode LC 22-400, qui sont les mêmes que ceux de la méthode américaine. Le $\Delta \sigma_d$ est appliqué pendant

1 seconde (1 Hz) suivie d'un temps de repos de 1 seconde. Le temps de chargement est plus lent que celui de la méthode américaine (0,1 seconde), mais à l'intérieur des spécifications de la méthode européenne, pour permettre un excellent contrôle du chargement. L'influence du temps de chargement sur le comportement réversible des matériaux granulaires est considéré négligeable (Lekarp et coll., 2000). Les états de contrainte sont appliqués durant 60 cycles et les 5 derniers cycles sont utilisés pour déterminer le E_r , le v_r , le K_r et le G_r du matériau. L'éprouvette est conditionnée à l'état de contrainte prescrit par la méthode américaine durant 10 000 cycles, soit un nombre de cycles élevé, tel que prescrit par la méthode européenne pour stabiliser le comportement réversible.

Tableau 2 États de contrainte prescrits par la méthode d'essai LC 22-400 pour la détermination du module réversible

σ₃ (kPa)	σ _d (kPa)	σ _{do} (kPa)	$\Delta\sigma_{\sf d}$ (kPa)	Cycles
105 ¹	105 ¹	11	94	10 000
	20	2	18	
20	40	4	36	60
	60	6	54	
	35	3	32	
35	70	7	63	60
	105	11	94	
	70	7	63	_
70	140	14	126	60
	210	21	189	
105	70	7	63	
	105	11	94	60
	210	21	189	
140	105	11	94	
	140	14	126	60
	280	28	252	

¹État de contrainte pour le conditionnement de l'éprouvette

La méthode LC 22-400 prévoit la détermination du E_r , du v_r , du K_r et du G_r à différentes teneurs en eau avec la même éprouvette puisque l'essai est considéré non destructif. Ainsi, le matériau est caractérisé dans un premier temps à la teneur en eau initiale de compactage, pour ensuite être saturé pour une deuxième caractérisation et drainé pour une troisième. Ce processus permet d'évaluer l'influence de la teneur en eau sur le comportement réversible du matériau granulaire, soit à la teneur en eau initiale lors de la mise en œuvre, ainsi qu'entre la teneur en eau saturée et la teneur en eau drainée lors des variations saisonnières de teneur en eau.

2.4 Représentation

L'état de contrainte est le paramètre ayant le plus d'influence sur le comportement réversible des matériaux granulaires. Le E_r des matériaux granulaires est généralement représenté en fonction de la contrainte totale (θ), qui est la somme des contraintes appliquées (Lekarp et coll.,2000). La Figure 9 montre les résultats de E_r obtenus pour un matériau granulaire à 15 états de contrainte en fonction de θ avec une pression de confinement constante. La Figure 10 présente les mêmes résultats dans un plan logarithmique.

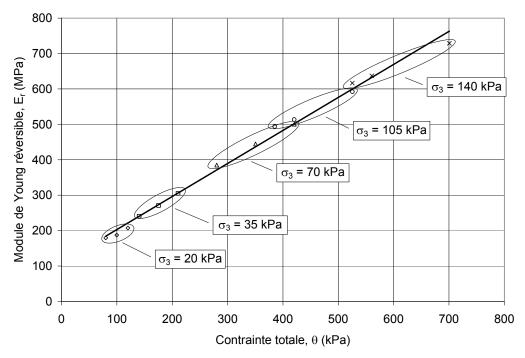


Figure 9 Module de Young réversible d'un matériau granulaire à différents états de contrainte totale

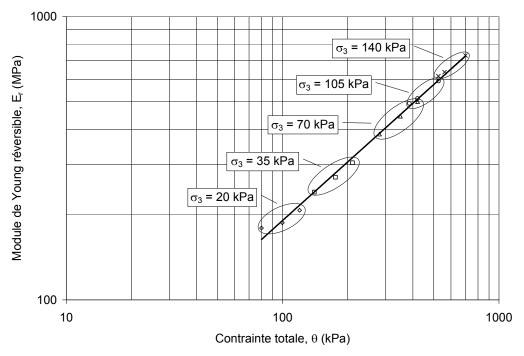


Figure 10 Module de Young réversible d'un matériau granulaire à différents états de contrainte totale dans un plan logarithmique

Les figures indiquent que le E_r augmente avec θ , ce qui signifie que le comportement réversible des matériaux granulaires est non linéaire aux états de contrainte caractérisés. L'augmentation du E_r en fonction de θ est principalement attribuable à l'augmentation de la pression de confinement (σ_3), mais la contrainte déviatorique (σ_d) a également une influence. Les résultats semblent plus uniformément répartis dans le plan normal, mais ils sont le plus souvent représentés dans un plan logarithmique.

La Figure 11 montre les résultats de K_r et de G_r obtenus lors du même essai comparativement aux valeurs de E_r . Les valeurs de K_r et de G_r sont un peu plus faibles, mais elles suivent la même tendance que le E_r .

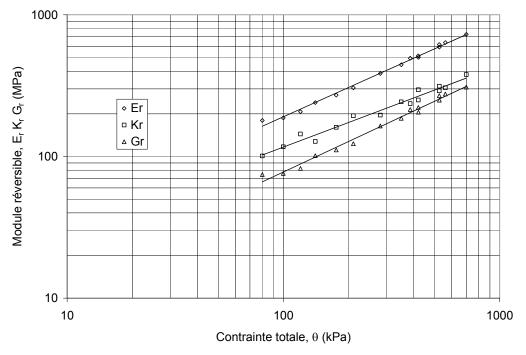


Figure 11 Modules de Young, volumique et de cisaillement réversibles d'un matériau granulaire à différents états de contrainte totale

Le ν_r varie aussi en fonction de l'état de contrainte, mais il est généralement considéré constant pour le dimensionnement des chaussées (Lekarp et coll., 2000). La Figure 12 montre la variation du ν_r en fonction de la déformation axiale réversible (ϵ_{1r}) pour un matériau granulaire à différentes teneurs en eau.

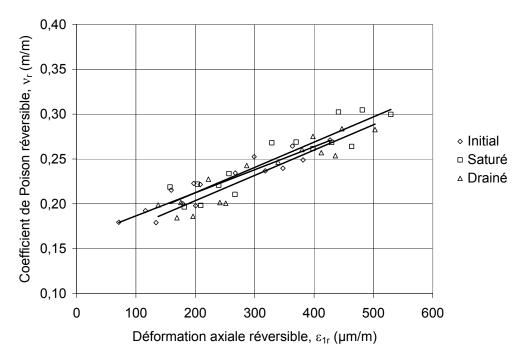


Figure 12 Coefficient de Poisson réversible d'un matériau granulaire en fonction de la déformation axiale réversible (Doucet et Doré, 2004)

2.5 Modélisation

Le E_r d'un matériau granulaire est généralement modélisé en fonction de l'état de contrainte selon le modèle de Uzan (1985), dont la version utilisée par le logiciel de dimensionnement mécaniste-empirique américain *Pavement ME Design* (AASHTOWare, 2013) est présentée à l'Équation 8. Ce modèle de puissance est fonction de la contrainte totale (θ) et de la contrainte de cisaillement octaédrique (τ_{oct}). L'Équation 9 présente le modèle sous sa forme logarithmique, qui est utilisée pour déterminer les coefficients de régression du modèle (k_1 , k_2 , k_3) par régression linéaire.

Équation 8:
$$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$$

Équation 9:
$$\log E_r = \log(k_1 p_a) + k_2 \log\left(\frac{\theta}{p_a}\right) + k_3 \log\left(\frac{\tau_{oct}}{p_a} + 1\right)$$

où E_r : module de Young réversible (MPa), θ : contrainte totale $(\sigma_d + 3\sigma_3)$ (kPa),

 τ_{oct} : contrainte de cisaillement octaédrique (($\sqrt{2/3}$) σ_{d}) (kPa),

p_a: pression de normalisation (100 kPa),

 k_1, k_2, k_3 : paramètres de régression.

Le MTQ utilise également un modèle linéaire, présenté à l'Équation 10, basé sur le modèle de Uzan. Le terme « linéaire » fait référence à une droite dans un plan normal, ce qui ne

doit pas être confondu avec le comportement mécanique « non linéaire » modélisé. Ce modèle permet de visualiser différemment l'influence des contraintes en analysant les résultats sans utiliser de valeurs logarithmiques tout en conservant le même niveau de précision. Le modèle permet de déterminer des relations différentes à partir des paramètres de régression.

Équation 10:
$$E_r = c_1 + c_2\theta + c_3\tau_{oct}$$

où
$$c_1, c_2, c_3$$
: paramètres de régression.

Le modèle de Boyce (1980), présenté à l'Équation 11 et à l'Équation 12, est utilisé par le Laboratoire Central des Ponts et Chaussées (LCPC) en France pour modéliser la non-linéarité du K_r et du G_r des matériaux granulaires. Il s'agit d'un modèle de puissance, fonction de la contrainte moyenne (p), comparable à celui proposé par Uzan, avec un rapport q/p ajouté pour tenir compte de l'influence du chemin de contrainte et un terme β pour se conformer au théorème de réciprocité, présenté à l'Équation 13.

Équation 12:
$$G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(1-n)}$$

Équation 13 :
$$\beta = \frac{(1-n)K_o}{6G_o}$$

où
$$K_r$$
 : module volumique réversible (MPa), G_r : module de cisaillement réversible (MPa), p : contrainte moyenne $((\sigma_d + 3\sigma_3)/3)$ (kPa), q : contrainte de cisaillement (σ_d) (kPa), n, K_o, G_o : paramètres de régression.

Le modèle de Boyce prédit bien les essais triaxiaux à chargements répétés avec confinement variable, mais il est plus difficile à appliquer aux essais avec confinement constant (Doucet, 2006). Pour cette raison, le MTQ propose de modéliser les résultats de K_r et de G_r des essais triaxiaux avec confinement constant en s'inspirant du modèle de Uzan, comme le présentent l'Équation 14 et l'Équation 15.

Équation 14:
$$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$$

Équation 15:
$$G_r = G_1 p_a \left(\frac{\theta}{p_a}\right)^{G_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{G_3}$$

: module volumique réversible (MPa), οù K_{r}

 G_r : module de cisaillement réversible (MPa), θ : contrainte totale $(\sigma_d + 3\sigma_3)$ (kPa), τ_{oct} : contrainte de cisaillement octaédrique $((\sqrt{2}/3)\sigma_d)$ (kPa), p_a : pression de normalisation (100 kPa), K_1, K_2, K_3 : paramètres de régression, G_1, G_2, G_3 : paramètres de régression.

Les états de contrainte $(\theta, \tau_{oct}, p, q)$ utilisés pour la modélisation des modules réversibles (E_r, K_r, G_r) sont présentés au Tableau 3. Ce tableau permet d'identifier les états de contrainte caractérisés selon le mode d'expression des contraintes retenu.

Tableau 3 États de contrainte prescrits par la méthode d'essai LC 22-400 pour la modélisation du module réversible

σ₃ (kPa)	σ _d (kPa)	θ (kPa)	τ _{oct} (kPa)	p (kPa)	q (kPa)
	20	80	9	27	20
20	40	100	19	33	40
	60	120	28	40	60
	35	140	16	47	35
35	70	175	33	58	70
	105	210	49	70	105
	70	280	33	93	70
70	140	350	66	117	140
	210	420	99	140	210
	70	285	33	128	70
105	105	420	49	140	105
	210	525	99	175	210
	105	525	49	175	105
140	140	560	66	187	140
	280	700	132	233	280

3 ESSAI TRIAXIAL À CHARGEMENTS RÉPÉTÉS

3.1 Équipement triaxial à chargements répétés

Le MTQ a acquis en 1992 une presse hydraulique asservie de 100 kN de la compagnie SBEL, incluant une enceinte pour le confinement statique des éprouvettes avec de l'air. L'équipement est utilisé pour déterminer le module réversible des matériaux granulaires et des sols à l'aide d'un essai triaxial à chargements répétés. La méthodologie de l'essai a été revue en 2003, principalement par une modification du mode de préparation et de l'instrumentation des éprouvettes (Doucet, 2003). La Figure 13 montre une photo générale de l'équipement triaxial à chargements répétés du MTQ, incluant le panneau de contrôle des pressions d'air et d'eau. La Figure 14 montre une photo de la cellule triaxiale avec une éprouvette instrumentée à l'intérieur.

Figure 13 Équipement triaxial à chargements répétés

Figure 14 Cellule triaxiale à chargements répétés

Les composantes électroniques de l'équipement ont été mises à jour en 2010 par la compagnie MTS à la suite de différents problèmes survenus avec le système. Le logiciel d'asservissement universel de MTS est maintenant utilisé pour programmer les essais. La Figure 15 montre une photo de l'écran de contrôle.

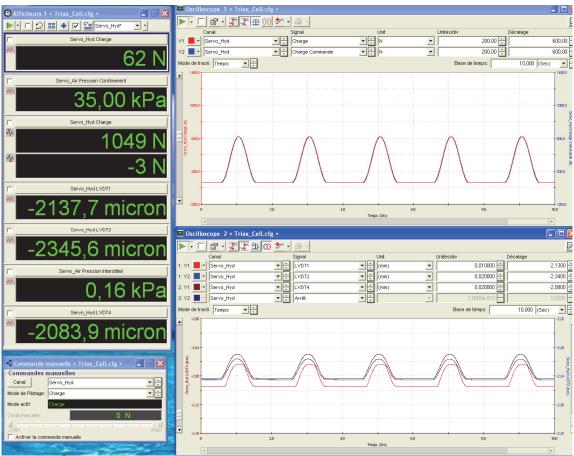


Figure 15 Écran de contrôle de l'essai triaxial à chargements répétés

La Figure 16 montre un schéma de la cellule triaxiale à chargements répétés utilisée par le MTQ. L'éprouvette a un diamètre de 150 mm et une hauteur de 300 mm. Elle est recouverte d'une membrane pour l'application de la pression de confinement avec de l'air. Les plateaux de chargement sont perforés pour permettre la saturation et le drainage de l'éprouvette.

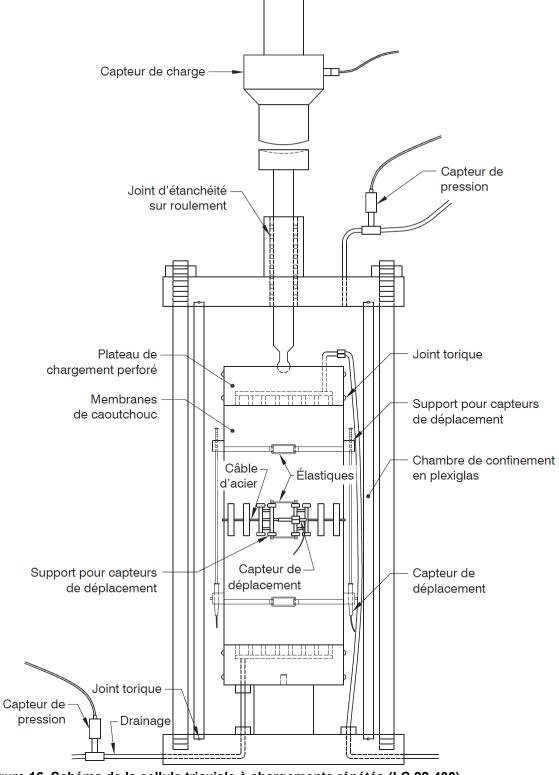


Figure 16 Schéma de la cellule triaxiale à chargements répétés (LC 22-400)

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES AU MINISTÈRE DES TRANSPORTS DU QUÉBEC

La force est mesurée à l'aide d'une cellule de charge d'une capacité de 20 kN et d'une précision de 10 N (0,05 %) attachée au bout du piston de la presse hydraulique. La cellule de charge est calibrée au moins une fois par année avec une cellule de charge certifiée.

Les déplacements sont mesurés à l'aide de deux capteurs de déplacements verticaux et d'un capteur de déplacement horizontal de type LVDT (linear variable differential transformer) ayant une course de +/- 0,5 mm et une précision de 1 µm (0,2 %). Les LVDT verticaux sont installés sur une hauteur de 200 mm dans la partie centrale de l'éprouvette, soit sur les deux tiers de la hauteur totale. Le LVDT horizontal est attaché à un câble appuyé sur 13 supports uniformément répartis autour du centre de l'éprouvette.

La pression de confinement est mesurée à l'aide d'un capteur de pression de 200 kPa avec une précision de 0,2 kPa (0,1 %) relié à la chambre de confinement. La pression interstitielle peut également être mesurée à l'aide d'un capteur de pression de 100 kPa d'une précision de 0,1 kPa (0,1 %) relié à l'intérieur de l'éprouvette. Les capteurs de pression sont calibrés au moins une fois par année à l'aide d'un capteur de pression certifié.

L'application de la pression de confinement à l'intérieur de la cellule triaxiale a pour effet de faire remonter le piston de chargement. La contrainte axiale nécessaire pour maintenir le contact entre le piston et le plateau de chargement est pratiquement nulle pour les pressions de confinement de 20 kPa et de 35 kPa, mais elle est de 0,5 kPa pour une pression de 70 kPa, de 2,0 kPa pour une pression de 105 kPa et de 3,3 kPa pour une pression de 140 kPa. Cette pression est soustraite à la contrainte axiale statique lors de l'analyse des résultats.

3.2 Préparation des éprouvettes

La méthode LC 22-400 décrit le mode de préparation des éprouvettes. Le matériau granulaire est reconstitué selon sa granulométrie originale écrêtée au tamis 31,5 mm. La masse passant le tamis 5 mm et les masses retenues sur les tamis 5, 10, 14 et 20 mm sont pesées pour la reconstitution d'une masse totale de 13 kg. Le matériau granulaire est humidifié au minimum 16 heures avant le compactage avec une teneur en eau de 2 % supérieure à l'absorption du matériau.

L'éprouvette est préparée relativement sèche pour assurer une teneur en eau uniforme puisque la vibration fait remonter l'eau qui n'est pas absorbée vers la surface. La méthodologie proposée pour la caractérisation du module réversible vise également à caractériser une teneur en eau initiale faible pour la comparer avec une teneur en eau élevée par la suite.

Le MTQ utilise un marteau vibrant montré à la Figure 17 pour le compactage des éprouvettes de 150 mm de diamètre et de 300 mm de hauteur, comme le prescrivent les méthodes d'essai AASHTO T307-99 et EN 13286-7 (Tableau 1). Le marteau vibrant est installé sur un rail vertical qui permet d'ajuster l'alignement vertical et l'alignement horizontal tout en laissant le marteau libre dans son mouvement vertical. La tête du marteau vibrant est une plaque pleine de 150 mm de diamètre. Le marteau a une puissance de 750 watts et une masse de 35 kg. La méthode d'essai EN 13286-4

« Méthode d'essai pour la masse volumique de référence et la teneur en eau en laboratoire – Marteau vibrant » décrit l'utilisation du marteau vibrant.

Figure 17 Marteau vibrant installé sur un rail vertical

L'éprouvette est compactée sur le plateau de chargement inférieur à l'intérieur d'un moule en acier inoxydable qui se sépare en deux parties pour faciliter le démoulage. Les plateaux de chargement en acier inoxydable sont perforés de plusieurs petits trous reliés à un tuyau de drainage. Les plateaux sont recouverts d'un géotextile non tissé humide pour assurer un lien uniforme avec deux papiers filtres de type 3 qui sont en contact avec les extrémités de l'éprouvette pour empêcher la migration des particules fines vers l'extérieur. Les plateaux perforés recouverts d'un géotextile permettent à l'air et à l'eau de circuler librement en tout temps avec une pression uniformément répartie à l'extrémité de l'éprouvette. La Figure 18 montre le moule en deux sections, les plateaux de chargement, les géotextiles non tissés et les papiers filtres.

Figure 18 Moule en deux sections utilisé pour le compactage avec plateaux de chargement, géotextiles et papiers filtres

L'éprouvette est compactée en sept couches uniformes vibrées 30 secondes chacune avec le marteau vibrant, comme le montre la Figure 19. Ce mode de compactage permet d'atteindre une masse volumique sèche (ρ_d) entre 90 % et 100 % de la masse volumique sèche maximale ($\rho_{d max}$) mesurée à l'aide d'un essai pour déterminer la relation masse-volumique sèche-teneur en eau avec énergie de compactage modifiée (CAN/BNQ 2501–255). Les éprouvettes sont préparées avec une énergie de compactage constante au lieu de viser une masse volumique précise. Sept couches sont nécessaires pour obtenir une compaction uniforme de l'éprouvette comparable à la compaction obtenue par vibrocompression en une couche (Galjaard et coll., 1996).

Figure 19 Marteau vibrant lors du compactage d'une couche de matériau granulaire à l'intérieur du moule

L'éprouvette est pesée avec le moule, le plateau de chargement inférieur, le géotextile et les papiers filtres dont on soustrait la masse pour déterminer la masse de l'éprouvette uniquement. Ensuite, l'éprouvette est démoulée sur la base de la cellule triaxiale en séparant les deux parties du moule, comme le montre la Figure 20. Un géotextile non tissé humide et le plateau de chargement supérieur sont placés sur les deux papiers filtres au sommet de l'éprouvette.

Figure 20 Démoulage de l'éprouvette de matériau granulaire sur la base de l'équipement triaxial à chargements répétés

Une membrane en latex est tendue sur l'éprouvette à l'aide d'un tendeur de membrane montré à la Figure 21. De la graisse de silicone de type *High Vacuum Grease* est appliquée entre la membrane et les plateaux de chargement pour assurer l'étanchéité. Une deuxième membrane plus mince est installée par-dessus la première et des joints toriques sont placés sur les plateaux de chargement pour assurer une étanchéité parfaite, comme le montre la Figure 22. L'eau et l'air peuvent circuler à l'intérieur de l'éprouvette uniquement par les plateaux de chargement.

Figure 21 Installation de la membrane sur l'éprouvette à l'aide d'un tendeur de membrane

Figure 22 Membrane étanche sur l'éprouvette de matériau granulaire

La hauteur de l'éprouvette est mesurée sur quatre côtés opposés à 90° et le diamètre est mesuré à 1/3, à 1/2 et aux 2/3 de la hauteur dans deux directions perpendiculaires. La hauteur des deux plateaux de chargement, des deux géotextiles et des quatre papiers filtres doit être soustraite de la hauteur moyenne mesurée pour déterminer la hauteur de l'éprouvette. L'épaisseur des deux membranes doit être soustraite deux fois du diamètre moyen mesuré pour déterminer le diamètre de l'éprouvette. Si l'écart entre la hauteur des côtés est supérieur à 0.5 mm, la préparation de l'éprouvette est inadéquate et le module réversible ne peut pas être déterminé.

La teneur en eau de la masse de matériau granulaire restante après la préparation de l'éprouvette est déterminée. La masse, le volume et la teneur en eau de l'éprouvette étant connus, la masse volumique sèche (ρ_d), l'indice des vides (e), la porosité (n) et le degré de saturation (S) de l'éprouvette sont déterminés selon les équations suivantes :

Équation 16:
$$\rho_d = \frac{\rho}{1+\omega}$$

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES AU MINISTÈRE DES TRANSPORTS DU QUÉBEC

Équation 17 :
$$e = \frac{G_s \rho_w}{\rho_d} - 1$$

Équation 18:
$$n = \frac{e}{1+e}$$

Équation 19:
$$S = \frac{(\omega - Abs) G_s}{e}$$

où ρ_d : masse volumique sèche [M_s/V_t] (kg/m³),

e : indice des vides [V_v/V_s],

n : porosité $[V_v/V_t]$,

S : degré de saturation $[V_w/V_v]$, ρ : masse volumique $[M_t/V_t]$ (kg/m³),

w : teneur en eau $[M_w/M_s]$,

 G_s : densité brute pondérée des granulats $[\rho_s/\rho_w]$, ρ_w : masse volumique de l'eau $[M_w/V_w]$ (1000 kg/m³), Abs: absorption pondérée des granulats $[M_{w-abs}/M_s]$.

Les matériaux granulaires provenant de gravières ou de sablières doivent être densifiés à un minimum de 90 % de la masse volumique sèche maximale ($\rho_{d\,max}$) pour la sousfondation, de 95 % pour les 150 mm supérieurs de la sous-fondation et de 98 % pour la fondation. La masse volumique sèche (ρ_{d}) des matériaux granulaires concassés provenant de carrières ou de déblais de première classe est établie à partir d'une planche de référence (CCDG, 2013). La Figure 23 présente la compacité ($\rho_{d}/\rho_{d\,max}$) obtenue pour une pierre concassée, un gravier concassé et un sable avec des temps de vibration de 30 et de 60 secondes.

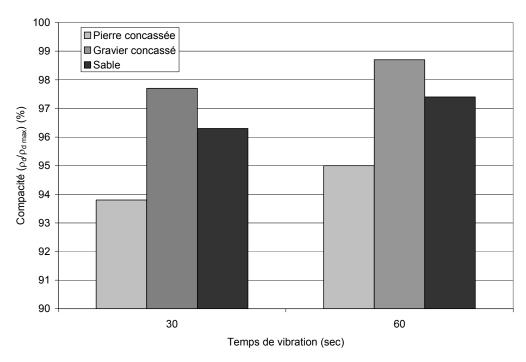


Figure 23 Compacité d'éprouvettes de matériaux granulaires préparées à l'aide d'un marteau vibrant

La compacité ($\rho_d/\rho_{d\,max}$) du gravier concassé est plus près de la valeur de 98 % exigée pour la fondation, et celle du sable de la valeur de 95 % exigée pour la sous-fondation supérieure, avec 30 secondes de vibration. Pour ce qui est de la compacité de la pierre concassée en chantier, il est probable qu'elle soit inférieure à 95 % puisque l'essai Proctor modifié n'est pas exigé. Un temps de vibration de 30 secondes est donc retenu pour ne pas surévaluer le E_r des matériaux granulaires, mais il est possible d'obtenir 1 % de plus de compacité avec un temps de vibration de 60 secondes si nécessaire.

3.3 Instrumentation des éprouvettes

L'éprouvette recouverte d'une membrane est instrumentée à l'aide de capteurs de déplacement de type Linear Variable Displacement Transducer (LVDT) à ressort. Le LVDT radial (horizontal) est installé sur des roulettes attachées à un câble d'acier ceinturant l'éprouvette à mi-hauteur, comme le montre la photo de la Figure 24. Le câble d'acier glisse à l'intérieur de 11 rectangles en aluminium de 12 mm par 12 mm et de 50 mm de hauteur simplement appuyés sur le pourtour de l'éprouvette. Le câble est maintenu en place par deux élastiques qui relient les roulettes. Lors de la déformation de l'éprouvette, les roulettes s'éloignent les unes des autres et une variation de la circonférence est mesurée. La variation de circonférence (Δ c) correspond à une variation de diamètre (Δ d) divisée par la constante π (Δ c = Δ d/ π). La déformation radiale est déterminée en divisant Δ d par le diamètre de l'éprouvette (d).

Figure 24 Capteur de déplacement radial installé sur l'éprouvette

Le câble d'acier ceinturant l'éprouvette a été reconnu comme l'un des moyens les plus adéquats pour mesurer la déformation radiale réversible des matériaux granulaires dans une étude européenne sur l'instrumentation de différents équipements triaxiaux à chargements répétés (Galjaard et coll., 1996). Un total de 13 appuis permet de mesurer la moyenne de la déformation radiale réversible en 13 points directement sur l'éprouvette.

Les deux LVDT axiaux (verticaux) sont installés de part et d'autre de l'éprouvette à l'aide de supports semi-circulaires en aluminium maintenus ensemble par des élastiques. Un guide a été conçu pour installer les supports à une distance de 200 mm sur la section centrale de l'éprouvette, comme le montre la photo de la Figure 25. Cette procédure pour l'installation des LVDT axiaux assure une reproductibilité de l'instrumentation des éprouvettes. Le guide sert également à aligner le plateau de chargement supérieur avec le piston de chargement pour assurer une lecture de déplacement similaire entre les deux LVDT. La déformation axiale est déterminée en divisant le déplacement axial par la distance de 200 mm entre les supports.

Figure 25 Installation des capteurs de déplacement axiaux

La mesure du déplacement axial doit être effectuée directement sur l'éprouvette puisque le comportement du matériau granulaire au contact des plateaux de chargement n'est pas représentatif (Galjaard et coll., 1996). Un minimum de deux LVDT axiaux est nécessaire pour évaluer la qualité de la mesure effectuée. Le soin apporté à l'alignement du plateau de chargement supérieur avec le guide permet d'obtenir une bonne qualité de mesure avec uniquement deux LVDT. La photo de la Figure 26 montre l'installation des LVDT axiaux et du LVDT radial complétée.

Figure 26 Capteurs de déplacement axiaux et radial installés sur l'éprouvette

Une étude a été réalisée pour évaluer l'influence de la position des LVDT axiaux et du câble ceinturant l'éprouvette sur la mesure des déplacements. Le E_r a été déterminé pour trois espacements entre les LVDT axiaux, soit la moitié de la hauteur (150 mm), les deux tiers de la hauteur (200 mm) et à partir des plateaux de chargement (300 mm). Chaque espacement a été caractérisé avec le LVDT radial ceinturant l'éprouvette et sans le LVDT radial par la suite. Les six configurations de LVDT ont été caractérisées à trois reprises pour évaluer la répétabilité de l'essai sur une même éprouvette. La Figure 27 montre les résultats obtenus et la Figure 28 montre les mêmes résultats dans un plan logarithmique.

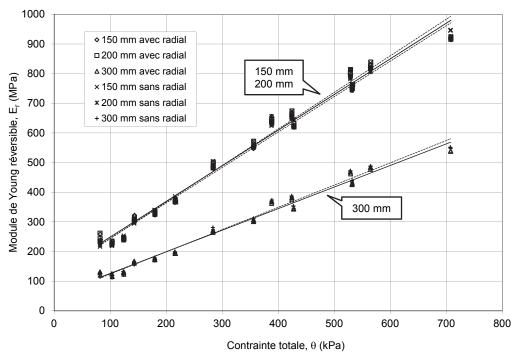


Figure 27 Module de Young réversible mesuré avec différents espacements de LVDT axiaux, avec et sans LVDT radial



Figure 28 Module de Young réversible mesuré avec différents espacements de LVDT axiaux, avec et sans LVDT radial, dans un plan logarithmique

Les résultats avec et sans LVDT radial sont pratiquement superposés, ainsi que les résultats avec un espacement de 150 mm et de 200 mm, ce qui indique une excellente

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES AU MINISTÈRE DES TRANSPORTS DU QUÉBEC

répétabilité de l'essai pour ces différentes configurations de LVDT. Par ailleurs, il y a un écart important entre les mesures faites sur l'éprouvette (150 et 200 mm) et celles faites à partir des plateaux de chargement (300 mm). Le E_r mesuré à partir des plateaux de chargement représente en moyenne 56 % des valeurs mesurées sur l'éprouvette avec un écart type de 3 %.

L'écart entre les mesures à partir des plateaux de chargement et sur l'éprouvette indique que la déformation du matériau granulaire est plus grande près des plateaux, probablement à cause de la friction qui est plus faible au contact des plateaux comparativement à la cohésion à l'intérieur du matériau granulaire. De plus, il est généralement admis qu'il y a concentration des contraintes aux extrémités de l'éprouvette lors d'un essai triaxial (Holtz et Kovacs, 1991). Par conséquent, les déplacements sont mesurés sur l'éprouvette avec un espacement de 200 mm pour tenir compte des amplitudes de déplacement plus grandes que sur 150 mm, ce qui permet d'obtenir une plus grande précision de lecture.

3.4 Variation de la teneur en eau

La méthode LC 22-400 prévoit la détermination du E_r des matériaux granulaires à trois teneurs en eau différentes : initiale, saturée et drainée. La teneur en eau initiale est la teneur en eau de compactage de l'éprouvette. La teneur en eau saturée est celle avec le niveau d'eau équilibré au centre de l'éprouvette. La teneur en eau drainée est celle résultant du drainage de l'éprouvette après saturation. Tous les essais sont réalisés en condition drainée, soit avec les extrémités de l'éprouvette ouvertes pour équilibrer la pression interne par rapport à la pression ambiante.

Pour ce faire, une balance d'une capacité de 150 kg avec une précision de 5 g est installée sur un chariot élévateur devant la table de la presse hydraulique. Un support avec des rouleaux est installé sur la balance pour y faire rouler la cellule triaxiale et mesurer sa masse qui est environ de 80 kg. La masse est mesurée initialement et les variations de masse mesurées par la suite représentent la variation de la teneur en eau à l'intérieur de l'éprouvette. La photo de la Figure 29 montre la cellule triaxiale avec l'éprouvette installée sur la balance

Figure 29 Balance sur le chariot élévateur avec la cellule triaxiale

Dans un premier temps, l'éprouvette est conditionnée à la teneur en eau initiale de compactage, par 10 000 cycles de chargement avec un σ_3 de 105 kPa et un σ_d de 105 kPa (LC 22-400). Par la suite, le E_r initial de l'éprouvette est déterminé aux 15 états de contrainte prescrits par la méthode d'essai (Tableau 2).

Dans un deuxième temps, le E_r saturé est déterminé à la teneur en eau la plus élevée possible. La saturation de l'éprouvette est effectuée par le plateau de chargement inférieur avec de l'eau désaérée à l'aide du panneau de contrôle des pressions d'air et d'eau. L'air est évacué par le plateau supérieur avec la cellule triaxiale installée sur la balance pour mesurer l'évolution de la teneur en eau. L'éprouvette est confinée à 20 kPa pour que l'eau ne circule pas entre la membrane et l'éprouvette.

Les étapes suivantes sont réalisées pour la saturation de l'éprouvette (LC 22-400) :

- 1. Une pression interstitielle négative d'environ -50 kPa est appliquée par le plateau de chargement supérieur en fermant l'entrée d'eau par le plateau de chargement inférieur.
- 2. Une pression d'eau de 10 kPa est appliquée au plateau de chargement inférieur et l'ouverture est ajustée de manière à saturer l'éprouvette à un taux de 10 g/min mesuré à l'aide de la balance, tout en conservant une pression interstitielle négative de -50 kPa par le plateau de chargement supérieur.

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES AU MINISTÈRE DES TRANSPORTS DU QUÉBEC

- 3. Lorsque l'eau commence à s'écouler par le plateau de chargement supérieur, la sortie d'eau est fermée et la saturation est poursuivie à 10 g/min en ajustant l'ouverture jusqu'à ce que la pression interstitielle devienne positive.
- 4. La sortie d'eau par le plateau de chargement supérieur est ouverte lorsque la pression devient positive et les bulles d'air sont évacuées.
- 5. Lorsque l'écoulement des bulles d'air est terminé, le plateau de chargement inférieur est fermé et une pression de confinement de 150 kPa est appliquée pour évacuer l'eau du plateau de chargement supérieur.
- 6. Le plateau de chargement inférieur est branché à un récipient dont le niveau d'eau est égal au centre de l'éprouvette, les deux plateaux de chargement sont ouverts et le niveau d'eau est laissé équilibrer pendant une heure dans l'éprouvette.

Le plateau supérieur doit être exempt d'eau et le plateau inférieur exempt d'air pour effectuer les essais. Le niveau d'eau est équilibré au centre de l'éprouvette pour que la pression interstitielle soit de 0 kPa au centre de la mesure des déformations, ce qui devient une condition de référence pour l'analyse. Si le niveau d'eau est plus élevé dans l'éprouvette, il peut y avoir pompage de l'eau par le plateau supérieur. La teneur en eau de l'éprouvette avant la détermination du E_r est identifiée comme la teneur en eau saturée (w_{sat}) déterminée selon l'Équation 20. La photo de la Figure 30 présente le montage pour la détermination du E_r à la teneur en eau saturée.

Équation 20: $w_{sat} = w_{ini} + 100 \frac{\Delta m_w}{\rho_d V}$

où w_{ini} : teneur en eau initiale (%),

 w_{sat} : teneur en eau saturée (%), Δm_w : masse d'eau ajoutée (kg),

 ho_d : masse volumique sèche (kg/m³), V : volume de l'éprouvette (m³).

Figure 30 Cellule triaxiale saturée avec le niveau d'eau au centre de l'éprouvette

Dans un troisième temps, le E_r drainé est déterminé après le drainage de l'eau interstitielle par gravité. L'eau est drainée par le plateau inférieur alors que l'air est amené par le plateau supérieur. Lorsque le drainage est terminé, les plateaux de chargement doivent être exempts d'eau. La teneur en eau drainée (w_{dr}) de l'éprouvette est déterminée avant l'essai selon l'Équation 21.

Équation 21 :
$$w_{dr} = w_{sat} + 100 \frac{\Delta m_w}{\rho_d V}$$

où w_{dr} : teneur en eau drainée (%).

La teneur en eau initiale (w_{ini}) de l'éprouvette après le compactage est considérée uniforme. Par ailleurs, la distribution de la w_{sat} et de la w_{dr} varie à l'intérieur de l'éprouvette, comme le montre la Figure 31. La w_{sat} est équilibrée au centre de l'éprouvette, ce qui entraı̂ne une distribution non uniforme de la saturation (S) au-dessus du centre. Comme la w_{sat} est déterminée pour l'ensemble de l'éprouvette, la teneur en eau dans la zone de mesure des déformations (200 mm) est un peu plus élevée puisque la partie supérieure à la zone de mesure (50 mm) est moins saturée. De même, la w_{dr} est relativement uniforme dans la zone de mesure des déformations, alors que la teneur en eau est un peu plus faible dans la partie supérieure (50 mm) et un peu plus élevée dans la partie inférieure (50 mm).

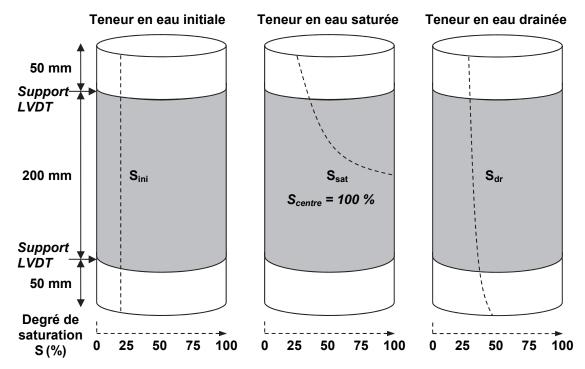


Figure 31 Distribution de la saturation à l'intérieur d'une éprouvette de matériau granulaire aux teneurs en eau initiale, saturée et drainée

La méthodologie pour la détermination du E_r à trois teneurs en eau a été élaborée dans le cadre d'une étude sur les matériaux granulaires du projet *Canadian Long Term Pavement Performance* (C-LTPP) (Doucet et Doré, 2004b). La Figure 32 montre un exemple de l'influence de la teneur en eau sur le E_r pour un matériau granulaire sensible à la variation de teneur en eau. L'étude a montré que le E_r à la teneur en eau initiale des matériaux granulaires est généralement un peu plus élevé que celui aux teneurs en eau saturée et drainée, qui sont généralement similaires, mais l'écart de E_r varie d'un matériau à l'autre.

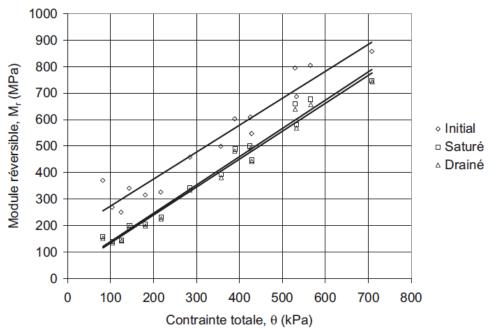


Figure 32 Exemple de l'influence de la teneur en eau sur le module de Young réversible d'un matériau granulaire (Doucet et Doré, 2004)

Un capteur de succion matricielle a été conçu dans le cadre de l'étude des matériaux C-LTPP pour expliquer l'influence du degré de saturation sur le E_r des matériaux granulaires. La Figure 33 montre la succion matricielle mesurée au centre de l'éprouvette aux trois degrés de saturation caractérisés pour les 21 matériaux granulaires C-LTPP. La courbe de rétention d'eau approximative générale des matériaux granulaires est tracée à partir de la moyenne des points mesurés.

La figure montre que le degré de saturation initial moyen est de 28 % avec une succion matricielle moyenne de -10,0 kPa. Lorsque l'éprouvette est saturée avec le niveau équilibré au centre, le degré de saturation globale des éprouvettes est en moyenne de 88 % avec une succion matricielle moyenne de 0,1 kPa. Après le drainage de l'éprouvette, le degré de saturation moyen est de 52 % avec une variation plus importante et une succion matricielle moyenne de -2,4 kPa. La teneur en eau saturée est sélectionnée comme teneur en eau de référence puisque la succion matricielle est de 0 kPa, ce qui assure un état de contrainte constant pour l'analyse (Doucet et Doré, 2004).

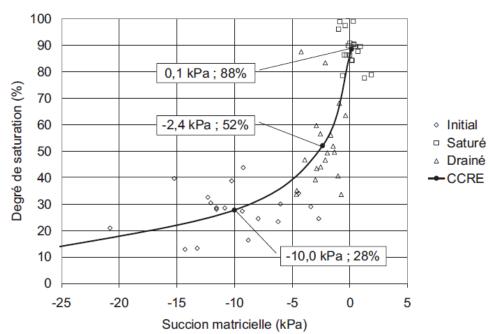


Figure 33 Courbe caractéristique de rétention d'eau générale de 21 matériaux granulaires canadiens (Doucet et Doré, 2004)

La Figure 34 montre l'influence du degré de saturation et la Figure 35 montre l'influence de la succion matricielle sur l'écart de E_r avec la teneur en eau saturée ($\Delta E_{r \, sat}$) pour un θ de 400 kPa pour les matériaux granulaires C-LTPP. La relation entre le degré de saturation et le $\Delta E_{r \, sat}$ est faible (R^2 = 0,35), alors que la relation avec la succion matricielle explique mieux les $\Delta E_{r \, sat}$ (R^2 = 0,58). Un gain de E_r est observable lorsque la succion matricielle est supérieure à -5 kPa et cette limite n'est pas atteinte à la teneur en eau drainée, ce qui explique la similitude des résultats avec la teneur en eau saturée. Il semble que le degré de saturation doit être inférieur à 40 % pour observer un gain significatif de E_r (Doucet et Doré, 2004).

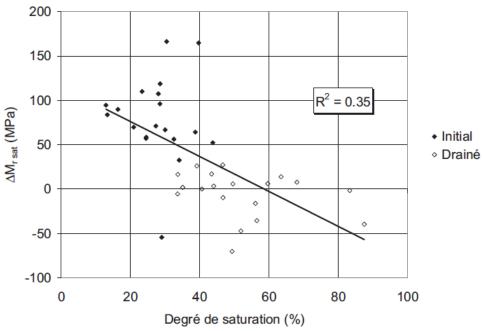


Figure 34 Influence du degré de saturation sur l'écart de module de Young réversible avec la teneur en eau saturée (Doucet et Doré, 2004)

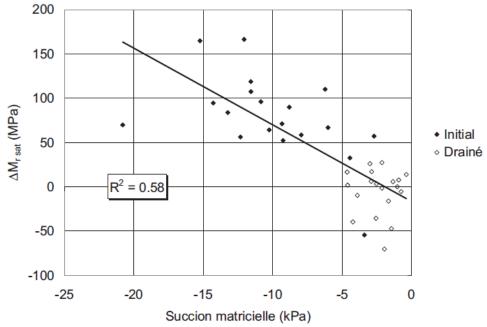


Figure 35 Influence de la succion matricielle sur l'écart de module de Young réversible avec la teneur en eau saturée (Doucet et Doré, 2004)

3.5 Résistance au cisaillement

Des essais de cisaillement triaxial (*Quick Shear Test*) ont été réalisés sur un matériau granulaire selon l'approche décrite par la norme AASHTO T 307 pour comparer la résistance au cisaillement du matériau avec les états de contrainte appliqués lors de la

détermination du E_r. La résistance au cisaillement d'un matériau granulaire MG 20 de pierre concassée de type « andésite » (roche volcanique) a été déterminée à la teneur en eau de compactage pour des pressions de confinement de 0, 20, 70 et 140 kPa. Une éprouvette différente a été utilisée pour chaque pression de confinement puisque l'essai est destructif. Les MG-20 constitués de pierres concassées sont les matériaux granulaires les plus utilisés au Québec pour les fondations de chaussées.

La Figure 36 montre les résultats des essais de cisaillement triaxial. La contrainte de cisaillement à la rupture (q_f) varie de 196 à 1135 kPa pour une pression de confinement (σ_3) variant de 0 à 140 kPa. Les ratios q_f/σ_3 sont de 23, 12 et 8 lorsque les σ_3 sont de 20, 70 et 140 kPa respectivement, ce qui est largement supérieur au ratio maximal (q/σ_3) de 3 appliqué lors de la détermination de E_r (Tableau 3).

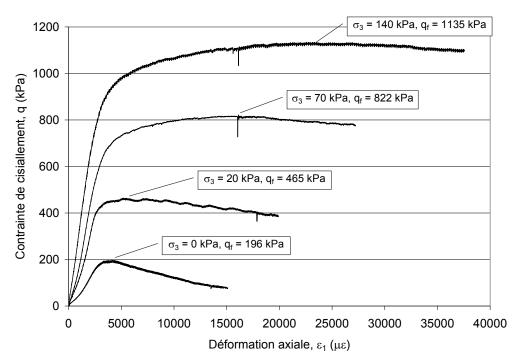


Figure 36 Essais de résistance au cisaillement triaxial sur un matériau granulaire MG 20 à différentes pressions de confinement

La Figure 37 montre l'enveloppe de rupture en cisaillement du matériau comparativement aux états de contrainte appliqués selon la méthode LC 22-400. De faibles ratios de q/σ_3 sont utilisés comparativement au ratio q_f/σ_3 pour limiter les déformations plastiques lors de la détermination du E_r . Ainsi, l'essai est considéré non destructif et permet la détermination du comportement réversible des matériaux granulaires.

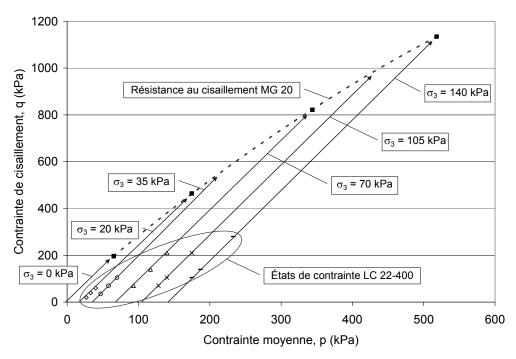


Figure 37 États de contrainte de la méthode LC 22-400 comparativement à la résistance au cisaillement d'un matériau granulaire MG 20

4 ÉTUDE DE RÉPÉTABILITÉ

4.1 Répétabilité des éprouvettes

Le E_r de cinq éprouvettes de matériaux granulaires MG 20 de pierre concassée de type « andésite » (section 3.5) a été déterminé pour évaluer la répétabilité de la méthode d'essai LC 22-400. Le Tableau 4 présente les caractéristiques physiques des éprouvettes utilisées pour l'étude de répétabilité, soit la teneur en eau de compactage (w), la masse volumique sèche (ρ_d), la porosité (n), le degré de saturation (S) et le ratio avec la masse volumique sèche maximale déterminée à l'aide de l'essai Proctor modifié ($\rho_d/\rho_{d \, max}$).

Tableau 4 Caractéristiques physiques des éprouvettes utilisées pour l'étude de répétabilité $[G_s: 2,89, Abs: 0,9 \%, w_{opt}: 4,5 \%, \rho_{d max}: 2233 kg/m^3]$

Éprouvettes	w (%)	ρ _d (kg/m³)	ρ _d /ρ _{d opt} (%)	n (%)	S (%)
PC1-1	2,7	2109	94	27	14
PC1-2	2,7	2104	94	27	14
PC1-3	3,1	2099	94	27	17
PC1-4	3,0	2175	97	25	18
PC1-5	2,8	2193	98	24	17
Moyenne	2,9	2136	95	26	16
Écart type	0,2	44	2	1	2

Les éprouvettes PC1-1, PC1-2 et PC1-3 ont été préparées et caractérisées simultanément, alors que les éprouvettes PC1-4 et PC1-5 ont été réalisées trois années plus tard avec le même matériau pour compléter l'étude. La ρ_d des éprouvettes PC1-4 et PC1-5 est plus élevée que celle des éprouvettes PC1-1, PC1-2 et PC1-3, ce qui est peut-être attribuable à une meilleure maîtrise de la méthodologie pour le compactage.

La teneur en eau moyenne est de 2,9 % avec un écart type de 0,2 % et la ρ_d moyenne est de 2136 kg/m³ avec un écart type de 44 kg/m³, ce qui indique que la préparation des éprouvettes est répétable, d'autant plus que les éprouvettes ont été préparées avec trois ans d'écart. La porosité moyenne est de 26 % avec un écart type de 1 % et le degré de saturation est de 16 % avec un écart type de 2 %, ce qui donne un $\rho_d/\rho_{d~opt}$ de 95 % avec un écart type de 2 %. Les écarts types sont donc faibles pour les cinq caractéristiques physiques.

4.2 Répétabilité du conditionnement

La méthode LC 22-400 prévoit un conditionnement des éprouvettes avant la détermination de E_r . Le conditionnement consiste à appliquer 10 000 cycles de chargement avec une contrainte déviatorique (σ_d) de 105 kPa et une pression de confinement (σ_3) de 105 kPa. Le Tableau 5 présente la déformation permanente cumulée entre 100 et 10 000 cycles mesurée par le LVDT1 (ϵ_{p1}) et le LVDT2 (ϵ_{p2}), ainsi que la moyenne (ϵ_{p}).

Tableau 5 Déformations permanentes (ϵ_p) mesurées lors du conditionnement des éprouvettes pour l'étude de répétabilité (σ_d = 105 kPa, σ_3 = 105 kPa)

Éprouvettes	ε _{p1} (μm/m)	ε _{p2} (μm/m)	ε _p (μm/m)
PC1-1	12	-14	-1
PC1-2	-27	4	-12
PC1-3	-21		-21
PC1-4	1	15	8
PC1-5	39	14	27
Moyenne	-	-	0
Écart type	-	-	19

La déformation permanente moyenne est de 0 µm/m avec un écart type de 19, ce qui indique que certaines éprouvettes ont présenté une extension dans la zone de mesure des déformations lors du conditionnement, alors que d'autres ont cumulé une compression. Le ϵ_p moyen le plus élevé est de 27 µm/m, ce qui est faible. Lors du conditionnement, ce sont principalement les ajustements du contact entre les plateaux de chargement et l'éprouvette, de l'appui des LVDT sur la membrane et de l'application de la pression de confinement qui entraı̂nent de la déformation permanente. Les points importants à vérifier à la fin du conditionnement sont la stabilisation de la déformation permanente à une valeur peu élevée (< 100 µm/m) et la stabilisation de la déformation réversible.

4.3 Répétabilité du module de Young et du coefficient de Poisson réversible

Le E_r des cinq éprouvettes a été déterminé à trois degrés de saturation (S) pour chaque éprouvette. Les degrés de saturation des éprouvettes aux teneurs en eau initiale, saturée et drainée sont présentés au Tableau 6. Les degrés de saturation atteints sont relativement similaires, à l'exception de l'éprouvette PC1-1 qui n'a pas été saturée adéquatement (66 %). Les procédures de saturation et de drainage des éprouvettes sont donc jugées généralement répétables. De plus, le degré de saturation de 66 % n'a pas d'impact sur les résultats, tels que montrés par la suite.

Tableau 6 Degrés de saturation (S) des éprouvettes aux teneurs en eau initiale, saturée et drainée pour l'étude de répétabilité

Matériau	S _{ini}	S _{sat}	S_{dr}
PC1-1	14%	66%	20%
PC1-2	14%	84%	21%
PC1-3	17%	87%	21%
PC1-4	18%	92%	28%
PC1-5	17%	82%	26%
Moyenne	16%	82%	23%
Écart type	2%	10%	4%

Les coefficients de régression des modèles linéaires (Équation 10) et de puissance (Équation 8) de E_r pour les cinq matériaux granulaires de l'étude de répétabilité sont présentés au Tableau 7 selon la teneur en eau. Le coefficient de détermination (R²), l'erreur moyenne de prédiction (RMSE) et le nombre de résultats (n) des modèles sont

également indiqués. La moyenne et l'écart type des coefficients obtenus sont aussi déterminés pour chaque teneur en eau.

Tableau 7 Coefficients de régression des modèles de module de Young réversible (E_r) pour l'étude de répétabilité

		E _r =	c ₁ + c	₂ θ+0	C ₃ τ _{oct}		Е	$E_r = k_1 p_a (\theta/p_a)^{k2} (\tau_{oct}/p_a + 1)^{k3}$					
Materiau	C ₁	C ₂	C ₃	R²	RMSE	n	k ₁	k ₂	k ₃	R²	RMSE	n	
				Te	eneur er	eau	intiale						
PC1-1	131	1,79	-2,51	0,99	26	15	2,60	0,892	-0,494	0,99	0,021	15	
PC1-2	109	1,66	-2,13	0,99	24	15	2,33	0,904	-0,453	0,99	0,024	15	
PC1-3	126	1,85	-2,54	0,99	30	15	2,61	0,907	-0,483	0,99	0,022	15	
PC1-4	170	1,34	-1,12	0,99	27	15	2,69	0,723	-0,232	1,00	0,013	15	
PC1-5	176	1,27	-1,17	0,99	22	15	2,71	0,689	-0,237	0,99	0,018	15	
Moyenne	142	1,58	-1,90	0,99	26	15	2,59	0,823	-0,380	0,99	0,020	15	
Écart type	29	0,26	0,70	0,00	3	0	0,15	0,108	0,134	0,00	0,004	0	
				Те	neur en	eau :	saturée)					
PC1-1	105	1,64	-1,93	1,00	18	15	2,31	0,896	-0,415	0,99	0,022	15	
PC1-2	91	1,68	-2,38	0,99	21	15	2,16	0,954	-0,534	0,99	0,028	15	
PC1-3	162	1,43	-2,10	0,96	47	15	2,56	0,823	-0,516	0,97	0,040	15	
PC1-4	151	1,31	-0,95	0,99	19	15	2,54	0,722	-0,189	0,99	0,021	15	
PC1-5	133	1,27	-1,01	0,99	19	15	2,31	0,762	-0,235	1,00	0,013	15	
Moyenne	128	1,46	-1,67	0,99	25	15	2,38	0,831	-0,378	0,99	0,025	15	
Écart type	30	0,19	0,66	0,01	12	0	0,17	0,095	0,159	0,01	0,010	0	
				Te	neur en	eau	drainée	;					
PC1-1	108	1,61	-1,82	1,00	15	15	2,36	0,862	-0,376	0,98	0,030	15	
PC1-2	110	1,61	-2,08	0,99	20	15	2,32	0,891	-0,457	0,99	0,026	15	
PC1-3	132	1,58	-2,68	0,99	21	15	2,44	0,893	-0,648	0,98	0,033	15	
PC1-4	130	1,30	-0,83	1,00	14	15	2,36	0,745	-0,164	0,99	0,018	15	
PC1-5	133	1,23	-0,87	1,00	14	15	2,33	0,730	-0,181	0,99	0,020	15	
Moyenne	123	1,47	-1,66	1,00	17	15	2,36	0,824	-0,365	0,99	0,025	15	
Écart type	13	0,19	0,80	0,00	3	0	0,05	0,080	0,202	0,01	0,007	0	

Le tableau montre que le R^2 des deux types de modèles est généralement de 0,99 avec un RMSE moyen de 23 MPa pour le modèle linéaire et de 0,023 sur le log E_r pour le modèle de puissance, ce qui est similaire. En ce qui concerne les paramètres de régression, les paramètres c_1 , c_2 , k_1 et k_2 sont relativement constants, avec les paramètres k_1 et k_2 un peu moins variables que les paramètres c_1 et c_2 , alors que les paramètres c_3 et k_3 sont plus variables. Ce constat indique que l'influence de θ sur le θ sur le θ sur le θ sont généralement présentés en fonction de θ graphiquement.

Des modèles généraux déterminés à partir des résultats des cinq éprouvettes combinées sont présentés au Tableau 8 pour les différentes teneurs en eau. Les coefficients de régression aux teneurs en eau saturée et drainée sont pratiquement identiques, ce qui indique que l'écart de E_r n'est pas significatif entre 23 % et 82 % de saturation (Tableau 6). Le RMSE des modèles généraux représente la répétabilité des résultats de E_r lorsque différentes éprouvettes sont caractérisées. Ainsi, à la teneur en eau saturée, le RMSE du modèle linéaire passe en moyenne de 23 MPa (individuel) à 40 MPa (général) et celui du modèle de puissance de 0,023 (individuel) à 0,032 (général). Le faible écart entre les RMSE indique que la répétabilité de l'essai est très bonne, particulièrement avec le modèle de puissance.

Tableau 8 Coefficients de régression des modèles généraux de module de Young réversible (E_r) pour l'étude de répétabilité

Teneur	$E_r = c_1 + c_2 \theta + c_3 \tau_{oct}$							$E_r = k_1 p_a (\theta/p_a)^{k2} (\tau_{oct}/p_a + 1)^{k3}$					
en eau	C ₁	C ₂	C ₃	R²	RMSE	n		k ₁	k ₂	k ₃	R²	RMSE	n
Initiale	142	1,58	-1,89	0,97	47	75		2,59	0,822	-0,378	0,98	0,032	75
Saturée	128	1,47	-1,67	0,98	37	75		2,37	0,831	-0,379	0,98	0,033	75
Drainée	128	1,47	-1,67	0,98	36	75		2,38	0,830	-0,378	0,98	0,031	75

La Figure 38 et la Figure 39 montrent les résultats de E_r des cinq éprouvettes et le E_r prédit par les modèles généraux incluant l'erreur moyenne de prédiction (RMSE) à la teneur en eau saturée. La faible erreur de prédiction des valeurs permet d'apprécier la précision des modèles. Les figures montrent que le modèle linéaire prédit mieux les valeurs aux contraintes plus faibles (θ < 250 kPa), alors que le modèle de puissance prédit mieux les valeurs aux contraintes plus élevées (θ > 250 kPa).

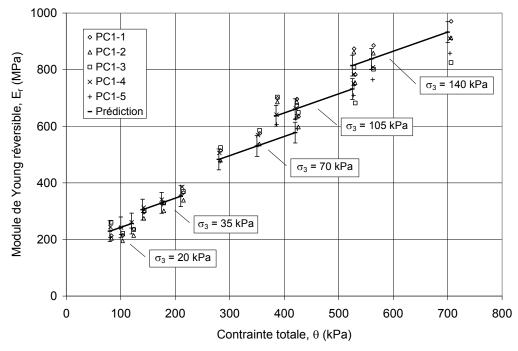


Figure 38 Modèles linéaires de module de Young réversible à la teneur en eau saturée pour l'étude de répétabilité

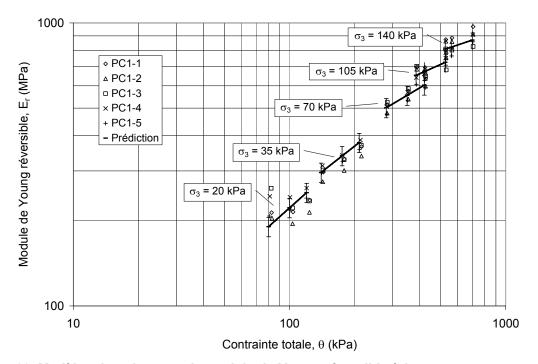


Figure 39 Modèles de puissance de module de Young réversible à la teneur en eau saturée pour l'étude de répétabilité

Le Tableau 9 présente le ν_r moyen de chaque éprouvette pour les différents degrés de saturation caractérisés. Le ν_r ne varie pratiquement pas en fonction de la teneur en eau, mais il varie entre les éprouvettes pour une valeur moyenne de 0,19 avec un écart type de 0,03 en général, ce qui est principalement attribuable à l'éprouvette PC1-3. Cette variation est par ailleurs jugée acceptable pour le dimensionnement des chaussées, puisque le ν_r est considéré comme un paramètre ayant peu d'influence.

Tableau 9 Coefficients de Poisson réversible (v_r) moyens pour l'étude de répétabilité

Matériau	$\nu_{r ini}$	ν_{rsat}	ν_{rdr}	ν_{rmoy}
PC1-1	0,18	0,18	0,17	0,18
PC1-2	0,21	0,22	0,21	0,21
PC1-3	0,23	0,24	0,25	0,24
PC1-4	0,18	0,18	0,17	0,17
PC1-5	0,17	0,18	0,17	0,17
Moyenne	0,19	0,20	0,19	0,19
Écart type	0,02	0,03	0,03	0,03

4.4 Répétabilité des modules volumique et de cisaillement réversibles

Les résultats de l'étude de répétabilité sont également analysés relativement au module volumique réversible (K_r) et au module de cisaillement réversible (G_r). Les coefficients de régression des modèles de Boyce (Équation 11, Équation 12 et Équation 13) pour les cinq éprouvettes de l'étude de répétabilité sont présentés au Tableau 10 pour les trois teneurs en eau caractérisées. Le coefficient de détermination (R²) et l'erreur moyenne de

prédiction (RMSE) du K_r et du G_r sont également indiqués ainsi que le nombre de résultats (n) utilisés pour les modèles.

Tableau 10 Coefficients de régression des modèles de Boyce de modules volumique et de cisaillement réversibles (K_r, G_r) pour l'étude de répétabilité

	K _r = k	(_o p _a (p/p _a) ¹⁻ⁿ	/ (1-β	(q/p)) ²			
Matériau	$G_r = 0$	G _o p _a	(p/p _a) ¹⁻	n		$[\beta = ($	1-n) K _o / 6	G _o]
	Ko	G_{\circ}	n	R^{2}_{Kr}	$RMSE_Kr$	R^{2}_{Gr}	$RMSE_Gr$	n
		Т	eneur e	ı intiale				
PC1-1	2,47	2,40	0,267	0,92	0,066	0,96	0,043	15
PC1-2	2,39	2,18	0,242	0,94	0,061	0,97	0,043	15
PC1-3	2,81	2,37	0,251	0,94	0,058	0,96	0,044	15
PC1-4	2,40	2,31	0,345	0,97	0,036	0,98	0,026	15
PC1-5	2,30	2,24	0,381	0,98	0,026	0,97	0,031	15
Moyenne	2,48	2,30	0,298	0,95	0,049	0,97	0,038	15
Écart type	0,20	0,09	0,062	0,03	0,017	0,01	0,008	0
		Τe	eneur e	n eau	saturée			
PC1-1	2,23	2,22	0,237	0,95	0,056	0,97	0,040	15
PC1-2	2,34	2,04	0,231	0,92	0,069	0,95	0,051	15
PC1-3	2,67	2,07	0,348	0,87	0,074	0,93	0,056	15
PC1-4	2,30	2,21	0,343	0,98	0,030	0,97	0,033	15
PC1-5	2,13	2,06	0,314	0,99	0,025	0,98	0,030	15
Moyenne	2,33	2,12	0,294	0,94	0,051	0,96	0,042	15
Écart type	0,20	0,09	0,057	0,05	0,022	0,02	0,011	0
		Τe	eneur e	n eau	drainée			
PC1-1	2,19	2,24	0,254	0,94	0,060	0,97	0,043	15
PC1-2	2,36	2,13	0,258	0,94	0,057	0,96	0,046	15
PC1-3	2,62	1,99	0,321	0,95	0,047	0,92	0,063	15
PC1-4	2,14	2,15	0,305	0,99	0,028	0,98	0,029	15
PC1-5	2,09	2,07	0,327	0,99	0,027	0,98	0,031	15
Moyenne	2,28	2,11	0,293	0,96	0,044	0,96	0,042	15
Écart type	0,22	0,09	0,035	0,02	0,016	0,03	0,014	0

Le modèle de Boyce permet une bonne prédiction du K_r et du G_r avec un R^2 moyen de 0,95. Les coefficients de régression K_o et G_o des modèles de Boyce sont relativement constants, alors que le n varie davantage. Le RMSE moyen de la prédiction du log K_r est de 0,048 et de 0,041 pour le log G_r .

Le Tableau 11 présente les modèles de Boyce généraux aux différentes teneurs en eau déterminés à partir des résultats combinés des cinq éprouvettes. Le K_o et le G_o des modèles généraux sont différents à la teneur en eau initiale mais comparables aux teneurs en eau saturée et drainée, alors que le n est plus constant. Le R^2 demeure élevé à 0,95 pour la prédiction générale de G_r , mais diminue à 0,90 pour la prédiction générale de K_r . Ainsi, la répétabilité des résultats de G_r semble meilleure que celle de K_r , qui demeure très bonne. D'ailleurs, le RMSE à la teneur en eau saturée de la prédiction du K_r à 0,065 et celui du G_r à 0,047 augmentent peu comparativement aux moyennes individuelles (0,051 et 0,042), ce qui indique une excellente répétabilité des résultats de K_r et de G_r ainsi que du modèle de Boyce.

Tableau 11 Coefficients de régression des modèles de Boyce généraux de modules volumique et de cisaillement réversibles (K_r , G_r) pour l'étude de répétabilité

$K_r = K_o p_a (p/p_a)^{1-n} / (1-\beta(q/p))^2$											
Teneur	$G_r = 0$	$G_r = G_o p_a (p/p_a)^{1-n}$ [$\beta = (1-n) K_o / 6G_o$									
en eau	K _o	Go	n	$RMSE_Kr$	R^{2}_{Gr}	$RMSE_Gr$	n				
Initiale	2,47	2,30	0,297	0,90	0,062	0,95	0,044	75			
Saturée	2,33	2,12	0,294	0,90	0,065	0,95	0,047	75			
Drainée	2,32	2,12	0,289	0,91	0,060	0,95	0,046	75			

La Figure 40 et la Figure 41 présentent les résultats de K_r et de G_r comparativement à la prédiction par le modèle de Boyce général à la teneur en eau saturée incluant le RMSE de la prédiction. Les figures montrent que l'influence de la contrainte de cisaillement (q) doit être considérée pour la prédiction du K_r , alors que l'influence de la contrainte moyenne (p) est suffisante pour le G_r . La modélisation des résultats de G_r semble plus simple et plus précise.

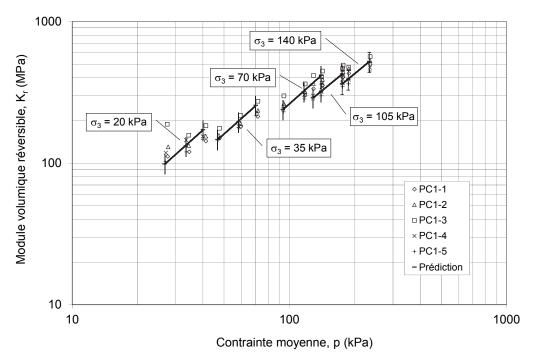


Figure 40 Modèle de Boyce général de module volumique réversible à la teneur en eau saturée pour l'étude de répétabilité

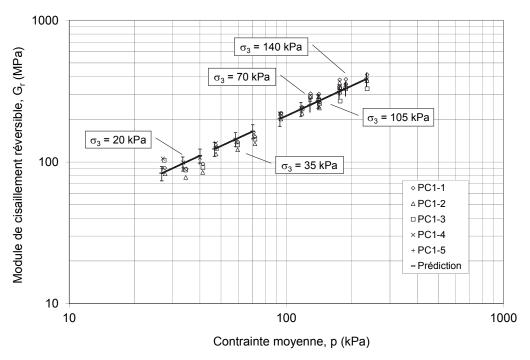


Figure 41 Modèle de Boyce général de module de cisaillement réversible à la teneur en eau saturée pour l'étude de répétabilité

Les résultats de K_r et de G_r sont également modélisés à l'aide d'un modèle de puissance (Équation 14 et Équation 15). Les coefficients de régression des modèles de puissance de K_r et de G_r pour les cinq éprouvettes de l'étude de répétabilité sont présentés au Tableau 12 pour les trois teneurs en eau caractérisées. Le coefficient de détermination (R^2), l'erreur moyenne de prédiction (RMSE) et le nombre de résultats (n) des modèles sont également indiqués.

Tableau 12 Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles (K_r, G_r) pour l'étude de répétabilité

Matériau	K	_r = K ₁ p	_a (θ/p _a) ^l	^{<2} (τ _{oct} /	/p _a +1) ^{K3}		G	_r = G ₁ p	o _a (θ/p _a) ⁰	³² (τ _{oct}	/p _a +1) ^{G3}	3
Materiau	K ₁	K ₂	K ₃	R²	RMSE	n	G ₁	G ₂	G ₃	R²	RMSE	n
				Ten	eur en e	eau i	ntiale					
PC1-1	1,41	0,750	-0,189	0,99	0,022	15	1,09	0,930	-0,577	0,99	0,026	15
PC1-2	1,31	0,709	0,063	0,99	0,021	15	0,97	0,952	-0,580	0,99	0,026	15
PC1-3	1,58	0,690	0,081	0,99	0,024	15	1,07	0,955	-0,609	0,99	0,025	15
PC1-4	1,35	0,587	0,202	0,99	0,025	15	1,16	0,761	-0,353	0,99	0,018	15
PC1-5	1,32	0,519	0,304	1,00	0,014	15	1,17	0,737	-0,389	0,99	0,023	15
Moyenne	1,39	0,651	0,093	0,99	0,021	15	1,09	0,867	-0,502	0,99	0,024	15
Écart type	0,11	0,095	0,185	0,00	0,004	0	0,08	0,109	0,121	0,00	0,003	0
				Tene	eur en e	au s	aturée					
PC1-1	1,21	0,734	-0,017	1,00	0,013	15	0,98	0,940	-0,524	0,99	0,025	15
PC1-2	1,33	0,715	0,006	0,99	0,024	15	0,88	1,008	-0,659	0,99	0,031	15
PC1-3	1,62	0,587	0,142	0,96	0,043	15	1,04	0,872	-0,654	0,97	0,041	15
PC1-4	1,28	0,533	0,356	0,99	0,017	15	1,09	0,773	-0,339	0,99	0,026	15
PC1-5	1,16	0,564	0,343	1,00	0,014	15	0,99	0,816	-0,394	0,99	0,019	15
Moyenne	1,32	0,627	0,166	0,99	0,022	15	1,00	0,882	-0,514	0,99	0,029	15
Écart type	0,18	0,092	0,178	0,02	0,013	0	0,08	0,094	0,146	0,01	0,008	0
				Tene	eur en e	au d	rainée					
PC1-1	1,18	0,726	0,000	0,99	0,022	15	1,01	0,901	-0,483	0,98	0,033	15
PC1-2	1,31	0,691	0,071	1,00	0,016	15	0,97	0,939	-0,586	0,99	0,030	15
PC1-3	1,58	0,520	0,346	0,98	0,029	15	0,99	0,968	-0,850	0,98	0,039	15
PC1-4	1,13	0,595	0,322	1,00	0,015	15	1,03	0,787	-0,302	0,99	0,024	15
PC1-5	1,13	0,561	0,344	1,00	0,009	15	1,01	0,777	-0,330	0,99	0,026	15
Moyenne	1,27	0,619	0,217	0,99	0,018	15	1,00	0,874	-0,510	0,98	0,030	15
Écart type	0,19	0,087	0,167	0,01	0,007	0	0,02	0,088	0,222	0,01	0,006	0

Le tableau montre que le R^2 des modèles de puissance de K_r et de G_r est en moyenne de 0,99, comme les modèles de E_r (Tableau 7). Le RMSE moyen est également similaire, soit de 0,020 pour la prédiction du log K_r et de 0,028 pour le log G_r . Le R^2 des modèles de puissance est donc supérieur au modèle de Boyce et le RMSE est plus faible, ce qui indique que les modèles de puissance offre une meilleure prédiction des résultats de K_r et de G_r lorsque la pression de confinement est appliquée de manière constante.

Des modèles généraux ont également été déterminés aux différentes teneurs en eau en combinant les résultats des cinq éprouvettes au Tableau 13. Le RMSE de la prédiction du K_r à la teneur en eau saturée est de 0,050 et celui du G_r de 0,037, ce qui est significativement plus élevé que la moyenne des modèles individuels (0,022 et 0,029). Par ailleurs, les RMSE sont inférieurs à ceux du modèle de Boyce (Tableau 11), ce qui confirme la meilleure prédiction des résultats par le modèle de puissance en général.

Tableau 13 Coefficients de régression des modèles de puissance généraux de modules volumique et de cisaillement réversibles (K_r, G_r) pour l'étude de répétabilité

Teneur	$K_r = K_1 p_a (\theta/p_a)^{K2} (\tau_{oct}/p_a + 1)^{K3}$							$G_r = G_1 p_a (\theta/p_a)^{G2} (\tau_{oct}/p_a + 1)^{G3}$					
en eau	K ₁	K ₂	K ₃	R²	RMSE	n		G ₁	G_2	G ₃	R²	RMSE	n
Initiale	1,39	0,649	0,101	0,95	0,048	75		1,09	0,866	-0,501	0,98	0,034	75
Saturée	1,31	0,625	0,173	0,94	0,050	75		0,99	0,882	-0,517	0,97	0,037	75
Drainée	1,29	0,638	0,170	0,95	0,046	75		1,00	0,878	-0,515	0,97	0,037	75

En ce qui concerne les paramètres de régression, les paramètres K_1 , K_2 , G_1 et G_2 sont constants, alors que les paramètres K_3 et G_3 sont variables. Ce constat indique que l'influence de θ sur le K_r et le G_r est plus constante et significative que l'influence de τ_{oct} , comme observer pour le E_r . Pour cette raison, les résultats de K_r et de G_r sont également présentés en fonction de θ graphiquement.

La Figure 42 et la Figure 43 montrent les résultats de K_r et de G_r à la teneur en eau saturée en fonction de θ . Les figures permettent de constater l'excellente répétabilité des résultats et la faible influence de τ_{oct} . Le modèle de puissance semble bien modéliser les résultats de K_r et de G_r déterminés avec une pression de confinement constante.

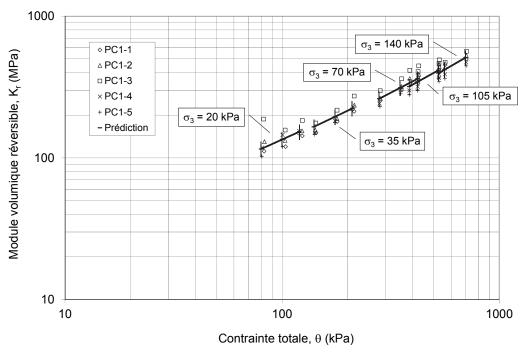


Figure 42 Modèle de puissance général de module volumique réversible à la teneur en eau saturée pour l'étude de répétabilité



Figure 43 Modèle de puissance général de module de cisaillement réversible à la teneur en eau saturée pour l'étude de répétabilité

5 RÉSULTATS INDIVIDUELS

5.1 Matériaux granulaires caractérisés

Le E_r de plusieurs matériaux granulaires a été déterminé depuis l'élaboration de la méthode d'essai LC 22-400. Les principaux résultats obtenus sont présentés dans ce rapport afin d'établir une banque de données de référence pour les expertises sur les matériaux granulaires et le dimensionnement des chaussées au Québec. Au total, 35 matériaux granulaires sont inclus.

Les matériaux granulaires (MG) caractérisés ont été divisés en quatre groupes distincts pour faciliter la présentation et l'analyse des résultats. Le premier groupe est constitué de MG 20 (NQ 2560-114) composés de pierres concassées dont la masse totale de particules fines passant le tamis 80 µm est inférieure à 5 % (PC). Le deuxième groupe est constitué de MG 20 composés de pierres concassées dont la masse totale de particules fines est supérieure à 5 % (PCM). Le troisième groupe est constitué de MG 20 composés de graviers concassés (GC) et le quatrième groupe, de MG 112 (NQ 2560-114) composés de sable naturel (S). Le E_r des autres types de matériaux granulaires utilisés pour les routes au Québec (MG 56, MG 80, MG 112) ne peut pas être déterminé avec l'équipement du MTQ puisque la grosseur nominale maximale des grains (56, 80, 112 mm) est plus grande que le cinquième du diamètre de l'éprouvette triaxiale (150 ÷ 5 = 30 mm).

Le Tableau 14 indique le code de référence attribué à chacun des matériaux granulaires, leur identification pétrographique et la région du Québec où ils ont été échantillonnés. Le tableau présente également les principales caractéristiques physiques des matériaux, soit la densité (G_s) et l'absorption (Abs) des particules, la teneur en eau optimale (w_{opt}) et la masse volumique sèche maximale ($p_{d max}$) déterminées à l'aide de l'essai Proctor modifié, ainsi que la quantité de particules plates, allongées et fracturées. Le matériau PC1 a été utilisé pour la détermination de la résistance au cisaillement (section 3.5) et l'étude de répétabilité (section 4).

Tableau 14 Identification et caractéristiques physiques des matériaux granulaires caractérisés

Code	Identification	Région du Québec	Gs	Abs	W _{opt}	ρ _{d max}	Plat	Allongé	Fracturé
Oode	pétrographique	region da Quebeo	O _S	(%)	(%)	(kg/m³)	(%)	(%)	(%)
	petrograpriique	MG 20 - Pierre co	ncassé		(70)	(Kg/III)	(70)	(70)	(70)
PC1	Andésite	Chaudière-Appalaches	2,89	0,9	4,5	2233	21	46	100
PC2	Basalte	Centre-du-Québec	2.83	1,7	5,2	2279	17	40	100
PC3	Basalte	Chaudière-Appalaches	2,77	1,3	6,7	2211	16	36	100
PC4	Calcaire	Capitale-Nationale	2,66	0,7	6,3	2050	23	41	100
PC5	Calcaire	Mauricie	2,62	1,1	5,5*	2366	20	31	100
PC6	Cornéenne	Montérégie	2,78	0.6	5,5*	2208	29	39	100
PC7	Calcaire	Capitale-Nationale	2,61	1,4	6,7	2255	19	33	100
PC8	Calcaire	Saguenay-Lac-St-Jean	2,65	0,7	6,5	2180	35	44	100
PC9	Pélite et schiste	Centre-du-Québec	2.76	0,7	6,0	2220	39	60	100
PC10	Grès et calcaire	Bas-Saint-Laurent	2,70	0,3	4,9	2160	11	26	100
Moyenr		bas-Saint-Laurent	2,72	1,0	6,0	2216	23	40	100
Écart ty			0,10		1,0	82	9	9	0
LCart ty	pe	MG 20 - Pierre conc			1,0	02	9	<u> </u>	<u> </u>
PCM1	Calcaire	Capitale-Nationale	2,60	1,4	5,2	2233	23	42	100
PCM2	Gneiss dioritique	Mauricie	2,81	0,5	5,5*	2367	23	34	100
PCM3	Dolomie	Laurentides	2.68	2,0	5,5*	2365	25	37	100
PCM4	Gneiss granit. et à biotite	Capitale-Nationale	2,66	0.9	4,9	2234	13	48	100
PCM5	Tuf volcanique	Chaudière-Appalaches	2,79	0,9	- ,3	2358	16	44	100
PCM6	Grès lithique	Chaudière-Appalaches	2,78	1,6	6,0	2275	35	50	100
PCM7	Cornéenne	Estrie	2,74	0.6	5,5	2320	38	50 51	100
PCM8	Gabbro et anorthosite	Saguenay-Lac-St-Jean	2,74	0,0	5,5	2420	25	47	100
PCM9	Granite	Côte-Nord	2,63	0,4	5,5	2200	19	37	100
	Calcaire et schiste	Laval	2,59	1,7	5,5	2200	19	31	100
	Monzonite gneissique	Laurentides	2,39	0,4					100
Moyenr		Laurentiues	2,69	1,0	5,5	2308	24	43	100
Écart ty			0,09	0,6	0,5	76	8	6	0
LCart ty	pe	MG 20 - Gravier c			0,5	70	- 0	0	U
GC1	Grès	Chaudière-Appalaches	2,55	1,9	7,0	2156	16	31	68
GC2	Gneiss granitique	Capitale-Nationale	2,65	0,6	5,7	2180	14	34	72
GC3	Grès et schiste	Bas-Saint-Laurent	2,55	1,8	5,7 5,5*	2140	33	39	12
GC3	Schiste et grauwacke	Estrie	2,49	3,1	5,5*	2136	36	44	
GC4 GC5	Grès, schiste et quartzite	Chaudière-Appalaches	2,62	1,1	5,9	2271	18	33	74
GC6	Schiste, grès et quartzite	Estrie	2,65	0.9	6,0	2255	18	31	53
GC7	Schiste et grès	Bas-Saint-Laurent	2,52	2,9	0,0	2233	10	31	55
GC8	Gneiss granitique	Lanaudière	2,66	0,6	4,6	2252			
Moyenr		Lanaudiere	2,59	1,6	6,2	2190	23	35	67
Écart ty			0,07	1,0	0,2	59	9	5	10
LCart ty	pe	MG 112 - Sa		1,0	0,7	39	9	- 5	10
S1	Sable granitique	Capitale-Nationale		0.5	10.6	1763			
S2	Sable granitique	Chaudière-Appalaches	2,64 2,62	0,5 0,9	10,6 13,1	1691			
S3	Sable granitique	Capitale-Nationale	2,68	0,9	11,5	1792			
S3	Sable lithique	Chaudière-Appalaches	2,56	0,2	7,7	2044			
S5	Sable granitique	Centre-du-Québec	2,63			1668			
S6	Sable granitique Sable granitique	Lanaudière	2,63	0,7 0,5	10,0 10,4	1808			
Moyenn		Lanaudicie	2,69	0,5	10,4	1794			
Écart ty			0,05		1,8	134			
<u>⊏</u> caπ ty	he		0,05	0,3	1,0	134			

La G_s des pierres concassées PC et PCM est un peu plus élevée en moyenne (2,70) que celle des graviers concassés GC et des sables S (2,61). L'absorption moyenne des graviers concassés GC est un peu plus élevée en moyenne (1,6 %), et celle des sables S un peu plus faible (0,6 %), que celle des pierres concassées PC et PCM (1,0 %). La w_{opt} moyenne des sables S (10,6 %) est significativement plus élevée que celle des matériaux granulaires PC, PCM et GC (5,9 %). De même, la $\rho_{d\,max}$ moyenne des sables S est significativement plus faible (1794 kg/m³) que celle des autres matériaux granulaires PC, PCM et GC (2243 kg/m³).

La Figure 44 à la Figure 47 montrent la localisation de l'échantillonnage des 35 matériaux granulaires. Les matériaux granulaires proviennent principalement des régions de Chaudière-Appalaches (8) et de la Capitale-Nationale (7), mais également des régions de l'Estrie (3), du Bas-Saint-Laurent (3), du Centre-du-Québec (3), de la Mauricie (2), des Laurentides (2), de Lanaudière (2), du Saguenay-Lac-Saint-Jean (2), de Laval (1), de la Montérégie (1) et de la Côte-Nord (1).

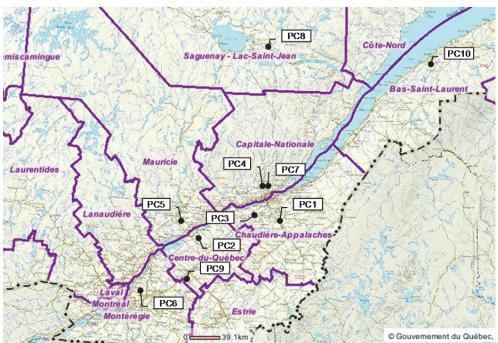


Figure 44 Localisation de l'échantillonnage des matériaux granulaires de pierres concassées MG 20 PC

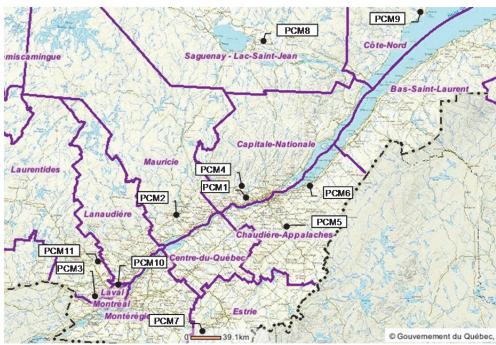


Figure 45 Localisation de l'échantillonnage des matériaux granulaires de pierres concassées fines MG 20 PCM

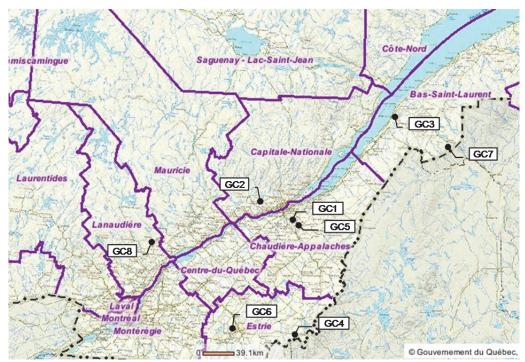


Figure 46 Localisation de l'échantillonnage des matériaux granulaires de graviers concassés MG 20 GC

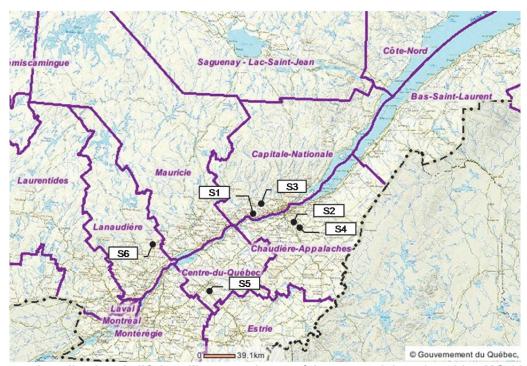


Figure 47 Localisation de l'échantillonnage des matériaux granulaires de sables MG 112 S

Les spécifications granulométriques des MG 20 et des MG 112 prescrites par la norme « Granulats » (NQ 2560-114) sont indiquées au Tableau 15. Les granulométries des matériaux granulaires de l'étude sont présentées par groupes au Tableau 16 avec la granulométrie moyenne, l'écart type et le coefficient de variation du groupe. La classification unifiée des sols de l'USCS (ASTM D2487-11) et de l'American Association of State Highway and Transportation Officials (AASHTO M145-91) des matériaux granulaires sont également indiquées. De plus, les granulométries sont montrées à la Figure 48 pour les MG 20 PC, à la Figure 49 pour les MG 20 PCM, à la Figure 50 pour les MG 20 GC et à la Figure 51 pour les MG 112 S. Enfin, les granulométries moyennes sont résumées à la Figure 52.

Tableau 15 Fuseaux granulométriques de spécification pour les matériaux granulaires caractérisés (NQ 2560-114)

Tamis	MG 20	MG 112
ranns	(% passant)	(% passant)
112 mm	(70 parocanit)	100
1 12 111111		100
31,5 mm	100	
20 mm	90-100	
14 mm	63-93	
5 mm	35-60	12-100
1,25 mm	19-38	
315 µm	9-17	
80 μm	2-7	0-10

Tableau 16 Granulométrie des matériaux granulaires caractérisés

Code			Tamis (mm)						Tamis	(um)		Classification	
5545	31,5	20	14	10	, 5	2,5	1,25	630	315	160	80	USCS	AASHTO
	, , ,			20 -	Pierre								
PC1	100	99	88	70	40	21	13	9	7	5	3,7	GW	A-1-a
PC2	100	92	71	61	45	26	15	9	6	4	3,0	GW	A-1-a
PC3	100	92	74	59	38	22	14	10	7	5	4,0	GW	A-1-a
PC4	100	96	74	51	25	13	8	6	4	3	2,6	GW	A-1-a
PC5	100	99	86	69	45	31	22	15	10	7	4,9	GW	A-1-a
PC6	100	95	73	56	34	24	17	13	9	6	3,7	GP	A-1-a
PC7	100	95	80	64	39	26	19	15	10	6	4,4	GP	A-1-a
PC8	100	99	88	72	45	26	16	11	8	6	4,9	GW	A-1-a
PC9	100	93	76	61	37	25	16	11	8	6	4,4	GW	A-1-a
PC10	100	83	60	44	21	12	8	6	5	4	2,9	GW	A-1-a
Moyenne	100	94	77	61	37	23	15	11	7	5	3,9	GW	A-1-a
Écart type	0	5	9	9	8	6	4	3	2	1	0,8		
CV (%)	0	5	11	14	22	26	30	31	27	24	21		
				0 - Pi	erre co								
PCM1	100	99	95	83	61	41	25	16	10	8	6,0	SW-SM	A-1-a
PCM2	100	93	67	48	31	24	19	16	13	9	5,3	GP-GM	A-1-a
PCM3	100	87	73	61	43	29	19	13	10	8	7,2	GW-GM	A-1-a
PCM4	100	97	77	62	43	34	26	21	15	9	5,4	GW-GM	A-1-a
PCM5	100	95	76	54	39	26	17	13	10	7	5,8	GP-GM	A-1-a
PCM6	100	97	85	71	49	36	27	20	13	9	6,3	GW-GM	A-1-a
PCM7	100	100	91	74	48	35	27	22	17	10	6,1	GW-GM	A-1-a
PCM8	100	97	85	70	48	35	26	20	15	10	6,8	GW-GM	A-1-a
PCM9	100	98	88	74	53	40	31	23	16	10	6,3	GW-GM	A-1-a
PCM10	100	94	81	66	44	30	19	13	9	7	5,2	GW-GM	A-1-a
PCM11	100	91	69	51	34	26	20	15	11	8	5,1	GP-GM	A-1-a
Moyenne	100	95	81	65	45	32	23	17	13	9	6,0	GW-GM	A-1-a
Écart type	0	4	9	11	8	6	5	4	3	1	0,7		
CV (%)	0	4	11	17	19	18	20	22	22	13	11		
			MG	20 -	Gravie	r conca	assé						
GC1	100	99	90	81	67	55	48	41	27	15	8,2	SP-SM	A-1-b
GC2	100	91	70	56	43	34	27	18	10	5	2,4	GP	A-1-a
GC3	100	97	83	71	54	43	30	18	11	7	5,1	SP-SM	A-1-a
GC4	100	88	72	59	42	28	17	11	7	5	4,2	GW	A-1-a
GC5	100	98	75	47	36	32	27	22	13	6	3,2	GW	A-1-a
GC6	100	100	90	75	56	47	37	27	15	7	4,2	SP	A-1-a
GC7	100	99	93	82	57	39	22	12	8	6	4,8	SW	A-1-a
GC8	100	87	65	50	33	24	19	15	12	8	4,6	GP	A-1-a
Moyenne	100	95	80	65	49	38	28	21	13	7	4,6	GW	A-1-a
Écart type	0	5	11	14	12	10	10	10	6	3	1,7		
CV (%)	0	6	13	21	24	27	36	48	49	44	37		
				MG	112 - 3	Sable							
S1	100	100	99	99	99	96	81	55	23	3	1,0	SP	A-1-b
S2	100	100	100	100	99	99	99	95	87	38	10,5	SP-SM	A-3
S3	100	100	99	98	95	92	87	73	48	20	6,2	SP-SM	A-3
S4	100	100	100	99	92	81	68	52	32	15	7,6	SP-SM	A-1-b
S5	100	100	100	100	100	100	100	100	91	30	2,2	SP	A-3
S6	100	100	100	100	96	87	75	53	25	8	1,8	SP	A-1-b
Moyenne	100	100	100	99	97	93	85	71	51	19	4,9	SP	A-3
Écart type	0	0	1	1	3	7	13	22	31	13	3,8		
CV (%)	0	0	1	1	3	8	15	30	60	70	78		

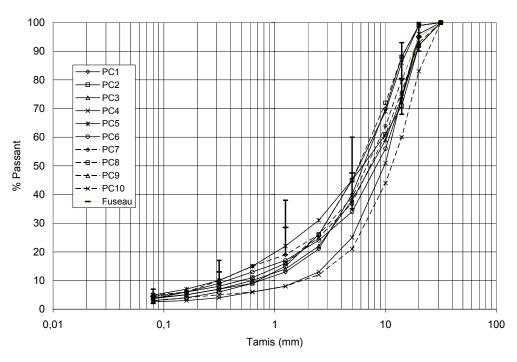


Figure 48 Granulométrie des matériaux granulaires de pierres concassées MG 20 PC

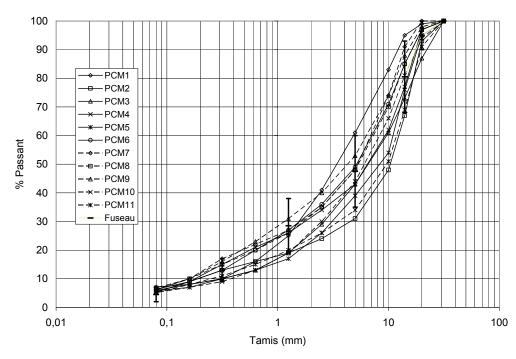


Figure 49 Granulométrie des matériaux granulaires de pierres concassées fines MG 20 PCM

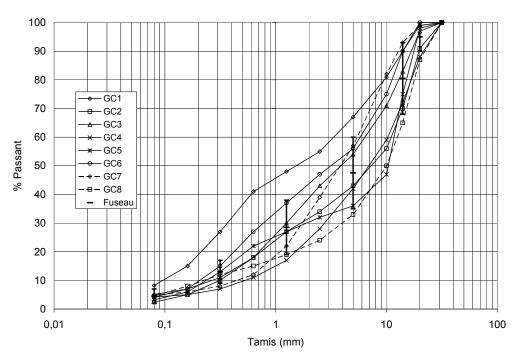


Figure 50 Granulométrie des matériaux granulaires de graviers concassés MG 20 GC



Figure 51 Granulométrie des matériaux granulaires de sables MG 112 S

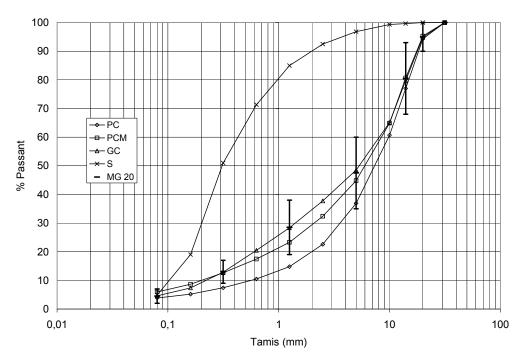


Figure 52 Granulométrie moyenne des matériaux granulaires

Les granulométries des MG 20 PC sont généralement en bas du fuseau granulométrique de spécification aux tamis 315 μ m et 1,25 mm dans le cadre de cette étude, alors que les granulométries des MG 20 PCM et GC respectent généralement le fuseau. Les granulométries des MG 112 S se trouvent dans le haut du fuseau.

Les granulométries des matériaux granulaires GC et S sont plus variables que celles des PC et des PCM (Tableau 16). Les plus grandes variations de granulométrie sont observées autour du tamis 630 µm pour les MG 20. La variabilité des granulométries des MG 112 S augmente avec la diminution de l'ouverture des tamis.

Certains matériaux granulaires présentent une granulométrie atypique, telle que les granulométries PC4 et PC10, qui sont significativement sous le fuseau (< 25 % au tamis 5 mm), et les granulométries S2 et S5, qui sont très fines (> 85 % au tamis 315 μ m). La granulométrie GC1 présente une bosse de sable au-dessus du fuseau (41 % au tamis 630 μ m).

5.2 Préparation des éprouvettes

Une éprouvette de 150 mm de diamètre et de 300 mm de hauteur a été préparée pour chaque matériau granulaire à l'aide d'un marteau vibrant pour la détermination du E_r . Le Tableau 17 présente les principales caractéristiques physiques des éprouvettes lors des essais, soit la masse volumique sèche (ρ_d) , le ratio avec la masse volumique sèche maximale $(\rho_d/\rho_{d max})$, la porosité (n), la teneur en eau, les degrés de saturation initial (w_{ini}, S_{ini}) , saturé (w_{sat}, S_{sat}) et drainé (w_{dr}, S_{dr}) , ainsi que les moyennes et écarts types par groupes.

La ρ_d moyenne des MG 112 S (1812 kg/m³) est plus faible que celle des MG 20 PC (2076 kg/m³), elle-même plus faible que celle des MG 20 PCM (2164 kg/m³) et GC (2129 kg/m³). De même, la n moyenne des MG 112 S (31 %) est plus élevée que celle des MG 20 PC (24 %), elle-même plus élevée que celle des MG 20 PCM (20 %) et GC (18 %).

Le $\rho_{\rm d}/\rho_{\rm d\,max}$ moyen du MG 112 S est également élevé (101 %) par rapport à l'exigence de 95 % pour la sous-fondation. Par ailleurs, le $\rho_{\rm d}/\rho_{\rm d\,max}$ moyen des MG 20 GC (97 %) est près de l'exigence de 98 %. Le temps de vibration des MG 112 S pourrait donc être diminué et celui des MG 20 GC augmenté, mais le temps de vibration a été maintenu constant pour tous les matériaux dans le cadre de cette étude. En ce qui concerne les MG 20 PC et PCM, le $\rho_{\rm d}/\rho_{\rm d\,max}$ moyen est de 94 %, mais les valeurs des planches de référence en chantier ne sont pas disponibles pour évaluer la représentativité de cette valeur.

Ainsi, il semble plus facile d'obtenir la $\rho_{d\,max}$ avec le marteau vibrant pour une granulométrie plus fine et moins anguleuse (S, GC) que pour une granulométrie plus grossière et anguleuse (PC, PCM). Par ailleurs, il est reconnu que le marteau Proctor peut briser les particules lors du compactage par impact des matériaux granulaires, ce qui entraînerait une surévaluation de la $\rho_{d\,max}$ des pierres concassées comparativement à la $\rho_{d\,max}$ obtenue avec le marteau vibrant.

La w_{ini} et la w_{dr} des éprouvettes sont inférieures à la w_{opt} des matériaux granulaires. La w_{sat} est supérieure à la w_{opt} , mais ne correspond pas à un S_{sat} de 100 % puisque l'éprouvette est saturée au centre et que la teneur en eau est déterminée sur l'ensemble de l'éprouvette. Le S_{sat} moyen est généralement plus élevé lorsque la granulométrie est plus fine puisque la remontée capillaire est plus importante. Le S_{sat} moyen est donc plus élevé pour les MG 112 S (89 %), suivis des MG 20 GC (81 %) ainsi que des MG 20 PC et PCM (76 %). Le S_{dr} moyen des MG 20 PC (21 %) est plus faible que celui des autres matériaux granulaires puisque la granulométrie est plus grossière. Ainsi, le S varie généralement de 18 % à la w_{ini} à 79 % à la w_{sat} (mais plus élevé au centre) et à 30 % à la w_{dr} .

Tableau 17 Caractéristiques physiques des éprouvettes de matériaux granulaires pour la détermination du module réversible

Matériau ρ _d (kg/m³) ρ _d /ρ _{d max} (%) n w _{ini} w _{sat} (%) w _{dri} (%) S _{ini} S _{sat} (%) S _{sat} (%) S _{sat} (%) S _{ini} (%) S _{sat} (%) S _{sat} (%) S _{ini} (%) S _{sat} (%)
MG 20 - Pierre concassée PC1 2109 94 27 2,7 9,3 3,4 14 66 2 PC2 2153 94 24 3,4 10,5 4,3 15 79 2 PC3 2145 97 23 2,7 8,6 3,6 13 69 2 PC4 1941 95 27 2,3 13,2 2,3 11 90 1 PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC1 2109 94 27 2,7 9,3 3,4 14 66 2 PC2 2153 94 24 3,4 10,5 4,3 15 79 2 PC3 2145 97 23 2,7 8,6 3,6 13 69 2 PC4 1941 95 27 2,3 13,2 2,3 11 90 1 PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC2 2153 94 24 3,4 10,5 4,3 15 79 2 PC3 2145 97 23 2,7 8,6 3,6 13 69 2 PC4 1941 95 27 2,3 13,2 2,3 11 90 1 PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC3 2145 97 23 2,7 8,6 3,6 13 69 2 PC4 1941 95 27 2,3 13,2 2,3 11 90 1 PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC4 1941 95 27 2,3 13,2 2,3 11 90 1 PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC5 2127 90 19 1,9 8,9 3,7 9 88 3
PC7 2146 95 18 3,6 6,5 4,1 27 62 3
PC8 2034 93 23 2,6 9,1 2,7 17 74 1
PC9 2055 93 26 2,4 9,0 2,6 15 68 1
PC10 1949 90 27 2,5 12,4 2,9 13 84 1
Moyenne 2076 94 24 2,6 9,7 3,3 15 76 2
Écart type 79 2 3 0,5 1,9 0,7 5 10 6
MG 20 - Pierre concassée fine
PCM1 2065 92 21 3,8 9,9 4,7 24 85 3
PCM2 2246 95 20 2,1 7,3 3,3 18 76 3
PCM3 2238 95 16 2,9 5,7 3,5 12 50 2
PCM4 2167 97 19 2,9 7,6 5,6 23 78 5
PCM5 2096 89 25 3,0 8,5 3,2 18 64 1
PCM6 2103 92 18 3,8 8,6 4,7 25 80 3
PCM7 2145 92 22 2,4 9,1 4,7 18 84 4
PCM8 2284 94 19 2,4 7,4 3,7 24 83 3
PCM9 2144 97 18 2,5 8,3 3,9 22 91 3
PCM10 2145 17 3,4 7,5 4,1 21 72 3
PCM11 2171 20 2,1 7,5 2,6 18 76 2
Moyenne 2164 94 20 2,8 7,9 4,0 20 76 3
Écart type 68 3 2 0,6 1,1 0,9 4 11 1
MG 20 - Gravier concassé
GC1 2120 98 17 4,1 8,8 5,8 28 87 4
GC2 2171 100 18 2,6 7,3 4,3 24 80 4
GC3 2027 95 21 3,5 9,0 5,3 17 71 3
GC4 2070 97 17 4,9 9,0 5,7 22 72 3
GC5 2218 98 15 3,0 7,5 4,6 27 93 5
GC6 2199 98 17 2,7 7,4 3,9 23 84 3
GC7 2027 20 3,9 10,7 5,1 10 81 2
GC8 2198 98 17 2,2 6,8 2,8 20 78 2
Moyenne 2129 97 18 3,4 8,3 4,7 21 81 3
Écart type 79 1 2 0,9 1,3 1,0 6 7 1
MG 112 - Sable
S1 1773 101 33 3,8 15,8 7,2 18 83 3
S2 1686 100 36 5,3 5,8 21 2
S3 1832 102 32 1,9 16,6 3,5 10 95 1
S4 1993 98 22 3,1 10,6 7,2 20 87 5
S5 1706 102 35 2,4 19,8 8,7 8 93 3
<u>S6</u> 1879 104 30 2,1 14,2 4,4 10 85 2
Moyenne 1812 101 31 3,1 15,4 6,1 14 89 3
<u>Écart type</u> 115 2 5 1,3 3,4 1,9 6 5 1

Les éprouvettes de matériau granulaire ont été conditionnées par 10 000 cycles de chargement avec une pression de confinement (σ_3) de 105 kPa et une contrainte déviatorique (σ_d) de 105 kPa avant la détermination du E_r . Le Tableau 18 présente la

déformation permanente (ϵ_p) cumulée du cycle 100 au cycle 10 000 pour tous les matériaux granulaires lors du conditionnement. La ϵ_p moyenne est de 30 µm/m et la ϵ_p maximale obtenue de 70 µm/m, ce qui permet la détermination du ϵ_r . Certaines données sont manquantes pour cause de problèmes de mesure lors des essais.

Tableau 18 Déformations permanentes (ϵ_p) mesurées lors du conditionnement des éprouvettes (σ_d = 105 kPa, σ_3 = 105 kPa)

Matériau	ϵ_{p1}	$\varepsilon_{\sf p2}$	ερ	Matáriau	ε _{p1}	$\varepsilon_{\sf p2}$	ερ
Materiau	(µm/m)	(μm/m)		Matériau	(μm/m)	(μm/m)	(μm/m)
MG 2	0 - Pierre			MG 20	- Pierre c		
PC1				PCM1	37	60	49
PC2				PCM2	21	19	20
PC3	8	20	14	PCM3			
PC4	13	20	17	PCM4	29	33	31
PC5				PCM5	11	-1	5
PC6				PCM6	106	19	63
PC7	24	51	38	PCM7	63	53	58
PC8	52	26	39	PCM8	31	12	22
PC9	29	33	31	PCM9	21	-13	4
PC10				PCM10			
				PCM11	-14	7	-4
Moyenne			28	Moyenne			28
Écart type			12	Écart type			25
MG 2	0 - Gravie	er concas	ssé		MG 112 -	Sable	
GC1	21	19	20	S1	25	55	40
GC2	5	2	4	S2	21	19	20
GC3				S3	66	74	70
GC4				S4	43	45	44
GC5	86	12	49	S5	18	19	19
GC6	30	8	19	S6	10	14	12
GC7	66	73	70				
GC8							
Moyenne			32	Moyenne			34
Écart type			27	Écart type			22

5.3 Résultats de module de Young et de coefficient de Poisson réversibles

Le E_r des matériaux granulaires a été déterminé selon la méthode d'essai LC 22-400 « Détermination du module réversible des matériaux granulaires ». La Figure 53 à la Figure 56 présentent les résultats de E_r à la teneur en eau saturée en fonction de la contrainte totale (θ) pour les différents groupes de matériaux granulaires. Les mêmes résultats sont présentés dans un plan logarithmique de la Figure 57 à la Figure 60. Les rapports d'essai complets sont disponibles en annexe.

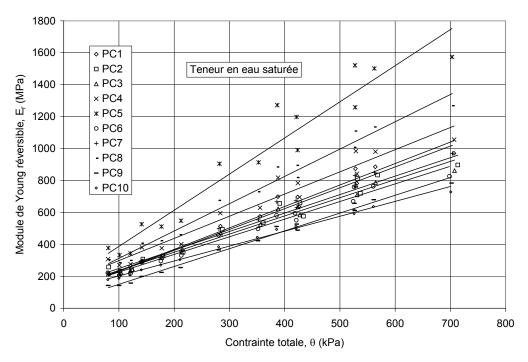


Figure 53 Module de Young réversible des matériaux granulaires en pierre concassée MG 20 PC à la teneur en eau saturée

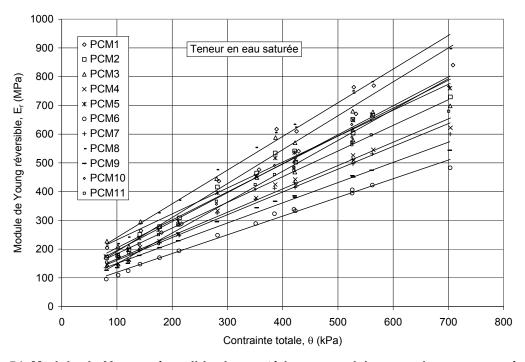


Figure 54 Module de Young réversible des matériaux granulaires en pierre concassée fine MG 20 PCM à la teneur en eau saturée

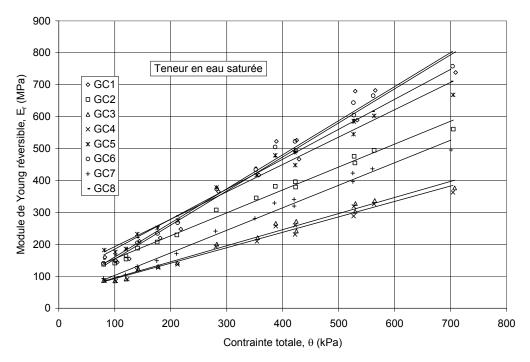


Figure 55 Module de Young réversible des matériaux granulaires en gravier concassé MG 20 GC à la teneur en eau saturée

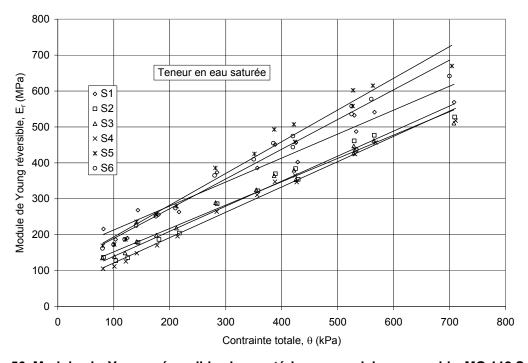


Figure 56 Module de Young réversible des matériaux granulaires en sable MG 112 S à la teneur en eau saturée

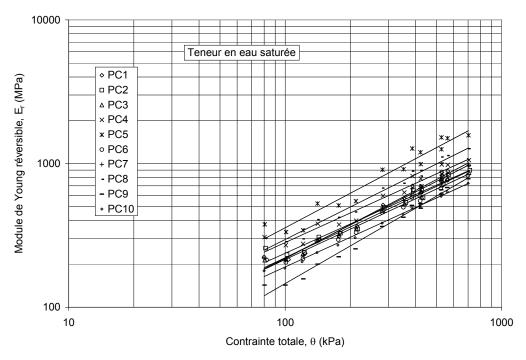


Figure 57 Module de Young réversible dans un plan logarithmique des matériaux granulaires en pierre concassée MG 20 PC à la teneur en eau saturée

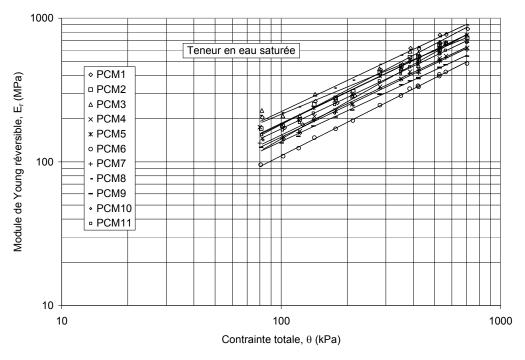


Figure 58 Module de Young réversible dans un plan logarithmique des matériaux granulaires en pierre concassée fine MG 20 PCM à la teneur en eau saturée

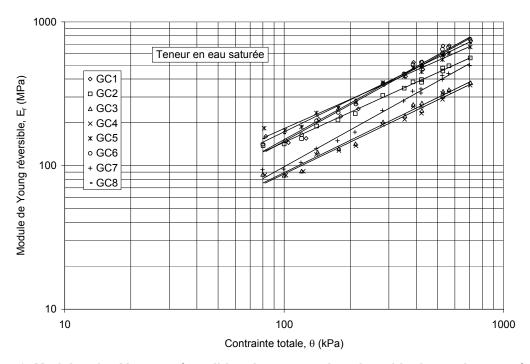


Figure 59 Module de Young réversible dans un plan logarithmique des matériaux granulaires en gravier concassé MG 20 GC à la teneur en eau saturée

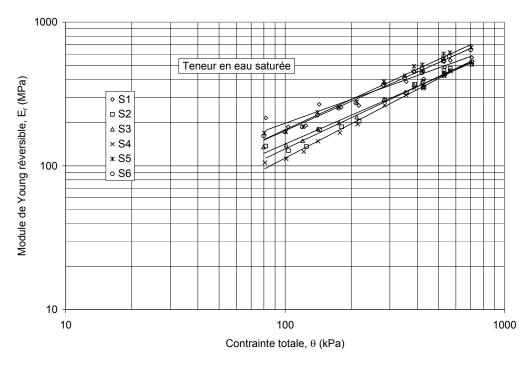


Figure 60 Module de Young réversible dans un plan logarithmique des matériaux granulaires en sable MG 112 S à la teneur en eau saturée

Le E_r des MG 20 PC est généralement plus élevé que celui des autres matériaux granulaires. Les résultats plus élevés des MG 20 PCM avoisinent les résultats les plus

faibles des MG 20 PC. De même, les valeurs plus élevées des MG 20 GC et des MG 112 S avoisinent les valeurs les plus faibles des MG 20 PCM. Les résultats des MG 20 GC sont plus variables et présentent un groupe de valeurs plus faibles que les MG 112 S. Le E_r des MG 20 PC semble vraiment distinct du E_r des MG 20 GC et des MG 112 S.

Le matériau granulaire PC5 présente le E_r le plus élevé, alors que le GC3 et le GC4 présentent le E_r le plus faible. Le E_r est environ quatre fois plus élevé pour le PC5 comparativement au GC3 et au GC4, bien que ces MG 20 soient utilisés indistinctement en fondation routière.

Un modèle linéaire (Équation 10) et un modèle de puissance (Équation 8) peuvent être utilisés pour modéliser les résultats de E_r . Les coefficients de régression du modèle linéaire (c_1 , c_2 , c_3) et du modèle de puissance (k_1 , k_2 , k_3) déterminés pour chaque éprouvette sont présentés au Tableau 19 à la teneur en eau initiale, au Tableau 20 à la teneur en eau saturée et au Tableau 21 à la teneur en eau drainée. Le coefficient de détermination (R^2), l'erreur moyenne de prédiction (RMSE) et le nombre de points (n) de chaque modèle sont également indiqués.

Le R^2 des modèles est de 0,99 en moyenne et le RMSE moyen est de 19 pour les modèles linéaires et de 0,25 pour les modèles de puissance, soit légèrement plus élevé pour les modèles de puissance. Les coefficients de régression sont variables, à l'exception du paramètre k_2 du modèle de puissance, qui est en moyenne de 0,80 avec un écart type de 0,08. La constance du paramètre k_2 indique que la relation entre le logarithme de θ et le logarithme du E_r est relativement constante, ce qui constitue un avantage pour la généralisation des modèles.

Tableau 19 Coefficients de régression des modèles de module de Young réversible (E_r) des matériaux granulaires à la teneur en eau initiale

Matériau ·		E _r =	c ₁ + c ₂ () + C ₃	$\tau_{\rm oct}$		$E_r = k_1 p_a (\theta/p_a)^{k2} (\tau_{oct}/p_a + 1)^{k3}$					
Materiau -	C ₁	C ₂	C ₃	R²	RMSE	n	k ₁	k ₂	k ₃	R²	RMSE	n
				MG		rre c	oncassée					
PC1	131	1,79	-2,51	0,99		15	2,60	0,892	-0,494	0,99	0,021	15
PC2	138	1,57	-2,89	1,00	17	15	2,49	0,884	-0,706	0,98	0,029	15
PC3	133	1,40	-1,57	0,99	24	15	2,35	0,816	-0,362	1,00	0,015	15
PC4	187	1,77	-2,69	0,99		15	3,11	0,830	-0,546	0,99	0,020	15
PC5	244	3,12	-5,94	0,99		15	4,59	0,945	-0,801	0,97	0,041	15
PC6	120	1,23	-1,11	1,00		15	2,19	0,763	-0,266	0,99	0,027	15
PC7	134	1,52	-1,53	1,00		15	2,53	0,798	-0,301	0,99	0,019	15
PC8	189	2,03	-2,36	1,00		15	3,44	0,808	-0,383	0,99	0,022	15
PC9	65	1,31	-1,25	1,00		15	1,73	0,910	-0,330	0,99	0,026	15
PC10	143	1,18	-1,13	0,99		15	2,30		-0,255	1,00	0,011	15
							cassée fi					
PCM1	110	1,66	-2,68	0,99		15	2,33	0,932		0,96	0,053	15
PCM2	120	1,19	-1,06	0,99		15	2,11		-0,253	0,99	0,019	15
PCM3	157	1,27	-2,03	0,99		15	2,47		-0,556	0,97	0,033	15
PCM4	105	0,93	-0,52	0,99		15	1,80		-0,158	0,99	0,016	15
PCM5	117	1,11	-0,79	0,99		15	2,03		-0,196	1,00	0,014	15
PCM6	81	0,70	-0,36	0,99		15	1,36		-0,115	1,00	0,015	15
PCM7	114	0,94	-0,68	0,99		15	1,86		-0,181	0,99	0,016	15
PCM8	153	1,32	-0,64	0,99		15	2,60	0,706	-0,101	0,99	0,019	15
PCM9	112	0,88	-0,46	0,99		15	1,83	0,680	-0,099	0,99	0,020	15
PCM10	58	1,28	-1,11	0,99		15	1,61		-0,319	1,00	0,018	15
PCM11	98	1,03	-0,44	0,99		15	1,79		-0,109	1,00	0,007	15
							concassé					
GC1	115	1,64	-2,98	0,99		15	2,39	0,888	-0,661	0,93	0,065	15
GC2	123	0,87	-0,45	0,98		15	1,88	0,698	-0,158	0,99	0,018	15
GC3	66	0,65	-0,86	0,99		15	1,14	0,813	-0,469	0,99	0,027	15
GC4	61	0,64	-0,90	0,99		15	1,08	0,830	-0,493	0,99	0,025	15
GC5	143	1,10	-1,16	0,99		15	2,26	0,713	-0,295	0,99	0,025	15
GC6	101	1,25	-1,01	1,00		15	2,03	0,806	-0,238	0,99	0,023	15
GC7	48	0,87	-0,76	0,99		15	1,20		-0,282	0,99	0,025	15
GC8	123	1,09	-0,61	0,99		15	2,09	0,733	-0,150	1,00	0,013	15
04	450	0.07	4.00	0.00	MG 11			0.004	0.074	0.07	0.000	45
S1	156	0,87	-1,06	0,98		15	2,16	0,661	-0,374	0,97	0,032	15
S2	101	0,84	-0,93	0,99		15	1,67	0,713	-0,302	0,96	0,042	15
S3	101	0,78	-0,56	0,99		15	1,61	0,701	-0,176	0,99	0,016	15
S4	75	0,90	-0,67	0,99		15	1,47	0,795	-0,193	0,99	0,018	15
S5	118	1,08	-1,23	0,99		15	1,98	0,776	-0,361	0,99	0,017	15
S6	133	0,99	-0,81	0,99	17	15	2,08	0,697	-0,209	1,00	0,014	<u> 15</u>

Tableau 20 Coefficients de régression des modèles de module de Young réversible (E_r) des matériaux granulaires à la teneur en eau saturée

Matériau -		E _r =	C ₁ + C ₂ () + c ₃ 1	oct		Е	_r = k ₁ p	_a (θ/p _a) ^{k2}	² (τ _{oct} /p	_a +1) ^{k3}
Materiau -	C ₁	C ₂	C ₃	R²	RMSE	n	k ₁	k ₂	k ₃	R²	RMSE n
				MG 2	20 - Pie	erre co	oncassée	Э			
PC1	105	1,64	-1,93	1,00	18	15	2,31	0,896	-0,415	0,99	0,022 15
PC2	138	1,49	-2,09	1,00	12	15	2,53	0,799	-0,447	0,97	0,038 15
PC3	126	1,36	-1,45	1,00	16	15	2,31	0,797	-0,328	0,99	0,020 15
PC4	165	1,83	-2,87	0,99	24	15	3,04	0,830	-0,550	0,97	0,042 15
PC5	173	3,13	-5,73	0,99	43	15	4,00	1,009	-0,810	0,97	0,042 15
PC6	120	1,34	-1,59	1,00	15	15	2,26	0,798	-0,375	0,98	0,033 15
PC7	104	1,52	-1,44	1,00	15	15	2,30		-0,313	0,99	0,030 15
PC8	146	2,06	-2,28	1,00	20	15	3,12	0,855	-0,392	0,98	0,032 15
PC9	41	1,28	-1,07	1,00	9	15	1,52		-0,301	0,99	0,028 15
PC10	110	1,01	-0,53	1,00	12	15	1,94		-0,109	1,00	0,015 15
50111							cassée f				
PCM1	80	1,51	-2,11	0,99	19	15	1,97	0,951	-0,571	0,97	0,047 15
PCM2	109	1,15	-1,15	0,99	21	15	1,94		-0,340	1,00	0,014 15
PCM3	147	1,27	-2,42	0,99	20	15	2,35		-0,698	0,97	0,037 15
PCM4	86	0,90	-0,57	0,99	12	15	1,58		-0,197	0,99	0,017 15
PCM5	96	1,13	-0,78	1,00	12	15	1,88	0,785	-0,193	0,99	0,019 15
PCM6	55	0,70	-0,33	0,99	10	15	1,12		-0,132	1,00	0,005 15
PCM7	83	0,87	-0,52	0,99	14	15	1,52		-0,175	1,00	0,012 15
PCM8	124	1,25	-0,53	0,99	19	15	2,27	-	-0,107	1,00	0,015 15
PCM9	80	0,75	-0,28	0,99	13	15	1,40		-0,095	1,00	0,010 15
PCM10	43	1,20	-0,82	1,00	9	15	1,49	-	-0,245	0,99	0,025 15
PCM11	95	0,96	-0,41	0,99	16	15	1,72 concasse		-0,112	1,00	0,009 15
GC1	52	1,35	-1,82	1,00	13	15	1,59	0,988	-0,532	0,98	0,040 15
GC2	84	0,80	-0,54	1,00	10	15	1,39		-0,332	0,98	0,040 15
GC3	46	0,61	-0,67	1,00	6	15	0,94	0,848	-0,103	0,99	0,017 15
GC4	46	0,59	-0,69	1,00	5	15	0,92	0,841	-0,402	0,99	0,025 15
GC5	110	1,01	-1,03	0,99	13	15	1,89		-0,304	0,99	0,025 15
GC6	56	1,21	-0.95	1,00	12	15	1,57		-0,272	1,00	0,019 15
GC7	34	0,80	-0,64	1,00	8	15	1,02	-	-0,278	0,99	0,023 15
GC8	92	0,99	-0,37	0,99	16	15	1,74		-0,101	1,00	0,011 15
		0,00	0,0.	0,00	MG 11			0,. 00	0,.0.	.,00	0,011 10
S1	150	0,87	-1,34	0,99	17	15	2,12	0,675	-0,473	0,96	0,037 15
S2	72	0,82	-0,82	1,00	10	15	1,37	0,806	-0,328	0,98	0,033 15
S3	89	0,75	-0,66	0,99	11	15	1,47	0,728	-0,236	0,99	0,018 15
S4	52	0,79	-0,52	1,00	11	15	1,16		-0,201	1,00	0,016 15
S5	108	1,06	-1,17	0,99	17	15	1,87	0,793	-0,357	0,99	0,018 15
S6	108	0,94	-0,73	0,99	15	15	1,81	0,733	-0,216	1,00	0,013 15

Tableau 21 Coefficients de régression des modèles de module de Young réversible (E_r) des matériaux granulaires à la teneur en eau drainée

Matériau -		E _r =	c ₁ + c ₂ () + C ₃	$\tau_{\rm oct}$		E	$r = k_1 p$	_a (θ/p _a) ^{k2}	² (τ _{oct} /p	_a +1) ^{k3}	
ivialeriau -	C ₁	C ₂	C ₃	R²	RMSE	n	k ₁	k_2	k_3	R²	RMSE	n
				MG		rre c	oncassée					
PC1	108	1,61	-1,82	1,00	15	15	2,36	0,862	-0,376	0,98	0,030	15
PC2	131	1,63	-2,60	1,00	13	15	2,57	0,841	-0,539	0,97	0,039	15
PC3	124	1,34	-1,30	1,00	14	15	2,30	0,778	-0,278	0,99	0,023	15
PC4	182	1,74	-2,63	0,99	23	15	3,20	0,760	-0,469	0,95	0,049	15
PC5	245	3,01	-5,43	0,99	43	15	4,69	0,882	-0,698	0,96	0,049	15
PC6	131	1,38	-1,66	0,99	19	15	2,37	0,805	-0,413	0,98	0,032	15
PC7	115	1,56	-1,61	0,99	20	15	2,40		-0,346	0,99	0,028	15
PC8	146	2,04	-2,06	1,00	19	15	3,15	0,834	-0,336	0,98	0,033	15
PC9	37	1,27	-0,91	1,00	7	15	1,51	0,932	-0,237	0,99	0,029	15
PC10	124	0,96	-0,38	1,00	12	15	2,02	0,669	-0,066	0,99	0,015	15
							cassée fi					
PCM1	84	1,46	-2,00	0,99	19	15	2,00	0,917		0,96	0,052	15
PCM2	150	1,03	-0,92	0,99	18	15	2,28	0,681	-0,246	0,99	0,017	15
PCM3	145	1,18	-1,92	0,99	15	15	2,32	0,757		0,97	0,037	15
PCM4	93	0,88	-0,53	1,00	10	15	1,65	0,729	-0,157	0,99	0,022	15
PCM5	93	1,06	-0,56	1,00	12	15	1,82			0,99	0,019	15
PCM6	62	0,69	-0,28	1,00	8	15	1,19	0,762		1,00	0,011	15
PCM7	97	0,83	-0,68	0,99	15	15	1,61		-0,244	1,00	0,013	15
PCM8	119	1,24	-0,45	1,00	16	15	2,22		-0,077	1,00	0,015	15
PCM9	84	0,78	-0,31	1,00	10	15	1,48			1,00	0,009	15
PCM10	54	1,17	-0,77	1,00	10	15	1,58		-0,218	0,99	0,028	15
PCM11	98	0,96	-0,36	1,00	13	15	1,77		-0,081	1,00	0,011	15
		101	4.00				concassé		0.500	0.00	0.010	4.5
GC1	60	1,34	-1,83	1,00	12	15	1,66	0,965	-0,532	0,98	0,042	15
GC2	84	0,90	-0,64	1,00	12	15	1,57	0,769	-0,195	0,99	0,017	15
GC3	49	0,59	-0,67	1,00	6	15	0,95	0,828	-0,392	0,99	0,028	15
GC4	44	0,59	-0,63	0,99	8	15	0,91	0,849	-0,380	0,99	0,026	15
GC5	102	1,05	-0,99	1,00	10	15	1,87	0,766	-0,272	0,99	0,025	15
GC6	66	1,18	-0,84	1,00	10	15	1,65	0,873	-0,236	1,00	0,018	15
GC7	36	0,80	-0,67	1,00	6	15	1,05	0,899	-0,278	0,99	0,027	15
GC8	89	1,00	-0,23	0,99	16	15	1,74	0,754	-0,046	1,00	0,012	15
01	400	0.00	4.00	0.07	MG 11			0.550	0.004	0.00	0.050	1.5
S1	189	0,80	-1,22	0,97	22	15 15	2,47	0,559	-0,381	0,90	0,050	15
S2	82	0,82	-0,85	0,99	11	15 15	1,46	0,777		0,98	0,031	15 15
S3	96 57	0,72	-0,50	0,99	12	15 15	1,51	0,692	-0,178	1,00	0,015	15 15
S4	57	0,78	-0,49	1,00	9	15 15	1,21		-0,184	1,00	0,017	15 15
S5	121	1,05	-1,12	0,99	16	15 15	2,00			0,99	0,019	15 15
S6	120	0,94	-0,68	0,99	16	15	1,92	0,707	-0,201	1,00	0,013	15

L'influence de la teneur en eau sur le E_r est évaluée par le ratio entre le E_r à la teneur en eau initiale et le E_r à la teneur en eau saturée ($E_{r\,ini}/E_{r\,sat}$) ainsi qu'entre la teneur en eau drainée et la teneur en eau saturée ($E_{r\,dr}/E_{r\,sat}$). La Figure 61 à la Figure 64 présentent les ratios moyens de $E_{r\,ini}/E_{r\,sat}$ et de $E_{r\,dr}/E_{r\,sat}$ avec leurs écarts types déterminés à partir des 15 états de contrainte pour chaque matériau granulaire.

Les figures montrent que les ratios $E_{r\,ini}/E_{r\,sat}$ varient davantage et qu'ils sont plus élevés que les ratios $E_{r\,dr}/E_{r\,sat}$. Les ratios $E_{r\,ini}/E_{r\,sat}$ varient généralement entre 1,05 et 1,15 pour une moyenne d'environ 1,10. Certains matériaux granulaires sont particulièrement sensibles, tels que le PCM9 (1,23), le GC1 (1,29), le GC2 (1,22) et le S4 (1,20). Les matériaux MG 20 GC sont généralement plus sensibles que les autres matériaux granulaires avec un ratio $E_{r\,ini}/E_{r\,sat}$ moyen de 1,17.

Par ailleurs, dans la chaussée, les matériaux granulaires se trouvent probablement rarement à la teneur en eau initiale, même lors du compactage où la teneur en eau devrait être près de la teneur en eau optimale. Ainsi, il est raisonnable de penser que la teneur en eau des matériaux granulaires de fondation et de sous-fondation de chaussées revêtues varie principalement entre la teneur en eau saturée en période de dégel et la teneur en eau drainée en condition normale.

Le ratio $E_{r\,dr}/E_{r\,sat}$ permet donc d'évaluer la sensibilité à la teneur en eau du E_r des matériaux granulaires pour des conditions normales d'utilisation. Le ratio $E_{r\,dr}/E_{r\,sat}$ varie généralement entre 0,99 et 1,05 pour une moyenne de 1,02, ce qui semble indiquer que la teneur en eau a peu d'influence sur le E_r aux teneurs en eau anticipées dans la chaussée. Par contre, certains matériaux granulaires semblent tout de même influencés par la teneur en eau, tels que le PC5 (1,08), le PCM2 (1,06), le GC2 (1,08) et le S1 (1,08).

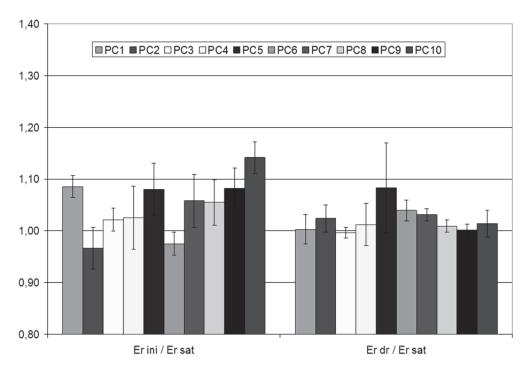


Figure 61 Ratios moyens de module de Young réversible à la teneur en eau saturée pour les matériaux granulaires en pierres concassées MG 20 PC

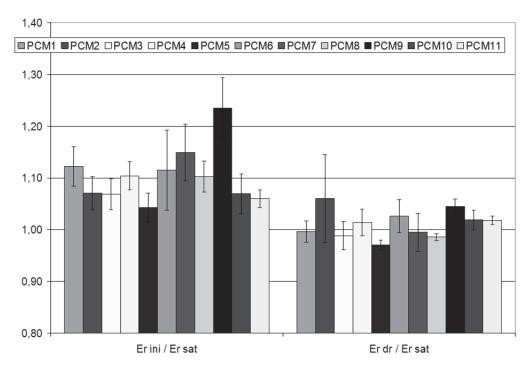


Figure 62 Ratios moyens de module de Young réversible à la teneur en eau saturée pour les matériaux granulaires en pierres concassées fines MG 20 PCM

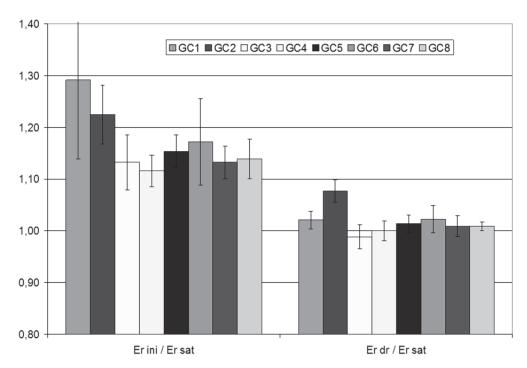


Figure 63 Ratios moyens de module de Young réversible à la teneur en eau saturée pour les matériaux granulaires en graviers concassés MG 20 GC

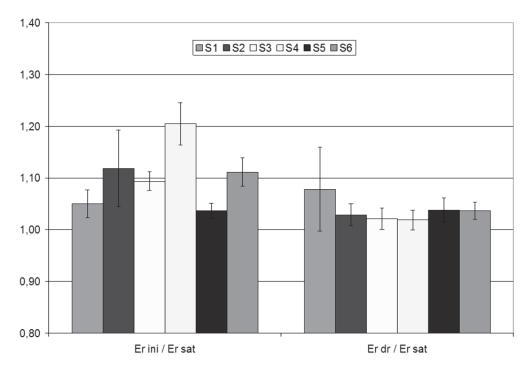


Figure 64 Ratios moyens de module de Young réversible à la teneur en eau saturée pour les matériaux granulaires en sables MG 112 S

Le v_r a été déterminé en même temps que le E_r . Le Tableau 22 présente le v_r moyen obtenu aux teneurs en eau initiale ($v_{r \, \text{ini}}$), saturée ($v_{r \, \text{sat}}$) et drainée ($v_{r \, \text{dr}}$) pour chaque

éprouvette pour les 15 états de contrainte. Le v_r moyen ($v_{r \, moyen}$) de chaque éprouvette est également déterminé pour l'ensemble des teneurs en eau puisque la teneur en eau a peu d'influence sur le v_r . De même, le v_r varie peu entre les groupes de matériaux avec une valeur moyenne de 0,18 et un écart type moyen de 0,03.

Tableau 22 Coefficients de Poisson réversible (v_r) des matériaux granulaires

Matériau	$\nu_{r ini}$	$v_{r sat}$	ν_{rdr}	ν _{r moyen}	Matériau	$\nu_{r ini}$	v_{rsat}	ν_{rdr}	$\nu_{r moyen}$
M	G 20 - P	ierre con	cassée		MG	20 - Pier	re conca	ssée fin	е
PC1	0,18	0,18	0,17	0,18	PCM1	0,24	0,25	0,24	0,24
PC2	0,21	0,22	0,20	0,21	PCM2	0,17	0,18	0,17	0,17
PC3	0,18	0,19	0,18	0,18	PCM3	0,16	0,17	0,16	0,16
PC4	0,20	0,22	0,20	0,21	PCM4	0,16	0,18	0,17	0,17
PC5	0,18	0,20	0,19	0,19	PCM5	0,17	0,17	0,17	0,17
PC6	0,12	0,12	0,11	0,12	PCM6	0,16	0,17	0,16	0,17
PC7	0,22	0,23	0,23	0,22	PCM7	0,18	0,20	0,21	0,19
PC8	0,17	0,17	0,16	0,17	PCM8	0,18	0,20	0,19	0,19
PC9	0,15	0,15	0,15	0,15	PCM9	0,16	0,19	0,17	0,17
PC10	0,19	0,19	0,18	0,18	PCM10	0,20	0,21	0,21	0,21
					PCM11	0,15	0,17	0,15	0,16
Moyenne	0,18	0,19	0,18	0,18	Moyenne	0,18	0,19	0,18	0,18
Écart type	0,03	0,03	0,03	0,03	Écart type	0,02	0,02	0,03	0,02
MC	3 20 – G	ravier co	ncassé			MG 1	12 – Sab	le	
GC1	0,19	0,19	0,19	0,19	S1	0,15	0,17	0,15	0,16
GC2	0,16	0,18	0,17	0,17	S2	0,18	0,19	0,18	0,18
GC3	0,13	0,13	0,14	0,13	S3	0,16	0,18	0,17	0,17
GC4	0,15	0,15	0,15	0,15	S4	0,17	0,19	0,19	0,19
GC5	0,20	0,23	0,21	0,21	S5	0,14	0,15	0,13	0,14
GC6	0,17	0,19	0,18	0,18	S6	0,19	0,21	0,19	0,19
GC7	0,13	0,14	0,13	0,13					
GC8	0,15	0,19	0,17	0,17					
Moyenne	0,16	0,18	0,17	0,17	Moyenne	0,16	0,18	0,17	0,17
Écart type	0,03	0,03	0,03	0,03	Écart type	0,02	0,02	0,02	0,02

5.4 Résultats de modules volumique et de cisaillement réversibles

Le K_r et le G_r des matériaux granulaires sont déterminés en même temps que le E_r et le v_r à partir des mêmes mesures de contraintes et de déformations. La Figure 65 à la Figure 72 présentent les résultats de K_r et de G_r à la teneur en eau saturée en fonction de θ pour les différents groupes de matériaux granulaires. Les rapports d'essai complets sont également disponibles en annexe.

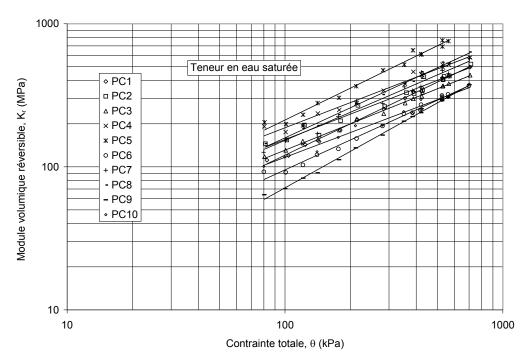


Figure 65 Modèles de module volumique réversible pour les matériaux granulaires en pierres concassées MG 20 PC à la teneur en eau saturée

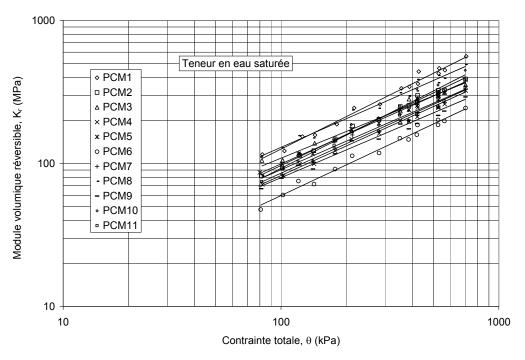


Figure 66 Modèles de module volumique réversible pour les matériaux granulaires en pierres concassées fines MG 20 PCM à la teneur en eau saturée

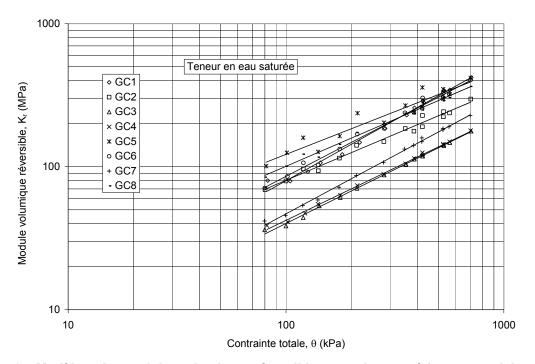


Figure 67 Modèles de module volumique réversible pour les matériaux granulaires en graviers concassés MG 20 GC à la teneur en eau saturée

Figure 68 Modèles de module volumique réversible pour les matériaux granulaires en sables MG 112 S à la teneur en eau saturée

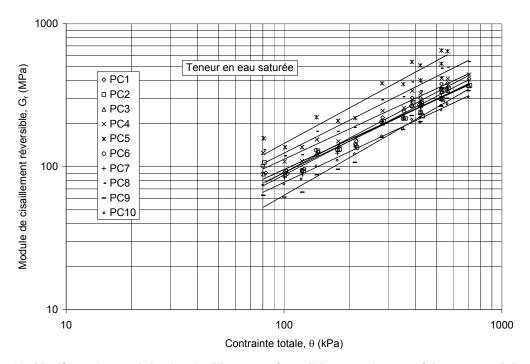


Figure 69 Modèles de module de cisaillement réversible pour les matériaux granulaires en pierres concassées MG 20 PC à la teneur en eau saturée

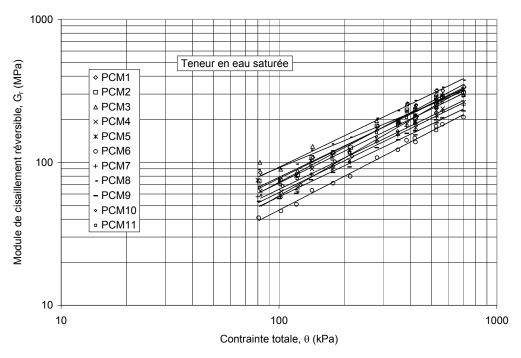


Figure 70 Modèles de module de cisaillement réversible pour les matériaux granulaires en pierres concassées fines MG 20 PCM à la teneur en eau saturée

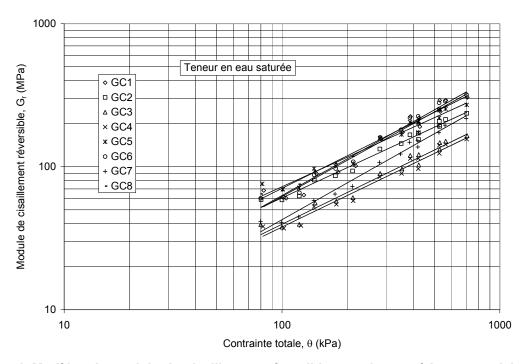


Figure 71 Modèles de module de cisaillement réversible pour les matériaux granulaires en graviers concassés MG 20 GC à la teneur en eau saturée

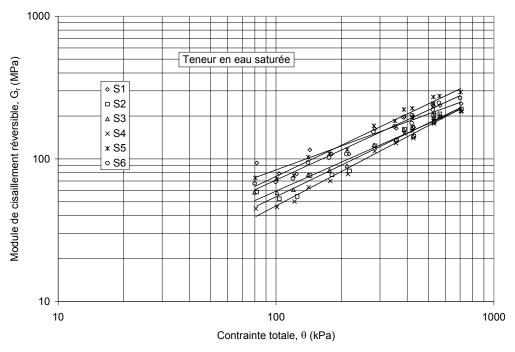


Figure 72 Modèles de module de cisaillement réversible pour les matériaux granulaires en sables MG 112 S à la teneur en eau saturée

Les figures montrent que le K_r et le G_r des matériaux granulaires se présentent de manière similaire aux résultats de E_r , mais avec des valeurs plus faibles. Les résultats de G_r sont un peu plus faibles et plus regroupés que les résultats de K_r . Le G_r des MG 20 PC est plus

élevé que celui des MG 20 GC et des MG 112 S, tout comme le E_r . De même, le G_r des MG 20 PCM varie entre les valeurs faibles des MG 20 PC et les valeurs élevées des MG 20 GC et des MG 112 S. Un groupe de MG 20 GC est plus faible que les autres matériaux granulaires. La tendance est similaire pour les résultats de K_r , mais moins distinctement.

Le matériau granulaire PC5 présente également les valeurs de K_r et de G_r les plus élevées, alors que le GC3 et le GC4 présentent les valeurs les plus faibles. Le K_r est environ cinq fois plus élevé et le G_r , environ quatre fois plus élevé pour le PC5 comparativement au GC3 et au GC4, bien que ces matériaux soient tous de type MG 20. L'écart de K_r et de G_r peut donc être important entre différents matériaux granulaires.

Le modèle de Boyce est proposé pour modéliser les résultats de K_r (Équation 11) et de G_r (Équation 12) dont les coefficients de régression sont présentés aux Tableau 23, Tableau 24 et Tableau 25 pour les teneurs en eau initiale, saturée et drainée. Le R^2 et le RMSE des modèles de K_r et de G_r sont également indiqués. La qualité de la prédiction des modèles est très bonne avec un R^2 moyen de 0,96 et un RMSE moyen de 0,040 pour le K_r et le G_r .

Les résultats de K_r et de G_r sont également modélisés avec un modèle de puissance (Équation 14 et Équation 15) aux Tableau 26, Tableau 27 et Tableau 28. La qualité de prédiction des modèles est excellente avec un R^2 moyen de 0,99 et un RMSE moyen de 0,018 pour le K_r , ainsi qu'un R^2 moyen de 0,98 et un RMSE moyen de 0,030 pour le G_r . Les modèles de puissance offrent donc une meilleure prédiction des résultats de K_r et de G_r .

Les coefficients de régression sont généralement variables, à l'exception du paramètre K_2 du modèle de puissance, qui est en moyenne de 0,62 avec un écart type de 0,10, et du paramètre G_2 , qui est en moyenne de 0,85 avec un écart type de 0,08. La constance de K_2 et de G_2 des modèles de puissance indique une relation relativement constante entre le logarithme du K_r et du G_r et le logarithme de θ , ce qui constitue un atout intéressant pour la généralisation des modèles.

Tableau 23 Coefficients de régression des modèles de Boyce de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau initiale

	K _r = k	ζ _ο p _a (p/p _a) ¹⁻ⁿ	/ (1-β	(q/p)) ²			_
Matériau	$G_r = 0$	G_op_a	(p/p _a) ¹⁻	n			(1-n) K _o / (∂G _o
	K _o	G_{o}	n	R^{2}_{Kr}	$RMSE_Kr$	R ² _{Gr}	$RMSE_Gr$	n
					concassé			
PC1	2,47	2,40	0,267	0,92	0,066	0,96	0,043	15
PC2	2,29	2,02	0,329	0,96	0,044	0,91	0,062	15
PC3	2,15	2,11	0,306	0,96	0,043	0,98	0,034	15
PC4	2,86	2,57	0,352	0,93	0,055	0,95	0,046	15
PC5	4,07	3,94	0,291	0,88	0,079	0,91	0,068	15
PC6	1,73	2,03	0,307	0,96	0,045	0,97	0,037	15
PC7	2,62	2,21	0,297	0,99	0,022	0,97	0,038	15
PC8	3,03	3,07	0,303	0,97	0,039	0,97	0,040	15
PC9	1,63	1,80	0,186	0,97	0,048	0,98	0,040	15
PC10	2,10	1,96	0,354		0,030	0,98	0,027	15
					ncassée 1			
PCM1	2,47	2,02	0,252		0,076	0,90	0,073	15
PCM2	1,91	1,90	0,296	0,97	0,039	0,98	0,030	15
PCM3	1,97	1,99	0,370	0,93	0,055	0,93	0,053	15
PCM4	1,59	1,63	0,302	0,98	0,035	0,99	0,026	15
PCM5	1,84	1,84	0,309	0,98	0,028	0,98	0,027	15
PCM6	1,21	1,23	0,332	0,98	0,034	0,99	0,024	15
PCM7	1,69	1,61	0,336	0,98	0,031	0,98	0,026	15
PCM8	2,39	2,32	0,323	0,98	0,032	0,99	0,026	15
PCM9	1,59	1,60	0,349	0,98	0,031	0,98	0,027	15
PCM10	1,80	1,67	0,147	0,99	0,030	0,98	0,038	15
PCM11	1,65	1,74	0,264	1,00	0,015	0,99	0,019	15
					concass			
GC1	2,09	2,05	0,300	0,78	0,104	0,87	0,077	15
GC2	1,60	1,64	0,348	0,98	0,026	0,98	0,026	15
GC3	0,88	1,02	0,308	0,94	0,053	0,96	0,044	15
GC4	0,89	0,96	0,298	0,95	0,052	0,96	0,045	15
GC5	2,09	1,83	0,368	0,97	0,036	0,96	0,039	15
GC6	1,91	1,91	0,260	0,98	0,037	0,98	0,035	15
GC7	1,08	1,26	0,191	0,96	0,051	0,98	0,034	15
GC8	1,81	1,91	0,312	0,99	0,022	0,99	0,024	15
				112 - 3				
S1	1,59	1,66	0,450	0,94	0,042	0,93	0,045	15
S2	1,42	1,37	0,386	0,95	0,044	0,92	0,054	15
S3	1,37	1,39	0,346	0,98	0,026	0,98	0,026	15
S4	1,40	1,39	0,259	0,99	0,029	0,98	0,030	15
S5	1,59	1,76	0,337	0,97	0,035	0,97	0,037	15
S6	1,90	1,73	0,375	0,99	0,020	0,98	0,030	15

Tableau 24 Coefficients de régression des modèles de Boyce de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau saturée

	K _r = k	ζ _ο p _a (p/p _a) ¹⁻ⁿ	/ (1-β	(q/p)) ²			
Matériau	$G_r = 0$	$G_o p_a$	(p/p _a) ¹⁻	n			(1-n) K _o /	∂G _o
	Ko	G_{o}	n	R^{2}_{Kr}	$RMSE_Kr$	R^{2}_{Gr}	$RMSE_Gr$	n
					concassé			
PC1	2,23	2,22	0,237	0,95	0,056	0,97	0,040	15
PC2	2,47	2,06	0,354	0,97	0,036	0,91	0,059	15
PC3	2,18	2,04	0,329	0,96	0,045	0,97	0,039	15
PC4	2,98	2,47	0,370	0,87	0,075	0,90	0,062	15
PC5	3,91	3,63	0,241	0,90	0,079	0,91	0,071	15
PC6	1,79	2,09	0,303	0,95	0,050	0,96	0,045	15
PC7	2,57	2,08	0,275	0,99	0,028	0,95	0,050	15
PC8	2,91	2,90	0,269	0,97	0,042	0,95	0,050	15
PC9	1,51	1,67	0,140	0,97	0,051	0,98	0,040	15
PC10	1,88	1,70	0,350	0,98	0,028	0,98	0,031	15
					ncassée 1			
PCM1	2,25	1,79	0,223		0,060	0,92	0,069	15
PCM2	1,80	1,77	0,272	0,97	0,039	0,98	0,032	15
PCM3	1,87	1,85	0,381	0,91	0,058	0,90	0,062	15
PCM4	1,49	1,45	0,287	0,98	0,028	0,98	0,030	15
PCM5	1,78	1,76	0,285	0,98	0,032	0,98	0,031	15
PCM6	1,11	1,10	0,241	0,99	0,023	0,99	0,020	15
PCM7	1,53	1,39	0,281	0,99	0,025	0,99	0,026	15
PCM8	2,27	2,07	0,296	0,99	0,025	0,99	0,025	15
PCM9	1,37	1,27	0,307	0,99	0,021	0,99	0,022	15
PCM10	1,75	1,54	0,172	0,98	0,034	0,97	0,042	15
PCM11	1,62	1,61	0,291	1,00	0,014	0,99	0,024	15
					concass			
GC1	1,62	1,60	0,162		0,081	0,96	0,057	15
GC2	1,39	1,32	0,322	0,99	0,024	0,98	0,031	15
GC3	0,79	0,90	0,254	0,96	0,050	0,97	0,041	15
GC4	0,81	0,86	0,270	0,96	0,049	0,97	0,041	15
GC5	1,96	1,54	0,343	0,99	0,019	0,96	0,046	15
GC6	1,68	1,62	0,174	0,98	0,036	0,98	0,036	15
GC7	0,97	1,10	0,164	0,97	0,048	0,98	0,035	15
GC8	1,75	1,63	0,291	0,98	0,033	0,99	0,024	15
				112 - 3				
S1	1,61	1,56	0,468	0,93	0,045	0,90	0,054	15
S2	1,29	1,23	0,305	0,97	0,039	0,95	0,049	15
S3	1,32	1,25	0,349	0,99	0,025	0,98	0,033	15
S4	1,22	1,14	0,224	0,99	0,025	0,99	0,031	15
S5	1,60	1,68	0,331	0,98	0,033	0,96	0,041	15
S6	1,80	1,53	0,353	0,99	0,020	0,97	0,034	15

Tableau 25 Coefficients de régression des modèles de Boyce de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau drainée

	$K_r = K_o p_a (p/p_a)^{1-n} / (1-\beta(q/p))^2$									
Matériau	$G_r = 0$	G_op_a	(p/p _a) ¹⁻	n		β = (1-n) K _o / 6G _o				
	Ko	G_{o}	n	R^{2}_{Kr}	$RMSE_Kr$	R^{2}_{Gr}	$RMSE_Gr$	n		
			30 - F		concassé	е				
PC1	2,19	2,24	0,254	0,94	0,060	0,97	0,043	15		
PC2	2,39	2,15	0,324	0,96	0,044	0,92	0,061	15		
PC3	2,13	2,04	0,329	0,96	0,045	0,97	0,038	15		
PC4	2,89	2,52	0,411	0,86	0,071	0,88	0,063	15		
PC5	4,21	3,89	0,339	0,88	0,075	0,88	0,071	15		
PC6	1,83	2,18	0,308	0,94	0,054	0,96	0,045	15		
PC7	2,62	2,15	0,279	0,99	0,027	0,95	0,049	15		
PC8	2,88	2,95	0,272	0,97	0,044	0,96	0,048	15		
PC9	1,50	1,68	0,138	0,97	0,051	0,98	0,039	15		
PC10	1,83	1,75	0,368	0,99	0,021	0,98	0,026	15		
					ncassée f					
PCM1	2,24	1,78	0,243		0,059	0,91	0,071	15		
PCM2	1,90	1,86	0,371	0,98	0,029	0,97	0,031	15		
PCM3	1,83	1,83	0,399	0,95	0,046	0,91	0,058	15		
PCM4	1,51	1,48	0,317	0,98	0,032	0,98	0,032	15		
PCM5	1,72	1,71	0,284	0,98	0,029	0,98	0,029	15		
PCM6	1,12	1,14	0,275	0,99	0,025	0,99	0,021	15		
PCM7	1,57	1,37	0,321	0,99	0,017	0,98	0,031	15		
PCM8	2,19	2,06	0,286	0,99	0,026	0,99	0,023	15		
PCM9	1,37	1,35	0,304	0,99	0,022	0,99	0,019	15		
PCM10	1,75	1,58	0,192	0,99	0,028	0,97	0,042	15		
PCM11	1,59	1,67	0,293	1,00	0,015	0,99	0,022	15		
					concass					
GC1	1,67	1,62	0,206	0,91	0,082	0,95	0,058	15		
GC2	1,45	1,44	0,292	0,98	0,029	0,98	0,029	15		
GC3	0,80	0,88	0,276	0,96	0,048	0,97	0,044	15		
GC4	0,80	0,86	0,252	0,95	0,052	0,97	0,041	15		
GC5	1,88	1,59	0,318	0,99	0,020	0,96	0,042	15		
GC6	1,67	1,67	0,197	0,98	0,035	0,98	0,032	15		
GC7	0,97	1,12	0,182	0,96	0,051	0,98	0,037	15		
GC8	1,67	1,68	0,270	0,99	0,027	0,99	0,020	15		
				112 - 3						
S1	1,68	1,69	0,555	0,87	0,052	0,81	0,060	15		
S2	1,33	1,26	0,331	0,97	0,039	0,95	0,047	15		
S3	1,31	1,28	0,365	0,98	0,027	0,98	0,027	15		
S4	1,22	1,16	0,242	0,99	0,026	0,99	0,030	15		
S5	1,60	1,76	0,349	0,97	0,034	0,97	0,036	15		
S6	1,77	1,63	0,359	0,99	0,019	0,98	0,028	15		

Tableau 26 Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau initiale

Matériau	K	r = K ₁ p	o _a (θ/p _a) ^l	^{<2} (τ _{oct}	/p _a +1) ^{K3}		$G_r = G_1 p_a (\theta/p_a)^{G2} (\tau_{oct}/p_a+1)^{G3}$					
Materiau	K ₁	K_2	K ₃	R²	RMSE	n	G ₁	G_2	G_3	R²	RMSE	n
				MG 2	20 - Pierr	e cc	ncassé	e				
PC1	1,41	0,750	-0,189	0,99	0,022	15	1,09	0,930	-0,577	0,99	0,026	15
PC2	1,33	0,612	0,127	0,99	0,018	15	1,05	0,950	-0,907	0,98	0,037	15
PC3	1,23	0,646	0,037	1,00	0,013	15	1,00	0,863	-0,473	0,99	0,018	15
PC4			-0,152		0,020	15			-0,645		0,025	15
PC5			-0,420		0,028	15			-0,902		0,047	15
PC6			0,064	1,00	0,015	15			-0,377		0,032	15
PC7			0,528	0,98	0,029	15	1,05	0,862	-0,494	0,99	0,026	15
PC8		0,653	•	1,00	0,011	15			-0,524		0,028	15
PC9		0,783		1,00	0,015	15			-0,456		0,032	15
PC10	1,22	0,551	0,214		0,017	15			-0,380	1,00	0,014	15
					- Pierre							
PCM1	,	0,725	0,133		0,031	15			-0,810		0,060	15
PCM2		0,646	0,222	1,00	0,014	15	-	-	-0,385		0,023	15
PCM3			-0,112		0,020	15			-0,684		0,039	15
PCM4		0,637	0,283	1,00	0,013	15			-0,284		0,021	15
PCM5		0,591	0,288	1,00	0,013	15			-0,333		0,019	15
PCM6		0,537	0,357	0,99	0,018	15			-0,254		0,017	15
PCM7		0,578	0,288	1,00	0,014	15			-0,308		0,021	15
PCM8		0,571	0,375	1,00	0,014	15			-0,232		0,023	15
PCM9		0,545		1,00	0,013	15			-0,233		0,024	15
PCM10		0,697		0,99	0,029	15			-0,524		0,025	15
PCM11	0,83	0,584	0,481	0,99	0,020	15			-0,287	1,00	0,010	15
GC1	1 10	0.000	-0,306		0 - Grav 0,060	15			-0,755	0.02	0,067	15
GC2			0,334		0,000	15			-0,735		0,007	15
GC2 GC3			-0,095		0,023	15			-0,505		0,020	15
GC4			-0,057		0,017	15	-	-	-0,625		0,031	15
GC5				0,99	0,013	15			-0,025		0,030	15
GC6			0,302	1,00	0,024	15			-0,390		0,032	15
GC7		0,804	0,027	1,00	0,013	15			-0,383		0,028	15
GC8	-		0,355		0,017	15			-0,304		0,028	15
000	0,55	0,070	0,000		MG 112			0,701	0,004	0,00	0,010	10
S1	1.00	0,527	0,032		0,019	15		0.702	-0,498	0.96	0,037	15
S2		0,514	0,264		0,021	15			-0,458		0,048	15
S3		0,566	0,312	1,00	0,013	15			-0,317		0,020	15
S4		0,630	0,371	0,99	0,018	15	-	-	-0,349		0,023	15
S5	-	0,614	0,044	1,00	0,007	15			-0,491		0,023	15
S6		0,477	0,408	0,99	0,016	15			-0,371		0,020	15

Tableau 27 Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau saturée

Matériau	K	r = K ₁ p	o _a (θ/p _a) ^l	^{<2} (τ _{oct}	/p _a +1) ^{K3}		$G_r = G_1 p_a (\theta/p_a)^{G2} (\tau_{oct}/p_a+1)^{G3}$					3
Materiau	K ₁	K_2	K ₃	R²	RMSE	n	G ₁	G_2	G_3	R²	RMSE	n
				MG 2	0 - Pierr	e cc	ncassé	e				
PC1	1,21	0,734	-0,017	1,00	0,013	15	0,98	0,940	-0,524	0,99	0,025	15
PC2	1,45	0,461	0,483	0,98	0,025	15			-0,661		0,046	15
PC3	1,29	0,585	0,109	1,00	0,011	15	0,97	0,853	-0,444	0,99	0,024	15
PC4			-0,221		0,026	15			-0,625		0,047	15
PC5			-0,324		0,023	15			-0,930		0,048	15
PC6			0,017		0,022	15			-0,506		0,037	15
PC7	1,41	0,503	•	0,99	0,024	15	0,94	0,919	-0,511	0,98	0,039	15
PC8		0,645	•	1,00	0,012	15			-0,562		0,040	15
PC9			0,107	1,00	0,013	15			-0,425		0,033	15
PC10	1,09	0,457			0,017	15			-0,256	0,99	0,020	15
					- Pierre							
PCM1	,	0,667	,	0,99	0,021	15	0,81		-0,756		0,055	15
PCM2		0,682	0,168		0,017	15	-	-	-0,477		0,018	15
PCM3			-0,205		0,021	15			-0,836		0,043	15
PCM4		0,589	0,382	1,00	0,012	15			-0,356		0,022	15
PCM5		0,599	0,304	1,00	0,010	15			-0,332		0,024	15
PCM6		0,614			0,020	15			-0,279		0,010	15
PCM7		0,571	0,448		0,021	15			-0,333		0,018	15
PCM8				1,00	0,015	15			-0,254		0,020	15
PCM9		0,520	0,489	0,99	0,017	15			-0,248		0,015	15
PCM10		0,594		0,99	0,020	15			-0,468		0,031	15
PCM11	0,84	0,519	0,556	0,99	0,021	15			-0,305	1,00	0,015	15
004	0.00	0.000	0.040		0 - Grav				0.050	0.07	0.044	45
GC1			-0,049		0,028	15	-	-	-0,656		0,044	15
GC2	-	0,531	0,431	1,00	0,013	15	-		-0,351		0,023	15
GC3		0,753	0,012	1,00	0,013	15		-	-0,515		0,031	15
GC4	-	0,723	0,043	1,00	0,012	15	-		-0,534		0,031	15 15
GC5	-	0,383	0,820	0,97	0,034	15	-		-0,549		0,034	15 15
GC6		0,699		1,00	0,017	15			-0,436		0,025	15
GC7		0,795	0,089	1,00	0,013	15			-0,395		0,028	15 15
GC8	0,97	0,584	0,279		0,014 MG 112	15		0,812	-0,200	1,00	0,015	15
S1	1 04	0,507	0,018	0,99	0,019	15		0.722	-0,611	0.05	0,043	15
S2		0,507	0,016	1,00	0,019	15			-0,511		0,043	15
S3		0,530	0,322	0,99	0,015	15			-0,300		0,040	15
S3 S4		0,609	0,344	0,99	0,015	15			-0,380		0,024	15
S5	-	0,609	0,496	1,00	0,022	15			-0,504		0,022	15
S6		0,376	0,127	0,98	0,011	15			-0,304		0,025	15
30	1,04	0,442	0,5∠6	0,98	0,025	15	0,75	U,8U3	-0,395	0,99	0,0∠0	15

Tableau 28 Coefficients de régression des modèles de puissance de modules volumique et de cisaillement réversibles $(K_r,\,G_r)$ à la teneur en eau drainée

Matériau	$K_r = K_1 p_a (\theta/p_a)^{K2} (\tau_{oct}/p_a + 1)^{K3}$						$G_r = G_1 p_a (\theta/p_a)^{G2} (\tau_{oct}/p_a + 1)^{G3}$					
Materiau	K ₁	K ₂	K ₃	R²	RMSE	n	G ₁	G ₂	G ₃	R²	RMSE	n
				MG 2	0 - Pieri	re co	ncassé	е				
PC1	1,18	0,726	0,000	0,99	0,022	15	1,01	0,901	-0,483	0,98	0,033	15
PC2	1,35	0,572	0,290	0,99	0,025	15	1,09	0,908	-0,743	0,96	0,047	15
PC3	1,24	0,587	0,133	1,00	0,014	15	0,97	0,829	-0,390	0,99	0,027	15
PC4	1,88	0,574	-0,104	0,96	0,035	15	1,31	0,806	-0,560	0,94	0,052	15
PC5	2,57	0,695	-0,235	0,97	0,033	15	1,96	0,930	-0,817	0,95	0,054	15
PC6	0,98	0,728	-0,109	0,99	0,020	15	1,08	0,831	-0,518	0,98	0,036	15
PC7	1,43	0,515	0,554	0,99	0,025	15	0,99	0,916	-0,550	0,98	0,037	15
PC8	1,52	0,650	0,202	1,00	0,016	15	1,36	0,886	-0,492	0,97	0,040	15
PC9	0,69	0,816	0,153	1,00	0,014	15	0,67	0,968	-0,357	0,99	0,035	15
PC10	1,03	0,459	0,489		0,014	15			-0,221	0,99	0,020	15
					- Pierre							
PCM1		0,636	0,400	0,99	0,022	15			-0,721		0,061	15
PCM2		0,564	0,323	1,00	0,013	15			-0,402		0,022	15
PCM3	1,08	0,567	0,090	0,99	0,020	15			-0,720		0,043	15
PCM4		0,574	0,376	1,00	0,015	15			-0,305		0,028	15
PCM5	0,91	0,593	0,355	1,00	0,013	15	0,78	0,811	-0,267	0,99	0,025	15
PCM6	0,58	0,591	0,386	1,00	0,011	15	0,51	0,812	-0,236	1,00	0,016	15
PCM7	0,84	0,512	0,560	0,99	0,023	15	0,68	0,801	-0,438	0,99	0,020	15
PCM8		0,577	0,444	1,00	0,013	15			-0,214		0,020	15
PCM9	0,72	0,568	0,411	1,00	0,012	15	0,64	0,769	-0,229	1,00	0,014	15
PCM10		0,605	0,639	1,00	0,017	15	0,67	0,948	-0,430	0,98	0,036	15
PCM11	0,81	0,553	0,501	1,00	0,014	15			-0,258	0,99	0,017	15
					20 - Grav							
GC1			-0,014		0,037	15			-0,667		0,044	15
GC2		0,590		1,00	0,015	15			-0,352		0,021	15
GC3		0,713	0,081	1,00	0,015	15		-	-0,540		0,033	15
GC4	-	-	-0,002	1,00	0,012	15		-	-0,494		0,031	15
GC5		0,450	0,725	0,99	0,024	15			-0,507		0,032	15
GC6	-	0,693	-	1,00	0,013	15			-0,396		0,024	15
GC7		0,792		1,00	0,015	15			-0,389		0,031	15
GC8	0,86	0,580	0,439	1,00		15		0,804	-0,186	1,00	0,016	15
					MG 112							
S1		0,424		0,94	0,034	15			-0,510		0,055	15
S2		0,561	0,271	1,00	0,013	15			-0,490		0,038	15
S3		0,530	0,319	0,99	0,015	15			-0,317		0,020	15
S4		0,608	0,473	0,99	0,018	15			-0,356		0,023	15
S5		0,595	0,081	1,00	0,008	15			-0,457		0,024	15
S6	0,99	0,496	0,419	0,99	0,015	15	0,82	0,762	-0,365	0,99	0,019	15

L'influence de la teneur en eau sur le K_r et le G_r est également exprimée par le ratio entre les teneurs en eau drainée et saturée ($K_{r\,dr}/K_{r\,sat}$, $G_{r\,dr}/G_{r\,sat}$) puisque la teneur en eau des matériaux granulaires de fondation et de sous-fondation de chaussées revêtues se situe principalement entre ces deux teneurs en eau au cours d'une année. La Figure 73 à la Figure 76 présentent les ratios moyen de $K_{r\,dr}/K_{r\,sat}$ et de $G_{r\,dr}/G_{r\,sat}$ avec leur écart type déterminés à partir des 15 états de contrainte pour chaque matériau granulaire.

Les figures montrent que les ratios $K_{r\,dr}/K_{r\,sat}$ varient généralement entre 0,96 et 1,02 avec une moyenne de 0,99. De même, les ratios $G_{r\,dr}/G_{r\,sat}$ varient généralement entre 0,99 et 1,05 avec une moyenne de 1,02. Ainsi, la teneur en eau semble avoir peu d'influence sur le K_r et le G_r à l'intérieur des teneurs en eau anticipées au cours d'une année.

Par ailleurs, il existe des cas particuliers où l'influence de la teneur en eau est plus significative pour le ratio $G_{r\,dr}/G_{r\,sat}$, comme pour les matériaux PC5 (1,09), PCM2 (1,07), GC2 (1,09) et S1 (1,09). Pour ces ratios, les écarts types sont plus élevés, ce qui indique que certains états de contrainte ont été plus influencés par la teneur en eau. Par contre, aucune relation n'a pu être identifiée entre la teneur en eau et l'état de contrainte.

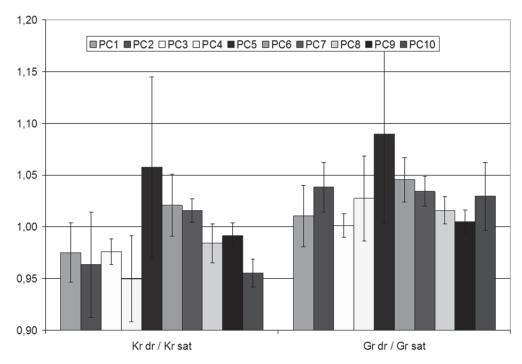


Figure 73 Ratios moyens de modules volumique et de cisaillement réversibles pour les matériaux granulaires de pierres concassées MG 20 PC

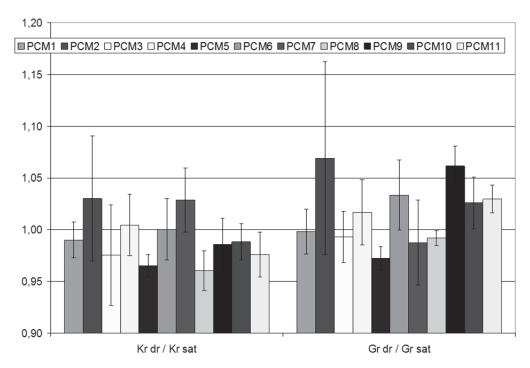


Figure 74 Ratios moyens de modules volumique et de cisaillement réversibles pour les matériaux granulaires de pierres concassées fines MG 20 PCM

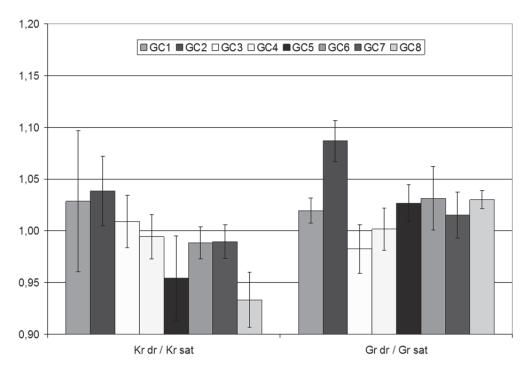


Figure 75 Ratios moyens de modules volumique et de cisaillement réversibles pour les matériaux granulaires de graviers concassés MG 20 GC

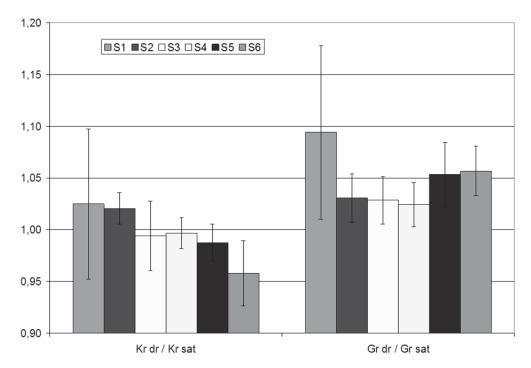


Figure 76 Ratios moyens de modules volumique et de cisaillement réversibles pour les matériaux granulaires de sables MG 112 S

6 MODÈLES GÉNÉRAUX

6.1 Modèles de module de Young réversible

Une analyse exhaustive des résultats individuels n'a pu montrer de relation significative entre le E_r et les caractéristiques physiques des matériaux granulaires. En conséquence, des modèles généraux de E_r sont proposés par groupes de matériaux granulaires (MG 20 PC, MG 20 PCM, MG 20 GC, MG 112 S). Le Tableau 29 présente les coefficients de régression des modèles généraux linéaires (c_1 , c_2 , c_3) (Équation 10) et de puissance (k_1 , k_2 , k_3) (Équation 8) déterminés pour chaque groupe de matériaux granulaires à la teneur en eau saturée. Le coefficient de détermination (R^2), l'erreur de prédiction moyenne (RMSE) et le nombre de points utilisés (n) sont également indiqués.

Tableau 29 Modèles généraux de module de Young réversible (E_r) à la teneur en eau saturée pour différents types de matériaux granulaires

Matériaux		$E_{r} = c_1 + c_2 \; \theta + c_3 \; \tau_{oct}$						$E_r = k_1 p_a (\theta/p_a)^{k2} (\tau_{oct}/p_a + 1)^{k3}$				
Iviateriaux	C ₁	C_2	C ₃	R²	RMSE	n	k ₁	k_2	k_3	R²	RMSE	n
MG 20 PC	123	1,67	-2,10	0,71	164	150	2,45	0,848	-0,400	0,81	0,106	150
MG 20 PCM	90	1,06	-0,88	0,84	78	165	1,71	0,806	-0,252	0,87	0,083	165
MG 20 GC	65	0,92	-0,83	0,72	94	120	1,35	0,846	-0,304	0,77	0,124	120
MG 112 S	97	0,88	-0,93	0,89	50	90	1,61	0,769	-0,324	0,89	0,069	90

Le R^2 des modèles de puissance généraux est plus élevé (ou de même valeur) que celui des modèles linéaires généraux. Ce constat est attribuable au paramètre k_2 des modèles de puissance qui est plus constant que le paramètre c_2 des modèles linéaires (Tableau 20).

La Figure 77 à la Figure 80 présentent les E_r prédits par les modèles généraux linéaires et leur RMSE superposés aux résultats utilisés pour déterminer les modèles. La Figure 81 à la Figure 84 présentent, dans un plan logarithmique, les valeurs prédites par les modèles généraux de puissance et leur RMSE superposés aux mêmes résultats. Les figures montrent que la dispersion des résultats est plus constante dans un plan logarithmique, donc que le RMSE des modèles de puissance est plus représentatif de l'erreur de prédiction sur l'ensemble des contraintes appliquées. Les figures montrent également une plus grande dispersion des résultats pour les MG 20 PC et les MG 20 GC comparativement aux MG 20 PCM et aux MG 112 S.

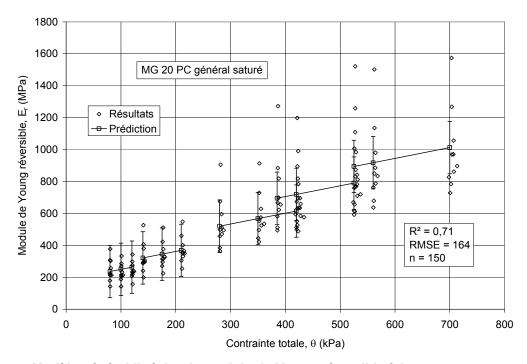


Figure 77 Modèle général linéaire de module de Young réversible à la teneur en eau saturée pour les pierres concassées MG 20 PC

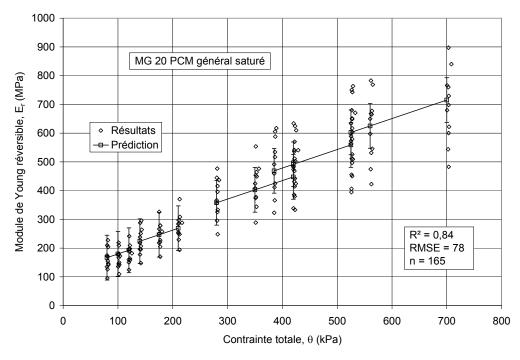


Figure 78 Modèle général linéaire de module de Young réversible à la teneur en eau saturée pour les pierres concassées fines MG 20 PCM

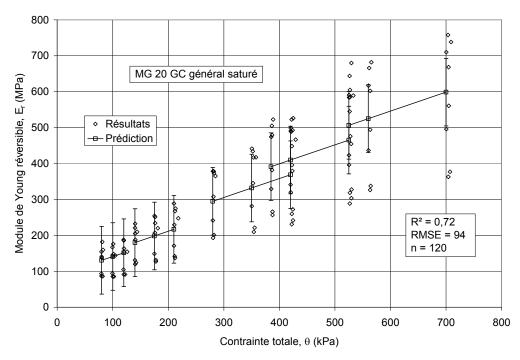


Figure 79 Modèle général linéaire de module de Young réversible à la teneur en eau saturée pour les graviers concassés MG 20 GC

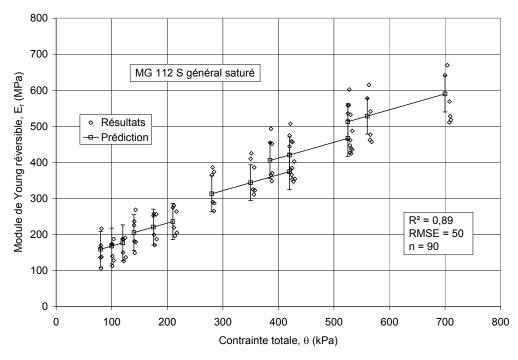


Figure 80 Modèle général linéaire de module de Young réversible à la teneur en eau saturée pour les sables MG 20 S

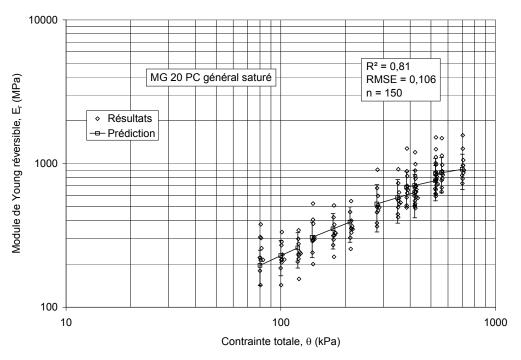


Figure 81 Modèle général de puissance de module de Young réversible à la teneur en eau saturée pour les pierres concassées MG 20 PC

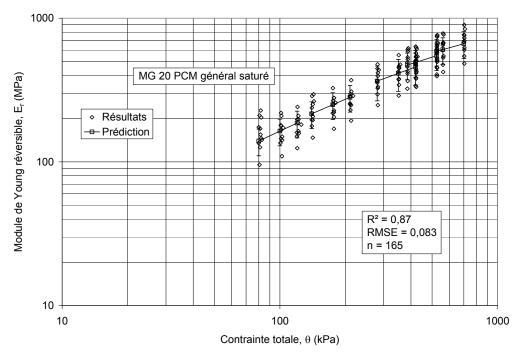


Figure 82 Modèle général de puissance de module de Young réversible à la teneur en eau saturée pour les pierres concassées fines MG 20 PCM

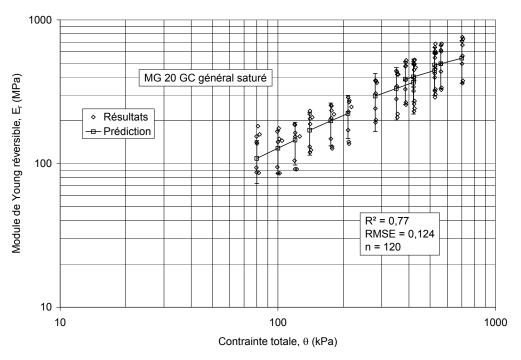


Figure 83 Modèle général de puissance de module de Young réversible à la teneur en eau saturée pour les graviers concassés MG 20 GC

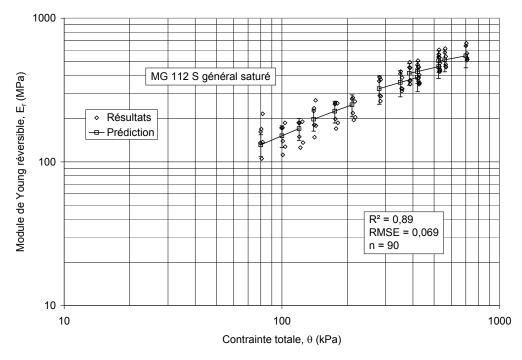


Figure 84 Modèle général de puissance de module de Young réversible à la teneur en eau saturée pour les sables MG 112 S

La Figure 85 montre les E_r prédits par les modèles de puissance généraux à la teneur en eau saturée. Le E_r général du MG 20 PC est significativement plus élevé que celui du

MG 20 PCM, lui-même plus élevé que celui du MG 20 GC. La pente générale en fonction de la θ de ces trois matériaux granulaires est similaire ($k_2 \approx 0.83$), mais leur ordonnée à l'origine diffère (k_1). Le E_r général du MG 112 S est moins sensible à l'état de contrainte ($k_2 = 0.77$) et sa valeur varie entre celle du MG 20 PCM à faible contrainte et celle du MG 20 GC à contrainte élevée.

Le Tableau 30 présente les valeurs de E_r prédites à l'aide des modèles généraux en fonction de l'état de contrainte, ainsi que leur erreur moyenne de prédiction (RMSE). Le RMSE indiqué augmente de manière logarithmique conformément au modèle de puissance, contrairement au modèle linéaire dont le RMSE est constant, ce qui semble moins logique (Tableau 29). L'erreur moyenne de prédiction des modèles généraux est donc de 28 % pour les MG 20 PC, de 21 % pour les MG 20 PCM, de 33 % pour les MG 20 GC et de 17 % pour les MG 112 S.

Ainsi, le pourcentage de fines (< 80 µm) influence le E_r des pierres concassées (PC vs PCM) avec un E_r général plus élevé lorsque le pourcentage de fines est inférieur à 5 %. De même, le pourcentage de particules fracturées influence le E_r général, qui est plus élevé pour les pierres concassées (PC, PCM) comparativement aux graviers concassées (GC). Par ailleurs, le E_r général des sables (S) est plus élevé que celui des graviers concassés (GC), mais les sables sont surcompactés en laboratoire (101 %) comparativement à la compacité exigée sur la route (95 %). Pour une même énergie de compactage, il semble que les MG 112 S donnent tout de même un E_r général plus élevé que les MG 20 GC.

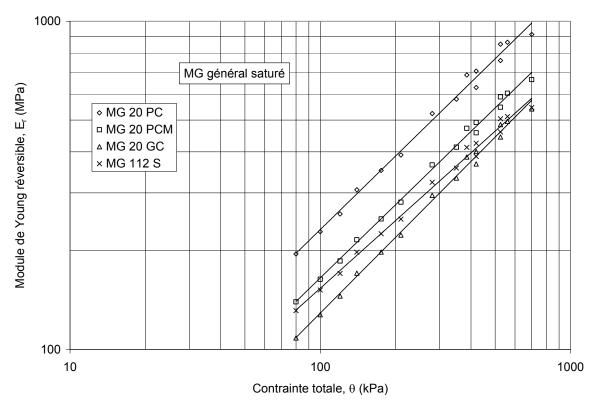


Figure 85 Modèles généraux de puissance de module de Young réversible à la teneur en eau saturée pour les différents types de matériaux granulaires

Tableau 30 Module de Young réversible (E_r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée

				MG 2	20 PC	MG 20	PCM	MG 2	20 GC	MG 1	112 S
σ_3	σ_{d}	θ	τ_{oct}	Er	RMSE	Er	RMSE	Er	RMSE	Er	RMSE
(kPa)	(kPa)	(kPa)	(kPa)	(MPa)							
20	20	80	9	196	54	140	29	108	36	131	23
20	40	100	19	229	63	164	34	128	42	152	26
20	60	120	28	259	71	186	39	146	48	171	30
35	35	140	16	307	85	216	45	171	56	198	34
35	70	175	33	351	97	250	53	198	65	225	39
35	105	210	49	391	108	281	59	223	74	250	43
70	70	280	33	524	144	365	77	295	97	323	56
70	140	350	66	579	160	413	87	333	110	357	62
70	210	420	99	628	173	457	96	368	121	387	67
105	70	385	33	686	189	472	99	386	127	413	72
105	105	420	49	705	194	492	103	401	132	425	74
105	210	525	99	759	209	548	115	444	147	460	80
140	105	525	49	852	235	588	124	484	160	505	88
140	140	560	66	863	238	604	127	495	164	513	89
140	280	700	132	912	251	664	140	541	178	546	95

L'influence de la teneur en eau est exprimée par le ratio entre les E_r aux teneurs en eau drainée et saturée ($E_{r\,dr}/E_{r\,sat}$) puisque la teneur en eau des matériaux granulaires de fondation et de sous-fondation de chaussées revêtues au Québec se situe principalement entre ces deux teneurs en eau. La Figure 86 présente le ratio $E_{r\,dr}/E_{r\,sat}$ moyen pour chaque groupe de matériaux granulaires avec leur écart type. Le E_r varie peu en fonction de la teneur en eau avec un ratio $E_{r\,dr}/E_{r\,sat}$ moyen faible de 1,02 et un écart type moyen faible de 0,04. Les MG 112 S présentent le ratio moyen le plus élevé avec 1,04.

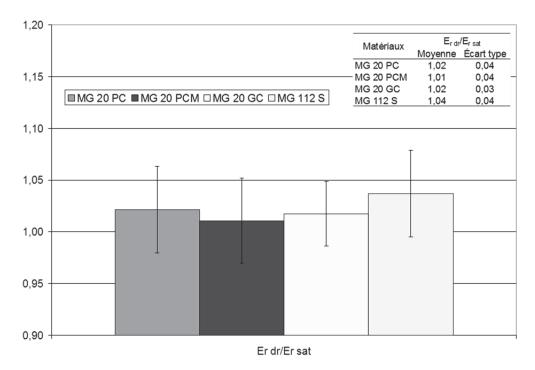


Figure 86 Ratios moyens généraux de module de Young réversible entre les teneurs en eau drainée et saturée pour les matériaux granulaires

6.2 Modèles de modules volumique et de cisaillement réversibles

Le K_r et le G_r des matériaux granulaires sont également difficiles à prédire à partir des caractéristiques physiques des matériaux. Les résultats sont donc modélisés de manière générale par groupes de matériaux granulaires (MG 20 PC, MG 20 PCM, MG 20 GC, MG 112 S). Le Tableau 31 présente les coefficients de régression des modèles de puissance généraux de K_r (K_1 , K_2 , K_3) (Équation 14) et de G_r (G_1 , G_2 , G_3) (Équation 15) pour les différents types de matériaux granulaires à la teneur en eau saturée. Le coefficient de détermination (R^2), l'erreur moyenne de prédiction (RMSE) et le nombre de points utilisés (n) sont également indiqués. Les modèles de puissance représentent mieux les résultats de K_r et de G_r que les modèles de Boyce dans le cadre de ce projet et la constance des paramètres K_2 et G_2 des modèles de puissance permet une meilleure généralisation des modèles.

Tableau 31 Modèles généraux de modules volumique et de cisaillement réversibles (K_r, G_r) à la teneur en eau saturée pour différents groupes de matériaux granulaires

Matériaux	$K_r = K_1 p_a (\theta/p_a)^{K2} (\tau_{oct}/p_a + 1)^{K3}$					($G_r = G_1 p_a (\theta/p_a)^{G2} (\tau_{oct}/p_a + 1)^{G3}$					
Materiaux	K ₁	K ₂	K ₃	R²	RMSE	n	G ₁	G ₂	G ₃	R²	RMSE	n
MG 20 PC	1,31	0,632	0,156	0,71	0,126	150	1,04	0,903	-0,544	0,82	0,104	150
MG 20 PCM	0,89	0,594	0,383	0,82	0,096	165	0,73	0,860	-0,416	0,88	0,083	165
MG 20 GC	0,64	0,698	0,168	0,64	0,165	120	0,60	0,890	-0,425	0,77	0,125	120
MG 112 S	0,83	0,544	0,282	0,89	0,065	90	0,68	0,828	-0,485	0,89	0,074	90

Les modèles généraux de K_r et de G_r pour les MG 20 PC et les MG 20 GC ont un R^2 significativement plus faible et un RMSE significativement plus élevé que ceux des MG 20 PCM et des MG 112 S. Ce constat indique que les résultats obtenus pour les MG 20 PC et les MG 20 GC sont plus variables que ceux obtenus pour les MG 20 PCM et les MG 112 S.

La Figure 87 à la Figure 94 présentent les K_r et les G_r prédits par les modèles généraux et leur RMSE superposés aux résultats utilisés pour déterminer les modèles. Les figures montrent que les résultats de K_r et de G_r sont effectivement plus variables pour les MG 20 PC et les MG 20 GC comparativement aux MG 20 PCM et aux MG 112 S.

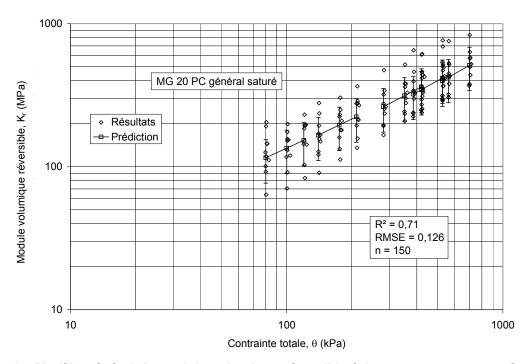


Figure 87 Modèle général de module volumique réversible à la teneur en eau saturée pour les pierres concassées MG 20 PC

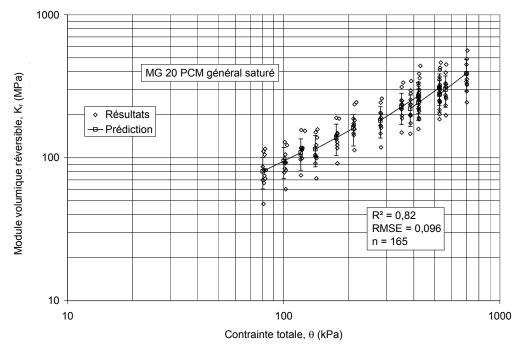


Figure 88 Modèle général de module volumique réversible à la teneur en eau saturée pour les pierres concassées fines MG 20 PCM

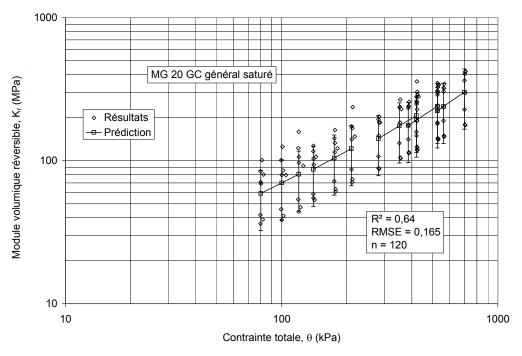


Figure 89 Modèle général de module volumique réversible à la teneur en eau saturée pour les graviers concassés MG 20 GC

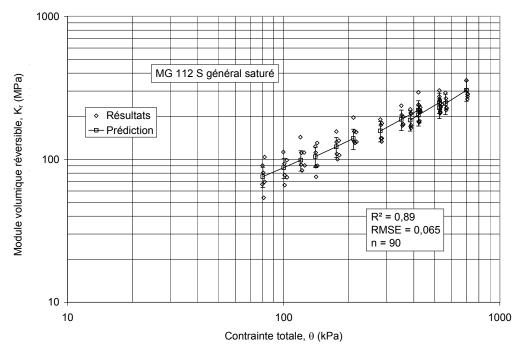


Figure 90 Modèle général de module volumique réversible à la teneur en eau saturée pour les sables MG 112 S

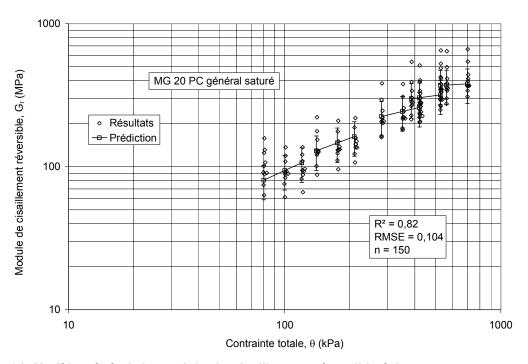


Figure 91 Modèle général de module de cisaillement réversible à la teneur en eau saturée pour les pierres concassées MG 20 PC

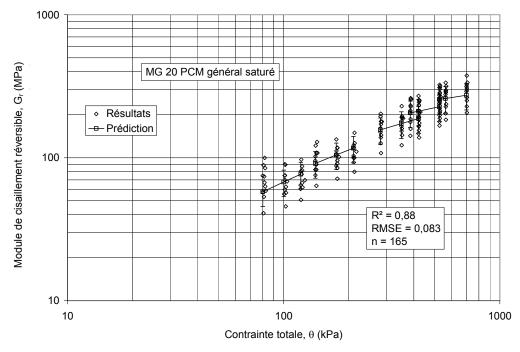


Figure 92 Modèle général de module de cisaillement réversible à la teneur en eau saturée pour les pierres concassées fines MG 20 PCM

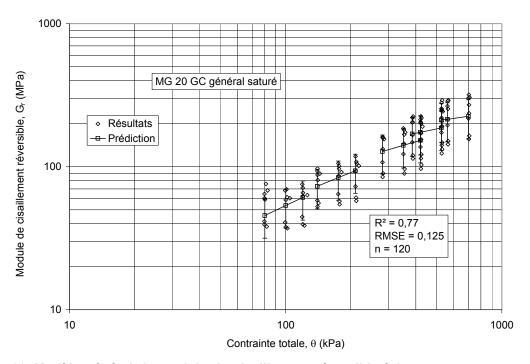


Figure 93 Modèle général de module de cisaillement réversible à la teneur en eau saturée pour les graviers concassés MG 20 GC

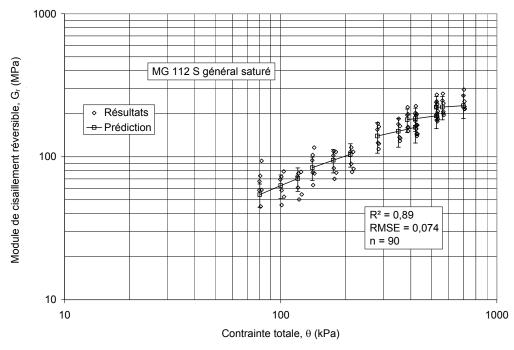


Figure 94 Modèle général de module de cisaillement réversible à la teneur en eau saturée pour les sables MG 112 S

La Figure 95 et la Figure 96 montrent le K_r et le G_r prédits par les modèles généraux à la teneur en eau saturée pour les différents groupes de matériaux granulaires. Le K_r général

du MG 20 PC est significativement plus élevé que le MG 20 PCM, lui-même plus élevé que le MG 20 GC. Le K_r du MG 112 S est moins sensible à l'état de contrainte et sa valeur varie entre le MG 20 PCM à faible contrainte et le MG 20 GC à contrainte élevée. Le G_r du MG 20 PC est également plus élevé que les autres matériaux et la tendance est analogue au K_r pour les autres matériaux granulaires, mais de manière moins significative.

Le Tableau 32 et le Tableau 33 présentent les valeurs de K_r et de G_r prédites par les modèles généraux en fonction de la contrainte et l'erreur moyenne de prédiction (RMSE). L'erreur moyenne de prédiction du K_r est de 34 % pour le MG 20 PC, de 25 % pour le MG 20 PCM, de 46 % pour le MG 20 GC et de 16 % pour le MG 112 S. L'erreur moyenne de prédiction du G_r est de 27 % pour le MG 20 PC, de 21 % pour le MG 20 PCM, de 33 % pour le MG 20 GC et de 19 % pour le MG 112 S. La prédiction des MG 20 GC est plus variable puisque les résultats sont scindés en deux groupes (Figure 67, Figure 71).

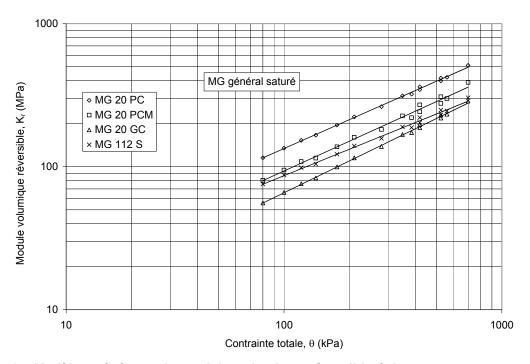


Figure 95 Modèles généraux de module volumique réversible à la teneur en eau saturée pour différents groupes de matériaux granulaires

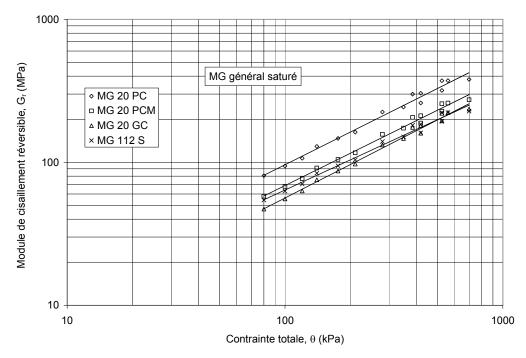


Figure 96 Modèles généraux de module de cisaillement réversible à la teneur en eau saturée pour différents groupes de matériaux granulaires

Tableau 32 Module volumique réversible (K_r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée pour différents groupes de matériaux granulaires

				MG 2	20 PC	MG 20) PCM	MG 2	20 GC	MG	112 S
σ_3	σ_{d}	θ	τ_{oct}	K _r	RMSE						
(kPa)	(kPa)	(kPa)	(kPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
20	20	80	9	116	39	80	20	56	26	76	12
20	40	100	19	135	45	95	23	66	31	87	14
20	60	120	28	153	51	109	27	76	35	99	16
35	35	140	16	166	56	115	28	83	39	104	17
35	70	175	33	195	66	138	34	100	46	122	20
35	105	210	49	223	75	161	40	115	54	140	23
70	70	280	33	263	88	182	45	138	64	158	26
70	140	350	66	314	105	227	56	168	78	190	31
70	210	420	99	362	122	271	67	197	91	221	36
105	70	385	33	322	108	220	54	173	80	188	30
105	105	420	49	346	116	243	60	187	87	204	33
105	210	525	99	417	140	309	76	230	106	249	40
140	105	525	49	399	134	277	69	219	101	230	37
140	140	560	66	422	142	300	74	233	108	245	40
140	280	700	132	512	172	389	96	288	134	304	49

Tableau 33 Module de cisaillement réversible (G_r) et erreur de prédiction (RMSE) des modèles de puissance généraux à la teneur en eau saturée pour différents groupes de matériaux granulaires

				MG 2	MG 20 PC MG 20 PCM		MG 2	20 GC	MG 1	MG 112 S	
σ_3	σ_{d}	θ	τ_{oct}	G _r	RMSE	G _r	RMSE	G _r	RMSE	G _r	RMSE
(kPa)	(kPa)	(kPa)	(kPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
20	20	80	9	81	22	58	12	47	16	54	10
20	40	100	19	94	26	68	14	55	18	63	12
20	60	120	28	107	29	77	16	63	21	70	13
35	35	140	16	129	35	91	19	75	25	84	16
35	70	175	33	147	40	105	22	87	29	95	18
35	105	210	49	163	44	117	25	97	32	104	19
70	70	280	33	225	61	157	33	132	44	140	26
70	140	350	66	244	66	173	36	147	49	151	28
70	210	420	99	260	70	188	40	160	53	161	30
105	70	385	33	299	81	206	43	175	59	182	34
105	105	420	49	304	82	212	45	180	60	185	34
105	210	525	99	318	86	228	48	195	65	193	36
140	105	525	49	372	101	256	54	220	73	222	41
140	140	560	66	372	101	260	55	223	74	223	41
140	280	700	132	380	103	274	58	236	79	228	42

L'influence de la teneur en eau est exprimée par le ratio entre les K_r aux teneurs en eau drainée et saturée $(K_{r\,dr}/K_{r\,sat})$ ainsi qu'entre les G_r aux teneurs en eau drainée et saturée $(G_{r\,dr}/G_{r\,sat})$, puisque la teneur en eau des matériaux granulaires de chaussées se situe principalement entre ces deux teneurs en eau au Québec. La Figure 97 présente les ratios moyens de $K_{r\,dr}/K_{r\,sat}$ et de $G_{r\,dr}/G_{r\,sat}$ et leur écart type pour chaque groupe de matériaux granulaires.

Le K_r est généralement un peu plus faible à la teneur en eau drainée avec un $K_{r\,dr}/K_{r\,sat}$ moyen d'environ 0,99 et un écart type moyen de 0,04, alors que le G_r est un peu plus élevé avec un $G_{r\,dr}/G_{r\,sat}$ moyen d'environ 1,02 et un écart type moyen de 0,03, ce qui est un peu plus significatif que pour le $E_{r\,dr}/E_{r\,sat}$ (1,01). Les MG 112 S sont un peu plus influencés par la teneur en eau avec un $G_{r\,dr}/G_{r\,sat}$ moyen de 1,05, ce qui représente la plus grande influence de la teneur en eau observée en moyenne. L'écart type des MG 20 PC est également un peu élevé avec 0,08 et 0,10, ce qui signifie que l'influence de la teneur en eau est plus variable pour ces matériaux granulaires, bien qu'ils aient les ratios moyens les plus faibles.

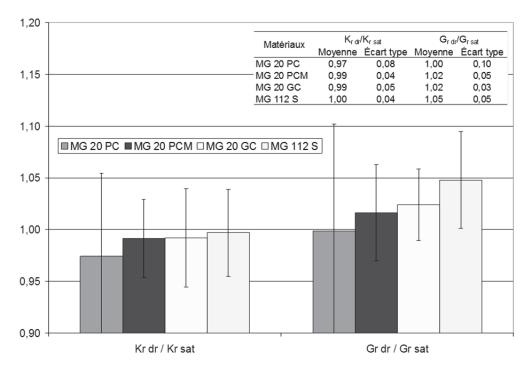


Figure 97 Ratios moyens généraux de modules volumique et de cisaillement réversibles entre les teneurs en eau drainée et saturée pour différents groupes de matériaux granulaires

6.3 Valeurs de la littérature

Les modèles généraux de E_r sont comparés aux valeurs généralement admises dans la littérature pour valider les résultats obtenus dans le cadre de cette étude. Le manuel de référence de Yoder et Witczak (1975) présente un modèle de prédiction E_r général pour les matériaux granulaires aux États-Unis reproduit à l'Équation22. La Figure 98 montre la prédiction moyenne du modèle ainsi que ses limites minimales et maximales, comparativement aux modèles généraux de chaque groupe de matériaux granulaires. Les

modèles généraux se situent principalement autour de la limite supérieure du modèle de Yoder et Witczak.

Équation22: $M_R = K_1 \sigma_3^{K_2}$

où M_r = module réversible (psi),

 σ_3 = pression de confinement (psi),

K₁ = paramètre de régression (9 600 [5 000-15 000]),

 K_2 = paramètre de régression (0,55 [0,45-0,60]).

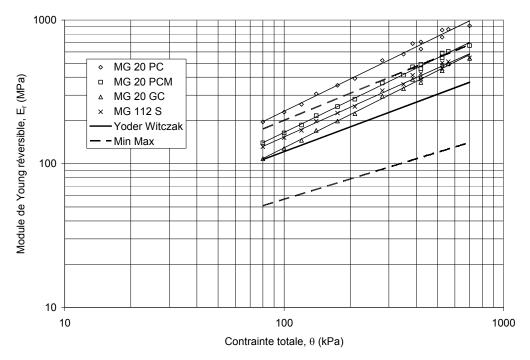


Figure 98 Modèle de module de Young réversible pour les matériaux granulaires de Yoder et Witczak (1975) comparativement aux modèles généraux

Le guide technique *Conception et dimensionnement des structures de chaussées* (LCPC et SETRA,1994) prescrit différentes valeurs de module de Young (E) pour les graves non traitées GNT (matériaux granulaires) à utiliser pour le dimensionnement des chaussées. Les matériaux granulaires de fondation (couches d'assise de base) sont généralement liés pour les chaussées à trafic élevé, mais le guide spécifie des valeurs de E pour les chaussées à faible trafic (< 150 poids lourds par jour). La Figure 99 présente les valeurs de E qui varient en fonction de l'importance du trafic et de la nature des matériaux (catégorie 1, 2 ou 3) comparativement aux modèles généraux par types de matériaux granulaires.

Le E_{GNT Catégorie3} pour les chaussées les plus faiblement sollicitées est plus élevé puisque l'épaisseur d'enrobé est plus faible, ce qui impose un état de contrainte plus élevé à la fondation. Le E des matériaux granulaires de sous-fondation (couche d'assise de fondation) est déterminé en multipliant le E de la plate-forme support (couche de forme) et en limitant sa valeur à celle du matériau de fondation.

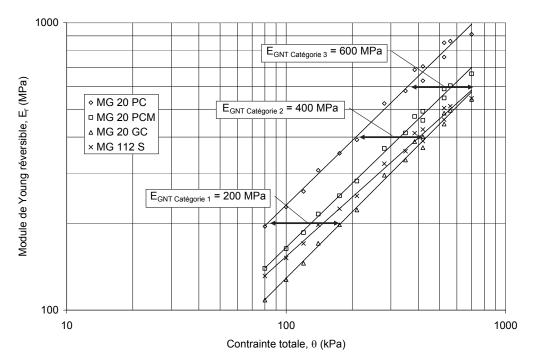


Figure 99 Module de Young des graves non traitées GNT pour le dimensionnement des chaussées du guide LCPC et SETRA (1994) comparativement aux modèles généraux

Le logiciel de dimensionnement des chaussées mécaniste-empirique américain *Pavement ME Design* (AASHTOWare, 2013) prescrit des valeurs de E_r à utiliser pour le dimensionnement basées sur la classification des sols sans tenir compte de l'influence de l'état de contrainte. Le Tableau 34 présente les valeurs de E_r minimales, maximales et typiques des matériaux granulaires à la teneur en eau optimale selon le système de classification unifié des sols (USCS) et le système de l'American Association of State Highway and Transportation Officials (AASHTO). La classification USCS distingue davantage les matériaux granulaires comparativement à la classification AASHTO dont la classe A-1-a inclus la majorité des matériaux granulaires, à l'exception des MG 112 S. Par contre, la classification USCS arrive difficilement à classer les MG 20 GC.

Tableau 34 Module de Young réversible (E_r) à la teneur en eau optimale des matériaux granulaires du logiciel *Pavement ME Design* (AASHTOWare, 2013) selon les systèmes de classification AASHTO et USCS

Classif	ication	Matériaux granulaires	E_{rmin}	E_{rmax}	E _{r type}
	ioation	Materiaux granalaneo	(MPa)	(MPa)	(MPa)
•	A-1-a	PC, PCM, GC(7)	265	289	276
AASHTO	A-1-b	S(3), GC(1)	245	276	262
	A-3	S(3)	169	245	200
	GW	PC(8), GC(2)	272	289	282
	GP	PC(2), GC(2)	245	276	262
	GW-GM	PCM(7)	245	279	265
USCS	GP-GM	PCM(3)	214	276	248
0303	SW	GC(1)	193	258	220
	SP	S(3), GC(1)	165	227	193
	SW-SM	PCM(1)	165	227	193
	SP-SM	GC(2), S(3)	165	227	193

La Figure 100 montre où se situent les valeurs de E_r typiques du logiciel *Pavement ME Design* comparativement aux modèles généraux des différents groupes de matériaux granulaires. Les valeurs types varient de 193 à 282 MPa selon la classe de matériau granulaire, ce qui correspond à une contrainte totale (θ) variant de 120 à 280 kPa pour les modèles généraux. La θ moyenne serait donc d'environ 175 kPa pour les valeurs types (moyenne logarithmique), ce qui correspondrait à un σ_3 de 35 kPa et à un σ_d de 70 kPa lors des essais.

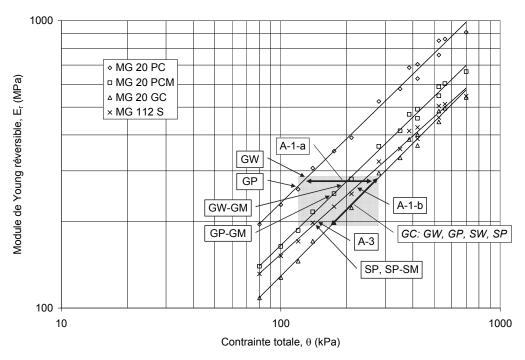


Figure 100 Modules de Young réversibles typiques du logiciel *Pavement ME Design* (AASHTOWare, 2013) comparativement aux modèles généraux

Le Tableau 35 présente les valeurs de E_r générales de chaque groupe de matériaux granulaires pour un θ de 175 kPa (σ_d = 70 kPa, σ_3 = 35 kPa) comparativement aux valeurs typiques de E_r du logiciel *Pavement ME Design*. Le E_r général des MG 20 PC est de 351 MPa, soit significativement plus élevé que les valeurs typiques du logiciel. Par ailleurs, le E_r général des MG 20 PCM est de 250 MPa et celui des MG 20 GC est de 198 MPa, ce qui correspond aux valeurs typiques inférieures USCS (GP-GM, SP/SP-SM). Le E_r général des MG 112 S est de 225 MPa, soit entre les valeurs typiques faibles USCS (SP) et AASHTO (A-3) et la valeur typique élevée AASHTO (A-1-b).

Tableau 35 Module de Young réversible (E_r) des matériaux granulaires du logiciel *Pavement ME Design* (AASHTOWare, 2013) et modèles généraux (σ_d = 70 kPa, σ_3 = 35 kPa)

Matériau	Classe	Classe USCS	E _{r θ} = 175 kPa	E _{r type AASHTO}	E _{r type USCS}
granulaire	AASHTO	Classe 0303	(MPa)	(MPa)	(MPa)
MG 20 PC	A-1-a	GW, GP	351	276	262 - 282
MG 20 PCM	A-1-a	GW-GM, GP-GM	250	276	248 - 265
MG 20 GC	A-1-a	GW, GP, SW, SP/SP-SM	198	276	193 - 282
MG 112 S	A-1-b, A-3	SP/SP-SM	225	200 - 262	193

Le logiciel de dimensionnement des chaussées CHAUSSÉE 2 du MTQ (2006) utilise des valeurs de E_r pour déterminer les coefficients structuraux des couches et la durée de vie de la chaussée. Le E_r des matériaux granulaires est fonction de la contrainte totale (E_r = $K_1 \, \theta^{K2}$) selon les recommandations du guide de dimensionnement de l'ASSHTO (1993). La Figure 101 montre les valeurs utilisées par CHAUSSÉE 2 pour les MG 20 et les MG 112 comparativement aux modèles généraux des matériaux granulaires. Le modèle de CHAUSSÉE 2 pour les MG 20 semble se situer entre celui des MG 20 PC et des MG 20 PCM, alors que celui pour les MG 112 est plus faible que pour les matériaux MG 112 S. La pente de 0,60 des modèles de CHAUSSÉE 2 est plus faible que la pente des MG 20 PC, des MG 20 PCM et des MG 20 GC, mais comparable à celle des MG 112 S.

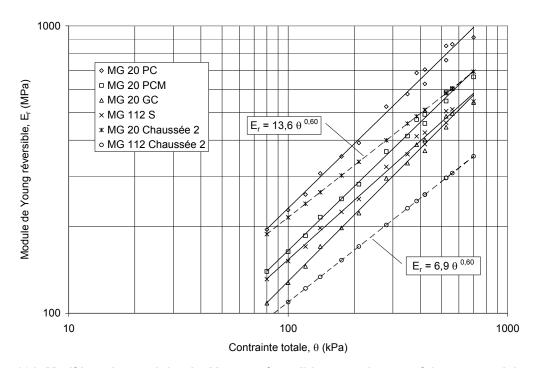


Figure 101 Modèles de module de Young réversible pour les matériaux granulaires de CHAUSSÉE 2 (MTQ, 2006) comparativement aux modèles généraux

Les matériaux granulaires de 11 sites de suivi de performance du *Canadian Long Term Pavement Performance Program* (C-LTPP) ont été échantillonnés pour déterminer leur module de Young réversible en laboratoire. Le E_r de 22 matériaux granulaires a été déterminé à l'aide de l'équipement triaxial à chargements répétés du MTQ (Doucet et Doré, 2004, 2004b). Le modèle moyen de E_r obtenu avec son écart type est présenté à la Figure 102 comparativement aux modèles généraux des matériaux granulaires. Le modèle C-LTPP correspond au modèle général des MG 20 PCM, alors que la limite maximale du modèle C-LTPP correspond au modèle général MG 20 PC et la limite inférieure, au modèle général des MG 20 GC. Les matériaux granulaires canadiens donnent donc des résultats comparables aux matériaux du Québec avec une pente de modèle similaire (0,77).

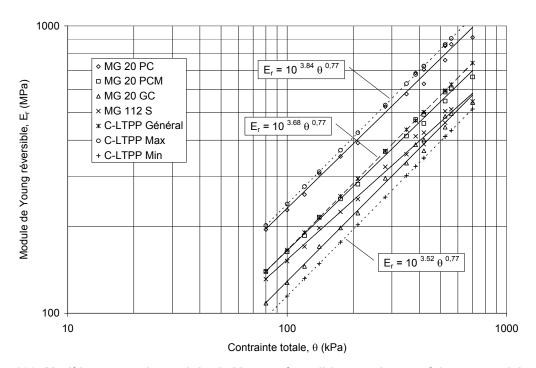


Figure 102 Modèle moyen de module de Young réversible pour les matériaux granulaires C-LTPP avec son écart type comparativement aux modèles généraux

Le v_r moyen des matériaux granulaires est de 0,18, ce qui est plus faible que la valeur de 0,50 utilisée par Shell et de 0,45 utilisée par l'Asphalt Institute et le Kentucky Highway (Yoder et Witczak, 1975). Par ailleurs, le guide technique LCPC et SETRA (1994) retient une valeur de 0,35 par défaut. De même, Huang (1993) propose une valeur de 0,35 pour les matériaux granulaires et de 0,15 pour les matériaux granulaires traités au ciment. Le logiciel *Pavement ME Design* (AASHTOWare, 2013) propose une valeur de 0,15 pour les sables grossiers et de 0,25 pour les sables fins, alors que la valeur moyenne des matériaux granulaires de 11 sites C-LTPP est de 0,24 (Doucet et Doré, 2004). Les valeurs de v_r de la littérature sont donc variables et souvent estimées. Les valeurs de K_r et d

7 CONCLUSION

Ce rapport fait état du développement de l'équipement triaxial à chargements répétés (TCR) et de la méthode d'essai LC 22-400 « Détermination du module réversible des matériaux granulaires ».

- L'utilisation d'un équipement TCR avec pression de confinement constante pour la détermination du E_r d'éprouvettes de matériau granulaire de 150 mm de diamètre et de 300 mm de hauteur est jugée adéquate.
- La préparation des éprouvettes à l'aide d'un marteau vibrant en sept couches uniformes avec un temps de vibration de 30 secondes par couche à une teneur en eau 2 % supérieure à l'absorption du matériau est jugée représentative.
- L'instrumentation des éprouvettes avec deux capteurs de déplacement axiaux installés sur l'éprouvette avec des supports distancés de 200 mm et un capteur radial installé sur un câble ceinturant le centre de l'éprouvette est jugée précise.
- La détermination du E_r à trois teneurs en eau, soit à la teneur en eau initiale de compactage, à une teneur en eau saturée au niveau du centre de l'éprouvette et à une teneur en eau drainée par gravité, couvre l'ensemble des variations observées dans la chaussée.
- Les états de contrainte appliqués lors de la détermination du E_r sont inférieurs à la résistance au cisaillement des matériaux granulaires et les 10 000 cycles de conditionnement appliqués avant la détermination du E_r éliminent la déformation permanente, ce qui permet la caractérisation du comportement réversible.
- La répétabilité de la détermination du E_r, du v_r, du K_r et du G_r est excellente, ce qui permet de limiter les essais à une seule éprouvette par matériau granulaire, étant donné que la réalisation de la méthode LC 22-400 s'échelonne sur deux jours.

Des modèles de module réversible ont été déterminés pour 35 matériaux granulaires, dont 10 de pierres concassées contenant moins de 5 % de fines (MG 20 PC), 11 de pierres concassées contenant plus de 5 % de fines (MG 20 PCM), 8 de graviers concassés (MG 20 GC) et 6 de sable (MG 112 S). Les matériaux granulaires proviennent de 12 régions du Québec.

- Les masses volumiques sèches des éprouvettes de MG 20 GC et de MG 112 S sont près des valeurs maximales déterminées selon l'essai Proctor modifié (101 % et 98 %), alors que celles des MG 20 PC et des MG 20 PCM sont plus faibles (94 %).
- Le degré de saturation des éprouvettes est en moyenne de 18 % à la teneur en eau initiale, de 79 % à la teneur en eau saturée (près de 100 % au centre) et de 30 % à la teneur en eau drainée.

- Le conditionnement des éprouvettes entraîne une déformation permanente moyenne de 30 μm/m.
- Le E_r général des MG 20 PC est plus élevé que celui des autres matériaux granulaires, suivi dans l'ordre par les MG 20 PCM, les MG 112 S et les MG 20 GC.
- La proportion de fines (< 80 μm) permet de distinguer le E_r des pierres concassées de manière significative puisque le E_r des MG 20 PC est plus élevé que celui des MG 20 PCM.
- La fragmentation des particules influence également le E_r puisque celui des MG 20 GC est plus faible que le E_r des MG 20 PC et des MG 20 PCM.
- Le E_r général des MG 112 S est plus élevé que celui des MG 20 GC pour une même énergie de compactage, mais les sables sont plus compactés en laboratoire que la compacité exigée en chantier.
- La teneur en eau influence généralement peu le E_r des matériaux granulaires entre les teneurs en eau saturée et drainée, qui couvrent les teneurs en eau les plus probables au cours d'une année.
- Le v_r des matériaux granulaires varie peu selon le type de matériau granulaire et la teneur en eau pour une moyenne de 0,18.
- Le K_r et le G_r des matériaux granulaires se présentent de manière comparable au E_r avec des valeurs plus faibles.
- Le modèle d'Uzan représente très bien les résultats de E_r, de K_r et de G_r, où la relation avec la contrainte totale (θ) semble relativement constante, ce qui permet la généralisation des modèles par groupes de matériaux granulaires.
- Le modèle de Boyce est moins représentatif des résultats obtenus avec une pression de confinement constante.
- Les valeurs générales de E_r obtenues se comparent bien aux valeurs reconnues dans la littérature.

Le développement de la méthode d'essai LC 22-400 pour la « Détermination du module réversible des matériaux granulaires » est donc complétée et une banque de données est disponible pour effectuer les expertises sur les matériaux granulaires et le dimensionnement des chaussées au Québec. Ces travaux, combinés à la méthode d'essai LC 26-700 pour la « Détermination du module complexe des enrobés » et à la banque de données qui l'accompagne (Doucet et Auger, 2010), complètent le développement du volet sur la détermination de la rigidité des matériaux de chaussées souples au MTQ.

Le MTQ désire utiliser le module complexe des enrobés et le module réversible des matériaux granulaires pour optimiser l'utilisation des matériaux de chaussées au Québec. Pour ce faire, il est nécessaire de déterminer la résistance à l'endommagement des matériaux de chaussées pour en évaluer la performance. Ainsi, le MTQ concentre dorénavant ses efforts de développement en mécanique des matériaux de chaussées sur

la détermination de la résistance à l'endommagement des enrobés et des matériaux granulaires.

RÉFÉRENCES

AASHTO (1993). *Guide for Design of Pavement Structures,* American Association of State Highway and Transportation Officials, Washington, D.C., USA.

AASHTO M 145-91 (2012). « Standard Method of Test for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes », *Standard Specifications for Transportation and Methods of Sampling and Testing*, American Association of State Highway and Transportation Officials, Washington, D.C., USA.

AASHTO T 307-99 (2007). « Standard Method of Test for Determining the Resilient Modulus of Soils and Aggregate Materials », *Standard Specifications for Transportation and Methods of Sampling and Testing*, American Association of State Highway and Transportation Officials, Washington, D.C., USA.

AASHTOWare (2013). *Pavement ME Design*, American Association of State Highway and Transportation Officials, Washington, D.C., USA, [En ligne]. [http://www.aashtoware.org/Pavement/Pages/default.aspx].

ASTM D 2487-11 (2011). « Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System) », *Annual Book of ASTM Standards*, vol. 4.08, ASTM International, West Conshohocken, PA, USA.

BOURQUE, Pierre-André (1997). *Planète terre*, Département de géologie et de génie géologique, Université Laval, Québec, Canada, [En ligne]. [http://www2.ggl.ulaval.ca/personnel/bourque/intro.pt/planete_terre.html].

BOYCE, H. R. (1980). « A Non-Linear Model for the Elastic Behaviour of Granular Materials Under Repeated Loading », International Symposium on Soils Under cCyclic and Transient Loading, Swansea.

CAN/BNQ 2501–255 (2013). Sols – Détermination de la relation teneur en eau-masse volumique – Essai avec énergie de compactage modifiée (2700 kN • m/m3), 4^e édition, Norme nationale du Canada, Bureau de normalisation du Québec.

MINISTÈRE DES TRANSPORTS DU QUÉBEC (2013). Cahier des charges et devis généraux, Infrastructures routières, Construction et réparation, édition 2013, Ouvrages routiers, Documents contractuels, Québec.

DOUCET, Félix (2003). Méthodologie pour la caractérisation du module réversible des matériaux granulaires de chaussée avec l'essai triaxial à chargements répétés au ministère des transports du Québec, Rapport de recherche final, ministère des Transports du Québec, Québec, 71 p.

DOUCET, Félix et Guy DORÉ (2004). « Module réversible et coefficient de Poisson réversible des matériaux granulaires C-LTPP », Géo Québec 2004, Compte rendu du 57^e Congrès canadien de géotechnique, Québec.

DOUCET, Félix et Guy DORÉ (2004b). *Dynamic and resilient modulus characterization of C-LTPP pavement materials*, Rapport GCS-04-01, Université Laval, Québec

DOUCET, Félix (2005). « Module réversible des matériaux granulaires », Bulletin d'information technique, Info DLC, vol. 10, n° 6, Direction du laboratoire des chaussées, ministère des Transports du Québec, Québec, Canada.

DOUCET, Félix (2006). « Resilient Modulus Characterization of Granular Materials at MTQ and LCPC », Proceedings of the Tenth International Conference on Asphalt Pavements, Québec, Canada.

DOUCET, Félix et Denis ST-LAURENT (2008). « Détermination du comportement mécanique des matériaux de chaussée souple au MTQ », *Bulletin Innovation Transport*, n° 32, ministère des Transports du Québec, Canada.

DOUCET, Félix et Bruno AUGER (2010). *Détermination du module complexe des enrobés au ministère des Transports du Québec*, Matériaux et infrastructures, coll. Études et recherches en transports, ministère des Transports du Québec, Québec, 152 p.

EN 13286-4 (2003). « Partie 4 : Méthodes d'essai pour la masse volumique de référence et la teneur en eau en laboratoire – Marteau vibrant », *Mélanges traités et mélanges non traités aux liants hydrauliques*, Comité Européen de Normalisation, Bruxelles, Belgique.

EN 13286-7 (2004). « Partie 7 : Essai triaxial sous charge cyclique pour mélanges sans liant hydraulique », *Mélanges avec ou sans liant hydraulique*, Comité Européen de Normalisation, Bruxelles, Belgique.

GALJAARD, P. J., J. L. PAUTRE et A. R. DAWSON (1996). « Comparison and Performance of Repeated Load Triaxial Test Equipment for Unbound Granular Materials », Flexible Pavements, Balkema, Rotterdam.

HOLTZ, Robert et William KOVACS [traduit de l'anglais par Jean Lafleur] (1991). *Introduction à la géotechnique*, Éditions de l'École Polytechnique de Montréal, Montréal, 808 p.

HUANG, Yang (1993). *Pavement Analysis and Design,* Prentice-Hall, Englewood Cliffs, New Jersey, USA, 718 p.

LC 22-400 (2013). « Détermination du module réversible des matériaux granulaires », *Recueil des méthodes d'essai LC*, Laboratoire des chaussées, ministère des Transports du Québec, Les Publications du Québec, Canada.

LCPC et SETRA (1994). *Conception et dimensionnement des structures de chaussées*, Laboratoire Central des Ponts et Chaussées, Service d'Études Techniques des Routes et Autoroutes, Paris, France, 250 p.

LEKARP, Fredrick, Ulf ISACSSON et Andrew DAWSON (2000). « State of the Art. I: Resilient Response of Unbound Aggregates », *Journal of Transportation Engineering*, vol. 126, n° 1, ASCE. USA, p. 66-75.

MINISTÈRE DES TRANSPORTS DU QUÉBEC (2006). CHAUSSÉE 2 : Logiciel de dimensionnement des chaussées souples, Direction du laboratoire des chaussées, ministère des Transports du Québec, Canada.

[http://www.mtq.gouv.qc.ca/portal/page/portal/entreprises/zone_fournisseurs/reseau_routie r/chaussee/logiciel dimensionnement chaussees]

NQ 2560-114 (2005). « Granulats », *Travaux de génie civil*, Bureau de normalisation du Québec, Québec.

UZAN, Jacob (1985). « Characterization of Granular Material », *Transportation Research Record*, n° 1022, TRB, NRC, Washington, D. C., USA.

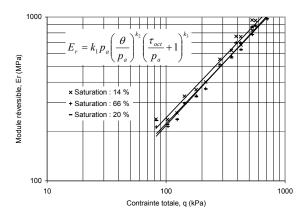
YODER, Eldon et Matthew WITCZAK (1975). *Principles of Pavement Design*, second edition, John Wiley and Sons, New York, USA, 697 p.

Annexe 1 Module réversible des matériaux granulaires de pierres concassées

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-1 2,9 % 27 % 2,89 Éprouvette : Porosité : Densité : Teneur eau optimale : 4,5 % Teneur eau : Masse volumique: 2109 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 16 % Absorption: 0,9 %

Teneur e	Teneur eau intiale :			%		Saturatio	on :	14 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	20	85	-15	3	82	10	238	0,18
20	3,9	39	164	-32	0	103	20	237	0,19
20	5,8	57	221	-47	1	123	30	260	0,21
35	3,5	34	103	-22	0	142	18	329	0,22
35	6,9	67	185	-40	1	179	35	361	0,21
35	10,4	99	247	-56	3	215	52	401	0,23
70	6,9	66	119	-19	2	283	34	552	0,16
70	13,9	130	209	-37	6	354	68	625	0,18
70	20,9	195	289	-58	7	426	102	675	0,20
105	7,0	66	86	-14	3	387	34	762	0,16
105	10,5	98	129	-21	5	424	51	759	0,16
105	20,9	194	234	-42	9	531	102	831	0,18
140	10,5	98	102	-16	6	528	51	958	0,16
140	13,9	130	136	-22	8	564	68	952	0,16
140	27,9	258	258	-45	10	706	135	1001	0,18

	1200 -	_				
	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$	× ×	*	
. (MPa)	800 -		×	×		
Module réversible, Er (MPa)	600 -			Ŷ.		
le réver	400 -) <u>*</u>			
Modu	400 -		*	+ Satur	ation : 14 % ation : 66 %	
	200 -	<u>≯¥</u> *		- Satur	ation : 20 %	
	0 -	200	20 4	00	000	
	() 20		00 otale, q (kPa)	600	800

	Teneur eau saturée :		9,3 %			Saturation	on :	66 %		
I	σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
L	(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
ı	20	2,1	20	96	-17	1	83	11	214	0,18
	20	4,1	40	184	-37	0	104	21	215	0,20
	20	6,0	58	245	-55	2	124	30	237	0,22
ſ	35	3,5	35	117	-20	1	143	18	297	0,17
	35	7,0	67	204	-40	1	179	35	330	0,20
	35	10,5	100	272	-58	1	215	52	366	0,21
ſ	70	7,0	67	130	-21	1	284	35	514	0,16
	70	14,0	131	228	-42	4	355	68	575	0,18
	70	21,0	195	308	-62	7	426	102	635	0,20
ſ	105	7,0	66	94	-14	5	388	34	699	0,15
	105	10,5	98	141	-22	6	423	51	696	0,16
	105	21,0	195	249	-44	8	531	102	783	0,18
ſ	140	10,5	98	112	-17	7	528	51	874	0,15
	140	14,0	130	147	-23	7	564	68	886	0,16
L	140	28,0	258	266	-47	10	706	135	971	0,18

R²

0,99

RMSE

Teneur e	eau drain	ée :	3,4 %			Saturatio	on :	20 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,5	22	93	-16	8	83	11	234	0,17
20	4,0	39	178	-33	1	103	20	221	0,19
20	6,0	58	243	-50	1	124	30	238	0,21
35	3,6	34	114	-18	1	143	18	300	0,16
35	7,0	67	207	-38	1	180	35	326	0,18
35	10,5	100	275	-55	2	215	52	363	0,20
70	7,0	66	132	-20	2	283	34	501	0,16
70	14,0	131	232	-41	5	355	68	563	0,17
70	20,9	195	309	-60	7	426	102	631	0,19
105	7,0	65	94	-14	4	387	34	695	0,15
105	10,5	98	141	-21	6	423	51	693	0,15
105	20,9	194	249	-43	8	530	101	782	0,17
140	10,5	98	113	-16	7	528	51	862	0,15
140	13,9	130	147	-22	7	564	68	880	0,15
140	27,9	258	264	-46	8	706	135	978	0,17

66%	105	1,638	-1,928	1,00	18	15
20%	108	1,607	-1,818	1,00	15	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Sat. 14%	k ₁	k ₂ 0,892	-0,494	R ² 0,99	0,021	n 15
		-				

c₂ c₃

Sat.	$\nu_{\rm r}$	σ	n
14%	0,18	0,02	15
66%	0,18	0,02	15
20%	0,17	0,02	15

Sat.

14%

131

Conditionnement 10 000 cycles									
No.	ε _{p1}	ϵ_{p2}	ϵ_{p}						
1									
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 5 mars 2005 Date : 5 mars 2005

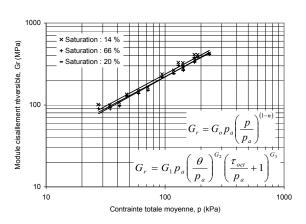
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-1 2,9 % 27 % 2,89 4,5 % Éprouvette : Porosité : Densité : Teneur eau optimale : Teneur eau : Masse volumique : 2109 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 16 % Absorption: 0,9 %

Teneur e	Teneur eau intiale :		2,7 %			Saturation:			14 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	22	7	20	54	66	123	101	0,8	3,0	
34	43	13	39	101	131	128	99	1,2	3,0	
41	63	19	57	128	179	150	107	1,5	3,0	
47	37	11	34	58	84	194	135	0,8	3,0	
60	74	22	67	106	150	210	149	1,2	3,0	
72	110	33	99	135	202	244	164	1,5	3,0	
94	73	22	66	81	92	270	238	0,8	3,0	
118	144	43	130	134	164	324	265	1,2	3,0	
142	216	65	195	173	231	376	281	1,5	3,0	
129	73	22	66	59	66	370	329	0,6	3,0	
141	108	33	98	88	100	372	327	0,8	3,0	
177	215	65	194	150	184	432	352	1,2	3,0	
176	108	33	98	69	79	470	413	0,6	3,0	
188	144	43	130	93	105	466	410	0,8	3,0	
235	286	86	258	168	202	513	426	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 14 % + Saturation : 66 % - Saturation : 20 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta\left(\frac{q}{p}\right)^2\right)$	
Σ	10 - 1		000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	9,3 %			Saturation :			66 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
28	23	7	20	61	75	111	91	0,8	3,0	
35	44	13	40	110	147	120	89	1,3	3,0	
41	64	19	58	135	200	143	97	1,5	3,0	
48	38	12	35	77	91	150	127	0,8	3,0	
60	74	22	67	124	162	180	138	1,2	3,0	
72	110	33	100	156	220	213	151	1,5	3,0	
95	74	22	67	87	101	255	221	0,8	3,0	
118	145	44	131	145	180	301	243	1,2	3,0	
142	216	65	195	184	247	354	264	1,5	3,0	
129	73	22	66	65	72	335	303	0,6	3,0	
141	108	33	98	97	108	337	301	0,8	3,0	
177	216	65	195	160	195	404	332	1,2	3,0	
176	108	33	98	78	86	418	379	0,6	3,0	
188	144	43	130	101	113	429	383	0,8	3,0	
235	286	86	258	173	209	498	413	1,2	3,0	

Teneur e	eau drain	ée :	3,4 %			Saturation :			20 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
28	23	7	22	62	73	118	100	0,8	3,0	
34	43	13	39	111	141	118	93	1,3	3,0	
41	64	19	58	143	196	135	99	1,5	3,0	
48	38	11	34	79	88	145	130	0,8	3,0	
60	74	22	67	132	163	171	138	1,2	3,0	
72	110	33	100	164	220	203	151	1,5	3,0	
94	73	22	66	91	101	242	217	0,8	3,0	
118	145	44	131	151	182	288	240	1,2	3,0	
142	216	65	195	189	246	344	264	1,5	3,0	
129	72	22	65	66	72	329	303	0,6	3,0	
141	108	33	98	99	108	331	301	0,8	3,0	
177	215	65	194	163	194	398	333	1,2	3,0	
176	108	33	98	80	86	405	376	0,6	3,0	
188	144	43	130	103	113	420	382	0,8	3,0	
235	286	86	258	173	206	498	417	1,2	3,0	

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	
14%	2,47	2,40	0,267	0,92	0,066	0,96	0,043	15
66%	2,23	2,22	0,237	0,95	0,056	0,97	0,040	15
20%	2,19	2,24	0,254	0,94	0,060	0,97	0,043	15 15 15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
14%	1,41	0,750	-0,189	0,99	0,022	15
66%	1,21	0,734	-0,017	1,00	0,013	15
20%	1,18	0,726	0,000	0,99	0,022	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
14%	1,09	0,930	-0,577	0,99	0,026	15
66%	0,98	0,940	-0,524	0,99	0,025	15
20%	1,01	0,901	-0,483	0,98	0,033	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 5 mars 2005 Date : 5 mars 2005

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Fondation Client: Utilisation: Pétrographie : Andésite

PC1-2 2,9 % 27 % Densité : 2,89 4,5 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique: 2104 kg/m³ Saturation : Masse vol. optimale: 2233 kg/m³ 15 % Absorption : 0,9 %

Teneur e	au intiale	e :	2,7	%		Saturatio	Saturation :		%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	20	94	-20	23	82	10	217	0,22
20	3,9	39	186	-42	13	103	20	209	0,22
20	5,8	57	245	-60	11	123	30	233	0,25
35	3,5	34	112	-21	24	142	18	302	0,19
35	6,9	66	203	-45	16	178	35	327	0,22
35	10,4	99	268	-64	12	214	51	369	0,24
70	7,0	66	130	-24	26	283	34	506	0,19
70	13,9	130	225	-47	16	354	68	579	0,21
70	20,9	194	305	-72	14	425	101	637	0,24
105	7,0	66	94	-16	34	387	34	701	0,17
105	10,5	98	140	-25	24	423	51	697	0,18
105	20,9	194	248	-52	17	530	101	783	0,21
140	10,5	98	110	-19	29	528	51	888	0,18
140	13,9	130	145	-26	24	563	68	893	0,18
140	27,9	258	273	-56	18	706	135	944	0,20

	1200 -						
	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$				
Er (MPa)	800 -				¥ ×	†	
Module réversible, Er (MPa)	600 -		M.	* *			_
odule ré	400 -		*			ion : 14 % —	
Σ	200 -					ion : 84 % ion : 21 % 	\dashv
	0 -) 20	00	400	60	00	800
			Contrainte			-	

Teneur e	eau satur	ée :	11,8 %			Saturation :		84 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,5	21	104	-25	14	83	11	204	0,24
20	4,0	39	201	-51	11	103	20	195	0,25
20	5,9	58	270	-73	9	124	30	214	0,27
35	3,6	34	123	-26	17	142	18	275	0,21
35	7,1	67	223	-52	12	179	35	301	0,23
35	10,3	100	294	-77	10	215	52	339	0,26
70	7,0	66	137	-27	21	283	34	480	0,20
70	13,9	131	243	-53	15	354	68	537	0,22
70	21,0	195	326	-79	11	426	102	598	0,24
105	7,0	66	95	-18	31	387	34	686	0,19
105	10,5	98	142	-27	24	423	51	687	0,19
105	20,9	194	257	-55	15	530	101	755	0,21
140	10,5	97	113	-21	30	528	51	862	0,19
140	13,9	129	151	-29	24	563	68	859	0,19
140	27,9	258	283	-60	15	706	135	913	0,21

	1000 7	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$	
Module réversible, Er (MPa)	100 -	× Saturation : 14 % + Saturation : 84 % - Saturation : 21 %	
	100 +	0 100 Contrainte totale, q (kPa)	1000

RMSE

Teneur e	eau drain	ée :	3,6 %			Saturatio	on :	21 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	20	92	-19	16	81	10	218	0,20
20	4,0	39	184	-44	6	103	20	211	0,24
20	5,9	57	248	-63	5	124	30	231	0,26
35	3,5	34	114	-22	12	143	18	297	0,19
35	6,9	67	208	-46	9	179	35	321	0,22
35	10,4	99	277	-67	8	215	52	358	0,24
70	7,0	66	132	-24	18	283	34	500	0,18
70	13,9	131	235	-49	14	354	68	556	0,21
70	20,9	195	315	-73	12	426	102	619	0,23
105	7,0	65	95	-17	27	388	34	689	0,17
105	10,5	98	142	-26	21	423	51	687	0,18
105	20,9	194	256	-54	16	530	101	760	0,21
140	10,5	97	113	-20	26	528	51	860	0,18
140	14,0	130	150	-27	23	563	68	862	0,18
140	27,9	258	277	-57	16	706	135	932	0,21

		.,				
84%	91	1,679	-2,383	0,99	21	15
21%	110	1,612	-2,082	0,99	20	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Sat. 14%	k ₁	k ₂ 0,904	k ₃ -0,453	R² 0,99	RMSE 0,024	n 15

21% 2,32 0,891 -0,457 0,99 0,026

-2,132 0,99

Sat.	$\nu_{\rm r}$	σ	n
14%	0,21	0,02	15
84%	0,22	0,03	15
21%	0,21	0,03	15

Sat.

109

1,661

Conditionnement 10 000 cycles								
No.	ε _{p1}	ϵ_{p2}	ϵ_{p}					
1								
2								

15

Note:

Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 23 mars 2005 Date : 23 mars 2005

Ministère des Transports

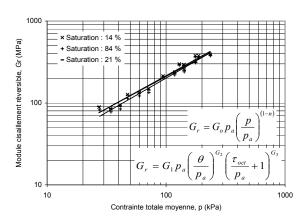
Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches


Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-2 2,9 % 27 % 2,89 Éprouvette : Porosité : Densité : Teneur eau optimale : 4,5 % Teneur eau : Masse volumique : 2104 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 15 % Absorption: 0,9 %

Teneur	Teneur eau intiale :		2,7	2,7 %		Saturation	on :	14 %	
р	q	Δp	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	53	76	128	89	0,8	3,0
34	43	13	39	102	152	126	85	1,2	3,0
41	63	19	57	124	204	153	94	1,5	3,0
47	37	11	34	69	89	162	127	0,8	3,0
59	73	22	66	114	165	194	134	1,2	3,0
71	109	33	99	140	221	235	149	1,5	3,0
94	73	22	66	82	103	269	213	0,8	3,0
118	144	43	130	131	181	331	239	1,2	3,0
142	215	65	194	161	251	401	258	1,5	3,0
129	73	22	66	61	73	356	299	0,6	3,0
141	108	33	98	89	110	365	295	0,8	3,0
177	215	65	194	144	200	449	324	1,2	3,0
176	108	33	98	71	86	455	378	0,6	3,0
188	143	43	130	92	114	469	378	0,8	3,0
235	286	86	258	161	219	533	392	1,2	3,0

	1000 -		#
â		× Saturation : 14 %	Ħ
₹		+ Saturation : 84 %	İ
, ,		- Saturation : 21 %	Ш
ble,			Ш
e réversi	100 -	$\beta = (1 - n)K_o/6G_o$	
Module volumétrique réversible, Kr (MPa)	100	$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{n-1}$	
Module vo	10 -	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$	
		0 100	1000
		Contrainte totale moyenne, p (kPa)	

Teneur	eau intial	e :	11,8	%		Saturation	on :	84	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
28	23	7	21	55	86	130	82	0,8	3,0
34	43	13	39	99	168	133	78	1,3	3,0
41	64	19	58	124	228	155	84	1,5	3,0
47	37	11	34	72	99	157	114	0,8	3,0
60	74	22	67	118	183	189	122	1,2	3,0
72	110	33	100	141	247	235	134	1,5	3,0
94	73	22	66	83	109	263	201	0,8	3,0
118	145	44	131	136	198	319	220	1,2	3,0
142	216	65	195	167	270	389	240	1,5	3,0
129	73	22	66	60	75	363	289	0,6	3,0
141	108	33	98	88	113	371	288	0,8	3,0
177	215	65	194	147	208	440	311	1,2	3,0
176	108	32	97	71	89	459	363	0,6	3,0
188	143	43	129	93	120	464	360	0,8	3,0
235	286	86	258	163	228	527	377	1,2	3,0

Teneur e	eau intiale	e :	3,6 %			Saturation	on :	21	%
р	q	Δр	Δq	εντ	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	54	73	122	91	0,8	3,0
34	43	13	39	97	152	133	85	1,2	3,0
41	63	19	57	121	208	157	92	1,5	3,0
48	37	11	34	71	91	160	125	0,8	3,0
60	74	22	67	116	169	191	132	1,2	3,0
72	110	33	99	143	230	231	144	1,5	3,0
94	73	22	66	84	104	263	211	0,8	3,0
118	144	44	131	136	189	319	230	1,2	3,0
142	216	65	195	168	259	387	251	1,5	3,0
129	72	22	65	62	74	353	293	0,6	3,0
141	108	33	98	90	112	362	290	0,8	3,0
177	215	65	194	149	206	436	314	1,2	3,0
176	108	32	97	73	89	442	366	0,6	3,0
188	143	43	130	96	118	451	365	0,8	3,0
235	286	86	258	162	223	530	386	1,2	3,0

Sat.	Κ _o	G _o	n				RMSE _{Gr}	
14%	2,39	2,18	0,242	0,94	0,061	0,97	0,043	15
84%	2,34	2,04	0,231	0,92	0,069	0,95	0,051	15
21%	2,36	2,13	0,258	0,94	0,057	0,96	0,046	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
14%	1,31	0,709	0,063	0,99	0,021	15
84%	1,33	0,715	0,006	0,99	0,024	15
21%	1,31	0,691	0,071	1,00	0,016	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
14%	0,97	0,952	-0,580	0,99	0,026	15
84%	0,88	1,008	-0,659	0,99	0,031	15
21%	0,97	0,939	-0,586	0,99	0,030	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 23 mars 2005 Date : 23 mars 2005

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Fondation Client: Utilisation : Pétrographie : Andésite

PC1-3 2,9 % Porosité : 27 % Densité : 2,89 4,5 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 2099 kg/m³ Masse vol. optimale : 2233 kg/m³ Saturation : 15 % 0,9 % Absorption :

Teneur e	eau intiale	e :	3,1	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	20	84	-19	10	82	10	238	0,23
20	3,9	39	165	-41	1	103	20	235	0,25
20	5,8	57	218	-59	0	123	30	262	0,27
35	3,4	34	102	-22	6	142	18	330	0,21
35	6,9	67	183	-44	1	178	35	363	0,24
35	10,4	99	240	-64	1	214	51	411	0,27
70	7,0	66	116	-24	6	283	34	566	0,21
70	13,9	130	202	-47	3	354	68	644	0,23
70	20,9	195	277	-73	2	426	102	703	0,26
105	7,0	66	84	-16	11	388	34	781	0,20
105	10,4	98	126	-25	6	423	51	776	0,20
105	20,9	194	224	-51	4	530	101	864	0,23
140	10,5	97	98	-19	9	528	51	990	0,20
140	13,9	129	131	-26	6	563	68	986	0,20
140	27,9	258	252	-54	4	706	135	1025	0,22

	1400 -					\neg
	1200 -	$E_r = c_1 + \epsilon$	$c_2\theta + c_3\tau_{oct}$			4
ЛРа)	1000 -			× ×,	x	4
Module réversible, Er (MPa)	800 -		×	×	- ;	
versibl	600 -			÷		
dule ré	400 -			× Satura	tion : 17 %	
ĕ	400 -		<u> </u>		tion : 87 % tion : 21 %	
	200 -	*% ±		Cuturu	1011.2170	-
	0 -					\dashv
	() 20			00	800
			Contrainte to	otale, q (kPa)		

Teneur e	Teneur eau saturée :			12,3 %		Saturation :			87 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	20	78	-21	12	82	10	261	0,27	
20	4,0	39	177	-47	2	103	20	222	0,26	
20	5,9	58	246	-71	1	124	30	235	0,29	
35	3,5	34	114	-24	4	143	18	302	0,21	
35	7,0	67	204	-51	2	179	35	329	0,25	
35	10,5	99	269	-74	2	215	52	369	0,27	
70	7,0	66	126	-26	7	283	35	525	0,21	
70	14,0	131	223	-51	4	355	68	586	0,23	
70	21,0	195	301	-77	1	426	102	649	0,26	
105	7,0	66	93	-20	4	388	34	703	0,22	
105	10,5	98	146	-33	0	423	51	671	0,22	
105	21,0	195	285	-77	5	530	102	682	0,27	
140	10,5	98	121	-25	2	528	51	809	0,21	
140	14,0	130	162	-35	1	564	68	801	0,22	
140	27,9	258	313	-80	5	706	135	825	0,26	

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $\times \text{ Saturation : } 17 \%$ $+ \text{ Saturation : } 21 \%$ $+ \text{ Saturation : } 21 \%$	
	100 - 1	100 100 Contrainte totale, q (kPa)	00

Teneur e	eau drain	ée :	3,6 %			Saturatio	on :	21 %	
σ_3	σ_3 σ_{do} $\Delta\sigma_{d}$			€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	20	87	-22	2	82	11	234	0,25
20	4,0	39	183	-51	1	103	20	214	0,28
20	6,1	58	257	-83	2	124	30	224	0,32
35	3,5	34	111	-25	5	143	18	308	0,22
35	7,0	67	210	-55	0	179	35	318	0,26
35	10,5	99	291	-90	1	215	52	341	0,31
70	7,0	66	130	-27	5	283	34	507	0,21
70	14,0	131	246	-61	1	355	68	533	0,25
70	20,9	195	346	-103	2	426	102	564	0,30
105	7,0	66	96	-19	10	388	34	686	0,19
105	10,4	98	147	-30	5	423	51	666	0,20
105	20,9	195	276	-68	0	531	102	704	0,25
140	10,5	98	118	-23	9	528	51	828	0,20
140	14,0	130	158	-32	6	564	68	823	0,21
140	27,9	258	300	-72	1	706	135	859	0,24

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
17%	126	1,850	-2,542	0,99	30	15
87%	162	1,434	-2,097	0,96	47	15
21%	132	1,584	-2,685	0,99	21	15

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
17%	2,61	0,907	-0,483	0,99	0,022	15
87%	2,56	0,823	-0,516	0,97	0,040	15
21%	2,44	0,893	-0,648	0,98	0,033	15

Sat.	$\nu_{\rm r}$	σ	n
17%	0,23	0,03	15
87%	0,24	0,03	15
21%	0,25	0,04	15

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1									
2									

Note:

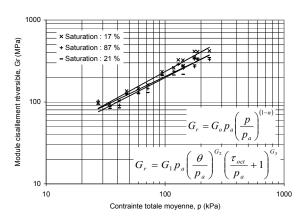
Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : 4 avril 2005 Date : 4 avril 2005

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-004-05 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-3 2,9 % 27 % 2,89 Éprouvette : Porosité : Densité : Teneur eau optimale : 4,5 % Teneur eau : Masse volumique : 2099 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 15 % Absorption: 0,9 %

Teneur e	eau intiale	e :	3,1	%		Saturation :			17 %	
р	q	Δp	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G_r	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	22	7	20	46	69	146	97	0,8	3,0	
34	43	13	39	83	137	155	94	1,2	3,0	
41	63	19	57	99	185	192	103	1,5	3,0	
47	37	11	34	59	83	192	136	0,8	3,0	
59	73	22	67	95	152	234	146	1,2	3,0	
71	109	33	99	112	203	295	162	1,5	3,0	
94	73	22	66	68	93	322	235	0,8	3,0	
118	144	43	130	109	166	397	262	1,2	3,0	
142	215	65	195	131	233	495	278	1,5	3,0	
129	72	22	66	51	67	427	327	0,6	3,0	
141	108	33	98	76	101	427	324	0,8	3,0	
177	215	65	194	122	184	528	352	1,2	3,0	
176	108	32	97	60	78	542	414	0,6	3,0	
188	143	43	129	79	105	545	411	0,8	3,0	
235	286	86	258	143	204	601	421	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 17 % + Saturation : 87 % - Saturation : 21 %	
	100 -	$\beta = (1 - n)$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \frac{p}{p_a}\right)^{K_2} \left(\frac{p}{p_a}\right)^{K_2}$	$\beta\left(\frac{q}{p}\right)^2$
Š	10 -	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{X_2} \left(\frac{\tau_o}{p}\right)^{X_2}$ 10 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	Teneur eau intiale :			12,3 %		Saturation :		87 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	36	66	188	103	0,8	3,0
34	43	13	39	83	149	157	88	1,3	3,0
41	64	19	58	105	211	184	91	1,5	3,0
48	38	11	34	65	92	176	124	0,8	3,0
60	74	22	67	103	170	217	132	1,2	3,0
72	110	33	99	121	229	273	145	1,5	3,0
94	73	22	66	74	101	298	218	0,8	3,0
118	145	44	131	121	183	362	238	1,2	3,0
142	216	65	195	146	252	446	258	1,5	3,0
129	73	22	66	53	76	415	289	0,6	3,0
141	108	33	98	80	119	406	274	0,8	3,0
177	215	65	195	132	241	491	269	1,2	3,0
176	108	33	98	70	97	465	334	0,6	3,0
188	144	43	130	92	131	472	329	0,8	3,0
235	286	86	258	153	262	565	328	1,2	3,0

Teneur e	Teneur eau intiale :		3,6	%		Saturation :		21 %	
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	$\Delta q/\Delta p$
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	44	73	155	94	0,8	3,0
34	43	13	39	81	156	161	84	1,3	3,0
41	64	19	58	92	227	208	85	1,5	3,0
48	38	11	34	62	90	184	126	0,8	3,0
60	74	22	67	100	177	224	126	1,2	3,0
72	110	33	99	112	254	297	130	1,5	3,0
94	73	22	66	76	105	291	210	0,8	3,0
118	145	44	131	123	205	354	213	1,2	3,0
142	216	65	195	139	299	468	217	1,5	3,0
129	73	22	66	58	76	375	287	0,6	3,0
141	108	33	98	87	118	375	276	0,8	3,0
177	216	65	195	141	230	460	283	1,2	3,0
176	108	33	98	71	94	457	345	0,6	3,0
188	144	43	130	93	127	465	341	0,8	3,0
235	286	86	258	155	248	553	346	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
17%	2,81	2,37	0,251	0,94	0,058	0,96	0,044 0,056 0,063	15
87%	2,67	2,07	0,348	0,87	0,074	0,93	0,056	15
21%	2,62	1,99	0,321	0,95	0,047	0,92	0,063	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
17%	1,58	0,690	0,081	0,99	0,024	15
87%	1,62	0,587	0,142	0,96	0,043	15
21%	1,58	0,520	0,346	0,98	0,029	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
17%	1,07	0,955	-0,609	0,99	0,025	15
87%	1,04	0,872	-0,654	0,97	0,041	15
21%	0,99	0,968	-0,850	0,98	0,039	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 4 avril 2005 Date : 4 avril 2005

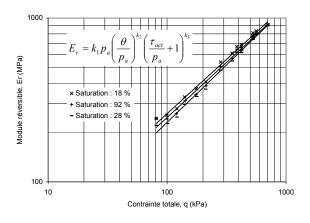
Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-014-08 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-4 2,9 % Densité : 2,89 4,5 % Éprouvette : Teneur eau : Porosité : 25 % Teneur eau optimale : Masse volumique : 2175 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 18 % Absorption : 0,9 %

Teneur e	Teneur eau intiale :			%		Saturation	on :	18 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	75	-11	1	81	10	244	0,15
20	3,8	36	143	-27	1	100	19	255	0,19
20	5,8	54	195	-41	1	121	28	279	0,21
35	3,4	32	98	-15	3	140	17	330	0,16
35	6,9	64	174	-33	2	176	34	371	0,19
35	10,3	96	236	-50	0	212	50	408	0,21
70	6,9	64	120	-23	4	282	34	538	0,20
70	13,9	128	210	-43	1	352	67	611	0,21
70	20,9	191	293	-61	0	422	100	653	0,21
105	7,0	64	96	-13	8	386	33	668	0,14
105	10,4	96	139	-21	5	420	50	689	0,15
105	20,9	191	247	-44	1	526	100	773	0,18
140	10,4	96	119	-17	6	526	50	811	0,14
140	13,9	128	153	-23	4	561	67	835	0,15
140	27,9	255	280	-49	1	702	133	910	0,18

	1200 -		1	
	1000 -	$E_r = c_1 + c_2\theta + c_3\tau_{oct}$		
Module réversible, Er (MPa)	800 -		×.×	*
	600 -	×		
lule réver	400 -	×	× Satura	ation : 18 %
Mod	200 -	A. S.	+ Satura	ation : 28 %
	0 -			
	(totale, q (kPa)	800

Teneur e	eau satur	ée :	11,4	%		Saturation	on :	92	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	75	-12	3	81	10	244	0,16
20	3,8	36	150	-33	2	100	19	242	0,22
20	5,8	54	208	-45	1	120	28	261	0,22
35	3,4	33	104	-16	1	142	17	313	0,15
35	6,8	65	189	-36	0	175	34	341	0,19
35	10,3	97	250	-55	1	213	50	386	0,22
70	6,9	65	128	-19	1	281	34	506	0,15
70	13,8	129	226	-42	2	352	67	568	0,19
70	20,8	192	303	-64	0	424	101	636	0,21
105	6,9	64	100	-14	3	386	34	641	0,14
105	10,4	96	145	-22	3	421	50	663	0,15
105	20,8	192	255	-46	1	527	100	751	0,18
140	10,4	97	123	-18	3	528	50	784	0,14
140	13,9	129	159	-24	3	563	67	809	0,15
140	27,9	256	281	-50	1	705	134	910	0,18

Teneur e	eau drain	ée :	4,1	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	83	-12	1	81	10	221	0,14
20	3,8	36	160	-28	2	101	19	227	0,17
20	5,8	54	219	-49	2	121	28	249	0,22
35	3,4	33	110	-16	2	140	17	297	0,14
35	6,8	65	195	-34	3	177	34	332	0,18
35	10,2	96	262	-53	3	211	50	368	0,20
70	6,9	65	135	-20	4	283	34	481	0,15
70	13,8	129	236	-41	4	353	67	547	0,17
70	20,7	193	314	-63	3	423	101	615	0,20
105	6,9	65	105	-14	5	387	34	617	0,14
105	10,3	97	150	-22	5	422	50	642	0,15
105	20,8	192	259	-45	4	528	100	741	0,17
140	10,4	97	126	-17	4	526	51	770	0,14
140	13,9	129	162	-24	4	562	67	793	0,15
140	27,8	256	282	-49	2	704	134	906	0,17

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
18%	170	1.340		0.99		15
		,	-1,118	.,	27	
92%	151	1,305	-0,949	0,99	19	15
28%	130	1,298	-0,830	1,00	14	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
18%	2,69	0,723	-0,232	1,00	0,013	15
92%	2,54	0,722	-0,189	0,99	0,021	15
28%	2,36	0,745	-0,164	0,99	0,018	15

Sat.	$\nu_{\rm r}$	σ	n
18%	0,18	0,03	15
92%	0,18	0,03	15
28%	0,17	0,03	15

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1									
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date :

14 avril 2008 Date : 14 avril 2008

Ministère des Transports

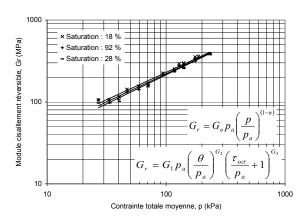
Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-014-08 Type matériau : MG-20 Région : Chaudière-Appalaches


Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-4 2,9 % 2,89 Éprouvette : Porosité : 25 % Densité : Teneur eau optimale : 4,5 % Teneur eau : Masse volumique : 2175 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 18 % Absorption: 0,9 %

Teneur	eau intial	e :	3,0	%		Saturation	on :	18	%
р	q	∆р	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	G_r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	52	58	117	106	0,8	3,0
33	40	12	36	89	113	136	107	1,2	3,0
40	60	18	54	113	157	161	115	1,5	3,0
47	36	11	32	67	76	160	143	0,8	3,0
59	71	21	64	108	138	199	156	1,2	3,0
71	106	32	96	135	191	238	168	1,5	3,0
94	71	21	64	73	95	295	225	0,8	3,0
117	142	43	128	123	168	346	253	1,2	3,0
141	212	64	191	171	236	373	270	1,5	3,0
129	71	21	64	69	73	308	293	0,6	3,0
140	106	32	96	97	107	329	299	0,8	3,0
175	212	64	191	158	194	402	328	1,2	3,0
175	107	32	96	84	90	380	354	0,6	3,0
187	142	43	128	106	118	401	362	0,8	3,0
234	283	85	255	182	220	468	387	1,2	3,0

Kr (MPa)	× Satur	ation : 18 % ation : 92 % ation : 28 %	×	×		
Module volumétrique réversible, Kr (MPa)		K, =	 	$\left(\frac{p}{p_a}\right)^{(1-n)}$	V	
Ž 10	10	Contrair	100	$K_1 p_a \left(\frac{\theta}{p_a}\right)$		1000

Teneur e	eau intiale	e :	11,4 %			Saturation :		92 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	ϵ_{sr} K_r G_r			Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	52	58	118	106	0,8	3,0
33	40	12	36	83	122	145	99	1,2	3,0
40	60	18	54	117	169	154	107	1,5	3,0
47	36	11	33	72	80	150	136	0,8	3,0
58	71	22	65	118	150	182	143	1,2	3,0
71	107	32	97	141	203	228	158	1,5	3,0
94	72	22	65	89	98	242	220	0,8	3,0
117	143	43	129	142	179	303	239	1,2	3,0
141	213	64	192	176	244	365	263	1,5	3,0
129	71	21	64	72	76	299	280	0,6	3,0
140	107	32	96	101	112	318	288	0,8	3,0
176	212	64	192	163	201	391	318	1,2	3,0
176	107	32	97	88	94	367	343	0,6	3,0
188	143	43	129	110	122	388	351	0,8	3,0
235	284	85	256	181	221	472	386	1,2	3,0

Teneur e	eau intial	e :	4,1	%		Saturatio	on :	28	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	60	63	103	97	0,7	3,0
34	40	12	36	105	125	116	97	1,2	3,0
40	60	18	54	121	179	150	102	1,5	3,0
47	36	11	33	78	84	139	130	0,8	3,0
59	71	22	65	126	153	171	141	1,2	3,0
70	107	32	96	157	210	205	153	1,5	3,0
94	72	22	65	95	103	228	209	0,8	3,0
118	143	43	129	154	185	280	233	1,2	3,0
141	214	64	193	189	251	341	256	1,5	3,0
129	71	22	65	76	79	283	272	0,6	3,0
141	107	32	97	106	115	303	280	0,8	3,0
176	213	64	192	169	203	378	316	1,2	3,0
175	107	32	97	91	95	354	338	0,6	3,0
187	142	43	129	115	124	373	346	0,8	3,0
235	284	85	256	185	221	461	386	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
18%	2,40	2,31	0,345	0,97	0,036	0,98	0,026	15
92%	2,30	2,21	0,343	0,98	0,030	0,97	0,033	15
28%	2,14	2,15	0,305	0,99	0,028	0,98	0,029	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
18%	1,35	0,587	0,202	0,99	0,025	15
92%	1,28	0,533	0,356	0,99	0,017	15
28%	1,13	0,595	0,322	1,00	0,015	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	1,16	0,761	-0,353	0,99	0,018	15
92%	1,09	0,773	-0,339	0,99	0,026	15
28%	1,03	0,787	-0,302	0,99	0,024	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

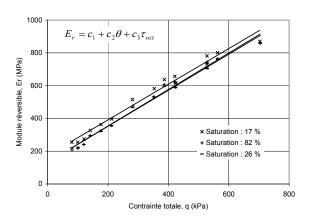
Date : 14 avril 2008 Date : 14 avril 2008

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400


DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-014-08 Type matériau : MG-20 Région : Chaudière-Appalaches

Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-5 2,9 % Densité : 2,89 Éprouvette : Porosité : 24 % Teneur eau optimale : 4,5 % Teneur eau : Masse volumique : 2193 kg/m³ Masse vol. optimale: 2233 kg/m³ Saturation: 18 % Absorption : 0,9 %

Teneur e	eau intiale	e :	2,8 %			Saturatio	on :	17 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	18	72	-11	16	80	10	254	0,15
20	3,8	37	143	-26	16	100	19	254	0,18
20	5,7	54	198	-41	16	120	28	274	0,21
35	3,4	33	99	-15	17	141	17	327	0,15
35	6,8	65	178	-33	18	177	34	363	0,19
35	10,3	97	244	-53	18	213	50	396	0,22
70	6,9	65	126	-19	21	281	34	516	0,15
70	13,8	129	222	-40	20	353	67	582	0,18
70	20,7	193	313	-66	19	424	101	615	0,21
105	6,9	65	101	-14	23	387	34	638	0,13
105	10,3	96	147	-21	23	421	50	657	0,15
105	20,7	192	262	-47	20	527	100	733	0,18
140	10,4	97	124	-17	24	528	51	781	0,14
140	13,9	129	161	-24	23	563	67	801	0,15
140	27,9	256	294	-51	20	703	134	870	0,17

Teneur e	eau satur	ée :	9,9 %		Saturation :		82 %		
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	89	-14	10	81	10	208	0,16
20	3,9	37	168	-33	12	101	19	218	0,20
20	5,8	55	227	-51	12	120	28	240	0,23
35	3,4	33	110	-18	14	141	17	295	0,16
35	6,9	64	199	-39	13	176	34	324	0,19
35	10,4	96	270	-60	13	211	50	357	0,22
70	6,9	65	136	-21	17	282	34	476	0,15
70	13,9	129	241	-45	15	352	67	533	0,19
70	20,9	192	326	-70	13	424	101	591	0,21
105	7,0	64	106	-15	19	386	34	606	0,14
105	10,4	96	154	-23	18	421	50	627	0,15
105	20,9	192	270	-49	15	527	100	709	0,18
140	10,4	97	131	-18	22	528	51	744	0,14
140	13,9	129	169	-25	19	563	67	764	0,15
140	27,9	257	299	-54	14	704	134	858	0,18

/IPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$
Module réversible, Er (MPa)		x Saturation : 17 % + Saturation : 82 % - Saturation : 26 %
	100 - 1	0 100 1000 Contrainte totale, q (kPa)

Teneur e	eau drain	ée :	3,8	%		Saturatio	on :	26 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	84	-12	13	80	10	220	0,15
20	3,8	37	164	-30	13	100	19	223	0,19
20	5,7	55	226	-48	14	120	28	241	0,21
35	3,3	33	112	-17	15	141	17	292	0,15
35	6,8	65	202	-37	16	177	34	321	0,19
35	10,2	97	273	-58	15	212	50	355	0,21
70	6,8	65	140	-21	19	282	34	466	0,15
70	13,7	129	246	-44	17	354	67	526	0,18
70	20,7	193	329	-68	15	423	101	587	0,21
105	6,9	65	109	-15	21	387	34	595	0,13
105	10,3	97	157	-23	21	423	50	618	0,15
105	20,7	192	273	-48	16	529	100	704	0,18
140	10,3	98	133	-18	22	528	51	735	0,14
140	13,8	129	170	-25	20	564	68	760	0,14
140	27,8	257	299	-52	15	704	134	862	0,17

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
17%	176	1,266	-1,175	0,99	22	15
82%	133	1,268	-1,006	0,99	19	15
26%	133	1,233	-0,869	1,00	14	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
17%	2,71	0,689	-0,237	0,99	0,018	15
82%	2,31	0,762	-0,235	1,00	0,013	15
26%	2,33	0,730	-0,181	0,99	0,020	15

Sat.	$\nu_{\rm r}$	σ	n
17%	0,17	0,03	15
82%	0,18	0,03	15
26%	0,17	0,03	15

Conditionnement 10 000 cycles								
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}					
1								
2								

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 16 avril 2008 Date : 16 avril 2008

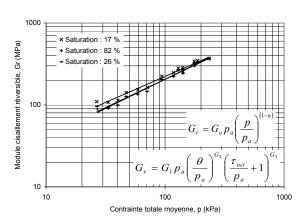
Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-014-08 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Andésite

PC1-5 2,9 % 2,89 4,5 % Éprouvette : Porosité : 24 % Densité : Teneur eau optimale : Teneur eau : Masse volumique : 2193 kg/m³ Saturation : Masse vol. optimale: 2233 kg/m³ 18 % Absorption: 0,9 %

Teneur e	eau intiale	e:	2,8	2,8 %		Saturation :			17 %	
р	q	∆р	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G_r	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	50	56	123	110	0,8	3,0	
33	40	12	37	91	113	134	108	1,2	3,0	
40	60	18	54	115	160	157	113	1,5	3,0	
47	36	11	33	69	77	158	142	0,8	3,0	
59	71	22	65	112	141	192	153	1,2	3,0	
71	107	32	97	138	198	233	163	1,5	3,0	
94	72	22	65	88	97	245	224	0,8	3,0	
118	143	43	129	142	174	302	247	1,2	3,0	
141	213	64	193	181	253	356	254	1,5	3,0	
129	71	22	65	74	77	290	281	0,6	3,0	
140	107	32	96	104	112	309	287	0,8	3,0	
176	213	64	192	168	206	381	311	1,2	3,0	
176	107	32	97	89	94	362	343	0,6	3,0	
188	143	43	129	113	123	379	349	0,8	3,0	
234	284	85	256	191	230	446	370	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	× Sat	turation : 17 % turation : 82 % turation : 26 % $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta\right)^{K_z} \left(\frac{\tau_{oct}}{p_a}\right)^{K_z}$	$\left(\frac{q}{p}\right)^2$
	10		
	10	100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau intial	e :	9,9	9,9 %		Saturation	on :	82 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	60	69	102	89	0,8	3,0
34	40	12	37	102	134	120	91	1,2	3,0
40	60	18	55	124	186	146	98	1,5	3,0
47	36	11	33	75	85	146	127	0,8	3,0
59	71	21	64	121	158	177	136	1,2	3,0
70	107	32	96	149	220	215	146	1,5	3,0
94	72	22	65	94	105	230	206	0,8	3,0
117	143	43	129	152	191	283	225	1,2	3,0
141	213	64	192	186	264	346	243	1,5	3,0
129	71	21	64	77	81	279	267	0,6	3,0
140	107	32	96	108	118	298	272	0,8	3,0
176	213	64	192	172	213	370	300	1,2	3,0
176	108	32	97	94	99	346	326	0,6	3,0
188	143	43	129	119	129	362	333	0,8	3,0
235	285	86	257	192	235	446	364	1,2	3,0

Teneur	eau intial	e :	3,8	%		Saturation	on :	26	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G_r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	59	64	104	96	0,8	3,0
33	40	12	37	103	129	119	94	1,2	3,0
40	60	18	55	131	183	139	100	1,5	3,0
47	36	11	33	77	86	141	127	0,8	3,0
59	71	22	65	127	159	170	135	1,2	3,0
71	107	32	97	156	221	207	146	1,5	3,0
94	72	22	65	98	107	221	203	0,8	3,0
118	143	43	129	158	193	273	223	1,2	3,0
141	214	64	193	194	264	332	244	1,5	3,0
129	72	22	65	80	82	272	262	0,6	3,0
141	107	32	97	111	120	290	270	0,8	3,0
176	213	64	192	177	214	362	299	1,2	3,0
176	108	33	98	96	101	338	323	0,6	3,0
188	143	43	129	121	130	356	332	0,8	3,0
235	285	86	257	194	234	442	367	1,2	3,0

Sat.	Κ _o	G _o	n				RMSE _{Gr}	
17%	2,30	2,24	0,381	0,98	0,026	0,97	0,031	15
82%	2,13	2,06	0,314	0,99	0,025	0,98	0,030	15
26%	2,09	2,07	0,327	0,99	0,025 0,027	0,98	0,031	15 15 15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
17%	1,32	0,519	0,304	1,00	0,014	15
82%	1,16	0,564	0,343	1,00	0,014	15
26%	1,13	0,561	0,344	1,00	0,009	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
17%	1,17	0,737	-0,389	0,99	0,023	15
82%	0,99	0,816	-0,394	0,99	0,019	15
26%	1,01	0,777	-0,330	0,99	0,026	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 16 avril 2008 Date : 16 avril 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-008-05 Type matériau : MG-20 Région : Centre du Québec Félix Doucet, SMI Fondation Client: Utilisation : Pétrographie : Basalte

PC2 3,7 % Porosité : 23 % Densité : 2,81 5,2 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 2153 kg/m³ Masse vol. optimale : 2279 kg/m³ Saturation : 1,7 % 18 % Absorption :

Teneur e	eau intiale	e :	3,4	%		Saturatio	on :	16	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	20	86	-16	18	81	10	227	0,18
20	3,7	38	174	-39	15	102	20	220	0,22
20	5,6	57	244	-65	15	122	29	234	0,26
35	3,4	35	113	-20	17	143	18	308	0,18
35	6,8	68	215	-48	14	180	35	317	0,22
35	10,2	101	303	-81	12	216	52	334	0,27
70	7,5	70	138	-24	9	287	36	506	0,18
70	14,4	137	266	-57	7	361	71	513	0,22
70	21,4	203	385	-102	6	434	106	527	0,26
105	7,4	69	101	-16	13	391	36	682	0,16
105	10,7	102	155	-27	9	428	53	658	0,17
105	21,2	201	296	-63	5	537	105	679	0,21
140	10,7	101	125	-20	12	532	53	808	0,16
140	14,2	134	167	-29	9	569	70	806	0,17
140	28,2	265	314	-66	4	714	138	844	0,21

1200				
1000	$E_r = c_1 + c_2\theta + c_3$	$_{3} au_{oct}$	7	
Er (MPa)			×	
Module réversible, Er (MPa) 000 000 000		**************************************	×	
90 400 —	*	^	 × Saturation : 16 % ⁻ + Saturation : 81 % 	
200	*** **		- Saturation : 24 % _	
0				
0	200 Coi	400 ntrainte totale, q (l	600 (Pa)	800

Teneur e	eau satur	ée :	10,5	%		Saturation	on :	81	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	76	-15	18	81	10	258	0,20
20	3,6	38	165	-41	15	102	20	232	0,25
20	5,6	57	236	-70	16	123	29	241	0,29
35	3,4	35	113	-22	14	143	18	308	0,19
35	6,8	68	208	-50	14	180	35	328	0,24
35	10,3	101	288	-82	14	216	52	350	0,28
70	7,5	70	141	-26	5	287	36	495	0,19
70	14,4	137	256	-59	5	361	71	535	0,23
70	21,4	203	352	-97	4	434	106	576	0,27
105	7,4	69	105	-17	7	391	36	656	0,16
105	10,8	102	155	-28	5	428	53	660	0,18
105	21,2	201	279	-62	3	537	105	720	0,22
140	10,7	101	125	-21	7	532	53	812	0,17
140	14,2	134	161	-29	6	568	70	834	0,18
140	28,2	265	296	-63	3	713	138	897	0,21

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $\times \text{Saturation : 16 \%}$ $+ \text{Saturation : 24 \%}$ $- \text{Saturation : 24 \%}$	
	100 - 1	100 100 Contrainte totale, q (kPa)	00

RMSE

Teneur e	eau drain	ée :	4,3	%		Saturation	on :	24	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,6	20	77	-14	14	81	10	257	0,18
20	3,6	38	163	-36	10	102	20	234	0,22
20	5,6	57	228	-60	10	122	29	249	0,26
35	3,5	35	110	-19	11	143	18	316	0,17
35	6,8	68	209	-46	10	180	35	325	0,22
35	10,2	101	284	-74	9	216	52	356	0,26
70	7,5	70	140	-24	10	287	37	497	0,17
70	14,4	137	260	-56	7	361	71	526	0,21
70	21,3	203	349	-90	6	434	106	581	0,26
105	7,3	69	97	-15	10	391	36	707	0,15
105	10,7	102	149	-25	7	428	53	687	0,17
105	21,2	201	272	-57	5	537	105	741	0,21
140	10,7	101	117	-18	9	532	53	864	0,16
140	14,1	135	155	-26	8	569	70	865	0,17
140	28,1	266	284	-59	5	714	139	937	0,21

16%	2 49	0.884	-0.706	0.98	0.029	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
24%	131	1,635	-2,597	1,00	13	15
81%	138	1,486	-2,089	1,00	12	15
10 /0	130	1,500	-2,007	1,00	17	10

24%	2,57	0,841	-0,539	0,97	0,039	15
81%	2,53	0,799	-0,447	0,97	0,038	15
16%	2,49	0,884	-0,706	0,98	0,029 0,038 0,039	15

Sat.	$\nu_{\rm r}$	σ	n
16%	0,21	0,04	15
81%	0,22	0,04	15
24%	0,20	0,04	15

Conditio	nnement	10 000 c	ycles
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}
1			
2			

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Bruno Auger, tech. spec. Réalisé par : Date : 7 septembre 2005 Date : 7 septembre 2005

> Service des matériaux d'infrastructures, Direction du Laboratoire des Chaussées, Ministère des Transports du Québec 2700, rue Einstein, Québec, G1P 3W8, (418) 644-0181

Sat.

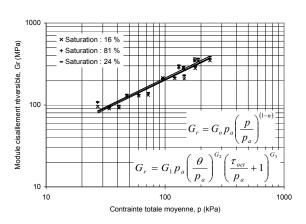
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-008-05 Type matériau : MG-20 Région : Centre du Québec Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Basalte

PC2 3,7 % 5,2 % Éprouvette : Porosité : 23 % Densité: 2,814 Teneur eau optimale : Teneur eau : Masse volumique: 2153 kg/m³ Masse vol. optimale: 2279 kg/m³ Saturation: 18 % Absorption: 1,7 %

Teneur e	au intial	e :	3,4	%		Saturation	on :	16	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	7	20	54	68	120	96	0,8	3,0
34	42	13	38	96	142	133	90	1,2	3,0
41	62	19	57	115	205	166	92	1,5	3,0
48	38	12	35	72	89	160	130	0,8	3,0
60	75	23	68	119	175	190	130	1,2	3,0
72	111	34	101	142	256	238	132	1,5	3,0
96	77	23	70	89	108	261	215	0,8	3,0
120	151	46	137	151	216	301	211	1,3	3,0
145	224	68	203	181	325	373	208	1,5	3,0
130	76	23	69	69	78	333	294	0,6	3,0
143	113	34	102	102	122	335	280	0,8	3,0
179	222	67	201	169	240	396	280	1,2	3,0
177	112	34	101	84	97	400	348	0,6	3,0
190	148	45	134	109	130	411	343	0,8	3,0
238	293	88	265	182	253	486	349	1,2	3,0

100	00 ===				-				
=	×	Saturation :	16 %						
₽	⊢ +	Saturation :	81 %		\mathbf{H}		<i>*</i>		+++
5	-	Saturation :	24 %						
ple, F					^				
réversil	, [*						$n K_o / 60$	\vec{J}_o
Module volumétrique réversible, Kr (MPa)			K_r	$=K_{o}$	$p_a \left(\frac{p}{p}\right)$	$\left(\frac{2}{a}\right)^{\left(1-a\right)}$	1	$-\beta\left(\frac{q}{p}\right)$)2)=
	10			K_r	$=K_{1}$	$p_a \left(\frac{\ell}{p}\right)$	$\left(\frac{2}{a}\right)^{K_2} \left(\frac{1}{a}\right)^{K_2}$	$\left(\frac{oct}{p_a} + 1\right)$	К3
	10				100				1000
			Contra	inte tota	le moye	nne, p	(kPa)		

Teneur e	eau satur	ée :	10,5	%		Saturation	on :	81	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	45	61	145	107	0,8	3,0
34	42	13	38	83	137	154	93	1,2	3,0
41	62	19	57	97	204	196	93	1,5	3,0
48	38	12	35	70	90	166	129	0,8	3,0
60	75	23	68	108	172	210	132	1,2	3,0
72	111	34	101	125	247	269	136	1,5	3,0
96	77	23	70	88	112	263	208	0,8	3,0
120	151	46	137	139	210	329	218	1,3	3,0
145	224	68	203	158	299	426	226	1,5	3,0
130	76	23	69	70	81	326	282	0,6	3,0
143	113	34	102	99	122	342	280	0,8	3,0
179	222	67	201	156	227	429	295	1,2	3,0
177	112	34	101	83	97	405	348	0,6	3,0
189	148	45	134	104	126	431	354	0,8	3,0
238	293	88	265	169	239	523	370	1,2	3,0

Teneur e	eau drain	ée :	4,3	%		Saturation	on :	24	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	7	20	50	60	132	109	0,8	3,0
34	42	13	38	91	133	140	96	1,2	3,0
41	62	19	57	109	192	174	99	1,5	3,0
48	38	12	35	72	86	161	135	0,8	3,0
60	75	23	68	117	170	194	133	1,2	3,0
72	111	34	101	137	238	247	141	1,5	3,0
96	77	23	70	93	110	252	212	0,8	3,0
120	151	46	137	148	211	308	217	1,3	3,0
145	224	68	203	169	293	401	231	1,5	3,0
130	76	23	69	67	75	340	306	0,6	3,0
143	113	34	102	99	116	346	294	0,8	3,0
179	222	67	201	158	219	425	306	1,2	3,0
177	112	34	101	81	91	420	373	0,6	3,0
190	149	45	135	103	121	434	370	0,8	3,0
238	294	89	266	166	228	533	388	1,2	3,0

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
16%	2,29	2,02	0,329	0,96	0,044	0,91	0,062	15
					0,036			15
24%	2,39	2,15	0,324	0,96	0,044	0,92	0,061	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
16%	1,33	0,612	0,127	0,99	0,018	15
81%	1,45	0,461	0,483	0,98	0,025	15
24%	1,35	0,572	0,290	0,99	0,025	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
16%	1,05	0,950	-0,907	0,98	0,037	15
81%	1,05	0,876	-0,661	0,96	0,046	15
24%	1,09	0,908	-0,743	0,96	0,047	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 7 septembre 2005 Date : 7 septembre 2005

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-005-06 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Fondation Client: Utilisation: Pétrographie : Basalte

РС3 2,7 % 23 % Densité : 2,77 6,7 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique : 2145 kg/m³ Masse vol. optimale : 2211 kg/m³ Saturation : 1,3 % 13 % Absorption :

Teneur e	eau intiale	e :	2,7	%		Saturatio	on :	13	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	89	-16	21	80	10	209	0,18
20	3,8	37	173	-35	12	101	19	213	0,20
20	5,8	55	229	-51	12	121	29	240	0,22
35	3,4	33	113	-19	21	142	17	294	0,17
35	6,9	66	199	-38	17	177	34	330	0,19
35	10,3	98	265	-56	16	213	51	368	0,21
70	7,0	66	135	-22	25	283	35	494	0,16
70	14,0	131	235	-42	21	355	68	557	0,18
70	21,0	196	329	-66	19	427	102	594	0,20
105	7,0	66	103	-15	29	388	34	641	0,15
105	10,5	98	150	-23	25	424	51	653	0,15
105	20,9	194	270	-46	21	530	102	720	0,17
140	10,5	98	125	-18	29	529	51	787	0,15
140	14,0	130	162	-24	27	564	68	803	0,15
140	28,0	259	300	-50	22	707	135	862	0,17

	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$			
æ	800 -			¥	,	<u> </u>
Module réversible, Er (MPa)	600 -					
ersible,			¥ ×			
le réve	400 -			_		
Modu				1	turation: 13 % turation: 69 %	
_	200 -	/x*			ituration : 22 %	-
	0 -			1		
	() 20	00	400	600	800
			Contrainte	totale, q (kPa)		

Teneur e	eau satur	ée :	8,6	%		Saturation	on :	69	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,7	19	88	-18	16	81	10	213	0,20
20	3,6	37	172	-39	13	101	19	216	0,22
20	5,5	55	236	-57	13	121	29	234	0,24
35	3,2	33	114	-21	20	142	17	294	0,19
35	6,6	66	208	-43	17	178	34	317	0,21
35	10,0	98	279	-63	17	213	51	353	0,23
70	6,8	67	143	-24	21	284	35	471	0,17
70	13,6	132	252	-47	17	356	69	525	0,19
70	20,6	197	337	-69	16	428	103	584	0,21
105	6,9	66	107	-16	25	388	35	623	0,15
105	10,3	99	156	-25	21	424	51	635	0,16
105	20,6	196	276	-49	17	531	102	710	0,18
140	10,3	99	128	-19	24	529	51	770	0,15
140	13,8	131	166	-26	21	565	68	787	0,16
140	27,7	260	301	-52	16	707	135	861	0,17

(MPa)	1000 -	E_r	$-\kappa_1 P_a$	$\left(\frac{\theta}{p_a}\right)$	k ₂ ($\frac{\tau_{oc}}{p_a}$	<u>t</u>	+1) ^{k₃} =		Ž	X	*	/ *		
Module réversible, Er (MPa)			aturation : 1 aturation : 6 aturation : 2	69 % ·		*/	,	<i>f.</i>	<i>f</i> .						
2	100 - 1	0		Co	ontra		10 to	10 tale, q (kPa	3)					1	000

RMSE

0,023

Teneur e	eau drain	ée :	3,6	%		Saturation	on :	22 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	86	-16	15	80	10	218	0,19
20	3,6	37	171	-37	10	100	19	216	0,21
20	5,6	55	235	-55	10	121	29	235	0,23
35	3,2	33	114	-20	18	142	17	291	0,18
35	6,6	66	210	-42	15	178	34	314	0,20
35	10,0	98	280	-61	15	213	51	351	0,22
70	6,8	67	146	-24	21	284	35	460	0,16
70	13,7	132	254	-46	18	356	69	520	0,18
70	20,6	197	336	-67	17	427	102	585	0,20
105	6,9	66	108	-16	26	388	34	617	0,15
105	10,3	99	157	-25	22	424	51	628	0,16
105	20,6	196	276	-48	18	531	102	709	0,17
140	10,3	99	129	-19	25	529	51	764	0,15
140	13,8	131	167	-26	23	565	68	782	0,15
140	27,7	260	299	-51	18	708	135	868	0,17

ı	69%	126	1,362	-1,449	1,00	16	15
ı	22%	124	1,336	-1,295	1,00	14	15
	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Ĺ	Sat. 13%	k ₁ 2,35	k ₂ 0,816	k ₃ -0,362	R ²	RMSE 0,015	n 15

-0,278

0,99

c₂ c₃ 1,397 -1,572

Sat.	$\nu_{\rm r}$	σ	n
13%	0,18	0,02	15
69%	0,19	0,03	15
22%	0,18	0,03	15

0,778

2,30

22%

Condition	nnement	10 000 c	ycles
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}
1	8	20	14
2			

15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 25 avril 2008 Date : 25 avril 2008

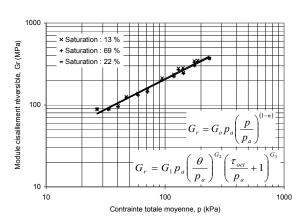
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-005-06 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Basalte

РС3 2,7 % 2,77 6,7 % Éprouvette : Porosité : 23 % Densité : Teneur eau optimale : Teneur eau : Masse volumique : 2145 kg/m³ Masse vol. optimale: 2211 kg/m³ Saturation: 13 % Absorption: 1,3 %

Teneur	Teneur eau intiale :			2,7 %		Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	57	70	109	88	0,8	3,0
34	41	12	37	104	138	119	89	1,2	3,0
40	61	18	55	128	186	144	98	1,5	3,0
47	37	11	33	75	88	148	125	0,8	3,0
59	72	22	66	123	158	178	138	1,2	3,0
71	108	33	98	154	214	212	152	1,5	3,0
94	73	22	66	91	104	242	213	0,8	3,0
118	145	44	131	151	185	289	236	1,2	3,0
142	217	65	196	197	264	331	247	1,5	3,0
129	73	22	66	73	78	302	280	0,6	3,0
141	109	33	98	105	115	312	284	0,8	3,0
177	215	65	194	177	211	366	307	1,2	3,0
176	109	33	98	88	95	370	344	0,6	3,0
188	144	43	130	114	124	382	349	0,8	3,0
236	287	86	259	201	233	430	370	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	$ \begin{array}{c} \times \text{Saturation: } 13 \% \\ + \text{Saturation: } 69 \% \\ - \text{Saturation: } 22 \% \\ \end{array} $ $ \begin{array}{c} \beta = (1-n)K_o/6G_o \\ \end{array} $ $ K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta \left(\frac{q}{p}\right)^2\right)^{K_o} \\ K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_o} \left(\frac{\tau_{oct}}{p_a}+1\right)^{K_o} \end{array} $	
	10 -	(p_a)	Ц
	1		1000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	8,6 %			Saturation	on :	69	%
р	q	Δp	Δq	ϵ_{vr}	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	53	70	118	89	0,8	3,0
34	41	12	37	95	141	130	88	1,2	3,0
40	61	18	55	122	196	151	94	1,5	3,0
47	37	11	33	71	90	156	124	0,8	3,0
59	73	22	66	122	168	181	131	1,2	3,0
71	108	33	98	152	228	216	144	1,5	3,0
95	74	22	67	95	111	236	202	0,8	3,0
119	146	44	132	158	199	279	221	1,2	3,0
143	218	66	197	199	271	331	242	1,5	3,0
129	73	22	66	74	82	300	270	0,6	3,0
141	109	33	99	106	121	312	274	0,8	3,0
177	216	65	196	177	217	368	301	1,2	3,0
176	109	33	99	90	98	366	335	0,6	3,0
188	145	44	131	115	128	381	341	0,8	3,0
236	287	87	260	198	235	437	368	1,2	3,0

Teneur e	eau drain	ée :	3,6 %			Saturation :			22 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	53	68	117	91	0,8	3,0	
33	41	12	37	98	139	126	89	1,2	3,0	
40	61	18	55	126	193	146	95	1,5	3,0	
47	37	11	33	74	90	150	124	0,8	3,0	
59	73	22	66	126	168	174	131	1,2	3,0	
71	108	33	98	157	228	208	144	1,5	3,0	
95	74	22	67	99	113	227	198	0,8	3,0	
119	146	44	132	162	200	271	220	1,2	3,0	
142	217	66	197	203	269	324	244	1,5	3,0	
129	73	22	66	75	82	294	268	0,6	3,0	
141	109	33	99	108	121	304	271	0,8	3,0	
177	216	65	196	179	216	363	302	1,2	3,0	
176	109	33	99	91	99	361	333	0,6	3,0	
188	145	44	131	116	129	375	339	0,8	3,0	
236	287	87	260	198	233	438	371	1,2	3,0	

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
13%	2,15	2,11	0,306	0,96	0,043	0,98	0,034	15
69%	2,18	2,04	0,329	0,96	0,045	0,97	0,039	15
22%	2,13	2,04	0,329	0,96	0,045	0,97	0,038	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
13%	1,23	0,646	0,037	1,00	0,013	15
69%	1,29	0,585	0,109	1,00	0,011	15
22%	1,24	0,587	0,133	1,00	0,014	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
13%	1,00	0,863	-0,473	0,99	0,018	15
69%	0,97	0,853	-0,444	0,99	0,024	15
22%	0,97	0,829	-0,390	0,99	0,027	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 25 avril 2008 Date : 25 avril 2008

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-005-06 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Fondation Client: Utilisation: Pétrographie : Calcaire

PC4 2,3 % 27 % Densité : 2,66 6,3 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique : 1941 kg/m³ 11 % Masse vol. optimale: 2050 kg/m³ Saturation: Absorption : 0,7 %

Teneur e	eau intiale	e :	2,3 %			Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	68	-13	26	80	10	272	0,19
20	3,8	37	135	-28	25	101	19	272	0,21
20	5,8	55	186	-48	23	121	29	296	0,26
35	3,4	33	84	-18	26	141	17	392	0,21
35	6,9	65	157	-35	18	177	34	415	0,22
35	10,3	97	216	-51	13	213	51	450	0,24
70	7,0	66	102	-19	14	283	34	650	0,18
70	13,9	130	191	-39	6	354	68	684	0,20
70	21,0	195	283	-61	1	426	102	689	0,22
105	7,0	66	80	-13	12	387	34	816	0,17
105	10,4	98	123	-21	8	423	51	796	0,17
105	20,9	194	227	-43	0	530	101	852	0,19
140	10,4	98	100	-17	8	528	51	974	0,16
140	13,9	130	132	-22	4	564	68	983	0,17
140	28,0	258	248	-44	3	706	135	1040	0,18

	1200 -	E a l					
	1000 -	$E_r = C_1 + C_2$	$c_2\theta + c_3\tau_{oct}$		* */	7 7	_
Module réversible, Er (MPa)	800 -		<u> </u>		<i>.</i>		_
versible,	600 -		×××	*			
Module ré	400 -	- - - - - - - - - -	T		+ Saturat	ion : 11 % —— ion : 90 %	_
	200 -				- Saturat	ion : 11 %	
	0 -) 20	00 2 Contrainte	iotale, q (kl		00	800

Teneur e	eau satur	ée :	13,2	%		Saturation	on :	90 %		
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,8	19	60	-14	30	80	10	308	0,23	
20	3,7	37	137	-33	22	101	19	270	0,24	
20	5,6	55	199	-52	21	121	29	276	0,26	
35	3,3	33	87	-20	25	142	17	381	0,23	
35	6,7	66	175	-44	17	177	34	376	0,25	
35	10,1	98	245	-64	11	213	51	401	0,26	
70	6,9	67	112	-23	14	283	35	596	0,21	
70	13,8	132	209	-47	5	355	69	629	0,22	
70	20,7	196	282	-66	1	427	102	696	0,24	
105	6,9	66	81	-17	17	388	34	819	0,20	
105	10,4	98	126	-26	9	424	51	784	0,20	
105	20,8	195	231	-50	1	531	102	843	0,22	
140	10,4	98	100	-18	10	529	51	984	0,18	
140	13,9	131	133	-25	5	564	68	980	0,19	
140	27,8	259	245	-48	2	707	135	1056	0,20	

Pa)	1000 -	E_r	$= k_1 p$	'a -	$\frac{\theta}{p_a}$		1	oct	-+:	$\binom{k_3}{1}$	_		×/±	*			
Module réversible, Er (MPa)			aturation aturation aturation	n : 90) %	_				/	#	k ∓					
-	100 - 1	0			C	Contr	ain		100 total	e, q	(kPa	a)				1	0000

RMSE

0,042

0,049

n

15

15

Teneur e	eau drain	ée :	2,3	%		Saturatio	on :	11 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,8	19	54	-12	33	80	10	345	0,22	
20	3,7	37	128	-29	26	100	19	287	0,23	
20	5,6	55	188	-46	23	121	29	292	0,25	
35	3,3	33	85	-18	25	141	17	389	0,21	
35	6,6	66	171	-39	18	177	34	384	0,23	
35	10,0	98	238	-57	13	213	51	412	0,24	
70	6,8	67	115	-22	16	284	35	582	0,19	
70	13,7	132	216	-45	7	356	69	612	0,21	
70	20,6	196	286	-63	3	427	102	687	0,22	
105	6,9	66	82	-15	16	388	34	803	0,18	
105	10,3	98	127	-23	10	424	51	773	0,18	
105	20,7	195	232	-46	2	531	102	840	0,20	
140	10,4	98	101	-17	10	529	51	970	0,17	
140	13,8	131	135	-23	6	565	68	966	0,17	
140	27,7	259	244	-45	0	707	135	1062	0,19	

11%			-0.546	0.99	0.020	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
11%	182	1,744	-2,632	0,99	23	15
90%	165	1,833	-2,867	0,99	24	15
1170	107	1,774	-2,000	0,99	33	15

0,830 -0,550 0,97

-0.469 0.95

Sat.	ν_{r}	σ	n
11%	0,20	0,03	15
90%	0,22	0,03	15
11%	0,20	0,02	15

0.760

3,04

3.20

Conditionnement 10 000 cycles										
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}							
1	13	20	17							
2										

Note:

Jean-Pascal Bilodeau, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par :

Date : Date : 16 avril 2007

> Service des matériaux d'infrastructures, Direction du Laboratoire des Chaussées, Ministère des Transports du Québec 2700, rue Einstein, Québec, G1P 3W8, (418) 644-0181

Sat.

90%

11%

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier: AM-005-06 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Pétrographie : Calcaire Client : Utilisation : Fondation

Porosité : 27 % Saturation : 11 % Densité : 2,66 Absorption : 0,7 % PC4 Teneur eau : 2,3 % 6,3 % Éprouvette : Teneur eau optimale : Masse volumique : 1941 kg/m³ Masse vol. optimale : 2050 kg/m³

Teneur e	eau intial	e :	2,3	%		Saturation	on :	11 %		
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	42	54	148	114	0,8	3,0	
34	41	12	37	78	109	156	113	1,2	3,0	
40	61	18	55	89	156	205	117	1,5	3,0	
47	36	11	33	49	68	225	162	0,8	3,0	
59	72	22	65	87	128	248	170	1,2	3,0	
71	108	32	97	113	178	286	182	1,5	3,0	
94	73	22	66	64	80	342	274	0,8	3,0	
118	144	43	130	113	153	383	284	1,2	3,0	
142	216	65	195	160	229	406	283	1,5	3,0	
129	72	22	66	53	62	408	349	0,6	3,0	
141	108	33	98	81	96	404	340	0,8	3,0	
177	215	65	194	141	180	459	358	1,2	3,0	
176	108	33	98	67	78	484	418	0,6	3,0	
188	144	43	130	88	103	491	421	0,8	3,0	
235	286	86	258	159	195	540	441	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 11 %	
	10 -	0 100	1000
		Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	13,2	%		Saturation	on :	90 %		
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	32	50	191	125	0,8	3,0	
34	41	12	37	70	113	175	109	1,2	3,0	
40	61	18	55	95	168	194	109	1,5	3,0	
47	37	11	33	47	72	236	155	0,8	3,0	
59	72	22	66	88	145	250	151	1,2	3,0	
71	108	33	98	118	205	278	159	1,5	3,0	
94	73	22	67	65	90	341	246	0,8	3,0	
118	145	44	132	115	171	380	257	1,2	3,0	
142	217	65	196	149	232	438	282	1,5	3,0	
129	73	22	66	48	65	462	340	0,6	3,0	
141	109	33	98	75	101	440	326	0,8	3,0	
177	216	65	195	131	188	494	346	1,2	3,0	
176	109	33	98	63	79	518	416	0,6	3,0	
188	144	44	131	84	105	519	414	0,8	3,0	
236	287	86	259	149	196	581	441	1,2	3,0	

Module cisaillement réversible, Gr (MPa)	1000 -	+ Satura	ation : 11 ation : 90 ation : 11	% <u> </u>			<i>C</i> ::		$=G_o$		$\frac{p}{p_a}$	(1-n))
Σ	10 -				G,	. =	$G_1 p$	$a \left(\frac{1}{p} \right)$	$\left(\frac{g}{a}\right)^{G_2}$	$\frac{1}{p}$	a +	1	
	1	0		Contro	sinta (100 moye		(kDa)				1000
				COILLE	anne	ioidle	поуе	inie, p	(KPa)				

Teneur e	eau drain	ée :	2,3	%		Saturation	on :	11 %		
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	30	44	204	142	0,8	3,0	
33	40	12	37	70	105	176	117	1,2	3,0	
40	61	18	55	96	156	192	117	1,5	3,0	
47	36	11	33	50	69	222	161	0,8	3,0	
59	72	22	66	94	140	234	156	1,2	3,0	
71	108	33	98	124	196	263	167	1,5	3,0	
95	74	22	67	71	91	315	244	0,8	3,0	
119	146	44	132	126	174	350	253	1,2	3,0	
142	217	65	196	160	233	409	281	1,5	3,0	
129	73	22	66	53	65	415	341	0,6	3,0	
141	109	33	98	82	100	401	328	0,8	3,0	
177	216	65	195	141	185	461	351	1,2	3,0	
176	109	33	98	67	79	486	415	0,6	3,0	
188	145	44	131	89	106	490	412	0,8	3,0	
236	287	86	259	154	193	562	448	1,2	3,0	

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
11%	2,86	2,57	0,352	0,93	0,055	0,95	0,046	15
90%	2,98	2,47	0,370	0,87	0,075	0,90	0,062	15
11%	2,89	2,52	0,411	0,86	0,071	0,88	0,063	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
11%	1,78	0,644	-0,152	0,99	0,020	15
90%	1,93	0,646	-0,221	0,98	0,026	15
11%	1,88	0,574	-0,104	0,96	0,035	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
11%	1,29	0,877	-0,645	0,99	0,025	15
90%	1,23	0,872	-0,625	0,96	0,047	15
11%	1,31	0,806	-0,560	0,94	0,052	15

Note:

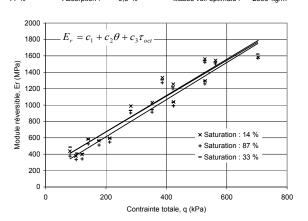
Réalisé par : Jean-Pascal Bilodeau, ing. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : Date : 16 avril 2007

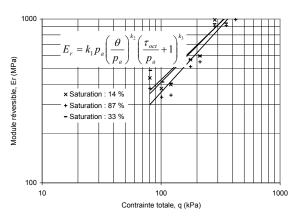
Ministère des Transports

Pansports

Québec


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-010-07 Type matériau : MG-20 Région : Mauricie Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Calcaire

Éprouvette : PC5 1,9 % Porosité : 21 % Densité : 2,68 Teneur eau optimale : 5,5 % Teneur eau : Masse volumique : 2127 kg/m³ Masse vol. optimale: 2366 kg/m³ Saturation : 14 % 0,5 % Absorption:

Teneur e	eau intiale	e :	1,9	%		Saturatio	on :	14 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	42	-7	11	80	10	437	0,17
20	4,0	37	97	-18	0	101	19	376	0,18
20	6,0	55	138	-29	0	121	29	398	0,21
35	3,4	33	56	-10	5	141	17	585	0,18
35	6,8	65	115	-24	2	177	34	566	0,21
35	10,2	97	163	-39	1	212	51	595	0,24
70	6,9	65	66	-11	8	282	34	988	0,17
70	13,8	129	126	-24	3	353	68	1031	0,19
70	20,8	193	186	-40	2	424	101	1038	0,21
105	6,9	65	49	-8	15	387	34	1335	0,16
105	10,4	97	78	-13	7	423	51	1255	0,16
105	20,8	193	149	-27	1	528	101	1295	0,18
140	10,4	97	62	-10	11	527	51	1563	0,16
140	13,9	129	84	-13	7	563	67	1545	0,16
140	27,8	257	162	-28	1	704	134	1583	0,17

Teneur e	eau satur	ée :	8,9	%		Saturatio	on :	87 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	50	-10	1	81	10	377	0,19
20	3,8	37	111	-25	6	101	19	334	0,22
20	5,8	55	161	-41	7	121	29	343	0,25
35	3,4	33	62	-12	1	141	17	526	0,19
35	6,9	65	127	-28	5	177	34	512	0,22
35	10,3	97	177	-44	6	212	51	548	0,25
70	6,8	65	72	-13	2	282	34	905	0,18
70	13,7	129	141	-29	2	353	67	914	0,21
70	20,7	193	194	-45	2	423	101	991	0,23
105	6,9	65	51	-9	8	387	34	1272	0,18
105	10,3	97	81	-14	2	422	50	1198	0,17
105	20,7	192	152	-30	0	528	100	1258	0,20
140	10,3	97	64	-11	6	527	50	1521	0,17
140	13,8	128	86	-14	3	562	67	1502	0,17
140	27,8	256	162	-30	3	703	134	1574	0,19

R²

RMSE

58

Teneur e	eau drain	ée :	3,7	%		Saturatio	on :	33 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	39	-7	9	81	10	486	0,19
21	3,8	37	90	-19	1	103	19	412	0,21
20	5,7	55	136	-33	1	122	29	405	0,24
35	3,4	33	56	-10	5	141	17	585	0,18
35	6,8	65	115	-24	2	177	34	566	0,21
35	10,2	97	163	-39	1	212	51	595	0,24
70	6,8	65	69	-12	10	281	34	935	0,18
70	13,8	128	136	-27	5	352	67	944	0,20
70	20,8	192	185	-41	4	423	100	1035	0,22
105	6,9	64	49	-8	18	386	34	1307	0,17
105	10,4	96	79	-13	11	421	50	1222	0,17
105	20,8	191	148	-28	7	527	100	1293	0,19
140	10,4	96	62	-10	15	526	50	1541	0,16
140	13,9	128	84	-14	12	562	67	1523	0,16
140	27,9	255	157	-29	8	703	133	1622	0,18

	01 /0	170	0,100	0,720	0,00	40	10
ı	33%	245	3,010	-5,429	0,99	43	15
ı	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
ı	14%	4,59	0,945	-0,801	0,97	0,041	15
ı	87%	4,00	1,009	-0,810	0,97	0,042	15
ı	33%	4,69	0,882	-0,698	0,96	0,049	15

-5,943 0,99

c₂ 3,122

Sat.	ν_{r}	σ	n
14%	0,18	0,02	15
87%	0,20	0,03	15
33%	0,19	0,03	15

Sat.

14%

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1									
2									

Note:

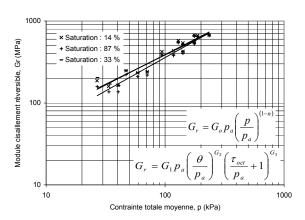
Approuvé par : Félix Doucet, ing. M.Sc.A. Joseph Tsafack, ing. Réalisé par :

Date : 20 juin 2007 Date : 20 juin 2007

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-010-07 Type matériau : MG-20 Région : Mauricie Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Calcaire

PC5 1,9 % Éprouvette : Porosité : 21 % Densité : 2,68 Teneur eau optimale : 5,5 % Teneur eau : Masse volumique : 2127 kg/m³ Masse vol. optimale: 2366 kg/m³ Saturation: 14 % Absorption: 0,5 %

Teneur	eau intial	e :	1,9	%		Saturation	on :	14 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	28	33	218	187	0,8	3,0
34	41	12	37	62	77	197	159	1,2	3,0
40	61	18	55	80	111	229	164	1,5	3,0
47	36	11	33	36	44	305	248	0,8	3,0
59	72	22	65	67	93	325	234	1,2	3,0
71	107	32	97	85	135	379	240	1,5	3,0
94	72	22	65	44	51	492	424	0,8	3,0
118	143	43	129	79	99	550	434	1,2	3,0
141	214	64	193	107	151	604	428	1,5	3,0
129	72	22	65	33	38	662	573	0,6	3,0
141	108	32	97	53	60	618	540	0,8	3,0
176	214	64	193	94	117	682	547	1,2	3,0
176	108	32	97	43	48	760	675	0,6	3,0
188	143	43	129	57	65	758	666	0,8	3,0
235	284	86	257	105	127	812	674	1,2	3,0

Module volumétrique réversible, Kr (MPa) 000	$\begin{array}{c} \times \text{Saturation}: 14 \ \% \\ + \text{Saturation}: 87 \ \% \\ - \text{Saturation}: 33 \ \% \\ \end{array}$	$\beta = (1 - n)K_o/6G_o$ $/(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$ $\left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$
10	1	(p_a) (p_a)
	10 100 Contrainte totale moyenne	1000 e. p (kPa)

Teneur e	eau satur	ée :	8,9	%		Saturation	on :	87	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	31	39	204	158	0,8	3,0
34	41	12	37	62	91	199	137	1,2	3,0
40	61	18	55	80	135	231	137	1,5	3,0
47	36	11	33	39	49	279	222	0,8	3,0
59	72	22	65	71	103	304	210	1,2	3,0
71	107	32	97	88	148	366	219	1,5	3,0
94	72	22	65	46	57	473	383	0,8	3,0
118	143	43	129	83	114	518	379	1,2	3,0
141	213	64	193	105	160	614	402	1,5	3,0
129	71	22	65	33	40	653	541	0,6	3,0
141	107	32	97	53	63	609	511	0,8	3,0
176	213	64	192	92	122	693	525	1,2	3,0
176	107	32	97	42	50	765	651	0,6	3,0
187	142	43	128	57	67	756	642	0,8	3,0
234	283	85	256	102	128	835	664	1,2	3,0

Teneur e	eau drain	ée :	3,7	%		Saturatio	on :	33	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	24	31	264	204	0,8	3,0
34	41	12	37	52	72	238	170	1,2	3,0
41	61	18	55	70	113	262	163	1,5	3,0
47	36	11	33	36	44	305	248	0,8	3,0
59	72	22	65	67	93	325	234	1,2	3,0
71	107	32	97	85	135	379	240	1,5	3,0
94	71	22	65	45	54	482	397	0,8	3,0
117	142	43	128	83	109	518	394	1,2	3,0
141	213	64	192	103	151	620	423	1,5	3,0
129	71	21	64	32	38	662	558	0,6	3,0
140	106	32	96	53	61	608	524	0,8	3,0
176	212	64	191	91	117	699	543	1,2	3,0
175	107	32	96	43	48	754	665	0,6	3,0
187	142	43	128	57	65	748	656	0,8	3,0
234	283	85	255	100	124	853	686	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
14%	4,07	3,94	0,291	0,88	0,079	0,91	0,068	15
87%	3,91	3,63	0,241	0,90	0,079	0,91	0,071	15
33%	4,21	3,89	0,339	0,88	0,075	0,88	0,071	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
14%	2,38	0,812	-0,420	0,99	0,028	15
87%	2,23	0,816	-0,324	0,99	0,023	15
33%	2,57	0,695	-0,235	0,97	0,033	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
14%	1,95	0,980	-0,902	0,97	0,047	15
87%	1,67	1,057	-0,930	0,97	0,048	15
33%	1,96	0,930	-0,817	0,95	0,054	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Joseph Tsafack, ing. Réalisé par :

Date : 20 juin 2007 Date : 20 juin 2007

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-010-07 Type matériau : MG-20 Région : Montérégie Félix Doucet, SMI Fondation Client: Utilisation: Pétrographie : Cornéenne

PC6 2,1 % Densité : 2,79 5,5 % Éprouvette : Teneur eau : Porosité : 25 % Teneur eau optimale : Masse volumique : 2097 kg/m³ Masse vol. optimale: 2208 kg/m³ Saturation: 14 % Absorption : 0,4 %

Teneur e	Teneur eau intiale :			%		Saturation :			14 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	18	85	-8	14	80	9	212	0,09	
20	4,2	36	178	-22	7	100	19	201	0,12	
20	7,5	54	245	-35	5	121	29	219	0,14	
35	3,6	32	116	-12	11	140	17	275	0,10	
35	8,2	63	213	-27	7	176	34	297	0,13	
35	12,1	95	292	-43	6	212	50	324	0,15	
70	6,8	63	143	-15	14	280	33	442	0,10	
70	14,1	126	257	-32	9	350	66	491	0,13	
70	21,0	189	351	-51	7	420	99	540	0,14	
105	7,1	63	112	-11	19	385	33	564	0,10	
105	13,3	94	160	-17	14	423	51	589	0,10	
105	21,1	189	287	-41	11	525	99	658	0,14	
140	10,1	95	135	-13	17	525	49	702	0,10	
140	13,9	126	174	-18	15	560	66	725	0,11	
140	32,0	252	308	-39	10	704	134	817	0,13	

	1000 -			ı	ı	_
	800 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$		// _*	
Pa)	000 -			*//		
Module réversible, Er (MPa)	600 -		-	-//X		
sible			- <i>//</i>	*		
rével	400 -		*//			4
dule		-/	*	× Satura	tion : 14 %	
ž	000	1			tion : 79 %	
	200 -			- Satura	tion : 19 %	
	0 -				1	_
	() 20	00 4	00 6	00	800
			Contrainte to	otale, q (kPa)		

Teneur e	eau satur	ée :	9,8	%		Saturation	on :	79	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	81	-8	13	80	9	222	0,10
20	4,7	36	176	-22	13	101	19	205	0,13
20	7,1	54	248	-37	13	121	29	217	0,15
35	3,3	32	111	-11	16	140	17	288	0,10
35	7,5	63	215	-28	15	176	33	296	0,13
35	13,1	95	287	-43	14	213	51	331	0,15
70	7,0	63	139	-15	21	280	33	458	0,10
70	15,2	126	255	-37	17	352	67	497	0,15
70	21,5	190	344	-56	14	421	99	551	0,16
105	7,1	63	108	-10	24	385	33	582	0,09
105	9,5	95	159	-16	22	419	49	595	0,10
105	19,9	189	282	-36	17	524	98	670	0,13
140	10,4	95	125	-12	24	526	50	759	0,10
140	13,8	126	166	-17	22	560	66	764	0,10
140	25,9	252	305	-38	16	698	131	827	0,13

	1000 -	E_r	$= k_1 p$	a	$\left(\frac{\theta}{\sigma_a}\right)^k$		$\frac{\tau_{oc}}{p_a}$	H	+1) ^{k₃} =		-	7	ø		
Module réversible, Er (MPa)			aturation aturation aturation	า : 79	%		*	A	-/x	×					-
	100 - 1	0			Cor	ntra		10 tot	0 ale, q (kPa	a)				1	000

Teneur e	eau drain	ée :	2,7	%		Saturation	on :	19	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	18	81	-7	17	80	10	228	0,09
20	3,8	37	173	-21	13	100	19	212	0,12
20	5,6	55	244	-34	12	121	29	225	0,14
35	3,3	32	105	-10	18	141	17	309	0,10
35	6,7	64	208	-25	15	176	34	310	0,12
35	10,2	96	287	-40	14	211	50	336	0,14
70	6,8	64	133	-14	21	281	33	482	0,10
70	13,7	128	248	-30	16	351	67	516	0,12
70	20,7	191	334	-47	14	422	100	573	0,14
105	6,8	64	102	-9	25	386	33	630	0,09
105	10,2	96	155	-16	22	422	50	622	0,10
105	20,6	192	275	-34	17	527	100	695	0,12
140	10,2	97	126	-12	24	527	50	766	0,10
140	13,7	128	165	-17	22	562	67	775	0,10
140	27,6	255	298	-38	16	703	133	856	0,13

1	19/0	120	1,343	-1,582	1,00	10	10
ı	19%	131	1,375	-1,658	0,99	19	15
I	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
I	14%	2,19	0,763	-0,266	0,99	0,027	15
ı	79%	2,26	0,798	-0,375	0,98	0,033	15
ı	19%	2,37	0,805	-0,413	0,98	0,032	15

1,00

1,226 -1,110

Sat.	$\nu_{\rm r}$	σ	n
14%	0,12	0,02	15
79%	0,12	0,02	15
19%	0,11	0,02	15

14%

Conditionnement 10 000 cycles								
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}					
1								
2								

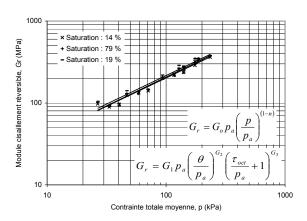
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Joseph Tsafack, ing. Réalisé par : Date : 13 août 2007 Date : 13 août 2007

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-010-07 Type matériau : MG-20 Région : Montérégie Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Cornéenne

PC6 2,1 % 2,79 5,5 % Éprouvette : Porosité : 25 % Densité : Teneur eau optimale : Teneur eau : Masse volumique : 2097 kg/m³ Masse vol. optimale: 2208 kg/m³ Saturation: 14 % Absorption: 0,4 %

Teneur e	eau intiale	e :	2,1	%		Saturation	on :	14	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	69	62	86	97	0,8	3,0
33	40	12	36	135	134	89	90	1,2	3,0
40	61	18	54	174	187	103	96	1,5	3,0
47	35	11	32	92	85	116	125	0,8	3,0
59	71	21	63	159	160	133	132	1,2	3,0
71	107	32	95	207	223	152	141	1,5	3,0
93	70	21	63	113	106	186	200	0,8	3,0
117	140	42	126	192	193	219	218	1,2	3,0
140	210	63	189	249	268	253	236	1,5	3,0
128	70	21	63	90	82	235	256	0,5	3,0
141	108	31	94	127	118	248	267	0,8	3,0
175	210	63	189	204	219	309	288	1,2	3,0
175	105	32	95	108	99	291	320	0,6	3,0
187	140	42	126	137	128	306	328	0,7	3,0
235	284	84	252	230	232	365	362	1,2	3,0

100	00				
œ.	x Satu	ration : 14 %			
₩	+ Satu	ration : 79 %			
호 호	- Satu	ration : 19 %			
ge,					
réversil	00			$\beta = (1 - r)$	$\kappa_o/6G_o$
Module volumétrique réversible, Kr (MPa)		K _r =	$=K_{o}p_{a}\left(\frac{p}{p_{a}}\right)$		
	0		$K_r = K_1 p$	$a\left(\frac{\theta}{p_a}\right)^{K_2}\left(\frac{q}{q}\right)^{K_2}$	$\left(\frac{oct}{p_a} + 1\right)^{K_3}$
	10		100		1000
		Contrain	te totale moyen	ne, p (kPa)	

Teneur e	eau satur	ée :	9,8	%		Saturation	on :	79	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	65	59	92	101	0,7	3,0
34	41	12	36	132	132	91	91	1,2	3,0
40	61	18	54	174	190	103	95	1,5	3,0
47	35	11	32	88	82	121	131	0,8	3,0
59	71	21	63	159	162	133	131	1,2	3,0
71	108	32	95	201	220	158	144	1,5	3,0
93	70	21	63	110	102	193	207	0,8	3,0
117	142	42	126	180	195	234	217	1,2	3,0
140	211	63	190	232	267	272	237	1,5	3,0
128	70	21	63	88	79	239	266	0,5	3,0
140	104	32	95	126	117	250	270	0,7	3,0
175	209	63	189	211	212	299	297	1,2	3,0
175	105	32	95	100	92	315	346	0,6	3,0
187	140	42	126	131	122	321	346	0,8	3,0
233	278	84	252	228	229	368	367	1,2	3,0

Teneur e	eau drain	ée :	2,7	%		Saturation	on :	19	%
р	q	∆р	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	66	59	93	105	0,8	3,0
33	40	12	37	132	129	93	94	1,2	3,0
40	61	18	55	177	185	104	99	1,5	3,0
47	36	11	32	84	77	128	141	0,8	3,0
59	71	21	64	157	156	137	138	1,2	3,0
70	106	32	96	206	218	156	147	1,5	3,0
94	71	21	64	106	98	202	219	0,8	3,0
117	142	43	128	187	185	228	230	1,2	3,0
141	212	64	191	240	254	266	251	1,5	3,0
129	71	21	64	83	74	258	288	0,6	3,0
141	107	32	96	123	114	261	282	0,8	3,0
176	212	64	192	207	207	309	309	1,2	3,0
176	107	32	97	101	92	317	349	0,6	3,0
187	142	43	128	131	122	327	351	0,8	3,0
234	283	85	255	223	224	382	380	1,2	3,0

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
14%	1,73	2,03	0,307	0,96	0,045	0,97	0,037	15
79%	1,79	2,09	0,303	0,95	0,050	0,96	0,045	15
19%	1,83	2,18	0,308	0,94	0,054	0,96	0,045	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
14%	0,91	0,682	0,064	1,00	0,015	15
79%	0,95	0,692	0,017	0,99	0,022	15
19%	0,98	0,728	-0,109	0,99	0,020	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
14%	0,99	0,791	-0,377	0,98	0,032	15
79%	1,03	0,834	-0,506	0,97	0,037	15
19%	1,08	0,831	-0,518	0,98	0,036	15

Note:

Joseph Tsafack, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 13 août 2007

13 août 2007 Date :

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Calcaire

PC7 3,6 % Densité : 2,61 6,7 % Éprouvette : Porosité : 18 % Teneur eau optimale : Teneur eau : Masse volumique : 2146 kg/m³ 1,4 % Masse vol. optimale: 2255 kg/m³ Saturation : 27 % Absorption :

Teneur e	eau intiale	e :	3,6	%		Saturatio	on :	27 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,9	19	81	-15	8	81	10	229	0,19	
20	3,8	37	157	-38	8	101	19	234	0,24	
20	5,7	55	209	-57	7	121	29	262	0,27	
35	3,4	32	99	-19	10	142	17	326	0,19	
35	6,8	64	181	-43	8	176	33	355	0,24	
35	10,3	96	237	-65	8	211	50	406	0,28	
70	6,9	64	127	-24	14	280	34	507	0,19	
70	13,7	128	231	-55	12	352	67	555	0,24	
70	20,7	192	300	-80	10	423	100	640	0,27	
105	6,9	64	92	-16	15	387	33	696	0,17	
105	10,4	96	137	-25	14	421	50	702	0,18	
105	20,7	191	243	-55	12	526	100	786	0,23	
140	10,4	96	113	-19	15	527	50	854	0,17	
140	13,8	128	147	-26	15	562	67	871	0,18	
140	27,8	255	262	-56	12	703	133	976	0,21	

	1200 -		I				7
	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$			/*	
Er (MPa	800 -			*			-
rersible, I	600 -		*	Ž			-
Module réversible, Er (MPa)	400 -	M.			Saturation :		-
2	200 -	A.			Saturation :		-
	0 -) 20	00 4	-00	600		800
	`			otale, q (kPa)		`	

Tene	eur e	au satur	ée :	7,1	%		Saturation	on :	69	%
σ	3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kP	a)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20)	1,9	19	84	-17	8	80	10	221	0,21
20)	3,8	37	174	-46	8	101	19	213	0,27
20)	5,7	55	240	-73	8	121	29	229	0,30
3	5	3,4	32	110	-23	11	141	17	294	0,21
3	5	6,8	65	205	-54	10	176	34	315	0,27
3	5	10,3	97	272	-80	9	213	50	354	0,29
70)	6,9	65	130	-26	13	281	34	498	0,20
70)	13,8	128	232	-57	11	353	67	553	0,25
70)	20,8	192	304	-82	9	422	100	631	0,27
10	15	6,9	64	96	-17	15	386	34	667	0,17
10	15	10,4	96	142	-27	14	421	50	673	0,19
10	15	20,8	191	250	-57	11	527	100	764	0,23
14	0	10,4	96	116	-20	15	528	50	832	0,17
14	0	13,9	128	151	-28	14	562	67	850	0,18
14	0	27,9	255	263	-57	11	704	133	969	0,22

Teneur e	eau drain	ée :	4,1	%		Saturation :			33 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	$\pm /-\Delta \epsilon_{1r}$ θ τ_{oct}		Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,9	18	81	-16	7	80	10	228	0,20	
20	3,8	37	166	-43	11	101	19	221	0,26	
20	5,7	55	228	-67	11	121	29	240	0,29	
35	3,4	32	105	-21	10	141	17	309	0,20	
35	6,8	64	197	-52	11	177	34	327	0,26	
35	10,3	96	264	-77	11	211	50	365	0,29	
70	6,9	64	126	-25	11	282	34	512	0,20	
70	13,8	128	227	-55	11	351	67	565	0,24	
70	20,9	192	294	-80	10	423	100	651	0,27	
105	6,9	64	92	-16	12	386	33	698	0,17	
105	10,4	96	137	-26	11	421	50	698	0,19	
105	20,8	191	245	-56	12	527	100	780	0,23	
140	10,4	96	113	-19	18	526	50	852	0,17	
140	13,9	128	148	-27	16	563	67	864	0,18	
140	27,9	255	262	-57	11	704	133	975	0,22	

0-4	l.	l.	l,	D2	DMOE	_
33%	115	1,562	-1,610	0,99	20	15
69%	104	1,525	-1,436	1,00	15	15
27%	134	1,517	-1,526	1,00	17	15
Sat.	C ₁	C ₂	C ₃	R*	RMSE	n

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
27%	2,53	0,798	-0,301	0,99	0,019	15
69%	2,30	0,844	-0,313	0,99	0,030	15
33%	2,40	0,843	-0,346	0,99	0,028	15

Sat.	$\nu_{\rm r}$	σ	n
27%	0,22	0,04	15
69%	0,23	0,04	15
33%	0,23	0,04	15

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1	24	51	38						
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : Date : 1 mai 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Québec Client : Félix Doucet, SMI Utilisation : Fondation Pétrographie : Calcaire

Densité: 2,613 Absorption: 1,37 % PC7 3,6 % Porosité : 18 % 6,7 % Éprouvette : Teneur eau : Teneur eau optimale : Masse vol. optimale : 2255 kg/m³ Masse volumique : 2146 kg/m³ Saturation : 27 %

Teneur e	eau intiale	e :	3,6	%		Saturation	on :	27 %		
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	50	64	124	96	0,8	3,0	
34	40	12	37	82	130	150	94	1,2	3,0	
40	61	18	55	95	177	192	103	1,5	3,0	
47	36	11	32	61	79	176	137	0,8	3,0	
59	71	21	64	94	149	228	143	1,2	3,0	
70	106	32	96	106	201	301	159	1,5	3,0	
93	71	21	64	79	101	273	213	0,8	3,0	
117	142	43	128	122	191	352	224	1,2	3,0	
141	213	64	192	140	253	458	252	1,5	3,0	
129	71	21	64	61	72	350	298	0,6	3,0	
140	106	32	96	86	108	370	296	0,8	3,0	
175	212	64	191	133	199	479	320	1,2	3,0	
176	107	32	96	75	88	428	366	0,6	3,0	
187	142	43	128	94	116	453	369	0,8	3,0	
234	283	85	255	150	211	566	403	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	$ \begin{array}{c} \times \text{Saturation: } 27 \% \\ + \text{Saturation: } 69 \% \\ - \text{Saturation: } 33 \% \\ \hline \\ K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2 + 1\right)^{K_3} \\ \hline \\ K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3} \\ \hline \end{array} $	
2	10 - 1	$ \begin{array}{c c} & K_r - K_1 p_a \\ \hline & P_a \end{array} $ $ \begin{array}{c c} \hline & P_a \end{array} $ $ \begin{array}{c c} \hline & P_a \end{array} $ $ \begin{array}{c c} \hline & P_a \end{array} $ Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	7,1	7,1 %		Saturation :			69 %	
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	49	68	126	91	0,8	3,0	
34	41	12	37	81	147	152	84	1,2	3,0	
40	61	18	55	94	209	195	88	1,5	3,0	
47	36	11	32	63	89	170	121	0,8	3,0	
59	71	22	65	96	173	224	124	1,2	3,0	
71	107	32	97	112	235	288	137	1,5	3,0	
94	72	22	65	78	104	277	207	0,8	3,0	
118	142	43	128	118	192	362	222	1,2	3,0	
141	213	64	192	139	257	458	248	1,5	3,0	
129	71	21	64	63	75	341	284	0,6	3,0	
140	106	32	96	88	113	364	283	0,8	3,0	
176	212	64	191	135	205	471	311	1,2	3,0	
176	107	32	96	76	90	423	355	0,6	3,0	
187	142	43	128	95	119	449	359	0,8	3,0	
235	283	85	255	149	214	572	398	1,2	3,0	

	1000 -	× Saturation : 27 % + Saturation : 69 % - Saturation : 33 %	
Module cisaillement réversible, Gr (MPa)	100 -	$G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(1-n)}$	
Mod	10 - 1	$G_r = G_1 p_a \left(\frac{\sigma}{p_a} \right) \left(\frac{r_{oct}}{p_a} + 1 \right)$	00

Teneur e	eau drain	ée :	4,1	4,1 %		Saturation	on :	33 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	48	65	127	95	0,8	3,0
34	41	12	37	80	139	154	88	1,2	3,0
40	60	18	55	94	197	194	93	1,5	3,0
47	36	11	32	62	84	173	128	0,8	3,0
59	71	21	64	94	166	229	129	1,2	3,0
70	107	32	96	110	227	293	141	1,5	3,0
94	71	21	64	76	101	283	214	0,8	3,0
117	142	43	128	117	188	366	227	1,2	3,0
141	212	64	192	135	249	472	256	1,5	3,0
129	71	21	64	61	72	353	298	0,6	3,0
140	106	32	96	86	109	374	294	0,8	3,0
176	212	64	191	133	200	480	317	1,2	3,0
175	107	32	96	75	88	430	364	0,6	3,0
188	142	43	128	95	117	451	366	0,8	3,0
235	283	85	255	148	213	577	400	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
27%	2,62	2,21	0,297	0,99	0,022	0,97	0,038 0,050 0,049	15
69%	2,57	2,08	0,275	0,99	0,028	0,95	0,050	15
33%	2,62	2,15	0,279	0,99	0,027	0,95	0,049	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
27%	1,42	0,523	0,528	0,98	0,029	15
69%	1,41	0,503	0,577	0,99	0,024	15
33%	1,43	0,515	0,554	0,99	0,025	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
27%	1,05	0,862	-0,494	0,99	0,026	15
69%	0,94	0,919	-0,511	0,98	0,039	15
33%	0,99	0,916	-0,550	0,98	0,037	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : Date : 1 mai 2008

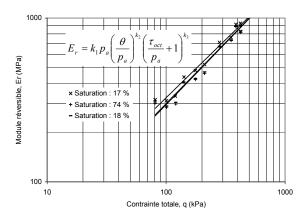
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-012-07 Type matériau : MG-20 Région : Sahuenay-Lac-St-Jean Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Calcaire

PC8 Éprouvette : 2,6 % Porosité : 23 % Densité: 2,65 Teneur eau optimale : 6,5 % Teneur eau : Masse volumique: 2034 kg/m³ Masse vol. optimale: 2180 kg/m³ Saturation : 17 % Absorption : 0,7 %

Teneur e	eau intiale	e :	2,6	%		Saturation :		17 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	58	-8	6	81	10	317	0,14
20	3,8	36	116	-21	5	101	19	313	0,18
20	5,7	54	163	-34	5	120	28	334	0,21
35	3,4	32	74	-11	6	141	17	436	0,15
35	6,9	64	134	-24	5	176	33	478	0,18
35	10,3	96	184	-38	4	211	50	520	0,21
70	6,8	64	91	-13	2	281	34	710	0,14
70	13,8	128	168	-30	3	351	67	761	0,18
70	20,8	191	231	-47	3	422	100	828	0,20
105	6,9	64	70	-9	3	386	33	914	0,13
105	10,3	96	103	-15	1	421	50	929	0,15
105	20,8	191	186	-32	1	526	100	1024	0,17
140	10,3	96	85	-12	8	527	50	1128	0,14
140	13,8	128	111	-16	4	562	67	1155	0,14
140	27,8	255	201	-33	2	703	133	1271	0,16

	1600 -					_
	1400 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$			\dashv
Pa)	1200 -			× :	*	_
Module réversible, Er (MPa)	1000 -			×××		_
ersible	800 -		, <i>K</i>	***		-
ule rév	600 -			x Sai	turation : 17 %	\dashv
Mod	400 -		•	+ Sat	turation: 74 % —— turation: 18 %	\dashv
	200 -	74.		- 5a	luration . 16 %	\dashv
	0 -					
	() 20		400 totale, q (kPa)	600	800

Teneur e	eau satur	ée :	9,1	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	61	-9	6	81	10	303	0,15
20	3,8	37	128	-25	6	101	19	285	0,20
20	5,8	55	183	-42	5	121	29	299	0,23
35	3,4	32	79	-12	5	141	17	407	0,15
35	6,9	64	152	-30	4	176	34	422	0,20
35	10,3	96	209	-46	4	210	50	460	0,22
70	6,9	64	95	-14	1	281	34	675	0,15
70	13,8	128	175	-32	3	352	67	729	0,18
70	20,9	191	234	-48	3	423	100	818	0,20
105	6,9	64	73	-9	10	386	34	885	0,13
105	10,4	96	107	-15	5	422	50	895	0,14
105	20,8	191	190	-36	0	526	100	1007	0,19
140	10,4	96	87	-12	9	527	50	1110	0,13
140	13,9	128	113	-16	5	562	67	1135	0,14
140	27,9	255	201	-34	0	704	133	1268	0,17

RMSE

23

Teneur e	eau drain	ée :	2,7 %			Saturation	on :	18 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	$+/- \Delta ε_{1r}$ θ $τ_{oct}$			$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	59	-9	7	81	10	311	0,15
20	3,9	36	125	-23	5	101	19	291	0,18
20	5,8	55	178	-38	4	120	28	306	0,22
35	3,4	32	80	-12	5	140	17	403	0,14
35	6,9	64	150	-27	3	177	33	427	0,18
35	10,3	96	205	-44	3	211	50	469	0,21
70	6,9	64	96	-14	3	282	34	666	0,14
70	13,9	128	174	-30	3	353	67	732	0,17
70	20,9	191	229	-45	3	423	100	834	0,20
105	6,9	64	72	-9	3	385	33	888	0,13
105	10,4	96	107	-15	0	422	50	900	0,14
105	20,8	191	189	-32	1	526	100	1011	0,17
140	10,4	96	86	-11	6	528	50	1117	0,13
140	13,9	128	113	-16	3	562	67	1134	0,14
140	27,9	255	197	-33	2	702	133	1292	0,17

'-	70	140	2,007	-2,200	1,00	20	10
18	%	146	2,041	-2,065	1,00	19	15
S	at.	k ₁	k ₂	k ₃	R²	RMSE	n
17	%	3,44	0,808	-0,383	0,99	0,022	15
74	%	3,12	0,855	-0,392	0,98	0,032	15
18	%	3,15	0,834	-0,336	0,98	0,033	15

-2,356

1,00

c₂

189

Sat.	$\nu_{\rm r}$	σ	n
17%	0,17	0,03	15
74%	0,17	0,03	15
18%	0,16	0,03	15

Sat.

Conditio	Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ε _p							
1	52	26	39							
2										

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 9 octobre 2008 Date : 9 octobre 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Sahuenay-Lac-St-Jean Client : Félix Doucet, SMI Utilisation : Fondation Pétrographie : Calcaire

Densité: 2,651 Absorption: 0,67 % PC8 2,6 % Porosité : 23 % Teneur eau optimale : 6,5 %

Masse vol. optimale : 2180 kg/m³ Éprouvette : Teneur eau : Masse volumique : 2034 kg/m³ Saturation : 17 %

Teneur	eau intial	e :	2,6	%		Saturation	on :	17 %		
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G_r	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	41	44	148	139	0,8	3,0	
34	40	12	36	75	91	162	133	1,2	3,0	
40	60	18	54	95	131	190	138	1,5	3,0	
47	36	11	32	52	56	205	190	0,8	3,0	
59	71	21	64	87	105	247	203	1,2	3,0	
70	106	32	96	108	148	296	215	1,5	3,0	
94	71	21	64	64	69	333	310	0,8	3,0	
117	142	43	128	108	132	394	323	1,2	3,0	
141	212	64	191	137	186	467	344	1,5	3,0	
129	71	21	64	51	53	416	403	0,6	3,0	
140	106	32	96	73	79	437	405	0,8	3,0	
175	212	64	191	121	146	524	436	1,2	3,0	
176	107	32	96	62	65	516	497	0,6	3,0	
187	142	43	128	80	85	538	506	0,8	3,0	
234	283	85	255	135	156	631	546	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 17 % + Saturation : 74 % - Saturation : 18 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta\left(\frac{q}{p}\right)^2\right)^{K_s}$	
Σ	10 - 1		1000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	9,1	9,1 %			on :	74 %	
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	42	47	145	131	0,8	3,0
34	40	12	37	78	102	156	119	1,2	3,0
40	60	18	55	98	150	185	121	1,5	3,0
47	36	11	32	56	61	194	177	0,8	3,0
59	71	21	64	92	121	232	176	1,2	3,0
70	106	32	96	116	170	277	188	1,5	3,0
94	71	21	64	67	73	320	294	0,8	3,0
117	142	43	128	112	138	381	309	1,2	3,0
141	212	64	191	138	188	462	340	1,5	3,0
129	71	21	64	54	55	396	392	0,6	3,0
141	106	32	96	77	82	417	392	0,8	3,0
175	212	64	191	118	150	539	424	1,2	3,0
176	107	32	96	63	66	506	489	0,6	3,0
187	142	43	128	80	86	530	497	0,8	3,0
235	283	85	255	134	156	635	543	1,2	3,0

Module cisaillement réversible, Gr (MPa)	1000 -	+ Satur	ation : 1: ation : 7: ation : 1:	4 % _	G	. = 0	$G_1 p_a \left(\frac{1}{R} \right)$		$p_a \left(\frac{I}{I}\right)$	a /	<i>G</i> ₃
	10 - 1	0			,		+ OO P a P a P A) _a)	p_a		1000
				Contra	ainte t	totale	moyenne,	p (kPa)			

Teneur e	eau drain	ée :	2,7	%		Saturation :			18 %	
р	q	Δр	Δq	εντ	ε_{sr} K_r G_r			q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	42	45	147	136	0,8	3,0	
34	40	12	36	79	99	154	123	1,2	3,0	
40	60	18	55	102	144	179	126	1,5	3,0	
47	36	11	32	57	61	189	176	0,8	3,0	
59	71	21	64	95	118	224	181	1,2	3,0	
70	106	32	96	117	165	272	194	1,5	3,0	
94	71	21	64	69	73	309	292	0,8	3,0	
118	142	43	128	114	137	375	312	1,2	3,0	
141	212	64	191	139	183	459	348	1,5	3,0	
128	71	21	64	54	54	397	394	0,6	3,0	
141	106	32	96	78	81	412	396	0,8	3,0	
175	212	64	191	125	147	510	432	1,2	3,0	
176	107	32	96	64	65	505	493	0,6	3,0	
187	142	43	128	82	86	524	498	0,8	3,0	
234	283	85	255	132	153	644	554	1,2	3,0	

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
17%	3,03	3,07	0,303	0,97	0,039	0,97	0,040	15
74%	2,91	2,90	0,269	0,97	0,042	0,95	0,050	15
18%	2,88	2,95	0,272	0,97	0,044	0,96	0,048	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
17%	1,65	0,653	0,113	1,00	0,011	15
74%	1,55	0,645	0,210	1,00	0,012	15
18%	1,52	0,650	0,202	1,00	0,016	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
17%	1,49	0,853	-0,524	0,99	0,028	15
74%	1,34	0,913	-0,562	0,98	0,040	15
18%	1,36	0,886	-0,492	0,97	0,040	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 9 octobre 2008 Date : 9 octobre 2008

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-012-07 Type matériau : MG-20 Région : Centre-du-Québec Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Pélite et schiste

2,4 % 2,76 6,0 % Éprouvette : PC9 Porosité : 25 % Densité : Teneur eau optimale : Teneur eau : Masse vol. optimale: 2220 kg/m³ Masse volumique: 2055 kg/m³ Saturation: 15 % 0,5 % Absorption:

Teneur e	Teneur eau intiale :			%		Saturation :			15 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,8	18	113	-14	3	81	10	164	0,12	
20	3,8	37	228	-35	3	101	19	161	0,15	
20	5,7	55	314	-60	2	120	29	174	0,19	
35	3,4	32	148	-19	2	140	17	220	0,13	
35	6,8	64	259	-41	1	176	34	249	0,16	
35	10,3	96	341	-61	0	212	50	282	0,18	
70	6,9	64	160	-21	1	282	34	401	0,13	
70	13,8	128	273	-43	2	352	67	469	0,16	
70	20,8	192	373	-67	1	422	100	514	0,18	
105	6,9	64	119	-14	3	387	33	539	0,12	
105	10,4	96	171	-22	3	422	50	561	0,13	
105	20,8	191	303	-47	4	527	100	630	0,15	
140	10,4	96	139	-16	6	526	50	695	0,12	
140	13,9	128	179	-23	6	562	67	715	0,13	
140	27,9	255	319	-47	5	703	133	799	0,15	

	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$			7
æ	800 -				/ *	\dashv
e, Er (MPa	600 -			×		
Module réversible, Er (MPa)	400 -)	*		
Modu	200 -	¥¥**	•	+ Satura	tion : 15 % tion : 68 % tion : 17 %	
	0 -) 20	00 4	00 6	00	800
			Contrainte to	otale, q (kPa)		

Teneur e	Teneur eau saturée :			9,0 %		Saturation	on :	68 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	130	-17	1	80	10	143	0,13
20	3,8	37	258	-42	3	100	19	143	0,16
20	5,8	55	349	-65	4	121	29	157	0,19
35	3,4	32	163	-22	0	141	17	199	0,13
35	6,9	64	288	-48	4	177	34	224	0,17
35	10,4	96	378	-71	4	212	50	255	0,19
70	6,9	64	177	-24	3	281	34	365	0,13
70	13,9	128	303	-49	5	352	67	423	0,16
70	20,9	192	392	-71	5	423	100	489	0,18
105	6,9	64	125	-15	4	385	33	511	0,12
105	10,4	96	182	-24	6	422	50	527	0,13
105	20,9	191	312	-49	6	527	100	613	0,16
140	10,4	96	147	-18	7	526	50	657	0,12
140	13,9	128	189	-25	7	561	67	680	0,13
140	27,9	255	325	-49	6	702	133	784	0,15

R²

RMSE

0,028

0,029

Teneur e	eneur eau drainée :			2,6 %		Saturation	on :	17 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	130	-16	3	80	10	143	0,12
20	3,8	37	256	-40	1	100	19	143	0,16
20	5,7	55	345	-62	2	121	29	159	0,18
35	3,4	32	162	-21	2	141	17	200	0,13
35	6,8	64	289	-47	0	177	34	223	0,16
35	10,3	96	378	-68	0	211	50	255	0,18
70	6,9	64	178	-23	2	280	34	362	0,13
70	13,8	128	305	-48	0	351	67	420	0,16
70	20,8	192	389	-69	1	423	100	493	0,18
105	6,9	64	127	-15	0	386	33	502	0,12
105	10,4	96	185	-24	1	421	50	519	0,13
105	20,8	191	310	-48	1	527	100	615	0,15
140	10,4	96	146	-17	1	527	50	661	0,12
140	13,9	128	187	-24	1	561	67	686	0,13
140	27,8	255	318	-48	1	703	134	804	0,15

15%	65	1,313	-1,200	1,00	14	15
68%	41	1,277	-1,070	1,00	9	15
17%	37	1,268	-0,907	1,00	7	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
15%	1.73	0.910	-0.330	0.99	0.026	15

-0,301 0,99

17%	1,51	0,932	-0,237	0,99
Sat.	$\nu_{\rm r}$	σ	n	
15%	0,15	0,02	15	
68%	0.15	0.02	15	

1,52 0,949

0.15

Conditionnement 10 000 cycles								
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}					
1	29	33	31					
2								

15

15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 29 octobre 2008 Date :

> Service des matériaux d'infrastructures, Direction du Laboratoire des Chaussées, Ministère des Transports du Québec 2700, rue Einstein, Québec, G1P 3W8, (418) 644-0181

Sat.

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Centre-du-Québec Client : Félix Doucet, SMI Utilisation : Fondation Pétrographie : Pélite et schiste

Densité: 2,758 Absorption: 0,54 % PC9 2,4 % Porosité : 25 % 6 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 2055 kg/m³ Saturation : Masse vol. optimale : 2220 kg/m³ 15 %

Teneur e	eau intiale	e :	2,4	%		Saturation :			15 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	85	84	72	73	0,8	3,0	
34	40	12	37	158	175	77	70	1,2	3,0	
40	60	18	55	195	250	94	73	1,5	3,0	
47	36	11	32	109	111	99	97	0,8	3,0	
59	71	21	64	178	200	121	107	1,2	3,0	
71	107	32	96	219	268	147	120	1,5	3,0	
94	71	21	64	119	121	181	177	0,8	3,0	
117	142	43	128	187	210	228	203	1,2	3,0	
141	212	64	192	240	293	266	218	1,5	3,0	
129	71	21	64	91	88	234	241	0,5	3,0	
141	106	32	96	127	128	251	249	0,8	3,0	
176	212	64	191	210	233	303	273	1,2	3,0	
175	107	32	96	106	103	304	310	0,6	3,0	
187	142	43	128	134	135	320	317	0,8	3,0	
234	283	85	255	225	244	378	348	1,2	3,0	

1000	
=	× Saturation : 15 %
MPa MPa	+ Saturation : 68 %
호 -	- Saturation : 17 %
ole,	
réversik	$\beta = (1-n)K_o/6G_o$
100 .jj	$(-1)^{(1-n)}/(-1)^2$
Module volumétrique réversible, Kr (MPa) 00	$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$
odule	$(\theta)^{K_2}(\tau_{og})^{K_3}$
	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3} - \frac{1}{2}$
10	100 1000
	Contrainte totale moyenne, p (kPa)

Teneur e	eau satur	ée :	9,0 %			Saturation	on :	68 %	
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	97	98	64	63	0,8	3,0
33	41	12	37	174	200	71	61	1,2	3,0
40	61	18	55	220	276	83	66	1,5	3,0
47	36	11	32	119	123	91	88	0,8	3,0
59	71	21	64	191	224	112	96	1,2	3,0
71	107	32	96	236	299	136	107	1,5	3,0
94	71	21	64	129	134	166	161	0,8	3,0
117	142	43	128	205	235	209	182	1,2	3,0
141	213	64	192	251	309	254	207	1,5	3,0
128	71	21	64	95	94	225	228	0,6	3,0
141	106	32	96	134	137	239	233	0,8	3,0
176	212	64	191	214	240	297	265	1,2	3,0
175	107	32	96	111	110	290	293	0,6	3,0
187	142	43	128	140	142	306	301	0,8	3,0
234	283	85	255	227	250	375	340	1,2	3,0

Sr (MPa)	1000 -	× Saturation : 15 % + Saturation : 68 % - Saturation : 17 %
Module cisaillement réversible, Gr (MPa)	100 -	$G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(1-n)}$
Mod	10 - 1	$G_r = G_1 p_a \left(\frac{\sigma}{p_a} \right) \left(\frac{\epsilon_{oct}}{p_a} + 1 \right)$

Teneur	eau drain	ée :	2,6 %			Saturation :			%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	99	97	63	64	0,8	3,0
33	40	12	37	176	197	70	62	1,2	3,0
40	61	18	55	222	271	82	67	1,5	3,0
47	36	11	32	120	122	91	89	0,8	3,0
59	71	21	64	196	224	110	96	1,2	3,0
70	107	32	96	241	297	133	108	1,5	3,0
93	71	21	64	131	134	164	160	0,8	3,0
117	142	43	128	208	235	205	181	1,2	3,0
141	213	64	192	251	305	255	210	1,5	3,0
129	71	21	64	97	95	220	224	0,5	3,0
140	106	32	96	137	139	234	230	0,8	3,0
176	212	64	191	215	239	297	266	1,2	3,0
176	107	32	96	111	109	290	295	0,6	3,0
187	142	43	128	139	140	307	304	0,8	3,0
234	283	85	255	222	244	384	349	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
15%	1,63	1,80	0,186	0,97	0,048	0,98	0,040	15
68%	1,51	1,67	0,140	0,97	0,051	0,98	0,040	15
17%	1,50	1,68	0,138	0,97	0,051	0,98	0,039	15

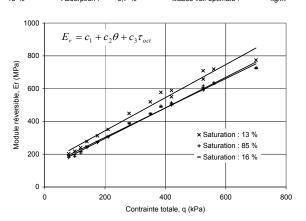
Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
15%	0,79	0,783	0,081	1,00	0,015	15
68%	0,70	0,820	0,107	1,00	0,013	15
17%	0,69	0,816	0,153	1,00	0,014	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
15%	0,77	0,949	-0,456	0,99	0,032	15
68%	0,67	0,988	-0,425	0,99	0,033	15
17%	0,67	0,968	-0,357	0,99	0,035	15

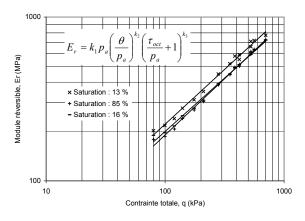
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 29 octobre 2008 Date : 29 octobre 2008

Ministère des Transports


Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-029-09 Type matériau : MG-20 Bas-Saint-Laurent Région : Ferdinand Ciza Client: Utilisation: Fondation Pétrographie : Grès et calcaire

PC10 27 % 2,67 Éprouvette : 2,5 % Porosité : Densité : Teneur eau optimale : Teneur eau : Masse vol. optimale : Masse volumique: 1949 kg/m³ Saturation : 13 % Absorption : 0,7 % kg/m³

Teneur e	eau intiale	e :	2,5	%		Saturatio	on :	13	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	88	-17	12	80	9	203	0,19
20	4,0	36	163	-34	12	100	19	218	0,21
20	6,0	53	222	-51	10	119	28	240	0,23
35	3,5	32	113	-20	15	140	16	278	0,17
35	7,1	63	201	-40	10	175	33	312	0,20
35	10,6	95	269	-60	7	210	50	351	0,22
70	7,1	63	140	-23	12	280	33	449	0,17
70	14,1	126	242	-45	7	350	66	520	0,19
70	21,2	189	343	-74	4	420	99	551	0,22
105	7,1	63	109	-17	14	385	33	577	0,15
105	10,6	95	160	-26	9	420	50	589	0,16
105	21,2	189	287	-53	4	525	99	659	0,18
140	10,6	95	133	-20	9	525	50	709	0,15
140	14,1	126	175	-28	6	560	66	719	0,16
140	28,3	252	325	-58	2	700	132	774	0,18

Teneur eau saturée :			12,4	%		Saturation :		85 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	100	-20	13	80	9	179	0,20
20	4,0	36	191	-45	10	100	19	187	0,23
20	6,1	54	259	-67	8	120	28	207	0,26
35	3,6	32	132	-25	11	140	17	240	0,19
35	7,1	63	234	-51	6	175	33	271	0,22
35	10,7	95	311	-74	3	211	50	305	0,24
70	7,1	63	164	-28	6	280	33	385	0,17
70	14,2	126	284	-55	2	351	66	445	0,20
70	21,3	189	378	-82	1	421	99	500	0,22
105	7,1	63	128	-19	7	385	33	494	0,15
105	10,6	95	185	-29	3	420	50	514	0,16
105	21,3	189	320	-59	1	526	99	592	0,19
140	10,6	95	154	-23	4	525	50	616	0,15
140	14,2	126	198	-30	2	561	66	637	0,15
140	28,4	252	346	-62	1	701	132	729	0,18

R²

0,99

RMSE

Teneur e	eau drain	ée :	2,9 %			Saturation :			16 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	18	94	-16	10	80	9	190	0,17	
20	4,0	36	181	-36	9	100	19	197	0,20	
20	6,0	54	247	-57	8	120	28	217	0,23	
35	3,6	32	127	-21	9	140	17	250	0,16	
35	7,1	63	227	-44	8	175	33	278	0,19	
35	10,6	95	305	-67	7	210	50	311	0,22	
70	7,1	63	161	-24	9	280	33	391	0,15	
70	14,2	126	281	-50	8	350	66	449	0,18	
70	21,3	189	377	-78	7	421	99	502	0,21	
105	7,1	63	129	-18	8	385	33	488	0,14	
105	10,6	95	185	-27	7	420	50	511	0,15	
105	21,3	189	320	-57	7	526	99	592	0,18	
140	10,6	95	157	-21	7	525	50	605	0,13	
140	14,2	126	201	-29	7	560	66	627	0,14	
140	28,4	252	349	-60	8	701	132	722	0,17	

l	16%	124	0,956	-0,383	1,00	12	15
I	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
I	13%	2,30	0,734	-0,255	1,00	0,011	15
ı	85%	1,94	0,715	-0,109	1,00	0,015	15
ı	16%	2,02	0,669	-0,066	0,99	0,015	15

c₂ c₃

1,013 -0,531

143

Sat.	$\nu_{\rm r}$	σ	n
13%	0,19	0,03	15
85%	0,19	0,03	15
16%	0,18	0,03	15

Sat.

13%

Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}						
1	-6	-114	-60						
2	-13	4	-4,5						

15

Note:

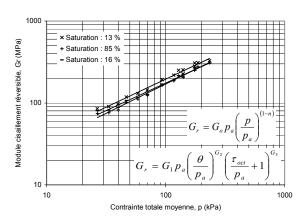
Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : Date : 27 mai 2010

Ministère des Transports

Québec MÉTHODE LC 22-400

Québec DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-029-09 Type matériau : MG-20 Région : Bas-Saint-Laurent Ferdinand Ciza Client: Utilisation: Fondation Pétrographie : Grès et calcaire

PC10 2,5 % 27 % Densité: 2,665 0 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique: 1949 kg/m³ Masse vol. optimale : Saturation : 13 % Absorption: 0,68 % 0 kg/m³

Teneur e	au intiale	e :	2,5	%		Saturation :			%
р	q	Δp	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	55	70	108	85	0,7	3,0
33	40	12	36	96	131	124	90	1,2	3,0
40	59	18	53	120	182	149	98	1,5	3,0
47	35	11	32	74	89	142	118	0,8	3,0
58	70	21	63	122	161	173	130	1,2	3,0
70	105	32	95	149	219	211	144	1,5	3,0
93	70	21	63	94	109	224	193	0,8	3,0
117	140	42	126	152	192	276	219	1,2	3,0
140	210	63	189	195	278	323	226	1,5	3,0
128	70	21	63	76	84	278	250	0,5	3,0
140	105	32	95	109	124	289	254	0,8	3,0
175	210	63	189	181	227	347	278	1,2	3,0
175	105	32	95	93	102	340	308	0,6	3,0
187	140	42	126	120	135	349	311	0,8	3,0
233	280	84	252	209	256	402	329	1,2	3,0

1	000 -	
~		× Saturation : 13 %
MP		+ Saturation : 85 %
- -		- Saturation : 16 %
e,		
ərsit		0 (1) 1/2
réve		$\beta = (1-n)K_o/6G_o$
due	100 -	(1-n) /(2)
iętri		$K = K \cdot p \left(\frac{p}{1-\beta}\right) \cdot \left(\frac{q}{1-\beta}\right)$
Module volumétrique réversible, Kr (MPa)		$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$
e)		(, \K ₂ (\K ₃
Vod.		$V = V \cdot p \left(\theta\right)^{n_2} \left(\tau_{oct} + 1\right)^{n_3} + 1$
~		$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$
	10 -	(14) (14)
	1	0 100 1000
		Contrainte totale moyenne, p (kPa)

Teneur e	au satur	ée :	12,4	%		Saturation	on :	85 %		
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ε_{sr} K_r G_r			q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	59	80	101	75	0,7	3,0	
33	40	12	36	102	157	117	76	1,2	3,0	
40	60	18	54	124	218	144	82	1,5	3,0	
47	35	11	32	83	104	128	101	0,8	3,0	
58	70	21	63	132	190	160	111	1,2	3,0	
70	106	32	95	163	257	194	123	1,5	3,0	
93	70	21	63	108	128	196	164	0,8	3,0	
117	141	42	126	173	226	243	186	1,2	3,0	
140	211	63	189	214	307	296	205	1,5	3,0	
128	70	21	63	89	98	236	214	0,5	3,0	
140	105	32	95	126	143	250	222	0,8	3,0	
175	211	63	189	201	253	313	250	1,2	3,0	
175	105	32	95	109	118	291	269	0,6	3,0	
187	141	42	126	138	152	306	276	0,8	3,0	
234	281	84	252	222	272	379	309	1,2	3,0	

Teneur e	eau drain	ée :	2,9	%		Saturatio	on :	16 %		
р	q	∆р	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	61	73	97	81	0,7	3,0	
33	40	12	36	108	145	110	82	1,2	3,0	
40	60	18	54	133	203	134	88	1,5	3,0	
47	35	11	32	86	98	123	107	0,8	3,0	
58	70	21	63	140	181	150	117	1,2	3,0	
70	105	32	95	171	248	185	127	1,5	3,0	
93	70	21	63	112	124	187	170	0,8	3,0	
117	140	42	126	180	221	234	191	1,2	3,0	
140	211	63	189	221	303	286	208	1,5	3,0	
128	70	21	63	94	98	224	214	0,5	3,0	
140	105	32	95	131	142	242	223	0,8	3,0	
175	211	63	189	207	251	305	251	1,2	3,0	
175	105	32	95	114	118	276	266	0,6	3,0	
187	140	42	126	144	153	293	274	0,8	3,0	
234	281	84	252	229	273	368	308	1,2	3,0	

13% 2,10 1,96 0,354 0,98 0,030 0,98 0,027 85% 1,88 1,70 0,350 0,98 0,028 0,98 0,031 16% 1,83 1,75 0,368 0,99 0,021 0,98 0,026	n		RMSE _{Gr}	R ² _{Gr}	$RMSE_{Kr}$	R ² Kr	n	G _o	K _o	Sat.
85% 1,88 1,70 0,350 0,98 0,028 0,98 0,031	15	1	0,027	0,98	0,030	0,98	0,354	1,96	2,10	13%
169/ 1 93 1 75 0 369 0 00 0 031 0 09 0 036	15	1	0,031	0,98	0,028	0,98	0,350	1,70	1,88	85%
10 /0 1,65 1,75 0,306 0,99 0,021 0,96 0,020	15	1	0,026	0,98	0,021	0,99	0,368	1,75	1,83	16%

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
13%	1,22	0,551	0,214	0,99	0,017	15
85%	1,09	0,457	0,458	0,99	0,017	15
16%	1,03	0,459	0,489	0,99	0,014	15
•						

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
13%	0,97	0,783	-0,380	1,00	0,014	15
85%	0,81	0,781	-0,256	0,99	0,020	
16%	0,86	0,727	-0,221	0,99	0,020	

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 27 mai 2010 Date : 27 mai 2010

Annexe 2 Module réversible des matériaux granulaires de pierres concassées fines

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

C-LTPP Dossier: Type matériau : MG-20 Région : Québec Client : Félix Doucet, SMI Utilisation: Fondation Pétrographie : Calcaire

Éprouvette : PCM1 Teneur eau : 3,8 % Porosité : 21 % Densité: 2,60 Teneur eau optimale : 5.2 % Masse volumique : 2065 kg/m³ Saturation : 24 % Absorption: 1,4 % Masse vol. optimale: 2233 kg/m³

Teneu	r eau intial	e :	3,8	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa) (kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,7	20	80	-16	6	82	10	250	0,19
20	3,5	40	201	-49	4	104	21	200	0,24
20	5,1	60	296	-82	3	125	31	203	0,28
35	3,3	35	116	-25	9	143	18	301	0,21
35	6,5	69	236	-60	6	180	36	291	0,25
35	9,9	102	318	-91	6	216	53	321	0,29
70	6,8	67	138	-30	12	284	35	488	0,21
70	13,6	133	243	-62	11	356	69	547	0,25
70	20,6	198	337	-98	11	428	103	586	0,29
105	6,8	67	97	-20	17	389	35	691	0,20
105	10,3	99	145	-31	15	425	52	685	0,22
105	20,7	197	269	-69	14	533	103	732	0,26
140	10,3	99	117	-24	18	530	52	849	0,21
140	13,8	131	155	-33	17	565	68	846	0,21
140	27,7	261	294	-72	16	709	136	888	0,25

	1200 -						\neg
	1000 -	$E_r = c_1 + \epsilon$	$c_2\theta + c_3\tau_{oct}$				
(MPa)	800 -				××	/ <u>*</u>	
sible, Er	600 -		:	××			
Module réversible, Er (MPa)	400 -		×/	 ,	× Saturatio	on · 24 % —	
Mod	200 -	****	-		+ Saturation	on : 85 %	
	0 -	20	20	100	604		
	() 20		400 totale, q (kP	600 a)	J	800

Teneur e	eau satur	ée :	9,9	%		Saturatio	on :	85 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_r	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,7	20	99	-20	3	82	10	204	0,21	
20	3,5	40	234	-62	3	104	21	173	0,26	
20	5,1	60	331	-101	4	125	31	182	0,30	
35	3,3	35	132	-29	5	143	18	264	0,22	
35	6,6	69	268	-73	5	180	36	258	0,27	
35	10,0	102	354	-108	5	217	53	288	0,30	
70	6,8	67	154	-34	9	284	35	436	0,22	
70	13,7	133	279	-74	9	357	69	476	0,26	
70	20,7	198	366	-108	9	429	103	541	0,29	
105	6,9	67	108	-22	11	389	35	617	0,20	
105	10,3	99	163	-36	11	425	52	610	0,22	
105	20,8	197	294	-76	11	533	103	671	0,26	
140	10,4	99	130	-26	13	529	52	763	0,20	
140	13,9	131	171	-37	13	565	68	769	0,21	
140	27,8	261	310	-78	13	708	136	840	0,25	

	1000 -	E_r	$-\kappa_1 P_a$	$\left(\frac{\theta}{p_a}\right)^k$	12 ($\frac{\tau_{oct}}{p_a}$	+1) k ₃		, ,	×/-	×	<i>[</i> *	
Module réversible, Er (MPa)	100 -		ituration : 8	24 % 35 % -		×	/-/. /-	/ /	/ *				
		0	·			1	00						1000
				Cor	ntrai	nte to	otale, q (kP	a)					

_				.,				00.0/		
I eneur e	eau drain	ée :	4,7	%		Saturation	on :	33 %		
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,7	20	93	-19	4	82	10	216	0,20	
20	3,5	40	229	-60	3	104	21	176	0,26	
20	5,3	60	326	-98	3	125	31	184	0,30	
35	3,4	35	132	-29	6	143	18	263	0,22	
35	6,6	69	268	-72	5	180	36	257	0,27	
35	10,0	102	356	-107	5	217	53	287	0,30	
70	6,8	67	156	-34	8	284	35	430	0,22	
70	13,7	133	285	-75	8	357	69	467	0,26	
70	20,7	198	369	-108	9	428	103	536	0,29	
105	6,9	67	110	-22	11	388	35	606	0,20	
105	10,3	99	166	-36	10	424	52	597	0,22	
105	20,8	197	298	-77	11	533	103	661	0,26	
140	10,4	99	131	-26	12	529	52	753	0,20	
140	13,9	131	173	-37	12	566	68	758	0,21	
140	27.8	261	312	-78	13	709	136	837	0.25	

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
24%	110	1,663	-2,683	0,99	27	15
85%	80	1,505	-2,115	0,99	19	15
33%	84	1,461	-1,996	0,99	19	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
24%	2 33	0 932	-0 647	0.96	0.053	15

24%	2,33	0,932	-0,647	0,96	0,053	15
85%	1,97	0,951	-0,571	0,97	0,047	15
33%	2,00	0,917	-0,531	0,96	0,053 0,047 0,052	15

Sat.	$\nu_{\rm r}$	σ	n
24%	0,24	0,03	15
85%	0,25	0,04	15
33%	0,24	0,04	15

Conditionnement 10 000 cycles								
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}					
1	37	60	49					
2								

Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

14 juin 2002 14 juin 2002 Date: Date:

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : C-LTPP Type matériau : MG-20 Région : Québec Client : Félix Doucet, SMI Pétrographie : Calcaire Utilisation : Fondation

PCM1 3,8 % Porosité : 21 % Densité : 2,6 5,2 % Éprouvette : Teneur eau : Teneur eau optimale : Masse vol. optimale : 2233 kg/m³ Masse volumique : 2065 kg/m³ Saturation : 24 % Absorption : 1,4 %

Teneur e	eneur eau intiale : 3,8 % Saturation :		on :	24	%				
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	49	64	137	105	0,8	3,0
35	44	13	40	103	166	129	80	1,3	3,0
42	65	20	60	131	252	152	79	1,6	3,0
48	38	12	35	67	94	174	124	0,8	3,0
60	75	23	69	117	197	197	116	1,3	3,0
72	112	34	102	136	272	249	125	1,5	3,0
95	74	22	67	79	112	284	201	0,8	3,0
119	146	44	133	119	203	371	218	1,2	3,0
143	218	66	198	141	290	466	227	1,5	3,0
130	74	22	67	57	77	388	287	0,6	3,0
142	110	33	99	82	118	403	281	0,8	3,0
178	218	66	197	131	225	499	291	1,2	3,0
177	109	33	99	69	94	480	352	0,6	3,0
188	145	44	131	89	126	491	349	0,8	3,0
236	289	87	261	149	244	583	357	1,2	3,0

1000		tion : 24 %				
Pa)		tion : 85 %		. 100	<i>j</i>	
<u>₹</u>	<u> </u>	tion : 33 %				
ple,						
e réversi		× ×		ſ.	B = (1-n)	$K_o/6G_o$
Module volumétrique réversible, Kr (MPa)		K_r	$=K_{o}p_{a}$	$\left(\frac{p}{p_a}\right)^{(1-p_a)}$	1 -	$-\beta \left(\frac{q}{p}\right)^2$
Module 10			$K_r =$	$K_1 p_a \left(\frac{1}{I}\right)$	$\left(\frac{\theta}{\rho_a}\right)^{K_2} \left(\frac{\tau}{I}\right)^{K_2}$	$\left(\frac{\partial ct}{\partial a} + 1\right)^{K_3}$
10	10		10	00		1000
		Contrai	inte totale i	moyenne, p	(kPa)	

Teneur e	eau satur	ée :	9,9	9,9 %		Saturation	n :	85	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	58	80	116	85	0,8	3,0
35	44	13	40	110	197	122	68	1,3	3,0
42	65	20	60	130	288	154	70	1,6	3,0
48	38	12	35	73	107	158	108	0,8	3,0
60	75	23	69	122	227	188	101	1,3	3,0
72	112	34	102	139	308	245	110	1,5	3,0
95	74	22	67	87	125	259	179	0,8	3,0
119	147	44	133	132	235	335	188	1,2	3,0
143	218	66	198	150	316	439	209	1,5	3,0
130	74	22	67	64	86	344	257	0,6	3,0
142	110	33	99	92	132	361	250	0,8	3,0
178	218	66	197	142	246	463	266	1,2	3,0
176	109	33	99	77	104	427	318	0,6	3,0
188	145	44	131	98	138	449	316	0,8	3,0
236	289	87	261	155	259	562	336	1,2	3,0

Module cisaillement réversible, Gr (MPa)	1000 -	× Saturation : 24 % $+ \text{Saturation : 85 \%}$ $- \text{Saturation : 33 \%}$ $G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(1-n)}$
Modul	10 - 1	$G_r = G_1 p_a \left(\frac{\theta}{p_a}\right) \left(\frac{\tau_{act}}{p_a} + 1\right)$ 100 1000
		Contrainte totale moyenne, p (kPa)

Teneur e	eau drain	ée :	4,7	%		Saturation	on :	33	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	56	74	120	90	0,8	3,0
35	44	13	40	109	193	123	70	1,3	3,0
42	65	20	60	130	283	154	71	1,6	3,0
48	38	12	35	75	107	155	108	0,8	3,0
60	75	23	69	123	227	186	101	1,3	3,0
72	112	34	102	141	309	241	110	1,5	3,0
95	74	22	67	88	127	255	177	0,8	3,0
119	147	44	133	134	240	330	185	1,2	3,0
143	219	66	198	152	318	433	207	1,5	3,0
129	74	22	67	67	88	334	253	0,6	3,0
141	110	33	99	95	135	350	246	0,8	3,0
178	218	66	197	143	250	459	262	1,2	3,0
176	109	33	99	79	105	419	313	0,6	3,0
189	145	44	131	99	140	442	312	0,8	3,0
236	289	87	261	155	260	560	335	1,2	3,0

Sat.	Κ _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
24%	2,47	2,02	0,252	0,90	0,076	0,90	0,073	15
					0,060			15
33%	2,24	1,78	0,243	0,94	0,059	0,91	0,071	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
24%	1,34	0,725	0,133	0,98	0,031	15
85%	1,20	0,667	0,344	0,99	0,021	15
33%	1,20	0,636	0,400	0,99	0,022	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
24%	0,96	0,975	-0,810	0,95	0,060	15
85%	0,81	1,008	-0,756	0,96	0,055	15
33%	0,82	0,974	-0,721	0,95	0,061	15

Note:

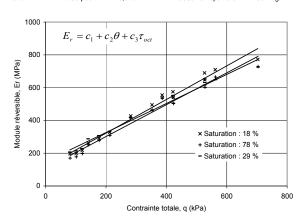
Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : 14 juin 2002 Date : 14 juin 2002

Ministère des Transports

Parisports

MÉTHODE LC 22-400


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-010-07 Type matériau : MG-20 Région : Mauricie Félix Doucet, SMI Pétrographie : Gneiss dioritique Client: Utilisation: Fondation

PCM2 2,1 % Densité : 2,80 Éprouvette : Porosité : 20 % Teneur eau optimale : 5,5 % Teneur eau : Masse volumique : 2249 kg/m³ Masse vol. optimale: 2367 kg/m³ Saturation: 18 % Absorption : 0,5 %

	Teneur e	eau intiale	e :	2,1	%		Saturation	on :	18	%
I	σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ϵ_{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
L	(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
ı	20	1,8	19	96	-14	8	81	10	197	0,15
	20	3,7	37	188	-33	2	101	19	198	0,17
	20	5,6	56	256	-51	1	121	29	217	0,20
ſ	35	3,3	33	125	-19	8	141	17	263	0,15
	35	6,7	65	224	-40	2	177	34	291	0,18
	35	10,1	97	296	-60	1	212	51	328	0,20
ſ	70	6,8	65	151	-23	7	282	34	428	0,15
	70	13,7	129	260	-47	1	352	67	495	0,18
	70	20,6	192	356	-75	2	423	100	541	0,21
ſ	105	6,8	64	116	-17	8	386	34	555	0,14
	105	10,3	96	167	-26	5	422	50	575	0,16
L	105	20,6	192	295	-55	1	527	100	649	0,19
ſ	140	10,3	96	140	-20	5	526	50	690	0,15
	140	13,8	128	181	-28	3	562	67	710	0,15
L	140	27,6	255	331	-60	2	703	133	773	0,18

Teneur e	(kPa) (kPa) (kPa) 20 1,9 11 20 3,9 36 20 5,9 3 35 3,5 33 35 10,5 96 70 7,0 66 70 14,0 12 70 21,0 18 105 7,0 66 105 7,0 6 105 7,0 6 105 7,0 6 105 7,0 6		7,3	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	114	-17	6	81	10	170	0,15
20	3,9	38	212	-38	1	101	20	178	0,18
20	5,9	56	283	-60	0	122	29	198	0,21
35	3,5	33	132	-21	10	142	17	251	0,16
35	7,0	65	235	-44	3	177	34	278	0,19
35	10,5	98	316	-69	3	213	51	308	0,22
70	7,0	65	156	-25	12	282	34	416	0,16
70	14,0	129	278	-53	5	353	67	465	0,19
70	21,0	193	384	-84	6	424	101	503	0,22
105	7,0	65	121	-18	23	386	34	534	0,15
105	10,5	96	178	-28	16	422	50	541	0,16
105	21,0	192	318	-61	10	528	100	603	0,19
140	10,5	97	148	-23	20	527	50	651	0,15
140	14,0	128	193	-31	15	563	67	665	0,16
140	28,0	256	351	-66	8	704	134	729	0,19

	1000 -	E_r	$= k_1 p$	$r_a \left(\frac{e}{p}\right)$	$\left(\frac{\partial}{\partial a}\right)^{k_2}$	$\left(\frac{\tau}{I}\right)$	oct Oa	+1) k3		ž		C .	
Module réversible, Er (MPa)	100 -		aturation aturation aturation	n : 78	% % —								_
		0			Con	train		00 otale, q (kP	a)			1	000

RMSE

19

21

15

15

Teneur	(kPa) (kPa) (kFa) 20 1,9 1: 20 3,9 3: 20 5,9 5 35 3,5 3: 35 7,0 6 70 7,0 6 70 14,0 12 70 21,0 15 105 7,0 6 105 10,5 9 105 20,9 15		3,0	%		Saturation	on :	29	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	88	-11	1	80	10	207	0,13
20	3,9	36	169	-27	0	100	19	215	0,16
20	5,9	54	238	-45	3	120	28	229	0,19
35	3,5	32	112	-16	7	141	17	288	0,14
35	7,0	64	209	-36	6	176	34	307	0,17
35	10,4	96	291	-60	8	212	50	331	0,21
70	7,0	64	155	-23	12	281	34	416	0,15
70	14,0	128	278	-52	10	352	67	461	0,19
70	21,0	192	380	-85	11	423	100	505	0,22
105	7,0	64	118	-17	17	386	34	542	0,14
105	10,5	96	174	-27	13	422	50	553	0,15
105	20,9	191	310	-59	11	527	100	616	0,19
140	10,5	97	153	-23	21	527	51	632	0,15
140	14,0	129	198	-31	19	563	67	649	0,16
140	28,0	256	353	-68	17	704	134	725	0,19

29%	150	1,020	-0,922	0,99	10	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
18%	2,11	0,770	-0,253	0,99	0,019	15
78%	1,94	0,818	-0,340	1,00	0,014	15
29%	2.28	0.681	-0.246	0.99	0.017	15

-1,059

0,99

0,99

Sat.	$\nu_{\rm r}$	σ	n
18%	0,17	0,02	15
78%	0,18	0,02	15
29%	0,17	0,03	15

Sat.

18%

78%

120

109

1,187

1,147 -1,147

Conditio	nnement	10 000 c	ycles
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}
1	21	19	20
2			

Note:

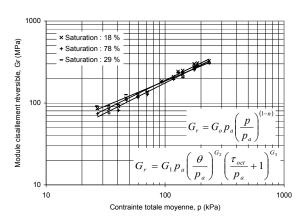
Joseph Tsafack, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par :

Date : Date :

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-010-07 Type matériau : MG-20 Région : Mauricie Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Gneiss dioritique

PCM2 2,1 % 5,5 % Éprouvette : Porosité : 20 % Densité : 2,8 Teneur eau optimale : Teneur eau : Masse volumique : 2249 kg/m³ Masse vol. optimale: 2367 kg/m³ Saturation: 18 % Absorption: 0,5 %

Teneur e	eau intiale	e :	2,1	%		Saturation	on :	18	%
р	q	Δp	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	68	74	93	86	0,8	3,0
34	41	12	37	123	148	102	84	1,2	3,0
40	61	19	56	155	205	119	91	1,5	3,0
47	36	11	33	87	96	126	114	0,8	3,0
59	72	22	65	144	176	150	123	1,2	3,0
71	107	32	97	176	238	184	136	1,5	3,0
94	72	22	65	105	116	206	185	0,8	3,0
117	142	43	129	166	204	258	210	1,2	3,0
141	213	64	192	205	287	312	223	1,5	3,0
129	71	21	64	83	88	259	243	0,6	3,0
141	107	32	96	115	129	279	249	0,8	3,0
176	212	64	192	185	234	344	274	1,2	3,0
175	107	32	96	99	107	324	301	0,6	3,0
187	142	43	128	125	139	343	307	0,8	3,0
234	283	85	255	210	261	405	327	1,2	3,0

Module volumétrique réversible, Kr (MPa)	× Satur + Satur - Satur	ation : 18 % ation : 78 % ation : 29 % ation : 29 %	$=K_{o}p_{a}\left(\frac{p}{p_{a}}\right)$	$\beta = (1-n)K_o/6$	$\frac{1}{2}$
	10			$\frac{\theta}{n} \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)$	1000

Teneur e	eau satur	ée :	7,3	%		Saturation	on :	78	%
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	79	87	82	74	0,8	3,0
34	42	13	38	136	167	92	75	1,2	3,0
41	62	19	56	164	228	114	82	1,5	3,0
47	37	11	33	90	102	123	108	0,8	3,0
59	72	22	65	147	186	149	117	1,2	3,0
71	108	33	98	178	257	183	126	1,5	3,0
94	72	22	65	106	121	204	179	0,8	3,0
118	143	43	129	172	220	250	195	1,2	3,0
141	214	64	193	215	312	299	206	1,5	3,0
129	72	22	65	85	93	254	232	0,6	3,0
141	107	32	96	121	138	265	233	0,8	3,0
176	213	64	192	197	253	325	253	1,2	3,0
176	107	32	97	103	114	313	282	0,6	3,0
188	142	43	128	131	150	327	286	0,8	3,0
235	284	85	256	219	278	390	307	1,2	3,0

Teneur	(kPa) (kPa) (kFa) 27 20 6 33 40 1 40 60 1 47 36 1 59 71 2 71 107 3		3,0	%		Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G_r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	65	66	93	92	0,8	3,0
33	40	12	36	115	131	105	93	1,2	3,0
40	60	18	54	147	189	124	96	1,5	3,0
47	36	11	32	80	85	134	126	0,8	3,0
59	71	21	64	136	164	157	131	1,2	3,0
71	107	32	96	170	234	188	137	1,5	3,0
94	71	21	64	109	119	197	181	0,8	3,0
117	142	43	128	174	220	245	194	1,2	3,0
141	213	64	192	211	310	304	206	1,5	3,0
129	71	21	64	85	90	251	238	0,6	3,0
141	107	32	96	120	134	266	240	0,8	3,0
176	212	64	191	192	246	331	259	1,2	3,0
176	107	32	97	108	117	299	275	0,6	3,0
188	142	43	129	136	153	315	280	0,8	3,0
235	284	85	256	217	281	394	304	1,2	3,0

Sat.	K _o	G_{o}	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
							0,030	
78%	1,80	1,77	0,272	0,97	0,039	0,98	0,032	15
29%	1,90	1,86	0,371	0,98	0,029	0,97	0,031	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
18%	1,00	0,646	0,222	1,00	0,014	15
78%	0,95	0,682	0,168	0,99	0,017	15
29%	1,03	0,564	0,323	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	0,92	0,805	-0,385	0,99	0,023	15
78%	0,84	0,855	-0,477	0,99	0,018	15
29%	1,00	0,713	-0,402	0,99	0,022	15

Note:

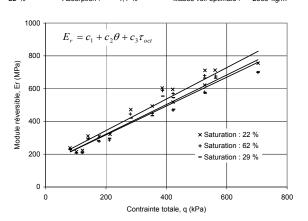
Joseph Tsafack, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par :

Date : Date :

Ministère des Transports

Parisports

MÉTHODE LC 22-400


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-010-07 Type matériau : MG-20 Région : Laurentides Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Dolomie

РСМ3 2,9 % Densité : 2,74 Éprouvette : Porosité : 18 % Teneur eau optimale : 5,5 % Teneur eau : Masse volumique : 2238 kg/m³ Masse vol. optimale: 2365 kg/m³ Saturation: 22 % Absorption : 1,1 %

Teneur e	eau intiale	e :	2,9	%		Saturation	on :	22	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	79	-11	7	81	10	239	0,13
20	3,9	38	175	-29	0	102	20	215	0,17
20	5,9	56	249	-49	6	122	29	223	0,20
35	3,5	33	105	-14	6	140	17	311	0,14
35	7,0	65	210	-36	3	177	34	309	0,17
35	10,5	97	302	-61	7	213	51	322	0,20
70	7,0	65	137	-19	1	282	34	472	0,14
70	14,0	128	260	-45	6	353	67	494	0,17
70	21,0	192	370	-73	7	422	100	518	0,20
105	7,0	64	106	-13	2	386	34	604	0,12
105	10,5	96	161	-22	4	421	50	596	0,14
105	20,9	191	308	-52	6	527	100	622	0,17
140	10,5	96	136	-22	4	528	50	711	0,16
140	14,0	128	180	-29	6	561	67	713	0,16
140	28,0	255	338	-60	7	704	134	755	0,18

Teneur e	eau satur	ée :	6,2	%		Saturation	on :	62	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	19	81	-11	2	82	10	228	0,14
20	3,9	37	175	-30	5	102	19	209	0,17
20	5,9	55	262	-53	7	122	29	209	0,20
35	3,5	33	112	-16	3	143	17	295	0,14
35	6,9	65	234	-43	7	177	34	279	0,18
35	10,4	97	339	-74	9	211	51	286	0,22
70	6,9	65	145	-20	6	281	34	445	0,14
70	13,9	128	286	-51	8	353	67	449	0,18
70	20,9	192	410	-88	10	422	100	468	0,21
105	7,0	64	110	-17	6	387	34	588	0,15
105	10,4	96	168	-28	8	422	50	570	0,17
105	20,9	191	330	-58	9	527	100	579	0,18
140	10,4	97	143	-18	8	527	51	680	0,13
140	13,9	129	190	-27	9	563	67	677	0,14
140	27,9	256	366	-63	9	703	134	698	0,17

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$	-
		× Saturation : 22 % + Saturation : 62 % - Saturation : 29 %	_
	100 - 1	0 100 11 Contrainte totale, q (kPa)	0000

Teneur e	eau drain	ée :	3,5	%		Saturatio	on :	29	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	80	-11	7	82	10	232	0,14
20	3,9	37	177	-31	4	102	19	207	0,17
20	5,8	55	263	-54	8	122	29	208	0,21
35	3,4	32	110	-16	1	141	17	294	0,14
35	6,9	64	228	-41	5	175	34	282	0,18
35	10,4	96	325	-67	8	212	50	297	0,21
70	6,9	66	157	-21	3	284	34	420	0,14
70	13,9	130	298	-53	7	354	68	435	0,18
70	20,9	194	408	-86	10	424	101	475	0,21
105	6,9	65	118	-15	3	388	34	554	0,12
105	10,4	97	178	-24	6	423	51	545	0,13
105	20,9	193	336	-63	8	529	101	573	0,19
140	10,4	97	146	-18	7	527	51	664	0,13
140	13,9	129	195	-27	8	563	68	664	0,14
140	27,9	256	365	-61	8	704	134	703	0,17

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
22%	157	1,270	-2,030	0,99	23	15
62%	147	1,272	-2,423	0,99	20	15
29%	145	1,175	-1,923	0,99	15	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Sat. 22%	k ₁	k ₂ 0,779	k ₃ -0,556	R² 0,97	RMSE 0,033	n 15

-0,538

0,97

0,037

Sat.	ν_{r}	σ	n
22%	0,16	0,03	15
62%	0,17	0,03	15
29%	0,16	0,03	15

0,757

2.32

29%

Conditionnement 10 000 cycles							
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}				
1							
2							

15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 28 septembre 2007 Date : 28 septembre 2007

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-010-07 Type matériau : MG-20 Région : Laurentides Félix Doucet, SMI Client : Utilisation : Fondation Pétrographie : Dolomie

Densité : 2,74 Absorption : 1,1 % РСМ3 2,9 % Porosité : 18 % 5,5 % Éprouvette : Teneur eau : Teneur eau optimale : Saturation: 22 % Masse vol. optimale : 2365 kg/m³ Masse volumique : 2238 kg/m³

Teneur e	eau intiale	e :	2,9	%		Saturation	on :	22 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	58	60	109	105	0,8	3,0
34	42	13	38	117	136	107	92	1,2	3,0
41	61	19	56	150	199	124	93	1,5	3,0
47	36	11	33	77	80	143	137	0,8	3,0
59	72	22	65	139	164	156	132	1,2	3,0
71	108	32	97	179	242	181	134	1,5	3,0
94	72	22	65	100	104	216	208	0,8	3,0
118	142	43	128	170	203	252	211	1,2	3,0
141	213	64	192	224	296	286	216	1,5	3,0
129	71	21	64	80	80	268	269	0,6	3,0
140	107	32	96	117	122	274	262	0,8	3,0
176	212	64	191	204	240	313	266	1,2	3,0
176	107	32	96	91	105	353	305	0,6	3,0
187	142	43	128	121	139	353	306	0,8	3,0
235	283	85	255	219	265	389	321	1,2	3,0

$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$	
10 100 p_a 1000 Contrainte totale moyenne, p (kPa)	0

Teneur e	eau satur	ée :	6,2	%		Saturation	on :	62	%
р	q	Δр	Δq	ϵ_{vr}	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	59	62	105	100	0,8	3,0
34	41	12	37	116	137	105	89	1,2	3,0
41	61	18	55	157	209	116	87	1,5	3,0
48	36	11	33	79	85	138	129	0,8	3,0
59	72	22	65	148	184	147	118	1,2	3,0
70	107	32	97	192	275	169	118	1,5	3,0
94	71	22	65	104	110	206	195	0,8	3,0
118	142	43	128	184	225	233	191	1,2	3,0
141	213	64	192	234	332	273	193	1,5	3,0
129	71	21	64	76	84	282	255	0,6	3,0
141	106	32	96	113	131	284	245	0,8	3,0
176	212	64	191	214	259	298	246	1,2	3,0
176	107	32	97	106	107	306	301	0,6	3,0
188	143	43	129	137	145	314	297	0,8	3,0
234	284	85	256	241	286	354	298	1,2	3,0

Module cisaillement réversible, Gr (MPa)	1000 -	$\begin{array}{c} \times \text{Saturation: } 22 \ \% \\ + \text{Saturation: } 62 \ \% \\ - \text{Saturation: } 29 \ \% \\ \end{array}$	
Mod	10 - 1	$G_r = G_1 p_a \left(\frac{\sigma}{p_a} \right) \left(\frac{r_{oct}}{p_a} + 1 \right)$	1000
		Contrainte totale moyenne, p (kPa)	

Teneur	eau drain	ée :	3,5	%		Saturatio	on :	29 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	57	61	108	102	0,8	3,0
34	41	12	37	115	138	106	88	1,2	3,0
41	61	18	55	154	211	119	86	1,5	3,0
47	36	11	32	79	84	137	128	0,8	3,0
58	71	21	64	147	179	146	120	1,2	3,0
71	107	32	96	191	261	168	123	1,5	3,0
95	73	22	66	114	119	193	185	0,8	3,0
118	144	43	130	193	234	224	185	1,2	3,0
141	214	65	194	236	329	273	196	1,5	3,0
129	72	22	65	89	89	246	246	0,6	3,0
141	107	32	97	130	135	249	240	0,8	3,0
176	213	64	193	211	266	304	241	1,2	3,0
176	108	32	97	110	110	295	295	0,6	3,0
188	143	43	129	142	148	304	292	0,8	3,0
235	284	85	256	242	284	353	301	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
22%	1,97	1,99	0,370	0,93	0,055	0,93	0,053	15
62%	1,87	1,85	0,381	0,91	0,058	0,90	0,062	15
29%	1,83	1,83	0,399	0,95	0,046	0,91	0,058	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
22%	1,14	0,671	-0,112	0,99	0,020	15
62%	1,12	0,677	-0,205	0,99	0,021	15
29%	1,08	0,567	0,090	0,99	0,020	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
22%	1,08	0,810	-0,684	0,97	0,039	15
62%	1,02	0,854	-0,836	0,96	0,043	15
29%	1,01	0,812	-0,720	0,96	0,043	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 28 septembre 2007 Date : 28 septembre 2007

Ministère des Transports

Client:

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Pétrographie : Gneiss granitique et à biotite Utilisation:

Fondation

Saturation :

PCM4 2,9 % Densité : 2,66 4,9 % Éprouvette : Teneur eau : Porosité : 18 % Teneur eau optimale : Masse volumique: 2167 kg/m³ Masse vol. optimale: 2234 kg/m³

24 %

Absorption :

0,9 %

Teneur e	eau intiale	e :	2,9	%		Saturation	on :	24	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	111	-15	8	82	10	168	0,14
20	3,9	37	216	-35	5	100	19	169	0,16
20	5,9	55	292	-56	3	120	29	187	0,19
35	3,5	33	141	-19	5	140	17	230	0,13
35	7,0	65	255	-42	1	176	34	253	0,16
35	10,4	96	337	-65	0	211	50	285	0,19
70	6,9	65	183	-26	4	281	34	358	0,14
70	13,9	129	314	-53	2	353	67	411	0,17
70	20,9	193	413	-83	5	424	101	466	0,20
105	6,9	65	138	-18	4	386	34	469	0,13
105	10,4	97	197	-29	1	423	50	490	0,14
105	20,9	192	340	-59	6	528	100	563	0,17
140	10,4	97	173	-28	2	528	51	563	0,16
140	13,9	129	222	-36	5	563	67	581	0,16
140	27,9	256	385	-71	8	703	134	664	0,18

800 7	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
Er (MPa)			×	*	
Module réversible, Er (MPa) 00 00 10 10 10 10 10 10 10 10 10 10 10		, j	***************************************		
Module 200 -	\$4°	<u> </u>	+ Satura	ation : 24 % ation : 79 % ——— ation : 56 %	_
0 -) 20	10 4	00 6	600	800
		Contrainte t	otale, q (kPa)		

Teneur e	eau satur	ée :	7,6 %			Saturation :		79 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	19	129	-20	6	82	10	146	0,16
20	4,0	37	247	-48	6	102	19	150	0,20
20	5,9	55	336	-76	5	122	29	164	0,22
35	3,5	33	158	-24	6	142	17	207	0,15
35	7,0	65	284	-54	3	177	34	227	0,19
35	10,5	97	385	-84	1	211	50	251	0,22
70	6,9	65	196	-31	3	282	34	333	0,16
70	13,9	129	341	-62	2	352	67	378	0,18
70	20,9	193	454	-97	5	424	101	424	0,21
105	7,0	65	153	-21	3	386	34	424	0,14
105	10,4	97	219	-33	1	423	51	442	0,15
105	20,9	192	376	-74	6	528	100	509	0,20
140	10,4	98	185	-26	1	527	51	526	0,14
140	13,9	129	237	-36	4	564	68	546	0,15
140	28,0	256	412	-74	8	704	134	622	0,18

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $\times \text{ Saturation : 24 \%}$ $+ \text{ Saturation : 79 \%}$ $- \text{ Saturation : 56 \%}$
	100 - 1	100 1000 Contrainte totale, q (kPa)

Teneur e	eau drain	ée :	5,6	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	117	-18	2	80	10	158	0,15
20	3,9	37	233	-42	0	102	19	158	0,18
20	5,9	55	320	-67	0	121	29	171	0,21
35	3,5	33	154	-23	3	142	17	212	0,15
35	7,0	65	281	-52	2	177	34	229	0,18
35	10,5	96	381	-81	2	212	50	253	0,21
70	7,0	65	195	-34	5	283	34	334	0,18
70	14,0	129	342	-67	4	353	67	377	0,20
70	21,0	193	455	-100	5	423	101	423	0,22
105	7,0	65	153	-21	6	387	34	425	0,14
105	10,5	97	220	-33	6	421	50	439	0,15
105	21,0	192	376	-68	6	528	100	509	0,18
140	10,4	97	186	-26	7	528	51	525	0,14
140	14,0	129	237	-35	7	563	68	545	0,15
140	28,0	256	410	-74	7	705	134	625	0,18

п	19/0	00	0,099	-0,570	0,99	12	15
L	56%	93	0,878	-0,534	1,00	10	15
_							
I	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Γ	24%	1,80	0,732	-0,158	0,99	0,016	15
ı	79%	1,58	0,776	-0,197	0,99	0,017	15
ı	56%	1,65	0,729	-0,157	0,99	0,022	15

-0,519 0,99

24% 0,16 0,02 15 79% 0.18 0.03 15	Sat.	$\nu_{\rm r}$	σ	n
79% 0.18 0.03 15	24%	0,16	0,02	15
1070 0,10 0,00 10	79%	0,18	0,03	15
56% 0,17 0,03 15	56%	0,17	0,03	15

Sat. 24%

105

0,934

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ε_{p2}	ϵ_{p}						
1	29	33	31						
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 8 novembre 2007 Date : 8 novembre 2007

Ministère des Transports

Québec MÉTHODE LC 22-400

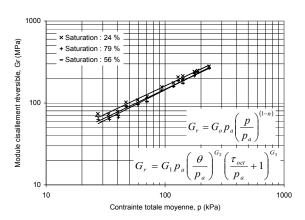
MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-012-07 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Pétrographie : Gneiss granitique et à biotite Client: Utilisation: Fondation

PCM4 2,9 % Densité: 2,657 4,9 % Éprouvette : Porosité : 18 % Teneur eau optimale : Teneur eau : Masse volumique : 2167 kg/m³ 0,86 % Masse vol. optimale: 2234 kg/m³

24 %


Absorption :

Saturation:

Teneur e	eau intiale	e :	2,9	%		Saturation :			24 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	21	6	19	81	84	77	74	0,8	3,0	
33	40	12	37	147	167	83	73	1,2	3,0	
40	61	18	55	180	232	101	78	1,5	3,0	
47	36	11	33	104	107	104	102	0,8	3,0	
59	71	22	65	171	198	126	108	1,2	3,0	
70	107	32	96	208	268	154	120	1,5	3,0	
94	72	22	65	131	139	166	157	0,8	3,0	
118	143	43	129	208	245	207	176	1,2	3,0	
141	213	64	193	248	331	259	194	1,5	3,0	
129	72	22	65	102	104	212	207	0,6	3,0	
141	107	32	97	140	151	230	214	0,8	3,0	
176	212	64	192	223	266	287	240	1,2	3,0	
176	108	32	97	117	134	276	242	0,6	3,0	
188	143	43	129	150	172	288	250	0,8	3,0	
234	284	85	256	243	304	351	280	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	$ \begin{array}{c} \times \text{ Saturation: } 24 \% \\ + \text{ Saturation: } 79 \% \\ - \text{ Saturation: } 56 \% \\ \end{array} $ $ \begin{array}{c} \beta = (1-n)K_o/6G_o \\ \\ K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta \left(\frac{q}{p}\right)^2\right)^{(1-n)} \\ \\ K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a}+1\right)^{K_3} \end{array} $	
	10 - 1		1000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	7,6 %			Saturation :			79 %	
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	21	6	19	88	99	71	63	0,8	3,0	
34	41	12	37	150	197	82	63	1,2	3,0	
41	61	18	55	185	275	99	67	1,5	3,0	
47	36	11	33	110	122	99	90	0,8	3,0	
59	72	22	65	176	226	123	96	1,2	3,0	
70	107	32	97	217	312	148	103	1,5	3,0	
94	72	22	65	134	151	162	144	0,8	3,0	
117	143	43	129	217	268	197	160	1,2	3,0	
141	213	64	193	261	367	246	175	1,5	3,0	
129	72	22	65	110	116	196	186	0,6	3,0	
141	107	32	97	152	168	212	192	0,8	3,0	
176	213	64	192	229	300	279	213	1,2	3,0	
176	108	33	98	133	141	245	230	0,6	3,0	
188	143	43	129	166	182	260	237	0,8	3,0	
235	284	85	256	264	324	324	264	1,2	3,0	

Teneur e	eau drain	ée :	5,6	%		Saturation :			56 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	82	90	75	69	0,8	3,0	
34	41	12	37	148	184	83	67	1,2	3,0	
40	61	18	55	187	258	98	71	1,5	3,0	
47	36	11	33	109	118	100	92	0,8	3,0	
59	72	22	65	178	222	121	97	1,2	3,0	
71	107	32	96	219	308	147	104	1,5	3,0	
94	72	22	65	127	153	171	142	0,8	3,0	
118	143	43	129	208	273	207	158	1,2	3,0	
141	214	64	193	256	370	250	173	1,5	3,0	
129	72	22	65	111	115	194	187	0,6	3,0	
140	107	32	97	155	169	208	191	0,8	3,0	
176	213	64	192	241	296	265	216	1,2	3,0	
176	108	32	97	133	141	244	230	0,6	3,0	
188	143	43	129	167	182	258	237	0,8	3,0	
235	284	85	256	263	322	325	265	1,2	3,0	

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
24%	1,59	1,63	0,302	0,98	0,035	0,99	0,026 0,030 0,032	15
79%	1,49	1,45	0,287	0,98	0,028	0,98	0,030	15
56%	1,51	1,48	0,317	0,98	0,032	0,98	0,032	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
24%	0,82	0,637	0,283	1,00	0,013	15
79%	0,78	0,589	0,382	1,00	0,012	15
56%	0,80	0,574	0,376	1,00	0,015	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
24%	0,79	0,759	-0,284	0,99	0,021	15
79%	0,68	0,827	-0,356	0,99	0,022	15
56%	0,72	0,772	-0,305	0,98	0,028	15

Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date : Date : 8 novembre 2007

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Tuf volcanique

PCM5 3,0 % 25 % Densité : 2,79 5,7 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique : 2096 kg/m³ Saturation : Masse vol. optimale: 2358 kg/m³ 18 % Absorption : 0,9 %

Teneur e	eau intiale	e :	3,0	%		Saturation	on :	18 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	100	-15	8	81	10	186	0,15
20	3,8	37	191	-36	7	100	19	191	0,19
20	5,8	55	257	-53	6	121	29	213	0,21
35	3,4	32	128	-20	10	140	17	253	0,15
35	6,9	64	226	-42	9	176	34	285	0,18
35	10,3	96	302	-63	9	211	50	319	0,21
70	6,9	64	154	-23	14	282	34	417	0,15
70	13,9	128	268	-48	12	352	67	477	0,18
70	20,9	192	363	-74	10	423	100	527	0,20
105	7,0	64	121	-16	16	386	33	530	0,14
105	10,4	96	174	-25	15	421	50	551	0,15
105	20,9	191	303	-53	12	526	100	629	0,17
140	10,4	96	147	-20	17	526	50	655	0,14
140	13,9	128	189	-27	16	562	67	678	0,14
140	27,8	255	339	-57	14	703	133	752	0,17

	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_2\tau$			7
a)	800 -	r -1	2 3 001		/ <u>*</u>	+
ile, Er (MF	600 -					
Module réversible, Er (MPa)	400 -					-
Modu	200 -			+ Satura	tion : 18 % tion : 64 % tion : 19 %	
	0 -) 20	10 41	00 6	00	800
			Contrainte to	otale, q (kPa)		

Teneur e	eau satur	ée :	8,5	%		Saturation	on :	64 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	107	-18	5	80	10	174	0,16
20	3,8	37	203	-40	7	101	19	180	0,20
20	5,7	55	278	-61	7	120	28	197	0,22
35	3,4	32	136	-22	9	140	17	238	0,16
35	6,9	64	241	-46	9	175	34	266	0,19
35	10,3	96	323	-69	9	211	50	297	0,21
70	6,9	64	162	-25	13	282	34	396	0,15
70	13,9	128	282	-51	13	351	67	453	0,18
70	20,8	191	374	-76	12	422	100	511	0,20
105	6,9	64	124	-17	16	387	33	517	0,14
105	10,4	96	179	-26	15	422	50	536	0,15
105	20,9	191	309	-54	13	527	100	617	0,17
140	10,4	96	149	-20	17	527	50	649	0,14
140	13,9	128	192	-28	16	562	67	668	0,14
140	27,9	255	336	-57	13	703	133	760	0,17

	1000 -	E_r	$= k_1 p$	a	$\left(\frac{\theta}{\sigma_a}\right)^k$	2	r_{oct} p_a	$(k_3 - k_3 - k_3 - k_3 - k_3 - k_4)$		*	P	# #	
Module réversible, Er (MPa)	100 -	+ Sa	aturation aturation aturation	n : 64	%		*						_
		0			Cor	ntrai		otale, q (kl	Pa)			1	000

RMSE

18

12

15

15

Teneur e	eau drain	ée :	3,2	%		Saturation	on :	19 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	108	-17	6	81	10	172	0,15
20	3,8	37	210	-39	6	100	19	175	0,19
20	5,8	55	284	-62	6	120	29	193	0,22
35	3,4	32	141	-22	9	141	17	230	0,16
35	6,9	64	249	-48	10	177	34	258	0,19
35	10,4	96	332	-71	9	211	50	290	0,21
70	7,0	64	168	-26	13	282	34	382	0,15
70	14,0	128	289	-52	13	352	67	443	0,18
70	20,9	192	381	-77	12	423	100	502	0,20
105	7,0	64	129	-18	16	387	33	496	0,14
105	10,5	96	185	-28	15	422	50	517	0,15
105	20,9	191	318	-56	14	526	100	599	0,17
140	10,5	96	155	-21	18	526	50	620	0,14
140	14,0	128	200	-29	17	561	67	641	0,14
140	28,0	255	344	-58	14	702	133	741	0,17

1070		1,000	0,007	1,00		
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
18%	2,03	0,753	-0,196	1,00	0,014	15
64%	1,88	0,785	-0,193	0,99	0,019	15
19%	1,82	0,763	-0,130	0,99	0,019	15

-0,792

-0,785

0,99

1,00

c₂

1,127

Sat.	$\nu_{\rm r}$	σ	n
18%	0,17	0,03	15
64%	0,17	0,03	15
19%	0,17	0,03	15

Sat.

18%

64%

117

96

Condition	nnement	10 000 c	ycles
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}
1	11	-1	5
2			

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 24 septembre 2008 Date : 24 septembre 2008

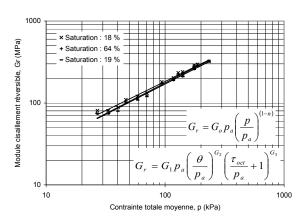
Ministère des Transports

Québec

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Utilisation : Client: Fondation Pétrographie : Tuf volcanique

PCM5 3 % Densité : 2,792 5,7 % Éprouvette : Porosité : 25 % Teneur eau optimale : Teneur eau : Masse volumique : 2096 kg/m³ Masse vol. optimale: 2358 kg/m³ Saturation: 18 % Absorption : 0,9 %

Teneur e	au intial	e :	3,0	%		Saturation	on :	18	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	69	77	89	81	0,8	3,0
33	40	12	37	120	151	101	81	1,2	3,0
40	60	18	55	150	206	121	88	1,5	3,0
47	36	11	32	89	99	122	110	0,8	3,0
59	71	21	64	142	178	151	121	1,2	3,0
70	107	32	96	176	243	182	132	1,5	3,0
94	71	21	64	107	119	200	181	0,8	3,0
117	142	43	128	172	211	249	202	1,2	3,0
141	212	64	192	216	291	296	219	1,5	3,0
129	71	21	64	88	91	242	234	0,6	3,0
140	106	32	96	123	133	259	240	0,8	3,0
175	212	64	191	198	237	322	268	1,2	3,0
175	107	32	96	107	111	300	288	0,6	3,0
187	142	43	128	134	144	317	296	0,8	3,0
234	283	85	255	225	264	377	322	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 18 % + Saturation : 64 % - Saturation : 19 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} \left(1-\beta\left(\frac{q}{p}\right)^2\right)^2$	
Module	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right) \left(\frac{\tau_{oct}}{p_a} + 1\right)$	00
	•	Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	8,5	%		Saturation	on :	64	%
р	q	Δр	Δq	ϵ_{vr}	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	72	83	87	75	0,8	3,0
34	40	12	37	123	163	99	75	1,2	3,0
40	60	18	55	155	226	117	81	1,5	3,0
47	36	11	32	92	105	117	102	0,8	3,0
58	71	21	64	148	192	144	112	1,2	3,0
70	106	32	96	185	262	174	122	1,5	3,0
94	71	21	64	112	125	191	171	0,8	3,0
117	142	43	128	180	223	237	192	1,2	3,0
141	212	64	191	223	300	286	213	1,5	3,0
129	71	21	64	90	94	237	227	0,6	3,0
141	106	32	96	126	137	254	233	0,8	3,0
176	212	64	191	201	242	316	263	1,2	3,0
176	107	32	96	108	113	297	285	0,6	3,0
187	142	43	128	137	146	312	292	0,8	3,0
234	283	85	255	222	262	384	325	1,2	3,0

Teneur e	eau drain	ée :	3,2	%		Saturation	on :	19 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G_r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	75	83	83	75	0,8	3,0
33	41	12	37	131	166	94	74	1,2	3,0
40	61	18	55	160	230	114	79	1,5	3,0
47	36	11	32	97	109	111	99	0,8	3,0
59	71	21	64	154	198	139	108	1,2	3,0
70	107	32	96	189	268	170	120	1,5	3,0
94	71	21	64	117	130	184	165	0,8	3,0
117	142	43	128	185	227	231	188	1,2	3,0
141	213	64	192	227	306	281	209	1,5	3,0
129	71	21	64	93	98	228	218	0,6	3,0
141	106	32	96	130	142	245	225	0,8	3,0
175	212	64	191	207	249	307	255	1,2	3,0
175	107	32	96	113	118	284	273	0,6	3,0
187	142	43	128	142	152	300	280	0,8	3,0
234	283	85	255	228	268	373	317	1,2	3,0

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	
18%	1,84	1,84	0,309	0,98	0,028	0,98	0,027	15
64%	1,78	1,76	0,285	0,98	0,032	0,98	0,031	15
19%	1,72	1,71	0,284	0,98	0,029	0,98	0,027 0,031 0,029	15 15 15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
18%	0,99	0,591	0,288	1,00	0,013	15
64%	0,95	0,599	0,304	1,00	0,010	15
19%	0,91	0,593	0,355	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	0,88	0,798	-0,333	0,99	0,019	15
64%	0,81	0,836	-0,332	0,99	0,024	15
19%	0,78	0,811	-0,267	0,99	0,025	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 24 septembre 2008 Date : 24 septembre 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Pétrographie : Grès lithique Client: Utilisation: Fondation

РСМ6 3,8 % 19 % Densité : 2,58 6,0 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique : 2103 kg/m³ Saturation : Masse vol. optimale: 2275 kg/m³ 25 % Absorption : 1,6 %

Teneur eau intiale :			3,8	%	Saturation :		on :	25 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	146	-26	6	81	10	128	0,18
20	3,8	37	281	-53	5	101	19	131	0,19
20	5,7	55	381	-74	4	120	29	144	0,19
35	3,4	32	193	-27	6	141	17	169	0,14
35	6,8	65	335	-57	4	177	34	193	0,17
35	10,3	96	444	-90	3	212	50	217	0,20
70	6,9	64	236	-33	6	281	34	274	0,14
70	13,8	128	396	-66	4	351	67	323	0,17
70	20,8	192	542	-103	3	423	100	353	0,19
105	6,9	64	186	-23	7	386	33	345	0,13
105	10,4	96	265	-36	6	421	50	362	0,14
105	20,8	191	457	-75	4	526	100	417	0,16
140	10,4	96	224	-29	7	527	50	431	0,13
140	13,9	128	287	-40	6	562	67	446	0,14
140	27,9	255	510	-83	3	704	134	501	0,16

600 -	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			7
(MPa)				¥	
réversible, Er					
9 200 -				tion : 25 %	
ž				tion : 79 %	
0 -	2 4 ·			tion : 35 %	
(20	0 4	00 6	00	800
		Contrainte t	otale, q (kPa)		

Teneu	Teneur eau saturée :		8,6	%	Saturation: 79 %		%		
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa	ı) (kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	20	205	-34	2	81	10	95	0,17
20	3,8	37	342	-68	4	102	19	109	0,20
20	5,8	55	445	-100	3	120	29	124	0,22
35	3,4	33	221	-35	3	142	17	148	0,16
35	6,9	64	379	-72	3	177	34	170	0,19
35	10,3	96	497	-107	2	212	50	194	0,21
70	6,9	64	259	-39	3	282	34	248	0,15
70	13,8	128	444	-80	1	351	67	289	0,18
70	20,8	192	576	-116	1	423	100	333	0,20
105	6,9	64	198	-26	4	385	33	323	0,13
105	10,4	96	283	-41	2	420	50	338	0,15
105	20,8	191	483	-84	0	526	100	395	0,17
140	10,4	96	237	-32	3	526	50	406	0,14
140	13,8	128	303	-44	2	562	67	423	0,14
140	27,8	256	529	-90	1	703	134	483	0,17

Pa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$
Module réversible, Er (MPa)		× Saturation : 25 % + Saturation : 79 % - Saturation : 35 %
	100 - 1	0 100 1000 Contrainte totale, q (kPa)

RMSE

Teneur e	Teneur eau drainée :			4,7 % Sa		Saturatio	aturation:		%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	174	-28	0	81	10	108	0,16
20	3,8	37	320	-59	1	102	19	116	0,18
20	5,8	55	424	-87	1	121	29	130	0,21
35	3,4	33	214	-32	2	141	17	152	0,15
35	6,9	65	371	-66	1	176	34	175	0,18
35	10,4	97	488	-99	1	213	50	198	0,20
70	6,9	65	257	-37	3	281	34	251	0,14
70	13,9	128	438	-75	1	351	67	293	0,17
70	20,8	192	574	-112	1	422	100	334	0,20
105	6,9	64	198	-26	5	385	34	324	0,13
105	10,4	96	282	-40	3	422	50	341	0,14
105	20,9	191	479	-80	0	526	100	399	0,17
140	10,4	97	237	-31	5	527	51	408	0,13
140	13,9	129	303	-42	2	562	67	424	0,14
140	27,9	256	521	-86	1	703	134	491	0,17

79%	55	0,701	-0,334	0,99	10	15
35%	62	0,686	-0,276	1,00	8	15
Sat.	k₁	k ₂	k₂	R ²	RMSE	n
ŭ.	К	r ₂	K3	11	INVIOL	- 11
25%	1,36	0,716	-0,115	1,00	0,015	15
		-				

-0,364

0,99

c₂

Sat.	v _r	σ	n
25%	0,16	0,03	15
79%	0,17	0,03	15
35%	0,16	0,03	15

Sat.

Conditionnement 10 000 cycles							
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ε _p				
1	106	19	63				
2							

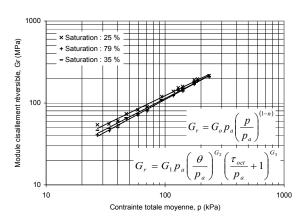
Note:

Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 3 octobre 2008 Date : 3 octobre 2008

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Grès lithique

РСМ6 3,8 % Densité: 2,583 6 % Éprouvette : Porosité : 19 % Teneur eau optimale : Teneur eau : Masse volumique : 2103 kg/m³ Masse vol. optimale : 2275 kg/m³ Saturation: 25 % Absorption : 1,6 %

Teneur eau intiale :		3,8	%		Saturation :		25	%	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	94	115	66	54	0,8	3,0
34	41	12	37	175	223	70	55	1,2	3,0
40	61	18	55	233	304	79	60	1,5	3,0
47	36	11	32	138	147	78	74	0,8	3,0
59	71	22	65	221	261	97	82	1,2	3,0
71	107	32	96	264	356	121	90	1,5	3,0
94	71	21	64	169	179	127	120	0,8	3,0
117	142	43	128	265	308	161	139	1,2	3,0
141	213	64	192	336	430	190	148	1,5	3,0
129	71	21	64	139	140	154	153	0,6	3,0
140	106	32	96	192	201	166	159	0,8	3,0
175	212	64	191	307	355	208	179	1,2	3,0
176	107	32	96	166	169	194	191	0,6	3,0
187	142	43	128	208	218	205	196	0,8	3,0
235	283	85	255	345	395	247	215	1,2	3,0

le, Kr (MPa)	1000 -	× Saturation : 25 %	
Module volumétrique réversible, Kr (MPa)	100 -	$\beta = (1 - n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)$) = -
Module	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$ 0 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	8,6	%		Saturation	on :	79	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	7	20	137	160	48	41	0,8	3,0
34	41	12	37	207	273	60	46	1,2	3,0
40	61	18	55	245	363	75	51	1,5	3,0
47	36	11	33	151	170	72	64	0,8	3,0
59	71	21	64	235	301	91	71	1,2	3,0
71	107	32	96	284	403	113	80	1,5	3,0
94	71	21	64	181	199	118	108	0,8	3,0
117	142	43	128	284	349	150	122	1,2	3,0
141	212	64	192	344	461	186	139	1,5	3,0
128	71	21	64	145	149	147	143	0,6	3,0
140	106	32	96	201	216	159	148	0,8	3,0
175	212	64	191	315	378	202	168	1,2	3,0
175	107	32	96	173	180	186	179	0,6	3,0
187	142	43	128	216	232	198	185	0,8	3,0
234	283	85	256	349	413	244	206	1,2	3,0

Teneur e	eau drain	ée :	4,7	%		Saturation	on :	35	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	$\Delta q/\Delta p$
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	119	134	52	46	0,8	3,0
34	41	12	37	202	253	61	49	1,2	3,0
40	61	18	55	249	341	74	54	1,5	3,0
47	36	11	33	149	164	73	66	0,8	3,0
59	72	22	65	238	292	91	74	1,2	3,0
71	107	32	97	290	391	111	82	1,5	3,0
94	72	22	65	184	196	117	110	0,8	3,0
117	142	43	128	289	342	148	125	1,2	3,0
141	213	64	192	350	457	183	140	1,5	3,0
128	71	21	64	147	149	146	144	0,6	3,0
141	107	32	96	202	214	158	149	0,8	3,0
175	212	64	191	318	373	200	171	1,2	3,0
176	107	32	97	175	179	184	181	0,6	3,0
187	143	43	129	219	230	196	186	0,8	3,0
234	284	85	256	348	405	245	211	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
25%	1,21	1,23	0,332	0,98	0,034	0,99	0,024 0,020 0,021	15
79%	1,11	1,10	0,241	0,99	0,023	0,99	0,020	15
35%	1,12	1,14	0,275	0,99	0,025	0,99	0,021	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
25%	0,67	0,537	0,357	0,99	0,018	15
79%	0,57	0,614	0,387	0,99	0,020	15
35%	0,58	0,591	0,386	1,00	0,011	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
25%	0,59	0,768	-0,254	0,99	0,017	15
79%	0,48	0,862	-0,279	1,00	0,010	15
35%	0,51	0,812	-0,236	1,00	0,016	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 3 octobre 2008 Date :

Ministère des Transports

Québec

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Canton-de-l'Est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Cornéenne

PCM7 2,4 % 22 % Densité : 2,74 5,5 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique: 2145 kg/m³ Saturation : Masse vol. optimale: 2320 kg/m³ 18 % Absorption : 0,6 %

Teneur e	eau intiale	e :	2,4	%		Saturation	on :	18	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	107	-17	5	81	10	173	0,16
20	3,8	37	208	-39	7	101	19	177	0,19
20	5,8	55	285	-61	8	121	29	192	0,21
35	3,4	32	141	-23	7	141	17	229	0,17
35	6,9	64	248	-47	9	177	34	260	0,19
35	10,3	96	335	-72	10	212	50	288	0,22
70	6,9	64	173	-28	9	282	34	372	0,16
70	13,9	128	299	-57	11	352	67	428	0,19
70	20,9	192	419	-91	12	422	100	457	0,22
105	7,0	64	141	-21	10	386	33	455	0,15
105	10,4	96	200	-36	11	421	50	478	0,18
105	20,9	191	349	-66	13	526	100	547	0,19
140	10,4	96	168	-25	12	527	50	575	0,15
140	13,9	128	216	-34	12	561	67	593	0,16
140	27,9	255	393	-73	13	703	133	649	0,19

800 7	F.				
- 009 g	$E_r = C_1 +$	$c_2\theta + c_3\tau_{oct}$	×,*	<u> </u>	
sible, Er (M		××	*		
Module réversible, Er (MPa) 00 00				ion : 18 % ion : 85 % ———	
				ion : 41 %	
0 +) 20	0 4	00 60	00	 800
		Contrainte to	otale, q (kPa)		

Teneur e	eau satur	ée :	9,1	%		Saturatio	on :	85	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	138	-24	9	80	10	135	0,18
20	3,8	37	254	-54	9	101	19	145	0,21
20	5,7	55	342	-83	10	120	29	160	0,24
35	3,4	32	166	-30	8	141	17	195	0,18
35	6,8	64	291	-62	11	177	34	221	0,21
35	10,3	96	388	-93	12	212	50	248	0,24
70	6,9	64	198	-35	11	281	34	326	0,18
70	13,8	128	343	-75	13	351	67	374	0,22
70	20,8	192	462	-111	14	422	100	415	0,24
105	6,9	64	156	-24	12	386	33	412	0,16
105	10,4	96	222	-38	13	422	50	431	0,17
105	20,8	191	384	-76	14	527	100	497	0,20
140	10,4	96	189	-30	14	526	50	512	0,16
140	13,9	128	241	-40	14	562	67	532	0,17
140	27,8	255	426	-83	15	703	134	600	0,20

Module réversible, Er (MPa)	E	$S_r = k_1 p$ Saturation Saturation	on : 18 %	6 +	$(\frac{\tau_{oct}}{p_a})$	+1) 1 -			*	
ŏ 10	0 10			Contra		00 otale, q (k	Pa)		1	000

RMSE

0,99

Teneur e	eau drain	ée :	4,7	%		Saturatio	on :	41	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	129	-23	9	81	10	144	0,18
20	3,8	37	244	-53	11	100	19	150	0,22
20	5,7	55	331	-84	12	121	29	165	0,25
35	3,4	32	160	-29	10	141	17	202	0,18
35	6,9	64	286	-64	12	177	34	225	0,22
35	10,3	96	390	-101	14	212	50	247	0,26
70	6,9	64	195	-35	12	282	34	330	0,18
70	13,8	128	351	-77	14	351	67	365	0,22
70	20,8	192	485	-126	15	423	100	395	0,26
105	6,9	64	157	-26	13	386	33	407	0,16
105	10,4	96	227	-40	14	421	50	422	0,18
105	20,8	191	404	-88	15	526	100	473	0,22
140	10,4	96	195	-32	14	527	50	495	0,16
140	13,9	128	250	-44	15	562	67	513	0,18
140	27,8	255	449	-100	15	703	134	569	0,22

	0070		0,0.0	0,02.	0,00		
L	41%	97	0,834	-0,682	0,99	15	15
_							
E	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Γ	18%	1,86	0,717	-0,181	0,99	0,016	15
ı	85%	1,52	0,776	-0,175	1,00	0,012	15
ı	41%	1,61	0,745	-0,244	1,00	0,013	15

0,938 -0,683

Sat.	$\nu_{\rm r}$	σ	n
18%	0,18	0,02	15
85%	0,20	0,03	15
41%	0,21	0,03	15

Sat.

18%

Condition	nnement	10 000 c	ycles
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}
1	63	53	58
2			

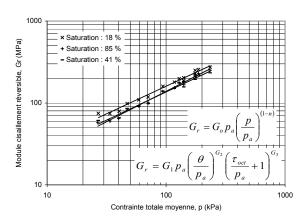
Note:

Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 21 octobre 2008 Date : 21 octobre 2008

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-20 Région : Canton-de-l'Est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Cornéenne

РСМ7 2,4 % 22 % Densité: 2,736 5,5 % Éprouvette : Porosité : Teneur eau optimale : Teneur eau : Masse volumique : 2145 kg/m³ Masse vol. optimale: 2320 kg/m³ Saturation: 18 % Absorption: 0,55 %

Teneur e	Teneur eau intiale :		2,4	%		Saturation	on :	18	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	73	83	85	75	0,8	3,0
34	41	12	37	129	165	95	74	1,2	3,0
40	61	18	55	163	231	112	79	1,5	3,0
47	36	11	32	95	110	114	98	0,8	3,0
59	71	21	64	153	197	140	109	1,2	3,0
71	107	32	96	190	271	169	118	1,5	3,0
94	71	21	64	116	134	185	160	0,8	3,0
117	142	43	128	185	238	230	180	1,2	3,0
141	212	64	192	237	340	270	188	1,5	3,0
129	71	21	64	99	108	216	198	0,6	3,0
140	106	32	96	129	157	248	203	0,8	3,0
175	212	64	191	216	277	294	230	1,2	3,0
176	107	32	96	118	128	273	250	0,6	3,0
187	142	43	128	148	167	289	256	0,8	3,0
234	283	85	255	248	310	343	274	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	$\begin{array}{c} \times \ \text{Saturation}: 18 \ \% \\ + \ \text{Saturation}: 85 \ \% \\ - \ \text{Saturation}: 41 \ \% \\ \end{array}$	
ridue	100 -	$(n)^{(1-n)}/((a)^2)$	
volumétr		$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$	
Module	40	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$	
	10 - 1	0 100 100	0
		Contrainte totale moyenne, p (kPa)	

Teneur eau saturée :			9,1	%		Saturation	on :	85	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	89	108	70	57	0,8	3,0
34	41	12	37	146	205	84	60	1,2	3,0
40	60	18	55	176	284	104	64	1,5	3,0
47	36	11	32	106	131	102	83	0,8	3,0
59	71	21	64	167	235	129	91	1,2	3,0
71	107	32	96	203	321	158	100	1,5	3,0
94	71	21	64	128	155	167	139	0,8	3,0
117	142	43	128	193	278	221	154	1,2	3,0
141	212	64	192	240	382	266	167	1,5	3,0
129	71	21	64	107	120	200	178	0,6	3,0
141	106	32	96	147	173	217	184	0,8	3,0
176	212	64	191	232	307	274	207	1,2	3,0
175	107	32	96	129	145	249	221	0,6	3,0
187	142	43	128	161	188	266	228	0,8	3,0
234	283	85	255	259	339	329	251	1,2	3,0

Teneur e	eau drain	ée :	4,7	%		Saturation	on :	41	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	84	101	74	61	0,8	3,0
33	41	12	37	139	198	88	62	1,2	3,0
40	61	18	55	163	277	112	66	1,5	3,0
47	36	11	32	102	126	105	86	0,8	3,0
59	71	21	64	159	233	135	92	1,2	3,0
71	107	32	96	188	327	171	98	1,5	3,0
94	71	21	64	124	154	173	140	0,8	3,0
117	142	43	128	197	285	217	150	1,2	3,0
141	213	64	192	233	408	274	157	1,5	3,0
129	71	21	64	106	122	201	175	0,6	3,0
140	106	32	96	147	178	217	179	0,8	3,0
175	212	64	191	228	328	279	194	1,2	3,0
176	107	32	96	131	151	246	213	0,6	3,0
187	142	43	128	163	196	263	218	0,8	3,0
234	283	85	255	249	366	342	233	1,2	3,0

18% 1,69 1,61 0,336 0,98 0,031 0,98 0,026 85% 1,53 1,39 0,281 0,99 0,025 0,99 0,026 41% 1,57 1,37 0,321 0,99 0,017 0,98 0,031	n	RMSE _{Gr}	R ² _{Gr}	RMSE _{Kr}	R ² Kr	n	G _o	K _o	Sat.
85% 1,53 1,39 0,281 0,99 0,025 0,99 0,026	15	0,026	0,98	0,031	0,98	0,336	1,61	1,69	18%
l	15	0,026	0,99	0,025	0,99	0,281	1,39	1,53	85%
41% 1,57 1,37 0,321 0,99 0,017 0,98 0,031	15	0,031	0,98	0,017	0,99	0,321	1,37	1,57	41%

	K ₁		K ₃			
18%	0,93	0,578	0,288	1,00	0,014	15 15 15
85%	0,80	0,571	0,448	0,99	0,021 0,023	15
41%	0,84	0,512	0,560	0,99	0,023	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	0,80	0,754	-0,308	0,99	0,021	15
85%	0,64	0,829	-0,333	0,99	0,018	15
41%	0,68	0,801	-0,438	0,99	0,020	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 21 octobre 2008 Date : 21 octobre 2008

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Saguenay-Lac-St-Jean Félix Doucet, SMI Client: Utiliastion: Fondation Pétrographie : Gabbro et anorthosite

РСМ8 2,4 % Densité : 2,83 5,1 % Éprouvette : Teneur eau : Porosité : 19 % Teneur eau optimale : Masse volumique : 2284 kg/m³ Masse vol. optimale: 2420 kg/m³ Saturation : 24 % Absorption : 0,4 %

Teneur e	eau intiale	e :	2,4	%		Saturation	on :	24 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	74	-12	2	80	10	248	0,16
20	3,8	37	147	-27	5	100	19	249	0,18
20	5,7	55	202	-42	6	120	29	272	0,21
35	3,4	32	101	-16	5	140	17	320	0,16
35	6,8	65	177	-33	6	176	34	365	0,19
35	10,3	96	235	-50	6	212	50	410	0,21
70	6,9	65	124	-20	6	282	34	523	0,16
70	13,8	128	210	-39	7	352	67	611	0,19
70	20,8	192	286	-61	7	422	100	671	0,21
105	7,0	64	98	-14	5	387	33	654	0,15
105	10,4	96	140	-22	7	421	50	687	0,16
105	20,9	191	238	-45	7	528	100	802	0,19
140	10,4	96	119	-18	6	527	50	813	0,15
140	13,9	128	151	-24	7	563	67	851	0,16
140	27,9	255	267	-49	7	704	134	956	0,18

	1200 -			I	1	_
	1000 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$		×	
Er (MPa)	800 -				<i>/</i> ·	
ersible, E	600 -					
Module réversible, Er (MPa)	400 -		3		ition : 24 %	_
Š	200 -	A CONTRACTOR OF THE PARTY OF TH			tion : 83 % ition : 39 %	_
	0 -) 20	00 4	00 6	500	800
	`			otale, q (kPa)		550

Teneur e	eau satur	ée :	7,4	%		Saturation	on :	83	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	89	-16	10	81	10	210	0,18
20	3,8	37	168	-36	10	101	19	219	0,22
20	5,8	55	228	-55	10	121	29	241	0,24
35	3,4	32	113	-21	10	141	17	288	0,18
35	6,8	64	197	-42	10	175	34	326	0,21
35	10,3	96	260	-62	9	213	50	370	0,24
70	6,9	64	135	-23	9	281	34	477	0,17
70	13,8	128	231	-47	9	351	67	554	0,20
70	20,8	192	307	-71	8	423	100	624	0,23
105	6,9	64	106	-17	9	387	33	605	0,16
105	10,4	96	151	-26	9	421	50	634	0,17
105	20,8	191	257	-51	9	528	100	743	0,20
140	10,4	96	129	-20	9	527	50	750	0,16
140	13,9	128	164	-28	10	562	67	783	0,17
140	27,9	256	285	-56	9	703	134	897	0,20

Module réversible, Er (MPa)	1000	× Sat	P_a	3 % —	$\left(\frac{ au_{oct}}{p_a}\right)$	+1) 1 =			
	100 ·	0		Contr		00 otale, q (kP	a)		1000

Teneur e	eau drain	ée :	3,7	%		Saturatio	Saturation :		%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	91	-15	6	80	10	205	0,17
20	3,8	37	171	-35	7	101	19	215	0,21
20	5,7	55	228	-52	7	121	29	240	0,23
35	3,4	32	115	-20	6	141	17	283	0,17
35	6,9	64	200	-41	7	177	34	322	0,20
35	10,3	96	265	-61	7	212	50	364	0,23
70	6,9	64	139	-23	6	281	34	465	0,17
70	13,8	128	235	-47	7	353	67	545	0,20
70	20,8	192	312	-69	7	422	100	616	0,22
105	6,9	64	108	-17	5	385	33	591	0,16
105	10,4	96	154	-26	6	422	50	625	0,17
105	20,8	191	261	-51	7	526	100	732	0,19
140	10,4	96	130	-20	5	526	50	742	0,16
140	13,9	128	165	-28	6	563	67	777	0,17
140	27,9	255	285	-55	7	703	134	897	0,19

83%	124	1,252	-0,532	0,99	19	15
39%	119	1,236	-0,447	1,00	16	15
Sat.	k₁	k ₂	k ₃	R²	RMSE	n
out.		2	3	- ' '		
24%	2,60	0,706	-0,101	0,99	0,019	15

-0,638 0,99

39%	2,22	0,742	-0,077	1,00	0,01
Sat.	$\nu_{\rm r}$	σ	n		Cond
24%	0,18	0,02	15		No.
83%	0,20	0,03	15		1

0.03

1,324

n	Conditio	nnement	10 000 c	ycles
5	No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}
5	1	31	12	22
5	2			

15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 4 novembre 2008 Date : 4 novembre 2008

> Service des matériaux d'infrastructures, Direction du Laboratoire des Chaussées, Ministère des Transports du Québec 2700, rue Einstein, Québec, G1P 3W8, (418) 644-0181

39%

0.19

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Saguenay-Lac-St-Jean Félix Doucet, SMI Client : Utiliastion : Fondation Pétrographie : Gabbro et anorthosite

PCM8 2,4 % Porosité : 19 % Densité: 2,826 5,1 % Éprouvette : Teneur eau : Teneur eau optimale : Masse vol. optimale : 2420 kg/m³ Masse volumique : 2284 kg/m³ Saturation: 24 % Absorption: 0,4 %

Teneur e	au intial	e :	2,4 %			Saturation :			24 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	51	57	121	107	0,8	3,0	
33	40	12	37	94	116	130	105	1,2	3,0	
40	61	18	55	119	163	154	113	1,5	3,0	
47	36	11	32	69	78	157	138	0,8	3,0	
59	71	22	65	110	140	196	154	1,2	3,0	
71	107	32	96	136	190	237	169	1,5	3,0	
94	71	22	65	84	96	256	225	0,8	3,0	
117	142	43	128	131	166	326	257	1,2	3,0	
141	213	64	192	165	231	389	276	1,5	3,0	
129	71	21	64	70	75	307	285	0,6	3,0	
140	106	32	96	96	108	334	297	0,8	3,0	
176	212	64	191	149	189	428	338	1,2	3,0	
176	107	32	96	83	91	387	354	0,6	3,0	
188	142	43	128	103	116	415	367	0,8	3,0	
235	283	85	255	169	211	504	404	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 24 % + Saturation : 83 % - Saturation : 39 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta\left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$	
M	10 - 1		10
		Contrainte totale moyenne, p (kPa)	

Teneur e	Feneur eau saturée : 7,4 %			%		Saturation	on :	83	%
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	56	70	111	89	0,8	3,0
34	41	12	37	96	137	129	90	1,2	3,0
40	61	18	55	117	189	156	97	1,5	3,0
47	36	11	32	72	89	151	122	0,8	3,0
58	71	21	64	113	160	190	134	1,2	3,0
71	107	32	96	136	215	236	149	1,5	3,0
94	71	21	64	88	106	243	203	0,8	3,0
117	142	43	128	137	186	312	230	1,2	3,0
141	213	64	192	165	252	387	254	1,5	3,0
129	71	21	64	72	82	295	261	0,6	3,0
140	106	32	96	99	118	322	271	0,8	3,0
176	212	64	191	154	206	412	310	1,2	3,0
176	107	32	96	88	99	367	324	0,6	3,0
187	142	43	128	109	128	394	335	0,8	3,0
234	283	85	256	173	227	492	375	1,2	3,0

Module cisaillement réversible, Gr (MPa) 000 00	× Saturation : 24 % + Saturation : 83 % - Saturation : 39 %	$G_r = G_o p_a$	
10	10 Cor	$G_r = G_1 p_a \left(\frac{\theta}{p_a}\right)^{G_2} \left(\frac{1}{2}\right)^{G_2}$ 100 ntrainte totale moyenne, p (kPa)	(Pa)

Teneur	Teneur eau drainée : 3,7 %			%		Saturatio	on :	39 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	61	71	103	88	0,8	3,0
34	41	12	37	101	137	122	89	1,2	3,0
40	61	18	55	125	187	146	98	1,5	3,0
47	36	11	32	75	90	144	121	0,8	3,0
59	71	21	64	118	160	181	134	1,2	3,0
71	107	32	96	143	217	224	148	1,5	3,0
94	71	21	64	92	108	233	199	0,8	3,0
118	142	43	128	142	188	301	228	1,2	3,0
141	213	64	192	174	254	367	252	1,5	3,0
128	71	21	64	75	84	286	256	0,6	3,0
141	106	32	96	102	119	313	268	0,8	3,0
175	212	64	191	159	208	399	306	1,2	3,0
175	107	32	96	89	100	360	321	0,6	3,0
188	142	43	128	110	128	390	333	0,8	3,0
234	283	85	255	174	227	489	376	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
24%	2,39	2,32	0,323	0,98	0,032	0,99	0,026	15
83%	2,27	2,07	0,296	0,99	0,025	0,99	0,025	15
39%	2,19	2,06	0,286	0,99	0,026	0,99	0,023	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
24%	1,27	0,571	0,375	1,00	0,014	15
83%	1,22	0,545	0,470	1,00	0,015	15
39%	1,14	0,577	0,444	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
24%	1,12	0,743	-0,232	0,99	0,023	15
83%	0,96	0,798	-0,254	0,99	0,020	15
39%	0,95	0,785	-0,214	0,99	0,020	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : Date : 4 novembre 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Mnicouagan Félix Doucet, SMI Client: Utiisation: Fondation Pétrographie : Granite

РСМ9 2,5 % 18 % Densité : 2,62 5,5 % Éprouvette : Teneur eau : Porosité : Teneur eau optimale : Masse volumique : 2144 kg/m³ Saturation : Masse vol. optimale: 2200 kg/m³ 23 % Absorption : 0,6 %

Teneur eau intiale :			2,5	%		Saturation :			23 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,8	19	105	-15	2	81	10	178	0,15	
20	3,7	37	210	-36	0	100	19	176	0,17	
20	5,6	55	287	-55	1	121	29	192	0,19	
35	3,4	32	144	-21	2	141	17	225	0,15	
35	6,8	64	254	-44	1	177	34	254	0,17	
35	10,2	96	344	-68	2	212	50	280	0,20	
70	6,8	64	180	-26	2	281	34	359	0,15	
70	13,7	128	309	-54	2	353	67	415	0,17	
70	20,7	192	425	-84	4	422	100	452	0,20	
105	6,9	64	147	-19	3	387	33	437	0,13	
105	10,3	96	208	-30	1	420	50	461	0,14	
105	20,7	191	353	-61	3	527	100	540	0,17	
140	10,4	96	174	-24	2	528	50	555	0,14	
140	13,9	128	222	-32	0	561	67	577	0,15	
140	27,8	255	395	-68	4	704	133	646	0,17	

800 7			I		_
ି e 000 -	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$		/×	
sible, Er (MPa		*_*	* **	/ +	
Module réversible, Er (MPa) 00 00		***		ion : 23 % ion : 92 % ———	
	××××××××××××××××××××××××××××××××××××××			ion : 39 %	
0 -1) 20		00 60 otale, q (kPa)	00	800

Teneur e	eneur eau saturée :			%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	148	-27	4	81	10	126	0,18
20	3,8	37	272	-58	1	100	19	135	0,21
20	5,8	55	365	-88	0	120	29	150	0,24
35	3,4	33	183	-32	3	140	17	178	0,18
35	6,9	64	314	-65	0	177	34	205	0,21
35	10,4	96	420	-99	2	211	50	229	0,23
70	6,9	64	218	-36	2	281	34	295	0,17
70	13,9	128	373	-73	2	353	67	344	0,20
70	20,9	192	504	-112	3	422	100	380	0,22
105	7,0	64	175	-26	3	386	33	366	0,15
105	10,4	96	248	-40	1	422	50	385	0,16
105	20,9	191	424	-81	3	527	100	450	0,19
140	10,4	96	212	-32	2	526	50	455	0,15
140	13,9	128	270	-43	0	561	67	474	0,16
140	28,0	255	469	-89	4	703	134	544	0,19

IPa)	1000 -	$E_r =$	$= \kappa_1 P_a$	$\left(\frac{\theta}{p_a}\right)^{k_2}$	$\left(\frac{\tau_{oct}}{p_a}\right)$	+1) k3 =		*/	<
Module réversible, Er (MPa)		+ Sa	turation : 2 turation : 9 turation : 3	3 % 2 % —	*	/x /f	×		
	100 - 1	0		Cont		00 otale, q (kPa	a)		1000

RMSE

13

13

15

15

Teneur	eau drain	ée :	3,9	%		Saturatio	on :	39	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,7	19	145	-22	8	80	10	131	0,15
20	3,7	37	255	-47	3	101	19	145	0,19
20	5,7	55	341	-71	0	120	29	161	0,21
35	3,4	33	171	-27	5	142	17	190	0,16
35	6,8	64	301	-56	1	177	34	214	0,19
35	10,3	96	403	-84	1	211	50	239	0,21
70	6,9	64	211	-32	2	282	34	305	0,15
70	13,8	128	365	-66	2	351	67	350	0,18
70	20,8	192	488	-100	4	423	100	393	0,21
105	6,9	64	169	-23	3	385	33	380	0,14
105	10,4	96	240	-36	1	421	50	400	0,15
105	20,8	191	409	-73	3	527	100	467	0,18
140	10,3	96	202	-28	1	526	50	476	0,14
140	13,8	128	258	-39	1	561	67	497	0,15
140	27,8	255	446	-80	4	702	133	572	0,18

39%	84	0,780	-0,312	1,00	10	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
23%	1,83	0,680	-0,099	0,99	0,020	15
92%	1,40	0,735	-0,095	1,00	0,010	15
39%	1,48	0,725	-0,089	1,00	0,009	15

-0,458

0,99

0,99

Sat.	ν_{r}	σ	n
23%	0,16	0,02	15
92%	0,19	0,03	15
39%	0,17	0,02	15

Sat.

23%

92%

112

80

0,883

0,746 -0,281

Conditio	nnement	10 000 c	ycles
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}
1	21	-13	4
2			

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 17 décembre 2008 Date : 17 décembre 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Mnicouagan Félix Doucet, SMI Fondation Client: Utiisation: Pétrographie : Granite

РСМ9 2,5 % Porosité : 18 % Densité: 2,616 5,5 % Éprouvette : Teneur eau : Teneur eau optimale : Masse vol. optimale : 2200 kg/m³ Masse volumique : 2144 kg/m³ Saturation : Absorption: 0,59 % 23 %

Teneur eau intiale :			2,5	%		Saturation :			23 %		
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp		
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)				
27	20	6	19	74	80	84	78	0,8	3,0		
33	41	12	37	138	164	89	75	1,2	3,0		
40	61	18	55	176	228	104	80	1,5	3,0		
47	36	11	32	102	110	106	98	0,8	3,0		
59	71	21	64	166	199	129	108	1,2	3,0		
71	107	32	96	208	275	154	117	1,5	3,0		
94	71	21	64	127	137	169	156	0,8	3,0		
118	142	43	128	202	242	212	177	1,2	3,0		
141	212	64	192	256	339	249	188	1,5	3,0		
129	71	21	64	108	111	198	193	0,6	3,0		
140	106	32	96	148	159	216	201	0,8	3,0		
176	212	64	191	231	276	275	230	1,2	3,0		
176	107	32	96	126	131	254	244	0,6	3,0		
187	142	43	128	157	170	271	252	0,8	3,0		
235	283	85	255	259	309	329	275	1,2	3,0		

Module volumétrique réversible, Kr (MPa)	1000 -	+ Satur	ation : 2: ation : 9: ation : 3:	9%	-	 $\left(\frac{p}{p_a}\right)^{(1-\frac{1}{2})}$	-n) /	$1-\beta$	$\frac{1}{p} \left(\frac{q}{p}\right)^2$	
Moc	10 -				-	 $= K_1 p_a \left(-\frac{1}{2} \right)$	$\left(\frac{\theta}{p_a}\right)$	$\frac{\tau_{oct}}{p_a}$	+1	
	1	0		Contra	ainte	00 moyenne, į	o (kPa)			1000

Teneur e	Teneur eau saturée :			%		Saturation :			92 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	21	6	19	93	117	67	53	0,8	3,0	
33	41	12	37	156	220	79	56	1,2	3,0	
40	61	18	55	188	302	97	61	1,5	3,0	
47	36	11	33	119	144	91	76	0,8	3,0	
59	71	21	64	184	253	117	85	1,2	3,0	
70	107	32	96	223	346	144	93	1,5	3,0	
94	71	21	64	145	170	148	126	0,8	3,0	
118	142	43	128	226	297	189	144	1,2	3,0	
141	212	64	192	281	411	227	155	1,5	3,0	
129	71	21	64	122	134	174	159	0,6	3,0	
141	106	32	96	168	193	190	166	0,8	3,0	
176	212	64	191	261	337	244	189	1,2	3,0	
175	107	32	96	148	162	217	198	0,6	3,0	
187	142	43	128	184	209	232	204	0,8	3,0	
234	283	85	255	292	372	292	229	1,2	3,0	

Pa)	1000 -	× Saturation : 23 % + Saturation : 92 %
<u>اد</u>		- Saturation : 39 %
e,		
Module cisaillement réversible, Gr (MPa)	100 -	$G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(1-n)}$ $G_r = G_1 p_a \left(\frac{\theta}{p_a}\right)^{G_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{G_3}$
	10 -	$(p_a)(p_a)$
	1	100 1000
		Contrainte totale moyenne, p (kPa)

Teneur	eau drain	ée :	3,9	%	Saturation :			39	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	100	112	63	57	0,8	3,0
34	41	12	37	160	202	77	61	1,2	3,0
40	61	18	55	200	275	92	67	1,5	3,0
47	36	11	33	118	132	92	82	0,8	3,0
59	71	21	64	189	238	114	90	1,2	3,0
70	107	32	96	235	324	137	99	1,5	3,0
94	71	21	64	146	162	147	132	0,8	3,0
117	142	43	128	233	288	183	148	1,2	3,0
141	212	64	192	288	392	222	163	1,5	3,0
128	71	21	64	122	128	175	167	0,6	3,0
140	106	32	96	168	184	190	174	0,8	3,0
176	212	64	191	263	321	242	198	1,2	3,0
175	107	32	96	146	154	220	209	0,6	3,0
187	142	43	128	181	198	237	216	0,8	3,0
234	283	85	255	287	351	297	243	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
23%	1,59	1,60	0,349	0,98	0,031	0,98	0,027 0,022 0,019	15
92%	1,37	1,27	0,307	0,99	0,021	0,99	0,022	15
39%	1,37	1,35	0,304	0,99	0,022	0,99	0,019	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
23%	0,86	0,545	0,366	1,00	0,013	15
92%	0,74	0,520	0,489	0,99	0,017	15
39%	0,72	0,568	0,411	1,00	0,012	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
23%	0,80	0,720	-0,233	0,99	0,024	15
92%	0,59	0,791	-0,248	1,00	0,015	15
39%	0,64	0,769	-0,229	1,00	0,014	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 17 décembre 2008 Date : 17 décembre 2008

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-029-09 Type matériau : MG-20 Région : Laval Félix Doucet Pétrographie : Calcaire et schiste Client: Utilisation: Fondation

PCM10 3,4 % 17 % Éprouvette : Porosité : Densité: 2,59 Teneur eau optimale : Teneur eau : Masse volumique : 2145 kg/m³ Masse vol. optimale : Saturation : 21 % Absorption : 1,7 % kg/m³

Teneur e	eau intiale	e :	3,4	%		Saturatio	on :	21	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	127	-21	0	80	9	141	0,16
20	4,0	36	243	-53	2	100	19	147	0,22
20	6,0	53	322	-81	2	119	28	166	0,25
35	3,5	32	151	-26	1	140	16	208	0,17
35	7,1	63	262	-59	1	175	33	241	0,22
35	10,6	95	337	-87	2	210	50	281	0,26
70	7,1	63	160	-28	3	280	33	395	0,17
70	14,1	126	271	-60	1	350	66	465	0,22
70	21,2	189	369	-93	4	420	99	513	0,25
105	7,1	63	119	-18	9	385	33	532	0,15
105	10,6	95	173	-30	3	420	50	548	0,17
105	21,2	189	302	-65	3	525	99	626	0,21
140	10,6	95	140	-21	7	525	50	676	0,15
140	14,1	126	181	-30	2	560	66	696	0,17
140	28,3	252	325	-67	4	700	132	776	0,21

	1000 -	F = c + c	$c_2\theta + c_3\tau_{oct}$			
a)	800 -	$E_r = C_1 + C_2$	$C_2\theta + C_3t_{oct}$		/*	
le, Er (MF	600 -		×	×××		
Module réversible, Er (MPa)	400 -					_
Modul	200 -			+ Satura	tion : 21 % tion : 73 % tion : 30 %	
	0 -	***				
	() 20		00 6 otale, q (kPa)	00	800

Teneur e	eau satur	ée :	7,5	%		Saturation	on :	73	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
21	2,0	18	124	-26	5	83	9	142	0,21
21	4,0	36	251	-61	0	103	19	142	0,25
21	6,0	53	337	-93	3	122	28	158	0,27
35	3,6	32	160	-30	1	140	17	196	0,19
35	7,1	63	289	-71	1	175	33	218	0,24
35	10,6	95	371	-102	2	210	50	255	0,27
70	7,1	63	177	-32	3	280	33	356	0,18
70	14,2	126	309	-71	1	350	66	408	0,23
70	21,3	189	392	-101	3	420	99	483	0,26
105	7,1	63	128	-19	6	385	33	491	0,15
105	10,6	95	188	-34	3	420	50	503	0,18
105	21,3	189	321	-71	2	525	99	589	0,22
140	10,6	95	149	-23	5	525	50	634	0,16
140	14,2	126	194	-34	2	560	66	650	0,17
140	28,4	252	329	-71	4	701	132	766	0,22

Module réversible, Er (MPa)	1000 -		aturation aturation	1 a ($\frac{\theta}{p_a}$) a : 21 % a : 73 % a : 30 %		$rac{ au_{oct}}{p_a}$	+1) 1 2	1		f
	100 - 1	0		(Contra		00 otale, q (k	(Pa)		1000

RMSE

19

15

0,99

1,00

Teneur e	eau drain	ée :	4,1	%		Saturation	on :	30	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	119	-21	4	80	9	150	0,17
20	4,0	36	243	-57	1	100	19	146	0,23
20	6,0	53	328	-87	4	119	28	163	0,26
35	3,5	32	153	-28	2	140	17	206	0,18
35	7,1	63	280	-65	2	175	33	226	0,23
35	10,6	95	362	-95	4	210	50	261	0,26
70	7,1	63	174	-30	3	280	33	363	0,17
70	14,2	126	304	-68	2	350	66	415	0,22
70	21,3	189	387	-97	5	420	99	488	0,25
105	7,1	63	128	-19	8	385	33	495	0,15
105	10,6	95	188	-33	3	420	50	503	0,17
105	21,3	189	320	-70	4	526	99	592	0,22
140	10,6	95	150	-23	6	525	50	633	0,15
140	14,2	126	194	-33	2	560	66	650	0,17
140	28,3	252	330	-70	5	701	132	764	0,21

30	%	54 1,	171 -0,	775 1	,00 ′	10 1	5
Sa	at.	k ₁	k ₂ ł	(₃	R² RN	ISE i	ı
21	% 1	,61 0,	945 -0,	319 1,	,00 0,	018 1	5
73	% 1	,49 0,	925 -0,	245 0	,99 0,	025 1	5
30	% 1	,58 0.	880 -0,	218 0	,99 0,	028 1	5

-1,107

c₂ 1,285

1,198 -0,823

58

43

Sat.	ν_{r}	σ	n
21%	0,20	0,04	15
73%	0,21	0,04	15
30%	0,21	0,04	15

Sat.

21% 73%

Conditionnement 10 000 cycles								
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}					
1	-30	-65	-48					
2								

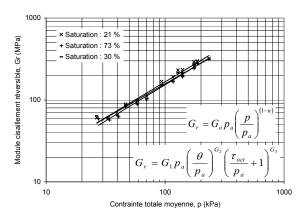
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 9 septembre 2010 Date : 9 septembre 2010

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-029-09 Type matériau : MG-20 Région : Laval Félix Doucet Pétrographie : Calcaire et schiste Client: Utilisation: Fondation

PCM10 17 % Densité: 2,585 0 % Éprouvette : 3,4 % Porosité : Teneur eau optimale : Teneur eau : Masse volumique : 2145 kg/m³ Masse vol. optimale : Saturation : 21 % Absorption : 1,72 % 0 kg/m³

Teneur e	eau intial	e :	3,4	%		Saturation	on :	21	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	85	98	70	61	0,7	3,0
33	40	12	36	136	197	87	60	1,2	3,0
40	59	18	53	159	269	112	66	1,5	3,0
47	35	11	32	99	118	106	89	0,8	3,0
58	70	21	63	144	214	146	98	1,2	3,0
70	105	32	95	164	282	193	112	1,5	3,0
93	70	21	63	104	125	202	168	0,8	3,0
117	140	42	126	152	220	277	191	1,2	3,0
140	210	63	189	183	308	345	205	1,5	3,0
128	70	21	63	83	91	253	231	0,5	3,0
140	105	32	95	114	135	278	234	0,8	3,0
175	210	63	189	172	245	366	257	1,2	3,0
175	105	32	95	97	108	324	293	0,6	3,0
187	140	42	126	121	141	349	298	0,8	3,0
233	280	84	252	191	261	439	322	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 21 % + Saturation : 73 % - Saturation : 30 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta\left(\frac{q}{p}\right)^2\right)^{k_2}$ $K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$	
_	10 -	$\left(\begin{array}{c} R_r - R_1 P_a \\ P_a \end{array}\right) \left(\begin{array}{c} P_a \end{array}\right)$	Ц
	1		1000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	7,5	%		Saturation	on :	73	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
28	20	6	18	72	100	82	59	0,7	3,0
34	40	12	36	128	208	93	57	1,2	3,0
41	59	18	53	152	286	117	62	1,5	3,0
47	35	11	32	100	127	105	83	0,8	3,0
58	70	21	63	148	240	142	88	1,2	3,0
70	105	32	95	168	315	187	100	1,5	3,0
93	70	21	63	113	139	186	151	0,8	3,0
117	140	42	126	167	253	252	166	1,2	3,0
140	210	63	189	189	329	333	192	1,5	3,0
128	70	21	63	90	99	235	213	0,5	3,0
140	105	32	95	121	148	260	213	0,8	3,0
175	210	63	189	178	262	354	241	1,2	3,0
175	105	32	95	103	115	308	274	0,6	3,0
187	140	42	126	127	152	332	277	0,8	3,0
234	281	84	252	187	267	449	315	1,2	3,0

Teneur e	eau drain	ée :	4,1	%		Saturation	on :	30	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	77	93	77	64	0,7	3,0
33	40	12	36	129	200	92	59	1,2	3,0
40	59	18	53	154	277	115	64	1,5	3,0
47	35	11	32	98	121	107	87	0,8	3,0
58	70	21	63	149	230	141	92	1,2	3,0
70	105	32	95	173	304	183	104	1,5	3,0
93	70	21	63	113	136	186	154	0,8	3,0
117	140	42	126	168	248	250	170	1,2	3,0
140	210	63	189	193	323	327	195	1,5	3,0
128	70	21	63	89	98	235	215	0,5	3,0
140	105	32	95	123	147	257	214	0,8	3,0
175	211	63	189	180	260	351	243	1,2	3,0
175	105	32	95	104	115	305	274	0,6	3,0
187	140	42	126	128	152	328	277	0,8	3,0
234	281	84	252	190	267	442	315	1,2	3,0

oat.	1,0	00	- 11	· · Kr	TUVIOLK	i v Gr	THIOLGE	- 11
21%	1,80	1,67	0,147	0,99	0,030	0,98	0,038	15
73%	1,75	1,54	0,172	0,98	0,034	0,97	0,042	15
30%	1,75	1,58	0,192	0,99	0,028	0,97	0,042	15
							7	

Sat.	r ₁	r ₂	r\3	R-	RIVISE	n
21%	0,84	0,697	0,499	0,99	0,029	15
73%	0,85	0,594	0,679	0,99	0,020	15
30%	0,84	0,605	0,639	1,00	0,017	15

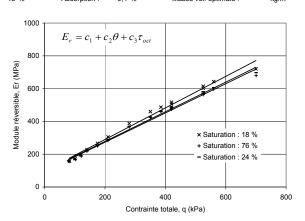
Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
21%	0,69	1,007	-0,524	0,99	0,025	15
73%	0,62	1,004	-0,468	0,99	0,031	15
30%	0,67	0,948	-0,430	0,98	0,036	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 9 septembre 2010 Date : 9 septembre 2010

Ministère des Transports

Québec MÉTHODE LC 22-400


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-029-09 Type matériau : MG-20 Région : Laurentides Félix Doucet Client: Utilisation: Fondation Pétrographie : Monzonite gneissique

PCM11 Densité : 2,72 Éprouvette : 2,1 % Porosité : 20 % Teneur eau optimale : Teneur eau : Masse volumique : 2171 kg/m³ 18 % Masse vol. optimale : Saturation : Absorption : 0,4 % kg/m³

Teneur e	eau intiale	e :	2,1	%		Saturatio	on :	18 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
21	2,0	18	113	-16	7	83	9	158	0,14	
20	4,0	36	206	-35	5	101	19	173	0,17	
20	6,0	53	271	-53	5	119	28	197	0,20	
35	3,6	32	139	-18	8	140	17	228	0,13	
35	7,1	63	237	-40	7	175	33	266	0,17	
35	10,6	95	310	-61	6	210	50	305	0,20	
70	7,1	63	163	-21	10	280	33	387	0,13	
70	14,2	126	274	-45	6	350	66	460	0,16	
70	21,2	189	374	-73	4	420	99	506	0,19	
105	7,1	63	129	-14	10	385	33	488	0,11	
105	10,6	95	183	-23	8	420	50	518	0,13	
105	21,2	189	314	-52	4	525	99	602	0,16	
140	10,6	95	154	-18	9	525	50	615	0,12	
140	14,1	126	196	-25	7	560	66	643	0,13	
140	28,3	252	350	-56	4	700	132	720	0,16	

Teneur e	eau satur	ée :	7,5	%		Saturation	on :	76	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
21	2,0	18	114	-18	3	82	9	155	0,15
21	4,0	36	213	-42	2	101	19	167	0,20
21	6,0	53	284	-64	2	121	28	188	0,22
35	3,5	32	145	-21	6	140	17	218	0,15
35	7,1	63	252	-48	4	175	33	250	0,19
35	10,6	95	333	-72	3	210	50	284	0,22
70	7,1	63	172	-24	8	280	33	366	0,14
70	14,2	126	297	-52	5	350	66	425	0,18
70	21,3	189	399	-83	4	420	99	474	0,21
105	7,1	63	137	-16	10	385	33	459	0,11
105	10,6	95	195	-26	7	420	50	485	0,13
105	21,3	189	336	-58	5	525	99	563	0,17
140	10,6	95	165	-20	9	525	50	573	0,12
140	14,2	126	211	-29	7	560	66	598	0,14
140	28,4	252	371	-62	5	701	132	680	0,17

Module réversible, Er (MPa)	1000 -	+ Sa	= k ₁ p	n : 18 n : 76) (%)	(2)	$\frac{ au_{oci}}{p_a}$		+1)*3=			<u> </u>		
	100 - 1	0			Cor	ntra		10 to	0 tale, q (kPa	a)			1000	0

RMSE

0,99

1,00 0,011

Teneur e	eau drain	ée :	2,6	%		Saturation	on :	24	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	111	-15	3	80	9	160	0,13
20	4,0	36	208	-36	1	100	19	171	0,17
20	6,0	53	278	-55	1	119	28	192	0,20
35	3,5	32	141	-18	5	140	17	224	0,13
35	7,1	63	247	-42	3	175	33	255	0,17
35	10,7	95	328	-64	2	210	50	289	0,20
70	7,1	63	171	-22	7	280	33	369	0,13
70	14,2	126	295	-48	4	350	66	428	0,16
70	21,3	189	393	-76	3	420	99	481	0,19
105	7,1	63	136	-15	8	385	33	464	0,11
105	10,6	95	194	-25	5	420	50	489	0,13
105	21,3	189	331	-54	3	526	99	571	0,16
140	10,6	95	163	-19	7	525	50	581	0,12
140	14,2	126	208	-27	5	560	66	606	0,13
140	28,4	252	362	-59	3	701	132	697	0,16

ı	76%	95	0,955	-0,410	0,99	16	15
ı	24%	98	0,959	-0,361	1,00	13	15
	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
ŀ	Sat. 18%	k ₁ 1,79	k ₂ 0,771	k ₃ -0,109	R ²	0,007	n 15

-0,081

c₂ c₃ 1,030 -0,445

Sat.	$\nu_{\rm r}$	σ	n
18%	0,15	0,03	15
76%	0,17	0,03	15
24%	0,15	0,03	15

0,732

1,77

24%

Conditionnement 10 000 cycles							
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}				
1	-14	7	-4				
2							

15

Note:

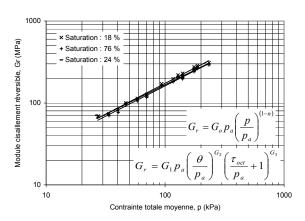
Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 1 novembre 2010 Date : 1 novembre 2010

Ministère des Transports

Québec MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-029-09 Type matériau : MG-20 Région : Laurentides Félix Doucet Client: Utilisation: Fondation Pétrographie : Monzonite gneissique

PCM11 2,1 % Densité : 2,721 0 % Éprouvette : Porosité : 20 % Teneur eau optimale : Teneur eau : Masse volumique : 2171 kg/m³ Masse vol. optimale : Saturation: 18 % Absorption : 0,41 % 0 kg/m³

Teneur	eneur eau intiale :		2,1 %			Saturation :			18 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
28	20	6	18	82	86	73	69	0,7	3,0	
34	40	12	36	136	161	87	74	1,2	3,0	
40	59	18	53	164	216	109	82	1,5	3,0	
47	35	11	32	102	105	103	101	0,8	3,0	
58	70	21	63	157	184	134	114	1,2	3,0	
70	105	32	95	188	247	167	128	1,5	3,0	
93	70	21	63	121	123	173	172	0,8	3,0	
117	140	42	126	184	213	228	198	1,2	3,0	
140	210	63	189	228	297	276	212	1,5	3,0	
128	70	21	63	101	96	209	219	0,5	3,0	
140	105	32	95	137	137	231	230	0,8	3,0	
175	210	63	189	210	244	300	258	1,2	3,0	
175	105	32	95	118	114	267	275	0,6	3,0	
187	140	42	126	147	147	287	286	0,8	3,0	
233	280	84	252	237	271	354	310	1,2	3,0	

Module volumétrique réversible, Kr (MPa)	1000 -	$ \begin{array}{c c} \times \text{Saturation}: 18 \% \\ + \text{Saturation}: 76 \% \\ - \text{Saturation}: 24 \% \\ \hline \\ K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2 \right)^{K_2} \\ \hline \\ K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3} \\ \end{array} $	
2	10 - 1	0 100	1000
		Contrainte totale moyenne, p (kPa)	

Teneur e	eau satur	ée :	7,5	%		Saturation	on :	76 %	
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	79	88	75	67	0,7	3,0
34	40	12	36	130	170	91	70	1,2	3,0
40	59	18	53	157	232	114	77	1,5	3,0
47	35	11	32	103	110	103	95	0,8	3,0
58	70	21	63	157	200	134	105	1,2	3,0
70	105	32	95	189	271	167	117	1,5	3,0
93	70	21	63	125	131	169	161	0,8	3,0
117	140	42	126	193	233	218	181	1,2	3,0
140	210	63	189	234	321	269	196	1,5	3,0
128	70	21	63	106	102	199	206	0,5	3,0
140	105	32	95	143	148	221	214	0,8	3,0
175	210	63	189	220	262	286	240	1,2	3,0
175	105	32	95	125	124	252	255	0,6	3,0
187	140	42	126	154	160	274	263	0,8	3,0
234	281	84	252	246	289	341	291	1,2	3,0

Teneur	Teneur eau drainée :			%		Saturation :			24 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	82	84	72	71	0,7	3,0	
33	40	12	36	137	162	87	73	1,2	3,0	
40	59	18	53	168	222	106	80	1,5	3,0	
47	35	11	32	105	106	101	99	0,8	3,0	
58	70	21	63	163	193	129	109	1,2	3,0	
70	105	32	95	199	261	158	121	1,5	3,0	
93	70	21	63	127	129	165	164	0,8	3,0	
117	140	42	126	198	229	212	184	1,2	3,0	
140	210	63	189	242	313	261	202	1,5	3,0	
128	70	21	63	107	100	197	210	0,5	3,0	
140	105	32	95	144	146	220	217	0,8	3,0	
175	211	63	189	223	257	283	246	1,2	3,0	
175	105	32	95	125	121	253	260	0,6	3,0	
187	140	42	126	154	157	273	268	0,8	3,0	
234	281	84	252	245	280	344	300	1,2	3,0	

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
18%	1,65	1,74	0,264	1,00	0,015	0,99	0,019 0,024 0,022	15
76%	1,62	1,61	0,291	1,00	0,014	0,99	0,024	15
24%	1,59	1,67	0,293	1,00	0,015	0,99	0,022	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
18%	0,83	0,584	0,481	0,99	0,020	15
76%	0,84	0,519	0,556	0,99	0,021	15
24%	0,81	0,553	0,501	1,00	0,014	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	0,79	0,827	-0,287	1,00	0,010	15
76%	0,75	0,821	-0,305	1,00	0,015	15
24%	0,78	0,786	-0,258	0,99	0,017	15

Note:

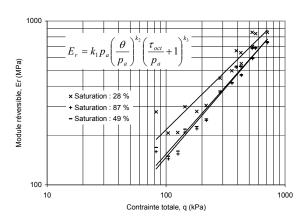
Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date : 1 novembre 2010 Date : 1 novembre 2010

Annexe 3
Module réversible des matériaux granulaires en graviers concassés

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


C-LTPP Dossier: Type matériau : MG-20 Région : Chaudière-Appalaches Client : Félix Doucet, SMI Utilisation: Fondation Pétrographie : Grès

4,1 % Éprouvette : GC1 Teneur eau : Porosité : 17 % Densité: 2,55 Teneur eau optimale : 7,0 % Masse volumique : 2120 kg/m³ Saturation: 28 % Absorption: 1,9 % Masse vol. optimale: 2156 kg/m³

Teneur e	eau intiale	e :	4,1	%		Saturation	on :	28 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	21	74	-13	23	83	11	279	0,17
20	3,7	40	195	-36	6	104	21	207	0,18
20	5,7	60	285	-57	1	125	31	209	0,20
35	3,5	35	117	-20	13	144	18	300	0,17
35	7,0	69	245	-46	2	181	36	281	0,19
35	10,5	102	333	-68	1	217	53	305	0,21
70	7,0	67	151	-26	8	285	35	448	0,17
70	14,0	133	267	-51	2	356	69	497	0,19
70	21,0	197	359	-76	1	429	103	550	0,21
105	7,0	67	101	-17	16	389	35	659	0,16
105	10,5	100	155	-26	8	425	52	641	0,17
105	21,1	197	281	-54	4	533	103	699	0,19
140	10,5	99	116	-19	14	529	52	853	0,16
140	14,0	131	157	-31	10	566	69	838	0,20
140	28,1	261	305	-62	5	709	136	853	0,20

	1000 -			I		_
	800 -	$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$	××		
Er (MPa)			×	× * *	,	
Module réversible, Er (MPa)	400		××	ž,		
	200 -	×	**	× Saturation : 28 % + Saturation : 87 %		
	0 -	Ŧ / .		- Satura	tion : 49 %	
	() 20		otale, q (kPa)	00	800

Teneur e	eau satur	ée :	8,8 %			Saturation :		87 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	$+/-\Delta \epsilon_{1r}$ θ τ_{oct}		Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,7	21	130	-22	8	82	11	160	0,17
20	3,4	41	286	-56	0	105	21	144	0,20
20	5,2	61	393	-86	2	126	31	155	0,22
35	3,3	36	169	-29	4	144	18	210	0,17
35	6,6	70	316	-63	2	181	36	220	0,20
35	10,1	103	414	-91	4	218	53	248	0,22
70	6,9	68	186	-32	3	285	35	365	0,17
70	13,8	134	320	-63	0	358	70	417	0,20
70	20,8	199	426	-95	0	429	103	466	0,22
105	6,9	67	128	-21	8	389	35	523	0,16
105	10,4	100	190	-38	5	425	52	526	0,20
105	20,8	198	335	-71	3	533	103	589	0,21
140	10,4	99	146	-24	9	530	52	680	0,17
140	13,9	132	194	-33	7	565	69	682	0,17
140	27,8	262	354	-73	5	709	136	738	0,21

27

Teneur e	Teneur eau drainée :			%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	20	121	-25	9	82	11	169	0,20
20	3,5	41	274	-57	2	104	21	149	0,21
20	5,4	60	376	-80	0	126	31	161	0,21
35	3,4	35	161	-32	6	144	18	219	0,20
35	6,7	69	306	-64	0	181	36	227	0,21
35	10,1	103	406	-93	2	218	53	253	0,23
70	6,9	68	182	-30	5	284	35	374	0,16
70	13,8	134	318	-66	2	358	69	420	0,21
70	20,8	199	423	-97	1	429	103	470	0,23
105	6,9	67	127	-20	11	389	35	530	0,16
105	10,4	100	189	-31	7	425	52	530	0,17
105	20,8	198	333	-68	3	534	103	593	0,21
140	10,4	99	145	-23	11	530	52	685	0,16
140	13,9	132	192	-32	9	566	69	687	0,17
140	27,9	262	351	-66	5	709	136	745	0,19

87%	52	1,346	-1,816	1,00	13	15
49%	60	1,343	-1,833	1,00	12	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n

1,644 -2,985 0,99

Sat.	$\nu_{\rm r}$	σ	n		Condition	nem
49%	1,66	0,965	-0,532	0,98	0,042	15
87%	1,59	0,988	-0,532	0,98	0,040	1

Sat.	$\nu_{\rm r}$	σ	n
28%	0,19	0,02	15
87%	0,19	0,02	15
49%	0,19	0,02	15

115

Conditionnement 10 000 cycles										
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}							
1	21	19	20							
2										

Note:

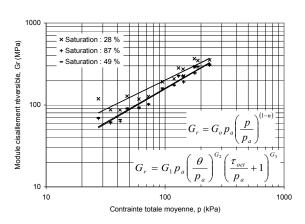
Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

16 mai 2002 16 mai 2002 Date: Date:

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Grès

17 % GC1 4,1 % Porosité : Densité: 2,55 Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2120 kg/m³ Masse vol. optimale : 2156 kg/m³ Saturation: 28 % Absorption : 1,9 %

Teneur eau intiale :		4,1	,1 % Saturation :		on :	28 %			
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
28	23	7	21	49	58	142	119	0,8	3,0
35	44	13	40	124	154	109	88	1,3	3,0
42	65	20	60	172	228	116	87	1,6	3,0
48	39	12	35	77	92	152	128	0,8	3,0
60	76	23	69	152	194	150	118	1,3	3,0
72	112	34	102	196	267	173	127	1,6	3,0
95	75	22	67	100	118	226	191	0,8	3,0
119	147	44	133	165	212	268	209	1,2	3,0
143	219	66	197	207	290	318	227	1,5	3,0
130	74	22	67	68	79	327	283	0,6	3,0
142	110	33	100	102	121	324	274	0,8	3,0
178	218	66	197	174	223	377	294	1,2	3,0
176	109	33	99	78	90	421	367	0,6	3,0
189	146	44	131	94	126	466	349	0,8	3,0
236	289	87	261	181	245	480	354	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 28 % + Saturation : 87 % - Saturation : 49 % $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^{(1-n)}\right)^{K_o} \left(\frac{r_{oct}}{p_a} + 1\right)$	G_o
	10 -		Щ.
	1	0 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	8,8 %			Saturation :			87 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	23	7	21	87	102	80	68	0,8	3,0	
35	45	14	41	174	228	79	60	1,3	3,0	
42	66	20	61	220	319	92	63	1,6	3,0	
48	39	12	36	111	132	107	89	0,8	3,0	
60	76	23	70	190	253	122	92	1,3	3,0	
73	113	34	103	231	337	148	101	1,6	3,0	
95	75	23	68	122	145	185	156	0,8	3,0	
119	147	45	134	194	256	230	174	1,2	3,0	
143	219	66	199	236	347	281	191	1,5	3,0	
130	74	22	67	87	100	258	225	0,6	3,0	
142	110	33	100	115	152	290	220	0,8	3,0	
178	218	66	198	194	271	340	243	1,2	3,0	
177	110	33	99	98	114	339	292	0,6	3,0	
188	146	44	132	128	151	345	291	0,8	3,0	
236	289	87	262	207	285	420	306	1,2	3,0	

Teneur e	Teneur eau drainée :			5,8 %		Saturation	on :	49 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	72	97	95	70	0,8	3,0
35	44	14	41	160	221	85	62	1,3	3,0
42	66	20	60	215	304	93	66	1,6	3,0
48	39	12	35	98	129	120	91	0,8	3,0
60	76	23	69	178	246	130	94	1,3	3,0
73	113	34	103	220	333	156	103	1,6	3,0
95	75	23	68	122	141	186	161	0,8	3,0
119	147	45	134	186	256	239	174	1,2	3,0
143	219	66	199	230	346	288	191	1,5	3,0
130	74	22	67	87	98	258	229	0,6	3,0
142	110	33	100	126	147	264	227	0,8	3,0
178	218	66	198	196	268	336	246	1,2	3,0
177	110	33	99	99	112	336	295	0,6	3,0
189	146	44	132	128	150	345	294	0,8	3,0
236	289	87	262	219	278	398	314	1,2	3,0

L	Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
Г	28%	2,09	2,05	0,300	0,78	0,104	0,87	0,077 0,057 0,058	15
L	87%	1,62	1,60	0,162	0,92	0,081	0,96	0,057	15
L	49%	1,67	1,62	0,206	0,91	0,082	0,95	0,058	15
Τ									

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
28%	1,19	0,808	-0,306	0,94	0,060	15
87%	0,80	0,863	-0,049	0,99	0,028	15
49%	0,89	0,777	-0,014	0,98	0,037	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
28%	1,02	0,910	-0,755	0,92	0,067	15
87%	0,68	1,020	-0,656	0,97	0,044	15
49%	0,70	1,014	-0,667	0,97	0,044	15

Note:

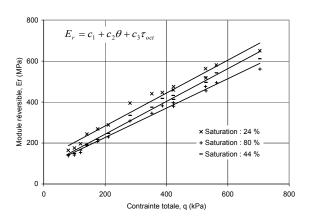
Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : 16 mai 2002 Date : 16 mai 2002

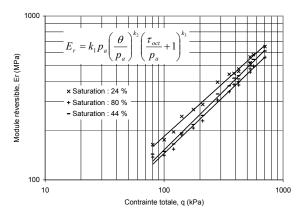
Ministère des Transports

Pansports

Québec


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-007-05 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Gneiss granitique

Densité : 5,7 % GC2 2,6 % Porosité : 18 % 2,65 Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2171 kg/m³ Masse vol. optimale: 2180 kg/m³ Saturation : 24 % Absorption : 0,6 %

Teneur e	eau intiale	e :	2,6	%		Saturatio	on :	24 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	111	-15	11	80	9	164	0,14
20	3,9	36	206	-34	9	100	19	176	0,17
20	5,8	54	276	-53	9	120	28	196	0,19
35	3,4	32	131	-18	16	141	17	244	0,14
35	6,9	64	238	-39	14	176	33	269	0,17
35	10,4	96	331	-65	13	211	50	289	0,20
70	6,8	65	164	-23	21	281	34	395	0,14
70	13,8	129	292	-48	19	352	67	441	0,17
70	20,8	192	405	-78	17	423	100	475	0,19
105	6,8	65	146	-18	21	387	34	447	0,12
105	10,2	97	212	-28	20	422	51	459	0,13
105	20,6	193	373	-62	17	529	101	518	0,17
140	10,3	97	173	-22	22	528	51	563	0,13
140	13,8	129	222	-30	21	563	67	581	0,13
140	27,7	257	395	-65	16	704	134	651	0,16

Teneur e	eau satur	ée :	7,3	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	133	-22	12	80	9	138	0,17
20	3,8	36	257	-52	7	100	19	141	0,20
20	5,8	54	353	-83	6	120	28	154	0,23
35	3,4	32	170	-28	12	141	17	188	0,17
35	6,9	64	308	-61	8	176	33	207	0,20
35	10,4	96	418	-96	8	211	50	230	0,23
70	6,8	65	210	-33	15	281	34	308	0,16
70	13,7	129	373	-70	13	353	67	345	0,19
70	20,7	193	507	-113	13	423	101	380	0,22
105	6,8	65	171	-24	21	387	34	382	0,14
105	10,3	97	246	-38	18	423	51	396	0,15
105	20,6	193	425	-80	15	529	101	455	0,19
140	10,3	97	204	-30	22	528	51	476	0,15
140	13,8	129	262	-40	20	563	68	494	0,15
140	27,7	257	459	-85	15	705	134	561	0,19

RMSE

Teneur	eau drain	ée :	4,3	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	127	-20	13	80	9	144	0,16
20	3,9	36	244	-46	8	100	19	149	0,19
20	5,8	54	328	-70	7	120	28	166	0,21
35	3,4	32	167	-25	10	140	17	193	0,15
35	6,9	64	295	-54	8	176	34	218	0,18
35	10,4	96	389	-83	8	211	50	247	0,21
70	6,9	65	193	-29	16	282	34	335	0,15
70	13,8	129	343	-62	15	352	67	375	0,18
70	20,8	192	466	-98	14	423	101	413	0,21
105	6,9	65	156	-21	20	387	34	417	0,13
105	10,4	97	225	-33	19	422	51	432	0,15
105	20,8	193	389	-69	17	529	101	496	0,18
140	10,4	97	186	-26	22	527	51	522	0,14
140	13,9	129	238	-35	21	563	67	543	0,15
140	27,9	257	420	-75	17	705	134	611	0,18

L	44%	84	0,898	-0,644	1,00	12	15
_							
I	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Γ	24%	1,88	0,698	-0,158	0,99	0,018	15
ı	80%	1,49	0,742	-0,185	0,99	0,017	15
L	44%	1,57	0,769	-0,195	0,99	0,017	15

-0,453 0,98

0,801 -0,542

Sat.	$\nu_{\rm r}$	σ	n
24%	0,16	0,02	15
80%	0,18	0,03	15
44%	0,17	0,03	15

0,873

123

Sat.

24%

Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}						
1	5	2	4						
2									

15

Note:

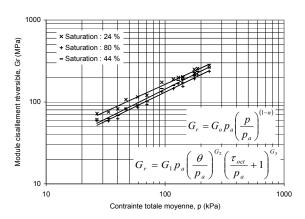
Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech spec Date : 14 octobre 2005 Date :

Ministère des Transports

Québec MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-007-05 Type matériau : MG-20 Région : Québec Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Gneiss granitique

2,6 % 2,65 5,7 % GC2 Porosité : 18 % Densité : Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2171 kg/m³ Saturation : Masse vol. optimale: 2180 kg/m³ 24 % Absorption: 0,6 %

Teneur e	eau intial	e :	2,6	%		Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	81	84	75	72	0,8	3,0
33	40	12	36	138	160	88	75	1,2	3,0
40	60	18	54	171	219	106	82	1,5	3,0
47	35	11	32	94	100	113	107	0,8	3,0
59	71	21	64	159	185	134	115	1,2	3,0
70	106	32	96	202	264	158	121	1,5	3,0
94	71	22	65	118	124	182	173	0,8	3,0
117	142	43	129	195	227	220	189	1,2	3,0
141	213	64	192	248	322	258	199	1,5	3,0
129	72	22	65	110	109	197	199	0,6	3,0
141	107	32	97	156	160	208	203	0,8	3,0
176	214	64	193	249	290	258	222	1,2	3,0
176	107	32	97	129	130	251	250	0,6	3,0
188	143	43	129	163	168	265	256	0,8	3,0
235	285	86	257	265	307	324	279	1,2	3,0

Module volumétrique réversible, Kr (MPa) 00 00	$ \begin{array}{c} \times \text{ Saturation : 24 \%} \\ + \text{ Saturation : 80 \%} \\ - \text{ Saturation : 44 \%} \\ \hline \\ K_r = K_o p_a \left(\frac{p}{p} \right)^{(1-n)} \left/ \left(1 - \beta \left(\frac{q}{q} \right)^2 \right)^{(1-n)} \right. \end{array} $	
10	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$ 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	7,3	%		Saturation	on :	80	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	88	103	69	59	0,8	3,0
33	40	12	36	152	206	80	59	1,2	3,0
40	60	18	54	187	290	97	62	1,5	3,0
47	35	11	32	114	132	94	81	0,8	3,0
59	71	21	64	185	246	115	86	1,2	3,0
70	106	32	96	226	342	141	93	1,5	3,0
94	72	22	65	144	162	150	133	0,8	3,0
118	142	43	129	232	295	185	145	1,2	3,0
141	213	64	193	281	414	228	155	1,5	3,0
129	72	22	65	123	130	177	167	0,6	3,0
141	108	32	97	170	189	191	172	0,8	3,0
176	214	64	193	266	337	243	191	1,2	3,0
176	108	32	97	145	156	224	208	0,6	3,0
188	143	43	129	181	201	238	214	0,8	3,0
235	285	86	257	289	363	297	236	1,2	3,0

Teneur e	eau drain	ée :	4,3	%		Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	87	98	70	62	0,8	3,0
33	40	12	36	152	193	80	63	1,2	3,0
40	60	18	54	188	266	97	68	1,5	3,0
47	36	11	32	117	128	92	84	0,8	3,0
59	71	21	64	187	233	115	92	1,2	3,0
70	107	32	96	224	315	143	102	1,5	3,0
94	72	22	65	135	148	159	145	0,8	3,0
117	142	43	129	219	270	196	159	1,2	3,0
141	213	64	192	270	376	237	171	1,5	3,0
129	72	22	65	114	118	190	184	0,6	3,0
141	108	32	97	159	172	204	188	0,8	3,0
176	214	64	193	251	306	257	210	1,2	3,0
176	108	32	97	135	141	240	229	0,6	3,0
188	143	43	129	168	182	256	237	0,8	3,0
235	285	86	257	271	330	316	259	1,2	3,0

ı	Sat.	K _o	G _o	n	R ² Kr	$RMSE_{Kr}$	R ² _{Gr}	$RMSE_{Gr}$	n
ı	24%	1,60	1,64	0,348	0,98	0,026	0,98	0,026	15
ı	80%	1,39	1,32	0,322	0,99	0,024	0,98	0,031	15
ı	44%	1,45	1,44	0,292	0,98	0,029	0,98	0,026 0,031 0,029	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
24%	0,87	0,549	0,334	0,99	0,023	15
80%	0,76	0,531	0,431	1,00	0,013	15
44%	0,76	0,590	0,360	1,00	0,015	15

I	Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
ſ	24%	0,83	0,742	-0,305	0,99	0,020	15
ı	80%	0,64	0,799	-0,351	0,99	0,023	15
L	44%	0,68	0,820	-0,352	0,99	0,021	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech spec Date : 14 octobre 2005 Date :

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-010-07 Type matériau : MG-20 Région : Bas-Saint-Laurent Félix Doucet, SMI Fondation Client: Utilisation: Pétrographie : Grès et schiste

Densité : 2,55 bsorption : 1,8 % GC3 3,5 % Porosité : 21 % 5,5 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 2027 kg/m³ Masse vol. optimale : 2140 kg/m³ Saturation : 17 % Absorption :

Teneur e	Teneur eau intiale :		3,5 %		Saturation :		17 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	177	-16	4	82	10	107	0,09
20	3,8	38	363	-42	5	102	20	104	0,12
20	5,8	56	516	-71	5	122	29	109	0,14
35	3,4	33	227	-24	4	142	17	145	0,10
35	6,9	66	439	-58	5	178	34	150	0,13
35	10,3	98	616	-96	5	212	51	159	0,16
70	6,8	65	276	-31	4	282	34	235	0,11
70	13,7	129	521	-73	4	352	67	248	0,14
70	20,7	193	731	-122	4	423	101	264	0,17
105	6,9	64	214	-22	3	386	34	300	0,10
105	10,3	96	319	-37	4	422	50	302	0,11
105	20,7	192	585	-83	4	528	100	328	0,14
140	10,3	100	280	-30	3	530	52	356	0,11
140	13,8	132	361	-42	3	566	69	364	0,12
140	27,7	260	656	-94	2	707	136	396	0,14

600 -					_
	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
(MPa)					
rsible, Er		×	×××	Î	
Module réversible, Er (MPa) 00 00 1		××	× Satural	ion : 17 % ——	_
Μ̈́	***	*		ion : 71 %	
	*****		- Satura	ion : 35 %	
0 -					<u> </u>
() 20		00 60	00	800
		Contrainte to	otale, q (kPa)		

Teneur e	eau satur	ée :	9,0 %			Saturation :		71 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	215	-22	9	80	10	87	0,10
20	3,8	37	436	-57	9	100	19	86	0,13
20	5,8	55	605	-93	9	120	29	91	0,15
35	3,4	33	264	-30	8	142	17	124	0,11
35	6,9	65	494	-70	8	178	34	131	0,14
35	10,4	97	682	-113	7	212	51	142	0,17
70	6,9	66	329	-39	6	282	34	201	0,12
70	13,9	130	589	-86	5	355	68	221	0,15
70	20,8	194	803	-138	5	424	101	242	0,17
105	6,9	66	247	-27	5	388	34	266	0,11
105	10,4	98	359	-42	4	424	51	272	0,12
105	20,8	193	636	-92	4	530	101	304	0,15
140	10,4	99	302	-34	4	530	52	328	0,11
140	13,9	131	388	-46	4	564	68	337	0,12
140	28,0	259	687	-100	2	707	135	377	0,15

Pa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$	
Module réversible, Er (MPa)		× Saturation : 17 % + Saturation : 71 % - Saturation : 35 %	
	100 - 1	100 100 100 Contrainte totale, q (kPa)	00

R² RMSE n

Teneur e	eau drain	ée :	5,3 %			Saturation :		35 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	207	-23	3	81	10	91	0,11
20	3,8	37	421	-57	5	102	19	88	0,14
20	5,7	55	592	-96	6	122	29	93	0,16
35	3,4	33	265	-32	2	141	17	123	0,12
35	6,8	65	503	-75	5	176	34	128	0,15
35	10,3	97	697	-122	5	211	50	139	0,18
70	6,9	65	320	-39	2	282	34	202	0,12
70	13,8	129	591	-92	4	353	67	218	0,16
70	20,8	192	821	-153	5	422	100	234	0,19
105	6,9	65	253	-28	1	388	34	258	0,11
105	10,3	97	370	-45	1	423	51	263	0,12
105	20,8	192	656	-102	3	529	100	293	0,16
140	10,4	97	301	-34	1	526	51	322	0,11
140	13,9	129	389	-48	1	563	67	331	0,12
140	27,9	256	697	-107	4	704	134	368	0,15

1-01						
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
35%	49	0,589	-0,673	1,00	6	15
71%	46	0,607	-0,669	1,00	6	15
17%	66	0,649	-0,864	0,99	10	15

C₃

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
17%	1,14	0,813	-0,469	0,99	0,027	15
71%	0,94	0,848	-0,387	0,99	0,026	15 15
35%	0,95	0,828	-0,392	0,99	0,028	15

Sat.	$\nu_{\rm r}$	σ	n
17%	0,13	0,02	15
71%	0,13	0,02	15
35%	0,14	0,02	15

Sat.

Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}						
1									
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Joseph Tsafack, ing. Réalisé par : Date : 6 octobre 2007 Date :

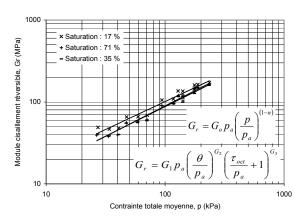
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-010-07 Type matériau : MG-20 Région : Bas-Saint-Laurent Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Grès et schiste

GC3 3,5 % 2,55 5,5 % Porosité : 21 % Densité : Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2027 kg/m³ Saturation : Masse vol. optimale: 2140 kg/m³ 17 % Absorption: 1,8 %

Teneur	Teneur eau intiale :		3,5	3,5 %		Saturation :		17 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	145	129	44	49	0,8	3,0
34	42	13	38	279	270	45	47	1,2	3,0
41	62	19	56	374	391	50	48	1,5	3,0
47	36	11	33	180	168	61	66	0,8	3,0
59	73	22	66	322	331	68	66	1,2	3,0
71	108	33	98	424	475	77	69	1,5	3,0
94	72	22	65	214	205	101	106	0,8	3,0
117	143	43	129	375	396	115	109	1,2	3,0
141	213	64	193	488	568	132	113	1,5	3,0
129	71	21	64	170	158	126	136	0,6	3,0
141	107	32	96	246	237	131	136	0,8	3,0
176	213	64	192	419	446	153	144	1,2	3,0
177	110	33	100	219	206	151	161	0,6	3,0
189	145	44	132	277	269	159	163	0,8	3,0
236	288	87	260	468	500	185	173	1,2	3,0

e, Kr (MPa)	1000 -	+ Satura	ation : 17 % ation : 71 % ation : 35 %	\pm					
Module volumétrique réversible, Kr (MPa)	100 -		ž Ž	K _r =	K . I	$p_a \left(\frac{p}{p_a}\right)^{(1-p_a)}$	-	$n)K_o/60$ $-\beta \left(\frac{q}{p}\right)$	G_o
Module	10 - 1	0	Co	ontrain	L	$= K_1 p_a \left(-\frac{1}{p_a} \right)$ 100 e moyenne, p	/ . `	$\left(\frac{\tau_{oct}}{p_a} + 1\right)$	1000

Teneur e	anı eatur	áa ·	9,0 %			Saturation	on :	71 %	
p	q	Δp	Δq	ε _{ντ}	E _{sr}	K _r	G _r	q/p	_/0 Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)	4/12	далдр
27	21	6	19	172	158	36	39	8,0	3,0
33	41	12	37	323	329	39	38	1,2	3,0
40	61	18	55	419	466	44	40	1,5	3,0
47	36	11	33	205	196	53	56	0,8	3,0
59	72	22	65	355	376	61	57	1,2	3,0
71	107	32	97	457	530	71	61	1,5	3,0
94	73	22	66	252	245	88	90	0,8	3,0
118	144	43	130	417	450	104	97	1,2	3,0
141	215	65	194	527	628	123	103	1,5	3,0
129	73	22	66	194	183	113	120	0,6	3,0
141	108	33	98	275	268	119	122	0,8	3,0
177	214	64	193	451	486	143	133	1,2	3,0
177	110	33	99	235	224	141	148	0,6	3,0
188	145	44	131	297	289	147	151	0,8	3,0
236	287	86	259	487	525	177	165	1,2	3,0

Teneur	eau drain	ée :	5,3	5,3 %			on :	35 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	161	153	39	41	0,8	3,0
34	41	12	37	307	319	40	39	1,2	3,0
41	61	18	55	401	458	46	40	1,5	3,0
47	36	11	33	202	198	54	55	0,8	3,0
59	71	22	65	353	386	61	56	1,2	3,0
70	107	32	97	452	546	71	59	1,5	3,0
94	72	22	65	242	239	89	90	0,8	3,0
118	142	43	129	408	455	105	94	1,2	3,0
141	213	64	192	515	649	124	99	1,5	3,0
129	72	22	65	197	187	110	116	0,6	3,0
141	107	32	97	280	276	116	117	0,8	3,0
176	213	64	192	452	505	142	127	1,2	3,0
175	107	32	97	232	223	139	145	0,6	3,0
188	143	43	129	293	292	147	147	0,8	3,0
235	284	85	256	482	536	177	159	1,2	3,0

ı	Sal.	r ₀	G ₀	П	r Kr	KIVIO E _{Kr}	r Gr	KIVIO E _{Gr}	П
ı	17%	0,88	1,02	0,308	0,94	0,053	0,96	0,044	15
ı	71%	0,79	0,90	0,254	0,96	0,050	0,97	0,041	15
ı	35%	0,80	0,88	0,276	0,96	0,048	0,97	0,044 0,041 0,044	15
1		- 1/	- 17	1/				7	

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
17%	0,47	0,739	-0,095	0,99	0,017	15
71%	0,40	0,753	0,012	1,00	0,013	15
35%	0,41	0,713	0,081	1,00	0,015	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
17%	0,52	0,837	-0,591	0,98	0,031	15
71%	0,43	0,878	-0,515	0,98	0,031	15
35%	0,43	0,864	-0,540	0,98	0,033	15

Note:

Joseph Tsafack, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : Date : 6 octobre 2007

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-010-07 Type matériau : MG-20 Région : Canton-de-l'est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Schiste et grauwacke

4,9 % 17 % Densité: 2,49 Éprouvette : GC4 Teneur eau : Porosité : Teneur eau optimale : 5,5 % Masse volumique : 2070 kg/m³ Saturation : 3,1 % Masse vol. optimale: 2136 kg/m³ 22 % Absorption :

Teneur e	eau intiale	e :	4,9	%		Saturatio	on :	22 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	194	-23	1	80	10	99	0,12
20	3,8	37	387	-56	1	100	19	97	0,15
20	5,8	55	541	-91	1	120	29	103	0,17
35	3,4	33	241	-31	0	140	17	136	0,13
35	6,9	65	448	-70	1	177	34	145	0,16
35	10,3	97	630	-115	2	213	51	154	0,18
70	6,9	65	287	-38	1	282	34	225	0,13
70	13,9	128	536	-87	1	353	67	240	0,16
70	20,8	192	767	-147	2	422	100	250	0,19
105	6,9	64	223	-27	0	386	34	288	0,12
105	10,4	96	333	-45	1	421	50	289	0,13
105	20,8	191	613	-101	2	527	100	312	0,16
140	10,4	97	277	-35	0	527	51	349	0,13
140	13,9	129	363	-49	0	563	67	354	0,13
140	27,8	256	670	-108	2	703	134	382	0,16

600 -				
	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$		
(MPa) - 004				
ible, Er			××	*
Module réversible, Er (MPa) 00 0		×	1	tion : 22 %
Modi	***	*	+ Satura	tion : 72 % tion : 31 %
	\$ \		- Gatura	
0 -) 20	00 4	00 6	00 800
		Contrainte to	otale, q (kPa)	

Teneur e	eau satur	ée :	9,0	%		Saturation :			72 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,8	19	218	-28	4	82	10	86	0,13	
20	3,8	37	433	-67	4	102	19	86	0,15	
20	5,7	55	605	-108	3	122	29	91	0,18	
35	3,4	33	273	-37	3	140	17	120	0,14	
35	6,8	65	509	-84	4	178	34	127	0,16	
35	10,3	97	705	-134	4	212	51	137	0,19	
70	6,9	65	336	-46	4	281	34	193	0,14	
70	13,8	129	615	-103	4	354	67	210	0,17	
70	20,8	192	833	-161	5	422	101	231	0,19	
105	6,9	65	252	-32	3	388	34	257	0,13	
105	10,4	96	371	-51	4	422	50	260	0,14	
105	20,8	192	664	-110	5	527	100	289	0,17	
140	10,4	97	305	-39	3	527	51	319	0,13	
140	13,8	129	396	-54	3	563	67	326	0,14	
140	27,9	256	706	-114	6	704	134	363	0,16	

	1000 -	E_r	$= k_1 p$	$\int_a \left(\frac{e}{p}\right)^{-1}$	$\left(\frac{2}{a}\right)^k$	1 4	r_{oct} p_a	+1) k3 =				
Module réversible, Er (MPa)	100 - 1	× Sa + Sa	aturation aturation aturation	n : 22 n : 72	% -		1	×/x/2	×	× ×	*	1000
					Con	trair	nte t	otale, q (kPa	a)			

Teneur e	eau drain	ée :	5,6	%		Saturation	on :	31 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	19	220	-27	2	81	10	85	0,12
20	3,9	37	443	-67	6	100	19	84	0,15
20	5,9	55	616	-108	7	120	29	90	0,18
35	3,4	33	282	-37	4	141	17	118	0,13
35	6,9	65	522	-85	7	178	34	125	0,16
35	10,4	97	714	-132	8	213	51	136	0,19
70	7,0	65	331	-45	6	283	34	196	0,14
70	13,9	128	602	-98	8	352	67	213	0,16
70	21,0	192	805	-149	9	422	100	238	0,19
105	7,0	64	247	-30	4	387	34	261	0,12
105	10,5	96	365	-49	7	421	50	264	0,13
105	21,0	191	646	-104	8	526	100	296	0,16
140	10,4	97	303	-42	4	528	51	322	0,14
140	14,0	129	406	-59	7	562	67	318	0,15
140	28,0	256	703	-113	9	703	134	364	0,16

31%	44	0,587	-0,630	0,99	8	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
22%	1,08	0,830	-0,493	0,99	0,025	15
72%	0,92	0,841	-0,402	0,99	0,025	15
240/	0.01	0.040	0.200	0.00	0.006	4.5

-0,899

0,589 -0,688

0,99

c₂

		n
0,15	0,02	15
0,15	0,02	15
0,15	0,02	15
	0,15	0,15 0,02

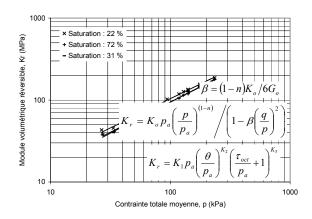
Sat.

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1									
2									

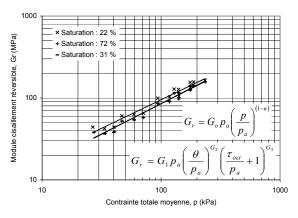
Note:

Joseph Tsafack, ing. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 8 octobre 2007 Date : 8 octobre 2007

Ministère des Transports


Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-010-07 Type matériau : MG-20 Région : Canton-de-l'est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Schiste et grauwacke

GC4 4,9 % Porosité : 17 % Densité : 2,49 Teneur eau optimale : 5,5 % Éprouvette : Teneur eau : 22 % Masse vol. optimale: 2136 kg/m³ Masse volumique: 2070 kg/m³ Saturation : Absorption : 3,1 %

Teneur e	eau intial	e: 4,9 % Saturation:		on :	22	%			
р	q	Δp	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	148	145	43	44	0,8	3,0
33	41	12	37	274	295	45	42	1,2	3,0
40	61	18	55	358	421	52	44	1,5	3,0
47	36	11	33	179	181	61	60	0,8	3,0
59	72	22	65	309	345	70	63	1,2	3,0
71	107	32	97	400	497	81	65	1,5	3,0
94	71	22	65	210	217	102	99	0,8	3,0
118	142	43	128	361	415	119	103	1,2	3,0
141	213	64	192	474	609	135	105	1,5	3,0
129	71	21	64	169	167	127	128	0,6	3,0
140	106	32	96	243	252	132	127	0,8	3,0
176	212	64	191	412	476	155	134	1,2	3,0
176	107	32	97	208	208	155	155	0,6	3,0
188	143	43	129	265	275	162	156	0,8	3,0
234	284	85	256	455	519	187	164	1,2	3,0

Teneur e	eau satur	ée :	9,0	%		Saturation	on :	72	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	162	165	39	38	0,8	3,0
34	41	12	37	300	333	41	37	1,2	3,0
41	61	18	55	390	475	47	39	1,5	3,0
47	36	11	33	199	207	55	53	0,8	3,0
59	72	22	65	341	395	63	55	1,2	3,0
71	107	32	97	436	560	74	58	1,5	3,0
94	72	22	65	244	255	89	85	0,8	3,0
118	143	43	129	409	479	105	90	1,2	3,0
141	213	64	192	512	663	125	97	1,5	3,0
129	72	22	65	188	189	115	114	0,6	3,0
141	107	32	96	270	281	119	114	0,8	3,0
176	212	64	192	445	515	144	124	1,2	3,0
176	108	32	97	227	229	143	141	0,6	3,0
188	143	43	129	287	300	150	144	0,8	3,0
235	284	85	256	477	547	179	156	1,2	3,0

Teneur e	eau drain	ée :	5,6	%		Saturation	on :	31	%
р	q	∆р	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	166	165	38	38	0,8	3,0
33	41	12	37	309	340	40	36	1,2	3,0
40	61	18	55	399	483	46	38	1,5	3,0
47	37	11	33	208	212	53	52	0,8	3,0
59	72	22	65	353	405	61	54	1,2	3,0
71	108	32	97	450	564	72	57	1,5	3,0
94	72	22	65	241	251	90	86	0,8	3,0
117	142	43	128	405	467	106	92	1,2	3,0
141	213	64	192	507	636	126	100	1,5	3,0
129	71	21	64	187	185	115	116	0,6	3,0
140	107	32	96	268	276	120	116	0,8	3,0
175	212	64	191	439	500	145	127	1,2	3,0
176	108	32	97	218	230	149	141	0,6	3,0
187	143	43	129	287	310	150	139	0,8	3,0
234	284	85	256	478	544	179	157	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
22%	0,89	0,96	0,298	0,95	0,052	0,96	0,045 0,041 0,041	15
72%	0,81	0,86	0,270	0,96	0,049	0,97	0,041	15
31%	0,80	0,86	0,252	0,95	0,052	0,97	0,041	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
22%	0,48	0,728	-0,057	1,00	0,013	15
72%	0,42	0,723	0,043	1,00	0,012	15
31%	0,41	0,757	-0,002	1,00	0,012	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
22%	0,48	0,860	-0,625	0,98	0,030	15
72%	0,41	0,877	-0,534	0,98	0,031	15
31%	0,40	0,877	-0,494	0,98	0,031	15

Note:

Joseph Tsafack, ing. Réalisé par : Approuvé par : Félix Doucet, ing. M.Sc.A. Date : 8 octobre 2007 Date :

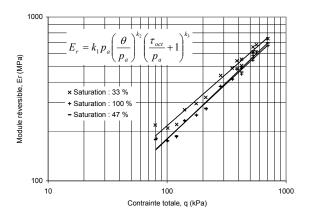
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Grès, schiste et quartzite

GC5 3,0 % 5,9 % Porosité : 14 % Densité : 2,58 Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2218 kg/m³ Masse vol. optimale : 2271 kg/m³ Saturation: 33 % Absorption : 1,0 %

Teneur	eau intiale	e :	3,0 %			Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	84	-15	4	80	10	219	0,18
20	3,9	37	174	-36	6	101	19	210	0,21
20	5,9	55	247	-60	6	120	29	221	0,24
35	3,5	33	120	-21	4	140	17	272	0,17
35	7,0	64	217	-46	4	176	34	296	0,21
35	10,5	96	298	-74	4	211	50	323	0,25
70	7,0	65	147	-25	2	282	34	440	0,17
70	14,0	129	264	-55	1	352	67	487	0,21
70	21,0	192	381	-98	1	422	101	505	0,26
105	7,0	64	119	-23	1	386	34	540	0,19
105	10,5	96	174	-34	0	422	50	553	0,20
105	21,0	192	312	-71	1	528	100	615	0,23
140	10,5	97	148	-23	0	527	51	657	0,15
140	14,0	129	190	-32	1	563	67	678	0,17
140	28,1	256	347	-72	2	703	134	738	0,21

1	000 7			ı		_
		$E_r = c_1 + c_2$	$c_2\theta + c_3\tau_{oct}$			
	800 -				/,	
Er (MP	600 -			××	7	
Module réversible, Er (MPa)	400 -		× *	¥		
			*		tion : 33 % tion : 100 %	
	200 -	***		- Satura	ition : 47 %	
	0 -					
	() 20		00 otale, q (kPa)	300	800

Teneur e	eau satur	ée :	7,2	%		Saturation	on :	100	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	102	-20	2	81	10	182	0,20
20	4,0	37	208	-55	4	101	19	176	0,27
20	5,9	55	294	-90	5	120	29	186	0,31
35	3,5	32	140	-27	4	140	17	232	0,20
35	7,0	64	256	-63	5	176	34	252	0,24
35	10,5	96	351	-108	5	213	50	275	0,31
70	7,0	65	171	-33	3	282	34	378	0,19
70	14,0	129	308	-74	2	353	67	417	0,24
70	21,0	192	429	-125	2	422	101	448	0,29
105	7,0	65	135	-23	3	387	34	479	0,17
105	10,5	96	197	-37	1	421	50	489	0,19
105	21,0	191	351	-84	1	526	100	545	0,24
140	10,4	97	166	-29	1	527	51	585	0,17
140	14,0	129	214	-40	0	563	67	602	0,19
140	28,0	256	383	-90	0	705	134	668	0,23

Teneur e	eau drain	ée :	3,9	%		Saturatio	on :	47	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	104	-20	6	80	10	178	0,19
20	3,9	37	209	-49	8	101	19	175	0,23
20	5,9	55	291	-80	8	120	29	188	0,28
35	3,5	32	139	-26	6	142	17	234	0,18
35	7,0	65	256	-60	7	177	34	252	0,24
35	10,4	96	347	-97	8	212	50	278	0,28
70	7,0	65	172	-31	5	281	34	376	0,18
70	14,0	129	307	-70	6	353	67	419	0,23
70	21,0	192	417	-115	7	424	101	461	0,28
105	7,0	65	132	-21	4	387	34	488	0,16
105	10,5	96	193	-34	4	422	50	499	0,18
105	21,0	191	340	-77	7	528	100	563	0,23
140	10,5	97	161	-26	4	528	51	602	0,16
140	14,0	129	208	-36	4	562	67	619	0,17
140	28,1	256	369	-82	8	704	134	695	0,22

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
33%	143	1,102	-1,156	0,99	18	15
100%	110	1,014	-1,027	0,99	13	15
47%	102	1,052	-0,990	1,00	10	15

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
33%	2,26	0,713	-0,295	0,99	0,025	15
100%	1,89	0,755	-0,304	0,99	0,025	15
47%	1,87	0,766	-0,272	0,99	0,025	15

Sat.	ν_{r}	σ	n
33%	0,20	0,03	15
100%	0,23	0,05	15
47%	0,21	0,04	15

Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}						
1	86	12	49						
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 13 novembre 2007 Date : 13 novembre 2007

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-20 Région : Chaudière-Appalaches Félix Doucet, SMI Utilisation : Fondation Pétrographie : Grès, schiste et quartzite Client:

Densité : 2,576 Absorption : 0,95 % GC5 3 % Porosité : 14 % 5,9 % Éprouvette : Teneur eau : Teneur eau optimale : Masse vol. optimale : 2271 kg/m³ Masse volumique : 2218 kg/m³ Saturation : 33 %

Teneur e	eau intiale	e :	3,0	3,0 %		Saturatio	on :	33 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	55	66	113	93	0,8	3,0
34	41	12	37	102	141	120	87	1,2	3,0
40	60	18	55	126	205	144	89	1,5	3,0
47	36	11	33	78	94	138	116	0,8	3,0
59	71	21	64	126	175	170	123	1,2	3,0
70	107	32	96	151	248	213	129	1,5	3,0
94	72	22	65	97	115	222	188	0,8	3,0
117	143	43	129	154	213	279	202	1,2	3,0
141	213	64	192	185	319	346	201	1,5	3,0
129	71	21	64	74	95	292	227	0,6	3,0
141	107	32	96	106	139	304	231	0,8	3,0
176	213	64	192	170	255	375	251	1,2	3,0
176	107	32	97	102	114	317	284	0,6	3,0
188	143	43	129	126	148	340	290	0,8	3,0
234	284	85	256	203	279	420	306	1,2	3,0

1	000 -	
~		× Saturation : 33 %
MP		+ Saturation : 100 %
- -		- Saturation : 47 %
je,		
ərsit		2 (1) 11 (1)
réve	400	$\beta = (1-n)K_o/6G_o$
dne	100 -	(1-n) /(2)
étri		$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)$
Module volumétrique réversible, Kr (MPa)		$R_r = R_o P_a (p_a) / (P_b)$
é		(, K ₂ (, K ₃
Vod		$K = K n \left(\theta\right)^{n_2} \left(\tau_{oct+1}\right)^{n_3} + 1$
~		$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$
	10 -	
	1	0 100 1000
		Contrainte totale moyenne, p (kPa)

Teneur e	eau satur	ée :	7,2 %			Saturation :			100 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	61	81	101	76	0,8	3,0	
34	41	12	37	97	175	125	70	1,2	3,0	
40	61	18	55	114	256	160	71	1,5	3,0	
47	36	11	32	85	111	127	97	0,8	3,0	
59	71	21	64	131	212	164	101	1,2	3,0	
71	107	32	96	136	306	237	105	1,5	3,0	
94	72	22	65	106	136	203	159	0,8	3,0	
118	143	43	129	160	255	268	168	1,2	3,0	
141	213	64	192	179	369	359	174	1,5	3,0	
129	72	22	65	89	105	241	205	0,6	3,0	
140	107	32	96	123	156	261	205	0,8	3,0	
175	212	64	191	183	290	349	220	1,2	3,0	
176	107	32	97	108	130	300	249	0,6	3,0	
188	143	43	129	133	169	322	254	0,8	3,0	
235	284	85	256	204	315	418	271	1,2	3,0	

Module cisaillement réversible, Gr (MPa)	1000 -	+ Satura	ation : 33 % ation : 100 % ation : 47 %					
Module cisailleme	10 -			G_r :	$= G_1 p_a \left(-\frac{1}{2} \right)$	$\frac{\theta}{p_a} \int_{0}^{G_2} dx$	(Pa)	G ₃
	1	0			100			1000
			Con	trainte tot	ale moyenne,	p (kPa)		

Teneur e	Teneur eau drainée :		3,9	3,9 %		Saturation :			47 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	64	82	96	75	0,8	3,0	
34	41	12	37	111	172	110	71	1,2	3,0	
40	61	18	55	130	247	141	74	1,5	3,0	
47	36	11	32	88	110	123	99	0,8	3,0	
59	71	22	65	135	211	159	102	1,2	3,0	
71	107	32	96	153	296	209	109	1,5	3,0	
94	72	22	65	111	135	195	160	0,8	3,0	
118	143	43	129	167	252	257	171	1,2	3,0	
141	213	64	192	186	355	344	181	1,5	3,0	
129	72	22	65	91	102	238	211	0,6	3,0	
141	107	32	96	125	151	257	212	0,8	3,0	
176	212	64	191	186	278	343	230	1,2	3,0	
176	107	32	97	110	125	295	260	0,6	3,0	
187	143	43	129	136	163	316	264	0,8	3,0	
235	284	85	256	205	300	415	284	1,2	3,0	

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
33%	2,09	1,83	0,368	0,97	0,036	0,96	0,039 0,046 0,042	15
100%	1,96	1,54	0,343	0,99	0,019	0,96	0,046	15
47%	1,88	1,59	0,318	0,99	0,020	0,96	0,042	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
33%	1,18	0,530	0,362	0,99	0,024	15
100% 47%	1,09	0,383	0,820	0,97	0,034	15
47%	1,01	0,450	0,725	0,99	0,024	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
33%	0,96	0,758	-0,455	0,98	0,032	15
100%	0,78	0,835	-0,549	0,98	0,034	15
47%	0,78	0,840	-0,507	0,98	0,032	15

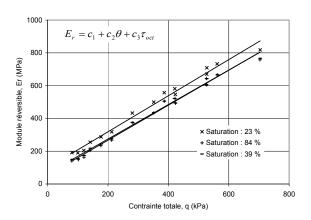
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 13 novembre 2007 Date : 13 novembre 2007

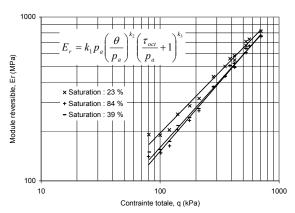
Ministère des Transports

Pansports

Québec


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-20 Région : Canton-de-l'Est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Schiste, grès et quartzite

2,7 % 2,65 6,0 % GC6 Porosité : 17 % Densité : Teneur eau optimale : Éprouvette : Teneur eau : Masse vol. optimale: 2255 kg/m³ Masse volumique: 2199 kg/m³ Saturation : 23 % Absorption : 0,9 %

Teneur e	Teneur eau intiale :			%		Saturatio	on :	23	%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	97	-14	1	80	10	192	0,14
20	3,7	37	194	-35	0	100	19	190	0,18
20	5,6	55	268	-56	0	120	29	205	0,21
35	3,3	32	127	-19	1	141	17	255	0,15
35	6,7	64	225	-42	0	177	34	287	0,19
35	10,2	97	303	-65	1	212	50	319	0,21
70	6,8	64	149	-23	1	281	34	433	0,15
70	13,7	128	257	-47	2	352	67	499	0,18
70	20,6	192	352	-76	3	423	100	547	0,22
105	6,9	64	115	-16	0	387	33	557	0,14
105	10,3	96	165	-25	1	421	50	581	0,15
105	20,6	191	286	-53	2	527	100	670	0,18
140	10,3	97	136	-19	1	527	50	709	0,14
140	13,8	128	175	-26	1	562	67	733	0,15
140	27,7	256	313	-57	2	704	134	819	0,18

Teneur e	Teneur eau saturée :		7,4	%		Saturation	on :	84 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	132	-22	1	80	10	141	0,17
20	3,7	37	250	-53	1	101	19	148	0,21
20	5,6	55	338	-82	1	120	29	164	0,24
35	3,3	33	160	-27	3	140	17	205	0,17
35	6,8	65	277	-57	1	176	34	234	0,21
35	10,2	97	361	-85	1	212	50	268	0,24
70	6,8	65	174	-29	3	282	34	373	0,16
70	13,8	129	296	-58	0	352	67	434	0,20
70	20,8	192	391	-89	1	424	101	493	0,23
105	6,9	64	127	-19	4	386	34	505	0,15
105	10,3	96	184	-29	3	422	50	522	0,16
105	20,8	191	317	-61	0	527	100	605	0,19
140	10,3	97	150	-22	3	526	50	644	0,15
140	13,8	128	193	-30	2	562	67	666	0,16
140	27,8	256	338	-63	1	704	134	758	0,19

RMSE

0,018

1,00

1,00

Teneur e	eau drain	ée :	3,9	%		Saturatio	on :	39	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€ _{3r}	$+/-\Delta\epsilon_{1r}$	$+/-\Delta\epsilon_{1r}$ θ τ_{oct}		Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	125	-19	5	81	10	150	0,15
20	3,7	37	237	-45	1	100	19	155	0,19
20	5,7	55	317	-70	0	120	29	174	0,22
35	3,4	33	150	-23	6	142	17	218	0,15
35	6,8	65	265	-51	2	177	34	244	0,19
35	10,3	97	350	-78	0	211	50	276	0,22
70	6,9	65	172	-27	3	281	34	376	0,16
70	13,8	129	295	-56	0	352	67	435	0,19
70	20,8	192	389	-85	2	423	100	494	0,22
105	6,9	64	127	-18	5	387	34	506	0,14
105	10,4	96	184	-28	3	421	50	521	0,15
105	20,8	191	316	-59	0	526	100	605	0,19
140	10,4	97	150	-22	4	527	50	642	0,15
140	13,9	128	193	-30	3	563	67	667	0,15
140	27,9	256	333	-62	0	704	134	767	0,18

84%	56	1,211	-0,948	1,00	12	15
39%	66	1,180	-0,843	1,00	10	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Sat. 23%	k ₁ 2,03	k ₂ 0,806	k ₃ -0,238	R² 0,99	0,023	n 15

-0,236

c₂ c₃ 1,254 -1,011

Sat.	$\nu_{\rm r}$	σ	n
23%	0,17	0,03	15
84%	0,19	0,03	15
39%	0,18	0,03	15

0,873

1,65

39%

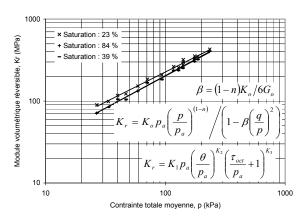
Conditio	Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}							
1	30	8	19							
2										

15

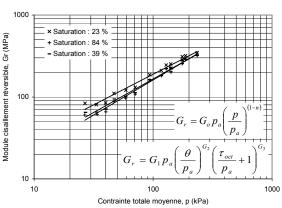
Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date : 12 décembre 2008 Date : 12 décembre 2008

Ministère des Transports


Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-20 Région : Canton-de-l'Est Félix Doucet, SMI Client: Utilisation: Fondation Pétrographie : Schiste, grès et quartzite

2,7 % 2,65 GC6 Porosité : 17 % Densité : Teneur eau optimale : 6 % Éprouvette : Teneur eau : Masse volumique : 2199 kg/m³ 23 % Masse vol. optimale : 2255 kg/m³ Saturation : Absorption : 0,89 %

Teneur e	eau intial	e:	2,7	%		Saturation	on :	23	%
р	q	∆р	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	69	74	90	84	0,8	3,0
33	41	12	37	124	153	99	80	1,2	3,0
40	61	18	55	156	216	117	85	1,5	3,0
47	36	11	32	88	98	122	111	0,8	3,0
59	71	21	64	141	178	152	121	1,2	3,0
71	107	32	97	174	245	185	131	1,5	3,0
94	71	21	64	103	115	209	187	0,8	3,0
117	142	43	128	162	203	264	211	1,2	3,0
141	213	64	192	200	285	321	225	1,5	3,0
129	71	21	64	83	87	256	245	0,6	3,0
140	106	32	96	116	127	276	253	0,8	3,0
176	212	64	191	180	226	354	283	1,2	3,0
176	107	32	97	97	104	331	310	0,6	3,0
187	142	43	128	122	134	350	318	0,8	3,0
235	284	85	256	199	246	429	347	1,2	3,0

Teneur e	eau satur	rée :	7,4	%		Saturation	on :	84	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ε_{sr} K_r G_r			q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	87	103	71	60	0,8	3,0
34	41	12	37	145	202	85	61	1,2	3,0
40	61	18	55	173	280	106	66	1,5	3,0
47	36	11	33	106	124	103	88	0,8	3,0
59	72	22	65	163	223	133	97	1,2	3,0
71	107	32	97	191	298	169	108	1,5	3,0
94	72	22	65	117	135	185	160	0,8	3,0
117	142	43	129	180	236	238	181	1,2	3,0
141	213	64	192	212	320	303	200	1,5	3,0
129	71	21	64	89	98	240	220	0,6	3,0
141	106	32	96	125	142	256	225	0,8	3,0
176	212	64	191	195	252	328	254	1,2	3,0
175	107	32	97	105	115	306	280	0,6	3,0
187	142	43	128	132	149	323	288	0,8	3,0
235	284	85	256	211	267	404	319	1,2	3,0

Teneur e	eau drain	ée :	3,9	%		Saturation	on :	39	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	86	96	72	65	0,8	3,0
33	41	12	37	147	188	84	65	1,2	3,0
40	61	18	55	176	258	104	71	1,5	3,0
47	36	11	33	104	116	105	94	0,8	3,0
59	71	22	65	163	211	132	102	1,2	3,0
70	107	32	97	195	285	166	113	1,5	3,0
94	71	22	65	118	132	182	163	0,8	3,0
117	142	43	129	184	234	233	183	1,2	3,0
141	213	64	192	218	316	293	203	1,5	3,0
129	71	21	64	91	97	234	222	0,6	3,0
140	106	32	96	128	141	250	226	0,8	3,0
175	212	64	191	198	250	321	255	1,2	3,0
176	107	32	97	107	115	302	280	0,6	3,0
188	142	43	128	133	148	321	289	0,8	3,0
235	284	85	256	210	263	405	324	1,2	3,0

	Sat.	K _o	G _o	n	R ² Kr	$RMSE_{Kr}$	R ² _{Gr}	RMSE _{Gr}	n
2	3%	1,91	1,91	0,260	0,98	0,037	0,98	0,035 0,036 0,032	15
8	4%	1,68	1,62	0,174	0,98	0,036	0,98	0,036	15
3	9%	1,67	1,67	0,197	0,98	0,035	0,98	0,032	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	
23%	0,97	0,652	0,308	1,00	0,013	15 15 15
84%	0,82	0,699	0,353	1,00	0,017 0,013	15
39%	0,81	0,693	0,351	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
23%	0,88	0,849	-0,390	0,99	0,029	15
84%	0,67	0,970	-0,436	0,99	0,025	15
39%	0,71	0,922	-0,396	0,99	0,024	15

Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date : 12 décembre 2008 Date : 12 décembre 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-029-09 Type matériau : MG-20 Région : Bas-Saint-Laurent Félix Doucet Client: Utilisation: Fondation Pétrographie : Schiste et grès

GC7 3,9 % Densité : 2,52 Éprouvette : Porosité : 20 % Teneur eau optimale : Teneur eau : Masse volumique : 2027 kg/m³ Saturation : Masse vol. optimale : 11 % Absorption : 2,9 % kg/m³

Teneur e	eau intiale	e :	3,9 %			Saturation :		11 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	160	-17	13	80	9	112	0,11
20	4,0	36	323	-43	12	100	19	111	0,13
20	6,0	54	442	-66	11	120	28	121	0,15
35	3,5	32	208	-24	13	140	17	152	0,11
35	7,1	63	368	-51	12	175	33	172	0,14
35	10,6	95	484	-75	11	210	50	196	0,15
70	7,1	63	233	-27	13	280	33	272	0,12
70	14,2	126	390	-54	12	350	66	323	0,14
70	21,3	189	532	-84	10	420	99	355	0,16
105	7,1	63	174	-19	16	385	33	363	0,11
105	10,6	95	249	-29	14	420	50	380	0,12
105	21,2	189	431	-60	10	525	99	439	0,14
140	10,6	95	201	-22	15	525	50	470	0,11
140	14,2	126	260	-30	13	560	66	486	0,12
140	28,3	252	472	-63	8	700	132	534	0,13

800 -	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
MPa) - 009				/,	
Module réversible, Er (MPa) 00 00			×××	•	
Module révi				tion : 11 % tion : 81 % ——	
	*A***	€	- Satural	tion : 23 %	
0 +) 20) 00 60 otale, q (kPa)	00	800

Teneur e	eau satur	ée :	10,7 %			Saturation :			81 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	18	189	-24	12	80	9	94	0,13	
20	4,0	36	376	-59	12	100	19	94	0,16	
20	6,0	53	509	-89	11	119	28	105	0,17	
35	3,5	32	240	-31	14	140	16	131	0,13	
35	7,1	63	424	-66	13	175	33	149	0,15	
35	10,7	95	553	-95	12	210	50	171	0,17	
70	7,1	63	261	-33	14	280	33	242	0,12	
70	14,2	126	448	-66	12	350	66	282	0,15	
70	21,3	189	591	-97	11	420	99	320	0,16	
105	7,1	63	192	-21	16	385	33	330	0,11	
105	10,6	95	277	-33	14	420	50	341	0,12	
105	21,3	189	477	-68	11	525	99	397	0,14	
140	10,6	95	224	-25	16	525	50	423	0,11	
140	14,2	126	289	-34	14	560	66	437	0,12	
140	28,4	252	509	-70	10	701	132	496	0,14	

	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$	<u> </u>
Module réversible, Er (MPa)		× Saturation : 11 % + Saturation : 81 % - Saturation : 23 %	
	100 - 1	0 100 Contrainte totale, q (kPa)	1000

RMSE

12

15

Teneur	eau drain	ée :	5,1	%		Saturation :			23 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_r	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	18	180	-21	14	80	9	99	0,12	
20	4,0	36	362	-52	12	100	19	98	0,14	
20	6,0	53	498	-81	11	119	28	107	0,16	
35	3,5	32	235	-28	14	140	17	134	0,12	
35	7,1	63	420	-61	12	175	33	150	0,15	
35	10,7	95	553	-89	12	210	50	171	0,16	
70	7,1	63	261	-31	12	280	33	242	0,12	
70	14,2	126	456	-64	11	350	66	276	0,14	
70	21,3	189	596	-94	10	420	99	317	0,16	
105	7,1	63	191	-20	12	385	33	331	0,11	
105	10,6	95	280	-33	12	420	50	339	0,12	
105	21,3	189	481	-67	10	526	99	394	0,14	
140	10,6	95	223	-24	12	525	50	424	0,11	
140	14,2	126	289	-33	11	560	66	436	0,11	
140	28,4	252	504	-68	9	701	132	501	0,14	

23%	36	0,802	-0,669	1,00	6	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
11%	1,20	0,886	-0,282	0,99	0,025	15
81%	1,02	0,922	-0,278	0,99	0,023	15
23%	1,05	0,899	-0,278	0,99	0,027	15

c₃

0,99

1,00

Sat.	ν_{r}	σ	n
11%	0,13	0,02	15
81%	0,14	0,02	15
23%	0,13	0,02	15

c₂

0,803 -0,645

48

34

Conditionnement 10 000 cycles								
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}					
1	66	73	70					
2	38	38	38					

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Bruno Auger, tech. spec. Réalisé par : Date : 30 juillet 2010 Date : 30 juillet 2010

> Service des matériaux d'infrastructures, Direction du Laboratoire des Chaussées, Ministère des Transports du Québec 2700, rue Einstein, Québec, G1P 3W8, (418) 644-0181

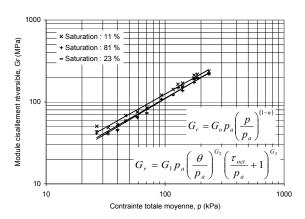
Sat.

81%

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-029-09 Type matériau : MG-20 Région : Bas-Saint-Laurent Félix Doucet Client: Utilisation: Fondation Pétrographie : Schiste et grès

3,9 % Densité : 2,524 0 % GC7 Porosité : 20 % Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2027 kg/m³ 2,87 % Masse vol. optimale : Saturation: 11 % Absorption : 0 kg/m³

Teneur e	au intial	e :	3,9 %			Saturation :			11 %	
р	q	Δp	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	126	118	47	50	0,7	3,0	
33	40	12	36	238	244	50	49	1,2	3,0	
40	60	18	54	311	338	57	53	1,5	3,0	
47	35	11	32	161	154	65	68	0,8	3,0	
58	70	21	63	267	279	79	75	1,2	3,0	
70	105	32	95	335	372	94	85	1,5	3,0	
93	70	21	63	178	173	118	122	0,8	3,0	
117	140	42	126	283	296	149	142	1,2	3,0	
140	210	63	189	364	411	173	153	1,5	3,0	
128	70	21	63	137	128	154	164	0,5	3,0	
140	105	32	95	191	185	165	170	0,8	3,0	
175	210	63	189	312	327	202	193	1,2	3,0	
175	105	32	95	157	149	200	212	0,6	3,0	
187	140	42	126	200	193	211	218	0,8	3,0	
233	280	84	252	346	357	243	235	1,2	3,0	

r (MPa)	1000 -	× Saturation : 11 %	
Module volumétrique réversible, Kr (MPa)	100 -	$\beta = (1 - n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{K_1}$	
Mod	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{\Lambda_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{\Lambda_3}$ 0 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	Teneur eau saturée :		10,7 %			Saturation :			81 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	141	142	42	41	0,7	3,0	
33	40	12	36	259	290	46	41	1,2	3,0	
40	59	18	53	331	398	54	45	1,5	3,0	
47	35	11	32	179	181	59	58	0,8	3,0	
58	70	21	63	292	326	72	64	1,2	3,0	
70	105	32	95	363	432	87	73	1,5	3,0	
93	70	21	63	196	196	107	107	0,8	3,0	
117	140	42	126	316	342	133	123	1,2	3,0	
140	210	63	189	396	459	159	137	1,5	3,0	
128	70	21	63	149	142	141	148	0,5	3,0	
140	105	32	95	211	207	150	152	0,8	3,0	
175	210	63	189	340	363	185	173	1,2	3,0	
175	105	32	95	174	166	181	190	0,6	3,0	
187	140	42	126	221	215	190	195	0,8	3,0	
234	281	84	252	368	386	228	218	1,2	3,0	

Teneur	eau drain	ée :	5,1	%		Saturation	on :	23	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	138	134	43	44	0,7	3,0
33	40	12	36	258	276	46	43	1,2	3,0
40	59	18	53	336	385	53	46	1,5	3,0
47	35	11	32	179	175	59	60	0,8	3,0
58	70	21	63	298	321	71	66	1,2	3,0
70	105	32	95	374	428	84	74	1,5	3,0
93	70	21	63	199	195	106	108	0,8	3,0
117	140	42	126	328	347	128	121	1,2	3,0
140	210	63	189	408	460	154	137	1,5	3,0
128	70	21	63	150	141	140	149	0,5	3,0
140	105	32	95	215	208	147	152	0,8	3,0
175	211	63	189	347	365	182	173	1,2	3,0
175	105	32	95	175	165	180	192	0,6	3,0
187	140	42	126	223	215	189	196	0,8	3,0
234	281	84	252	367	381	229	220	1,2	3,0

11% 1,08 1,26 0,191 0,96 0,051 0,98 0,034 15 81% 0,97 1,10 0,164 0,97 0,048 0,98 0,035 15 23% 0,97 1,12 0,182 0,96 0,051 0,98 0,037 15	Sat.	K _o	G _o	n	R ² Kr	$RMSE_{Kr}$	R ² _{Gr}	RMSE _{Gr}	n
81% 0,97 1,10 0,164 0,97 0,048 0,98 0,035 15	11%	1,08	1,26	0,191	0,96	0,051	0,98	0,034	15
23% 0.07 1.12 0.182 0.06 0.051 0.08 0.037 15	81%	0,97	1,10	0,164	0,97	0,048	0,98	0,035	15
25/0 0,97 1,12 0,102 0,90 0,031 0,90 0,037 13	23%	0,97	1,12	0,182	0,96	0,051	0,98	0,037	15

	Sat.	K ₁	K_2	K ₃	R²	RMSE	n
Γ	11%	0,52	0,804 0,795	0,027	1,00	0,017	15
П	81%	0,46	0,795	0,089	1,00	0,013	15
ı	23%	0,46	0,792	0,064	1,00	0,015	15
L	23%	0,46	0,792	0,064	1,00	0,015	15

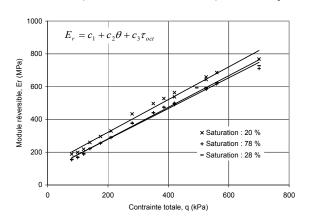
Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
11%	0,54	0,913	-0,383	0,99	0,028	15
81%	0,45	0,962	-0,395	0,99	0,028	15
23%	0.47	0.934	-0.389	0.99	0.031	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 30 juillet 2010 Date : 30 juillet 2010

Ministère des Transports

Québec MÉTHODE LC 22-400


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-029-09 Type matériau : MG-20 Région : Lanaudière Félix Doucet Client: Utilisation: Fondation Pétrographie : Gneiss granitique

2,2 % 17 % Densité : 2,66 GC8 Porosité : Teneur eau optimale : Éprouvette : Teneur eau : Masse volumique : 2198 kg/m³ 20 % Masse vol. optimale : Saturation: Absorption : 0,6 % kg/m³

Teneur e	eau intiale	e :	2,2	%		Saturatio	n:	20	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	95	-13	4	80	9	188	0,13
20	4,0	36	179	-30	4	100	19	199	0,17
20	6,0	53	244	-47	4	119	28	218	0,19
35	3,5	32	121	-16	6	140	16	260	0,13
35	7,1	63	213	-34	6	175	33	296	0,16
35	10,6	95	287	-53	6	210	50	330	0,19
70	7,1	63	145	-19	8	280	33	434	0,13
70	14,1	126	254	-40	6	350	66	497	0,16
70	21,2	189	351	-65	6	420	99	538	0,19
105	7,1	63	119	-14	9	385	33	528	0,11
105	10,6	95	168	-21	7	420	50	564	0,12
105	21,2	189	293	-46	5	525	99	644	0,16
140	10,6	95	143	-17	9	525	50	659	0,12
140	14,1	126	184	-23	8	560	66	686	0,13
140	28,3	252	328	-52	4	700	132	769	0,16

Teneur e	Teneur eau saturée :			%		Saturation	on :	78 %		
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	2,0	18	115	-23	1	80	9	154	0,20	
20	3,9	36	213	-48	2	100	19	167	0,22	
20	6,0	53	285	-70	2	119	28	188	0,24	
35	3,5	32	143	-26	4	140	17	221	0,18	
35	7,1	63	248	-51	3	175	33	254	0,20	
35	10,6	95	328	-73	3	210	50	289	0,22	
70	7,1	63	167	-29	5	280	33	379	0,18	
70	14,2	126	286	-54	4	350	66	441	0,19	
70	21,3	189	386	-80	3	421	99	491	0,21	
105	7,1	63	133	-22	6	385	33	474	0,16	
105	10,6	95	190	-32	5	420	50	499	0,17	
105	21,3	189	324	-60	3	526	99	584	0,18	
140	10,6	95	160	-26	5	525	50	591	0,16	
140	14,2	126	205	-33	4	560	66	617	0,16	
140	28,3	252	355	-62	2	701	132	710	0,18	

Module réversible, Er (MPa)	1000 -	E _r	$= k_1 p$			72	τ_{oct} p_a	+	1) =		Ž	<i>/</i>		
versib		+ Sa	aturatio	n : 78	% -	H	+			*/		+	\mathbb{H}	
lule ré		- Sa	aturatio	n : 28 	· %				//					
Moo							*/	7	4					
	100 -	0				Ш	Ш,	100				Ш	1000	1
	,	U			Cor	ntrai			ile, q (kPa	a)			1000	,

RMSE

20

Teneur e	eau drain	ée :	2,8	%		Saturatio	on :	28	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	114	-19	4	80	9	157	0,16
20	4,0	36	211	-40	2	100	19	169	0,19
20	6,0	54	281	-60	2	120	28	191	0,21
35	3,6	32	142	-22	5	140	17	223	0,15
35	7,1	63	247	-44	5	175	33	256	0,18
35	10,7	95	325	-65	4	211	50	291	0,20
70	7,1	63	168	-25	7	280	33	375	0,15
70	14,2	126	287	-49	6	351	66	441	0,17
70	21,3	189	382	-74	4	421	99	496	0,19
105	7,1	63	133	-18	7	385	33	474	0,13
105	10,6	95	190	-27	6	420	50	499	0,14
105	21,3	158	266	-45	4	494	84	592	0,17
140	10,6	95	159	-21	6	525	50	596	0,13
140	14,2	126	202	-28	5	561	66	624	0,14
140	28,4	252	347	-58	2	701	132	728	0,17

L	28%	89	0,998	-0,231	0,99	16	15
Ξ							
	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
Г	20%	2,09	0,733	-0,150	1,00	0,013	15
ı	78%	1,74	0,766	-0,101	1,00	0,011	15
L	28%	1,74	0,754	-0,046	1,00	0,012	15

-0,615 0,99

-0,372 0,99

Sat.	$\nu_{\rm r}$	σ	n
20%	0,15	0,03	15
78%	0,19	0,03	15
28%	0,17	0,03	15

20%

123

1,091

0,994

Conditio	nnement	10 000	cycles
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}
1	-103	-15	-59
2	-28	-4	-15,75

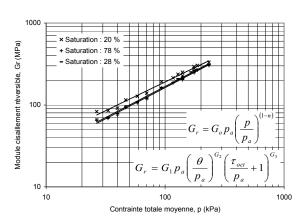
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : Date : 5 octobre 2010

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier : AM-029-09 Type matériau : MG-20 Région : Lanaudière Félix Doucet Client: Utilisation: Fondation Pétrographie : Gneiss granitique

2,2 % 17 % Densité: 2,663 0 % Éprouvette : GC8 Porosité : Teneur eau optimale : Teneur eau : Masse volumique : 2198 kg/m³ Saturation : 20 % Masse vol. optimale : Absorption : 0,61 % 0 kg/m³

Teneur	Teneur eau intiale :			%		Saturation	on :	20	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	70	71	85	83	0,7	3,0
33	40	12	36	120	139	99	85	1,2	3,0
40	59	18	53	151	194	118	92	1,5	3,0
47	35	11	32	90	91	117	115	0,8	3,0
58	70	21	63	145	164	145	128	1,2	3,0
70	105	32	95	180	227	175	139	1,5	3,0
93	70	21	63	108	109	195	192	0,8	3,0
117	140	42	126	173	196	242	214	1,2	3,0
140	210	63	189	220	278	286	227	1,5	3,0
128	70	21	63	92	89	228	237	0,5	3,0
140	105	32	95	126	126	251	251	0,8	3,0
175	210	63	189	201	226	313	278	1,2	3,0
175	105	32	95	110	107	287	295	0,6	3,0
187	140	42	126	137	138	306	304	0,8	3,0
233	280	84	252	225	253	374	332	1,2	3,0

ble, Kr (MPa)	1000 -	× Saturation : 20 % + Saturation : 78 % - Saturation : 28 %	
Module volumétrique réversible, Kr (MPa)	100 -	$\beta = (1 - n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$	
Module	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$ 0 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	Teneur eau saturée :		6,8 %			Saturation :			78 %	
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	70	92	85	64	0,7	3,0	
33	40	12	36	118	174	101	68	1,2	3,0	
40	59	18	53	146	236	122	75	1,5	3,0	
47	35	11	32	90	113	117	93	0,8	3,0	
58	70	21	63	147	199	143	106	1,2	3,0	
70	105	32	95	182	267	174	118	1,5	3,0	
93	70	21	63	108	131	195	161	0,8	3,0	
117	140	42	126	178	227	236	186	1,2	3,0	
140	211	63	189	226	310	280	203	1,5	3,0	
128	70	21	63	90	103	234	204	0,5	3,0	
140	105	32	95	127	148	249	214	0,8	3,0	
175	211	63	189	205	256	308	247	1,2	3,0	
175	105	32	95	109	124	289	255	0,6	3,0	
187	140	42	126	138	159	304	265	0,8	3,0	
234	281	84	252	231	278	365	302	1,2	3,0	

Teneur	Teneur eau drainée :		2,8 %		Saturation :			28 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	G_r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	77	89	77	67	0,7	3,0
33	40	12	36	130	168	91	71	1,2	3,0
40	60	18	54	161	227	111	79	1,5	3,0
47	35	11	32	99	109	107	97	0,8	3,0
58	70	21	63	160	194	132	109	1,2	3,0
70	106	32	95	196	260	161	122	1,5	3,0
93	70	21	63	119	129	176	164	0,8	3,0
117	141	42	126	189	223	222	188	1,2	3,0
140	211	63	189	234	304	269	208	1,5	3,0
128	70	21	63	98	101	215	209	0,5	3,0
140	105	32	95	136	144	232	219	0,8	3,0
165	179	53	158	176	208	299	253	1,1	3,0
175	105	32	95	117	120	270	263	0,6	3,0
187	141	42	126	146	154	289	274	0,8	3,0
234	281	84	252	231	270	364	312	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
20%	1,81	1,91	0,312	0,99	0,022	0,99	0,024	15
	1,75	1,63	0,291	0,98	0,033	0,99	0,024	15
28%	1,67	1,68	0,270	0,99	0,027	0,99	0,020	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
20%	0,95	0,576	0,355	1,00	0,012	15
78%	0,97	0,584	0,279	1,00	0,014	15
28%	0,86	0,580	0,439	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
20%	0,92	0,781	-0,304	0,99	0,018	15
78%	0,73	0,812	-0,200	1,00	0,015	15
28%	0,75	0,804	-0,186	1,00	0,016	15

Note:

Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Date : 5 octobre 2010 Date : 5 octobre 2010

Annexe 4 Module réversible des matériaux granulaires de sables

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

C-LTPP Dossier: Type matériau : MG-112 Région : Québec Client : Félix Doucet, SMI Utilisation: Sous-fondation Pétrographie : Sable granitique

Éprouvette : S1 Teneur eau : 3,8 % Porosité: 33 % Densité : 2,64 Teneur eau optimale : 10,6 % Masse volumique : 1773 kg/m³ Saturation : 18 % Absorption: 0,5 % Masse vol. optimale: 1763 kg/m³

Teneur e	eau intiale	e :	3,8 % Saturation :		on :	18 %			
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,5	20	92	-12	1	81	10	217	0,13
20	3,6	40	206	-33	2	104	21	195	0,16
20	5,5	59	295	-55	3	125	31	201	0,19
35	3,3	35	131	-18	2	144	18	270	0,14
35	6,9	69	253	-41	2	181	36	271	0,16
35	10,6	101	358	-68	2	217	53	283	0,19
70	7,0	68	172	-23	0	284	35	392	0,13
70	14,2	133	317	-49	1	357	69	419	0,16
70	21,3	197	452	-82	1	429	103	436	0,18
105	7,1	67	142	-17	2	389	35	473	0,12
105	10,6	100	204	-27	0	425	52	488	0,13
105	21,2	197	374	-56	2	533	103	525	0,15
140	10,2	99	183	-22	1	529	52	542	0,12
140	13,8	132	239	-30	1	566	69	551	0,12
140	27,9	261	437	-65	2	709	136	596	0,15

800 -	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
Er (MPa)			,	¥	_
Module réversible, Er (MPa) 000 000		, i	Î.		_
Module 200 -	***	*	+ Satura	I tion : 18 % tion : 83 % ——— tion : 36 %	
0 -) 20		00 6 otale, q (kPa)	00	800

Teneur e	eau satur	ée :	15,8	%		Saturation :		83 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,4	20	94	-14	1	82	10	216	0,15
20	3,6	40	212	-39	1	103	20	187	0,18
20	5,4	59	309	-67	1	124	30	190	0,22
35	3,4	35	129	-20	0	143	18	268	0,16
35	6,7	68	267	-49	0	180	35	256	0,18
35	10,2	101	385	-84	0	217	53	263	0,22
70	6,9	67	180	-27	0	284	35	374	0,15
70	13,9	133	344	-61	0	356	69	386	0,18
70	20,9	198	491	-103	2	429	103	402	0,21
105	7,0	67	148	-20	4	388	35	451	0,14
105	10,4	100	218	-32	1	425	52	456	0,15
105	21,0	197	403	-70	2	533	103	487	0,17
140	10,5	99	186	-26	3	530	52	532	0,14
140	14,0	132	243	-35	2	566	69	541	0,14
140	28,2	260	458	-76	3	708	136	569	0,17

1000	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$
Module réversible, Er (MPa)	× Saturation : 18 % + Saturation : 83 % - Saturation : 36 %
	0 100 1000
	Contrainte totale, q (kPa)

Teneur e	eau drain	ée :	7,2	%		Saturation :		36 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,3	20	72	-10	3	82	10	284	0,14
20	3,4	40	182	-30	2	103	20	217	0,16
20	5,0	59	274	-51	1	124	30	215	0,19
35	3,1	35	114	-16	1	143	18	303	0,14
35	6,4	68	246	-40	0	180	35	277	0,16
35	9,8	101	356	-69	0	216	52	285	0,19
70	6,7	67	173	-23	1	284	35	389	0,14
70	13,5	133	329	-53	1	356	69	404	0,16
70	20,4	198	470	-89	2	429	103	421	0,19
105	6,8	67	144	-18	1	388	35	463	0,13
105	10,2	100	213	-29	1	425	52	468	0,13
105	20,6	197	390	-62	2	532	103	505	0,16
140	10,2	99	185	-23	1	529	52	537	0,13
140	13,7	132	239	-32	1	566	68	550	0,13
140	27,6	261	448	-70	3	709	136	583	0,16

I	Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
I	18%	156	0,865	-1,059	0,98	23	15
ı	83%	150	0,874	-1,344	0,99	17	15
ı	36%	189	0,801	-1,216	0,97	22	15
ı	Sat	k.	k ₂	k ₂	R ²	RMSF	n

Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
18%	2,16	0,661	-0,374	0,97	0,032	15
83%	2,12	0,675	-0,473	0,96	0,037	15
36%	2,47	0,559	-0,381	0,90	0,050	15

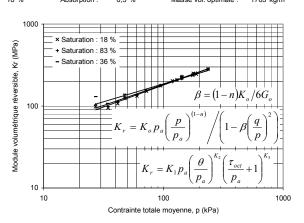
Sat.	$\nu_{\rm r}$	σ	n
18%	0,15	0,02	15
83%	0,17	0,03	15
36%	0,15	0,02	15

Conditionnement 10 000 cycles								
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}					
1	25	55	40					
2								

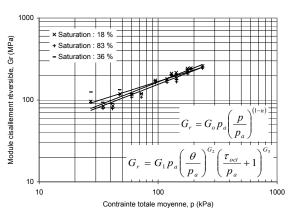
Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date: 8 octobre 2002 8 octobre 2002 Date:

Ministère des Transports


Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier Type matériau : MG-112 Région : Québec Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

Éprouvette : S1 3,8 % Porosité : 33 % Densité : 2,64 Teneur eau optimale : 10,6 % Teneur eau : 18 % 1763 kg/m³ Masse volumique: 1773 kg/m³ Saturation : Absorption : 0,5 % Masse vol. optimale :

Teneur e	eau intiale	e :	3,8	%		Saturation	on :	18	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	68	69	98	96	0,8	3,0
35	44	13	40	141	159	95	84	1,3	3,0
42	65	20	59	185	233	107	85	1,6	3,0
48	39	12	35	96	99	123	119	0,8	3,0
60	76	23	69	172	196	133	117	1,3	3,0
72	112	34	101	222	284	152	119	1,5	3,0
95	75	23	68	127	130	177	173	0,8	3,0
119	147	44	133	218	244	203	181	1,2	3,0
143	219	66	197	288	356	228	185	1,5	3,0
130	74	22	67	107	106	208	211	0,6	3,0
142	110	33	100	151	154	220	216	0,8	3,0
178	218	66	197	262	287	250	228	1,2	3,0
176	109	33	99	139	137	237	242	0,6	3,0
189	146	44	132	179	179	245	245	0,8	3,0
236	289	87	261	308	334	282	260	1,2	3,0

Teneur e	eau satur	ée :	15,8	%		Saturation	on :	83	%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	65	72	104	94	0,8	3,0
34	43	13	40	134	168	99	79	1,3	3,0
41	64	20	59	176	250	111	78	1,6	3,0
48	38	12	35	89	99	130	116	0,8	3,0
60	75	23	68	169	211	135	108	1,3	3,0
72	112	34	101	218	313	155	108	1,5	3,0
95	74	22	67	126	138	178	162	0,8	3,0
119	147	44	133	223	270	199	164	1,2	3,0
143	218	66	198	286	396	230	166	1,5	3,0
129	74	22	67	107	112	208	198	0,6	3,0
142	110	33	100	154	167	216	199	0,8	3,0
178	218	66	197	264	315	248	208	1,2	3,0
177	110	33	99	134	142	246	234	0,6	3,0
189	146	44	132	174	185	253	237	0,8	3,0
236	289	87	260	306	356	284	244	1,2	3,0

Teneur	eau drain	ée :	7,2	%		Saturation	on :	36	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	52	55	130	125	0,8	3,0
34	43	13	40	122	141	108	94	1,2	3,0
41	64	20	59	171	217	115	90	1,5	3,0
48	38	12	35	83	87	139	133	0,8	3,0
60	75	23	68	166	191	137	119	1,2	3,0
72	111	34	101	218	283	155	119	1,5	3,0
95	74	22	67	126	131	178	171	0,8	3,0
119	146	44	133	223	255	198	174	1,2	3,0
143	219	66	198	291	373	227	177	1,5	3,0
129	74	22	67	108	108	206	206	0,6	3,0
142	110	33	100	156	161	213	206	0,8	3,0
177	217	66	197	267	301	246	218	1,2	3,0
176	109	33	99	138	139	239	238	0,6	3,0
189	145	44	132	175	181	251	242	0,8	3,0
236	289	87	261	309	345	282	252	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
18%	1,59	1,66	0,450	0,94	0,042	0,93	0,045	15
83%	1,61	1,56	0,468	0,93	0,045	0,90	0,054	15
36%	1,68	1,69	0,555	0,87	0,052	0,81	0,060	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
18%	1,00	0,527	0,032	0,99	0,019	15
83%	1,04	0,507	0,018	0,99	0,019	15
36%	1,15	0,424	0,049	0,94	0,034	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
18%	0,95	0,702	-0,498	0,96	0,037	15
83%	0,91	0,722	-0,611	0,95	0,043	15
36%	1,08	0,599	-0,510	0,89	0,055	15

Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Date : 8 octobre 2002 Date : 8 octobre 2002

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : Type matériau : MG-112 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

5,3 % Densité : 2,62 Teneur eau optimale : 13,1 %

Masse vol. optimale : 1691 kg/m³ Éprouvette : S2 Teneur eau : Porosité : 36 % Masse volumique: 1686 kg/m³ 0,9 % Saturation : 21 % Absorption :

Teneur e	eau intiale	e :	5,3	%		Saturatio	on :	21	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,1	21	115	-18	2	82	10	179	0,16
20	2,7	41	260	-50	0	104	21	157	0,19
20	4,7	60	377	-89	1	125	31	160	0,23
35	2,9	36	168	-27	3	143	18	212	0,16
35	6,0	70	329	-64	1	181	36	212	0,19
35	9,4	103	452	-101	2	217	53	228	0,22
70	6,5	68	222	-34	1	285	35	307	0,15
70	13,3	134	385	-71	1	357	69	348	0,18
70	20,4	199	526	-113	2	429	103	378	0,21
105	6,6	68	172	-23	4	389	35	392	0,14
105	10,1	100	243	-36	0	425	52	412	0,15
105	20,4	198	425	-76	1	533	103	466	0,18
140	10,1	100	200	-28	2	530	52	498	0,14
140	13,6	132	257	-38	0	565	69	514	0,15
140	27,6	262	471	-82	0	710	136	556	0,17

800 -	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
, Er (MPa) - 009			××	*	
Module réversible, Er (MPa) 00 00			× Satura	tion : 21 %	
§ 200 - 0 -	×	~		tion : 37 % —— tion : 23 %	
() 20		00 6 otale, q (kPa)	00	800

Teneur e	neur eau saturée : 8,8 %			%		Saturation	on :	37	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,6	20	146	-25	4	82	10	137	0,17
20	3,5	40	315	-68	1	104	21	128	0,22
20	5,2	60	439	-109	0	125	31	136	0,25
35	3,2	35	196	-33	2	143	18	179	0,17
35	6,5	69	371	-77	0	181	36	187	0,21
35	9,9	102	501	-121	1	217	53	205	0,24
70	6,7	68	237	-38	1	285	35	286	0,16
70	13,7	133	414	-80	0	357	69	322	0,19
70	20,8	199	561	-127	1	430	103	354	0,23
105	6,8	67	182	-26	2	389	35	370	0,14
105	10,3	100	260	-40	1	425	52	384	0,16
105	20,8	197	453	-85	0	533	103	436	0,19
140	10,3	99	216	-31	2	529	52	461	0,14
140	13,8	132	277	-42	1	565	69	477	0,15
140	27,9	262	496	-89	0	709	136	528	0,18

Module réversible, Er (MPa)	1000 -	+ Sa	= k ₁ p	n: 21	% -		p _a	+1) +1 -	Ī	À	*	*	
	100 - 1	0			Cor	ntrain		00 otale, q (kP	'a)				1000

Teneur e	Teneur eau drainée :			%		Saturatio	on :	23	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,5	20	138	-23	3	81	10	144	0,17
20	3,2	40	296	-61	1	103	20	136	0,21
20	4,8	60	417	-100	0	125	31	144	0,24
35	3,1	35	185	-31	2	143	18	189	0,17
35	6,1	69	355	-73	0	180	36	195	0,21
35	9,4	103	488	-116	1	218	53	212	0,24
70	6,5	68	232	-37	1	284	35	293	0,16
70	13,5	134	410	-79	1	358	70	327	0,19
70	20,4	199	552	-123	1	429	103	360	0,22
105	6,7	67	178	-26	2	389	35	377	0,14
105	10,1	100	257	-40	1	425	52	390	0,16
105	20,5	198	451	-84	0	534	103	439	0,19
140	10,1	100	213	-31	1	530	52	467	0,15
140	13,6	132	275	-42	1	565	69	481	0,15
140	27,6	262	495	-89	0	710	136	529	0,18

Sat.	C ₁	C ₂	C ₃	R²	RMSE	n
21%	101	0,843	-0,933	0,99	12	15
37%	72	0,824	-0,822	1,00	10	15
23%	82	0,817	-0,849	0,99	11	15
Sat.	k₁	k ₂	k ₂	R²	RMSE	n
	***	2	**3	11	INVIOL	- 11
21%	1,67	0,713	-0,302	0,96	0,042	15

-0,330

0,98

0,031

Sat.	$\nu_{\rm r}$	σ	n
21%	0,18	0,03	15
37%	0,19	0,03	15
23%	0,18	0,03	15

0,777

1.46

23%

Conditionnement 10 000 cycles								
No.	ϵ_{p1}	ε_{p2}	ϵ_{p}					
1	21	19	20					
2								

15

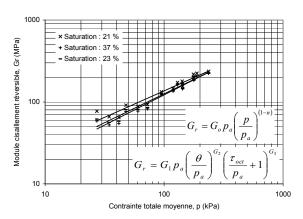
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 19 septembre 2002 Date : 19 septembre 2002

Ministère des Transports

Québec MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier Type matériau : MG-112 Région : Chaudière-Appalaches Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

5,3 % 2,62 Éprouvette : S2 Porosité : 36 % Densité : Teneur eau optimale : 13,1 % Teneur eau : 21 % Masse vol. optimale: 1691 kg/m³ Masse volumique: 1686 kg/m³ Saturation : Absorption: 0,9 %

Teneur e	eau intiale	e :	5,3	%		Saturation :		21	%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	21	79	89	87	77	0,8	3,0
35	44	14	41	160	207	85	66	1,3	3,0
42	65	20	60	200	310	100	65	1,6	3,0
48	38	12	36	114	130	104	91	0,8	3,0
60	76	23	70	202	262	115	89	1,3	3,0
72	112	34	103	251	368	137	93	1,6	3,0
95	75	23	68	154	171	148	133	0,8	3,0
119	147	45	134	244	304	183	147	1,2	3,0
143	219	66	199	300	426	221	156	1,5	3,0
130	74	23	68	125	130	180	172	0,6	3,0
142	110	33	100	171	186	196	179	0,8	3,0
178	218	66	198	273	334	242	198	1,2	3,0
177	110	33	100	144	152	231	218	0,6	3,0
188	146	44	132	181	197	243	224	0,8	3,0
237	289	87	262	308	369	284	237	1,2	3,0

	1000 -	× Saturation : 21 %	
Module volumétrique réversible, Kr (MPa)	100 -	$\beta = (1 - n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^{\frac{1}{2}}$	
Module	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$ 0 100 Contrainte totale moyenne, p (kPa)	1000

Teneur e	eau satur	ée :	8,8	%		Saturation :		37	%
р	q	Δр	Δq	ϵ_{vr}	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	22	7	20	96	114	70	59	0,8	3,0
35	44	13	40	179	255	75	52	1,3	3,0
42	65	20	60	220	366	91	55	1,6	3,0
48	38	12	35	130	153	90	76	0,8	3,0
60	76	23	69	216	298	107	77	1,3	3,0
72	112	34	102	258	415	132	82	1,6	3,0
95	75	23	68	161	183	140	123	0,8	3,0
119	147	44	133	254	330	175	135	1,2	3,0
143	219	66	199	306	459	216	144	1,5	3,0
130	74	22	67	129	138	173	162	0,6	3,0
142	110	33	100	179	200	186	166	0,8	3,0
178	218	66	197	284	358	232	184	1,2	3,0
176	110	33	99	153	164	216	201	0,6	3,0
188	146	44	132	192	213	229	207	0,8	3,0
236	289	87	262	317	390	275	224	1,2	3,0

Ten	eur e	au drain	ée :	5,8	%		Saturation	on :	23	%
	р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	$\Delta q/\Delta p$
(kl	Pa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
2	7	21	7	20	92	108	72	62	0,8	3,0
3	4	43	13	40	173	238	77	56	1,3	3,0
4	2	65	20	60	217	344	92	58	1,6	3,0
4	8	38	12	35	122	144	95	81	0,8	3,0
6	0	76	23	69	209	285	110	81	1,3	3,0
7	3	113	34	103	256	403	134	86	1,6	3,0
9	15	74	23	68	158	179	144	126	0,8	3,0
11	19	148	45	134	252	326	177	137	1,2	3,0
14	43	219	66	199	305	450	217	147	1,5	3,0
1:	30	74	22	67	127	136	177	165	0,6	3,0
14	42	110	33	100	177	198	189	169	0,8	3,0
1	78	218	66	198	283	356	233	185	1,2	3,0
1	77	110	33	100	151	163	220	204	0,6	3,0
18	88	146	44	132	191	211	231	209	0,8	3,0
2	37	289	87	262	317	389	275	224	1,2	3,0

Jai.	1,0	00	- 11	· · Kr	TUVIOLK	i v Gr	THIOLGE	- 11
21%	1,42	1,37	0,386	0,95	0,044	0,92	0,054	15
37%	1,29	1,23	0,305	0,97	0,039	0,95	0,049	15
23%	1,33	1,26	0,331	0,97	0,039	0,95	0,047	15

Sat.	r ₁	r ₂	r\3	R-	RIVISE	n
21%	0,84	0,514	0,264	0,99	0,021 0,015 0,013	15
37%	0,72	0,565	0,322	1,00	0,015	15
23%	0,75	0,561	0,271	1,00	0,013	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
21%	0,72	0,768	-0,458	0,95	0,048	15
37%	0,58	0,870	-0,500	0,97	0,040	15
23%	0,62	0,834	-0,490	0,97	0,038	15

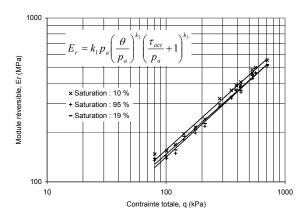
Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 19 septembre 2002 Date : 19 septembre 2002

Ministère des Transports

Québec MÉTHODE LC 22-400

OÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-112 Région : Québec Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

1,9 % Éprouvette : S3 Porosité : 32 % Densité : 2,68 Teneur eau optimale : 11,5 % Teneur eau : Masse vol. optimale: 1792 kg/m³ Masse volumique: 1832 kg/m³ Saturation: 10 % Absorption: 0,2 %

Teneur e	eau intiale	e :	1,9	%		Saturation	ion: 10 %		%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	125	-17	17	80	10	148	0,13
20	3,8	36	235	-40	17	101	19	155	0,17
20	5,8	54	323	-63	16	119	28	169	0,19
35	3,3	33	167	-23	19	141	17	197	0,14
35	6,8	65	302	-52	16	176	34	216	0,17
35	10,2	97	403	-81	14	212	51	241	0,20
70	6,8	65	202	-29	19	282	34	322	0,14
70	13,7	129	357	-61	15	353	67	362	0,17
70	20,7	193	492	-98	12	423	101	392	0,20
105	6,9	65	168	-22	23	388	34	389	0,13
105	10,3	98	240	-34	20	424	51	407	0,14
105	20,8	194	419	-76	14	530	101	462	0,18
140	10,5	98	204	-28	22	529	51	484	0,14
140	14,0	131	262	-37	19	564	68	499	0,14
140	28,0	259	469	-79	13	707	135	552	0,17

$c = c_1 + c_2\theta + c_3\theta + c_4\theta + c_4\theta + c_5\theta	$\tau_3 au_{oct}$		
		, , , ,	
×	<u> </u>	***	
		× Saturation : 10 % - + Saturation : 95 % - Saturation : 19 %	
200	400	600	800
	200		× Saturation : 10 % + Saturation : 19 % - Saturation : 19 %

Teneur e	eau satur	ée :	16,6 %			Saturation :		95 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	136	-22	18	80	10	136	0,16
20	3,8	37	263	-53	18	101	19	139	0,20
20	5,7	55	367	-84	17	120	29	150	0,23
35	3,4	33	181	-29	19	141	17	181	0,16
35	6,8	65	326	-64	18	176	34	199	0,20
35	10,2	97	444	-100	16	212	51	219	0,23
70	6,8	66	227	-35	21	282	34	289	0,16
70	13,8	130	401	-74	16	355	68	325	0,19
70	20,7	194	551	-124	13	425	101	353	0,23
105	6,9	65	179	-25	24	386	34	365	0,14
105	10,3	97	256	-39	21	422	51	380	0,15
105	20,7	193	453	-82	15	529	101	427	0,18
140	10,4	98	220	-32	23	529	51	447	0,14
140	13,9	131	283	-43	21	565	68	462	0,15
140	27,9	259	508	-90	15	708	135	511	0,18

RMSE

11

15

15

Teneur e	eau drain	ée :	3,5	%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	E _r	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	18	133	-20	20	81	10	139	0,15
20	3,8	37	256	-45	18	100	19	144	0,18
20	5,7	55	350	-72	16	121	29	157	0,20
35	3,4	33	172	-30	20	141	17	190	0,18
35	6,8	65	312	-61	17	177	34	208	0,20
35	10,3	97	426	-89	16	212	50	227	0,21
70	6,9	66	220	-32	22	282	34	299	0,15
70	13,8	130	390	-69	16	354	68	333	0,18
70	20,8	194	536	-115	13	424	101	362	0,21
105	7,0	66	183	-25	21	388	35	362	0,14
105	10,4	99	263	-39	18	424	52	376	0,15
105	20,9	196	459	-82	13	531	102	426	0,18
140	10,6	100	223	-31	22	531	52	448	0,14
140	14,1	132	286	-42	19	567	69	462	0,15
140	28,2	261	504	-87	13	710	137	518	0,17

96	0,716	-0,497	0,99	12	15
k ₁	k ₂	k ₃	R²	RMSE	n
1,61	0,701	-0,176	0,99	0,016	15
1,47	0,728	-0,236	0,99	0,018	15
1,51	0,692	-0,178	1,00	0,015	15
	k ₁ 1,61 1,47	k ₁ k ₂ 1,61 0,701 1,47 0,728	k ₁ k ₂ k ₃ 1,61 0,701 -0,176 1,47 0,728 -0,236	k1 k2 k3 R² 1,61 0,701 -0,176 0,99 1,47 0,728 -0,236 0,99	k1 k2 k3 R² RMSE 1,61 0,701 -0,176 0,99 0,016 1,47 0,728 -0,236 0,99 0,018

-0,557

0,99

0,99

c₂

0,751 -0,656

Sat.	$\nu_{\rm r}$	σ	n
10%	0,16	0,02	15
95%	0,18	0,03	15
19%	0,17	0,03	15

Sat.

10%

95%

101

89

Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ϵ_{p2}	ϵ_{p}						
1	66	74	70						
2									

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 25 avril 2008 Date : 25 avril 2008

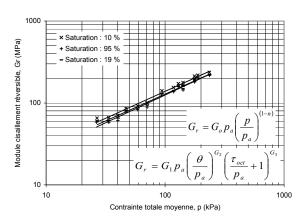
Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-012-07 Type matériau : MG-112 Région : Québec Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

1,9 % Densité: 2,682 Teneur eau optimale : 11,5 % Éprouvette : S3 Porosité : 32 % Teneur eau : Masse vol. optimale: 1792 kg/m³ Masse volumique : 1832 kg/m³ Saturation: 10 % Absorption: 0,2 %

Teneur e	Teneur eau intiale :		1,9	1,9 %		Saturation	on :	10	%
р	q	Δр	Δq	εντ	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	91	94	67	65	0,8	3,0
34	40	12	36	155	184	78	66	1,2	3,0
40	60	18	54	198	257	92	71	1,5	3,0
47	36	11	33	120	127	91	86	0,8	3,0
59	72	22	65	198	236	110	92	1,2	3,0
71	107	32	97	241	322	134	100	1,5	3,0
94	72	22	65	144	154	151	141	0,8	3,0
118	143	43	129	234	279	184	155	1,2	3,0
141	214	64	193	297	393	216	163	1,5	3,0
129	72	22	65	124	127	176	172	0,6	3,0
141	108	33	98	172	183	190	178	0,8	3,0
177	214	65	194	266	330	242	195	1,2	3,0
176	109	33	98	148	154	221	213	0,6	3,0
188	145	44	131	187	199	233	218	0,8	3,0
236	287	86	259	311	366	278	236	1,2	3,0

	1000 -		
œ		× Saturation : 10 %	
₽		+ Saturation : 95 %	
- -		- Saturation : 19 %	
ble, I			
e réversi	100 -	$\beta = (1-n)K_o/6G_o$	
Module volumétrique réversible, Kr (MPa)		$K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1 - \beta \left(\frac{q}{p}\right)^2\right)^2$	
Module v	10 -	$K_r = K_1 p_a \left(\frac{\theta}{p_a}\right)^{K_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{K_3}$	
		0 100 100	00
		Contrainte totale moyenne, p (kPa)	

Teneur e	Teneur eau saturée :		16,6	6 %		Saturation	on : 95		5 %	
р	q	Δp	Δq	εντ	£ _{sr}	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	92	105	67	58	0,8	3,0	
34	41	12	37	158	211	77	58	1,2	3,0	
40	61	18	55	199	300	92	61	1,5	3,0	
47	36	11	33	122	140	89	78	0,8	3,0	
59	72	22	65	198	260	109	83	1,2	3,0	
71	107	32	97	243	363	133	89	1,5	3,0	
94	72	22	66	156	175	140	125	0,8	3,0	
118	144	43	130	252	317	172	137	1,2	3,0	
142	215	65	194	302	450	215	144	1,5	3,0	
129	72	22	65	128	136	170	160	0,6	3,0	
141	108	32	97	178	197	183	165	0,8	3,0	
176	214	64	193	289	357	223	181	1,2	3,0	
176	109	33	98	156	168	210	195	0,6	3,0	
188	145	44	131	197	217	221	201	0,8	3,0	
236	287	86	259	327	398	264	217	1,2	3,0	

Teneur	eau drain	ée :	3,5	3,5 %		Saturation	on :	19	%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	ϵ_{sr}	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	94	102	66	61	0,8	3,0
33	41	12	37	165	201	74	61	1,2	3,0
40	61	18	55	207	281	88	65	1,5	3,0
47	36	11	33	112	135	97	81	0,8	3,0
59	72	22	65	189	249	114	87	1,2	3,0
71	107	32	97	249	343	130	94	1,5	3,0
94	73	22	66	155	168	141	130	0,8	3,0
118	144	43	130	253	306	172	142	1,2	3,0
141	215	65	194	307	434	211	149	1,5	3,0
129	73	22	66	134	139	166	159	0,6	3,0
141	109	33	99	186	202	178	164	0,8	3,0
177	217	65	196	296	360	220	181	1,2	3,0
177	111	33	100	162	170	206	197	0,6	3,0
189	146	44	132	203	219	217	201	0,8	3,0
237	290	87	261	331	394	263	221	1,2	3,0

Sat.	K _o	G _o	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
10%	1,37	1,39	0,346	0,98	0,026	0,98	0,026	15
95%	1,32	1,25	0,349	0,99	0,025	0,98	0,033	15
19%	1,31	1,28	0,365	0,98	0,027	0,98	0,027	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
10%	0,75	0,566	0,312	1,00	0,013	15 15 15
95%	0,74	0,530	0,344	0,99	0,015 0,015	15
19%	0,74	0,530	0,319	0,99	0,015	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
10%	0,70	0,741	-0,317	0,99	0,020	15
95%	0,63	0,781	-0,393	0,99	0,024	15
19%	0,65	0,738	-0,317	0,99	0,020	15

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : 25 avril 2008 Date : 25 avril 2008

Ministère des Transports

Québec

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-112 Région : Chaudière-Appalaches Félix Doucet, SMI Client : Pétrographie : Sable lithique Utilisation: Sous-fondation

3,1 % 22 % Densité : 2,56 7,7 % Éprouvette : S4 Teneur eau : Porosité : Teneur eau optimale : Masse volumique: 1993 kg/m³ Saturation : 0,9 % Masse vol. optimale: 2044 kg/m³ 20 % Absorption :

Teneur	eau intiale	e :	3,1 %		Saturation :		20 %		
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	138	-20	13	80	10	134	0,15
20	3,8	37	257	-47	11	101	19	143	0,18
20	5,8	55	347	-74	9	120	29	158	0,21
35	3,4	33	181	-27	14	142	17	184	0,15
35	6,9	66	319	-60	10	179	34	206	0,19
35	10,3	98	411	-89	8	214	51	239	0,22
70	6,9	66	210	-32	14	282	34	313	0,15
70	13,9	130	354	-66	9	355	68	367	0,19
70	20,8	195	475	-103	7	426	102	409	0,22
105	6,9	65	158	-22	17	387	34	411	0,14
105	10,4	97	225	-34	14	423	51	433	0,15
105	20,8	194	389	-71	8	530	101	498	0,18
140	10,5	99	191	-27	15	529	51	517	0,14
140	14,0	131	245	-37	13	565	68	534	0,15
140	28,1	260	437	-80	8	708	136	595	0,18

800 —			I		_
	$E_r = c_1 +$	$c_2\theta + c_3\tau_{oct}$			
<u>@</u> 600 —				x	_
, Er (M			**	,	
elgi 400 —		×	ž,		-
Module réversible, Er (MPa) 00 00 00 00			+ Satu	ration : 20 % ration : 88 % ——	
			- Satu	ration : 57 %	
0	20	00 4	00	600	800
			otale, q (kPa)		

Teneur e	eau satur	ée :	10,7	%		Saturation :		88	%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,7	19	178	-31	11	81	10	105	0,17
20	3,6	37	332	-72	10	101	19	112	0,22
20	5,5	55	442	-110	9	122	29	126	0,25
35	3,2	34	226	-39	13	141	17	148	0,17
35	6,6	66	389	-84	11	177	34	170	0,22
35	10,0	99	506	-126	10	214	51	196	0,25
70	6,9	67	253	-43	15	284	35	264	0,17
70	13,8	132	425	-87	11	356	69	311	0,21
70	20,7	197	567	-136	9	427	102	347	0,24
105	6,9	66	190	-28	18	388	34	348	0,15
105	10,4	99	271	-45	16	424	51	365	0,16
105	20,8	195	460	-91	11	531	102	424	0,20
140	10,6	101	229	-36	18	531	52	439	0,16
140	14,1	133	292	-48	16	568	69	456	0,17
140	28,1	263	508	-100	11	711	137	518	0,20

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $\times \text{Saturation} : 20 \%$ $+ \text{Saturation} : 88 \%$ $- \text{Saturation} : 57 \%$	
	100 - 1	0 100	- 1000
		Contrainte totale, q (kPa)	

RMSE

Teneur e	eau drain	ée :	7,2 %			Saturation :		57 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{1r moy} ε _{3r} +		θ	τ_{oct}	Er	$\nu_{\rm r}$
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	168	-28	12	81	10	111	0,16
20	3,7	37	319	-65	11	101	19	116	0,21
20	5,6	55	426	-100	10	121	29	130	0,24
35	3,3	34	216	-36	14	143	17	156	0,17
35	6,8	66	376	-78	12	179	35	177	0,21
35	10,2	99	494	-118	11	214	51	200	0,24
70	7,0	67	248	-41	17	283	35	269	0,17
70	14,0	131	423	-85	12	356	69	311	0,20
70	21,0	196	562	-132	10	427	102	349	0,23
105	7,0	66	189	-28	20	388	34	349	0,15
105	10,5	98	269	-43	17	424	51	366	0,16
105	21,0	195	458	-89	11	531	102	425	0,20
140	10,7	100	227	-34	21	530	52	439	0,15
140	14,2	132	289	-47	18	567	69	457	0,16
140	28,3	261	499	-97	12	710	137	524	0,19

88%	52	0,786	-0,522	1,00	11	15
57%	57	0,775	-0,488	1,00	9	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
20%	1,47	0,795	-0,193	0,99	0,018	15
88%	1,16	0,846	-0,201	1,00	0,016	15
57%	1.21	0.818	-0,184	1.00	0.017	15

c₂ c₃ 0,904 -0,669

Sat.	ν_{r}	σ	n
20%	0,17	0,03	15
88%	0,19	0,03	15
57%	0,19	0,03	15

Conditionnement 10 000 cycles									
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	ϵ_{p}						
1	43	45	44						
2									

Note:

Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par :

Date : Date : 1 mai 2008

Ministère des Transports

Transports

Québec

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-112 Région : Chaudière-Appalaches Félix Doucet, SMI Client : Utilisation : Sous-fondation Pétrographie : Sable lithique

Densité: 2,557 Absorption: 0,93 % 3,1 % Porosité : 22 % 7,7 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 1993 kg/m³ Masse vol. optimale : 2044 kg/m³ Saturation : 20 %

Teneur e	Teneur eau intiale :			3,1 %		Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	19	98	105	63	59	0,8	3,0
34	41	12	37	162	202	75	60	1,2	3,0
40	61	18	55	200	281	92	65	1,5	3,0
47	37	11	33	126	139	88	80	0,8	3,0
60	73	22	66	198	253	110	87	1,2	3,0
71	108	33	98	232	333	141	98	1,5	3,0
94	73	22	66	146	161	150	136	0,8	3,0
118	144	43	130	223	280	195	155	1,2	3,0
142	215	65	195	270	385	240	168	1,5	3,0
129	72	22	65	114	120	189	181	0,6	3,0
141	108	32	97	157	173	207	188	0,8	3,0
177	214	65	194	246	307	262	210	1,2	3,0
176	109	33	99	137	145	240	226	0,6	3,0
188	145	44	131	171	188	255	232	0,8	3,0
236	288	87	260	278	345	312	252	1,2	3,0

Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 20 % + Saturation : 88 % - Saturation : 57 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o p_a \left(\frac{p}{p_a}\right)^{(1-n)} / \left(1-\beta \left(\frac{q}{p}\right)^2\right)$	
Module	10 - 1	$K_r = K_1 p_a \left(\frac{\theta}{p_a} \right) \left(\frac{\tau_{oct}}{p_a} + 1 \right)$	000
		Contrainte totale moyenne, p (kPa)	

Teneur e	Teneur eau saturée :			10,7 %		Saturation :			%
р	q	Δp	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	∆q/∆p
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	116	139	54	45	0,8	3,0
34	41	12	37	187	269	66	46	1,2	3,0
41	61	18	55	221	368	84	50	1,5	3,0
47	37	11	34	148	177	75	63	0,8	3,0
59	73	22	66	221	316	100	70	1,2	3,0
71	109	33	99	254	421	130	78	1,5	3,0
95	74	22	67	168	197	133	113	0,8	3,0
119	146	44	132	250	341	176	129	1,2	3,0
142	217	66	197	295	469	222	140	1,5	3,0
129	73	22	66	133	146	165	151	0,6	3,0
141	109	33	99	181	210	181	157	0,8	3,0
177	216	65	195	277	368	235	177	1,2	3,0
177	111	34	101	158	177	212	190	0,6	3,0
189	147	44	133	195	227	227	196	0,8	3,0
237	291	88	263	307	405	285	216	1,2	3,0

ole, Gr (MPa)	1000 -	+ Satur	ration : 20 9 ration : 88 9 ration : 57 9	%		***			
Module cisaillement réversible, Gr (MPa)	100 -		×			$G_r = 0$	-	r a /	-n)
Moc	10 - 1	0	C		 100	$\left(\frac{\theta}{p_a}\right)$ ne, p (kP		$\frac{ct}{a} + 1$	1000

Teneur e	Teneur eau drainée :			7,2 %		Saturation :			%
р	q	Δр	Δq	εντ	$\epsilon_{\rm sr}$	K _r	G _r	q/p	$\Delta q/\Delta p$
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	21	6	19	113	131	55	48	0,8	3,0
34	41	12	37	188	257	66	48	1,2	3,0
40	61	18	55	225	351	82	53	1,5	3,0
48	37	11	34	144	168	78	67	0,8	3,0
60	73	22	66	221	303	100	73	1,2	3,0
71	109	33	99	258	408	128	81	1,5	3,0
94	74	22	67	166	193	134	115	0,8	3,0
119	146	44	131	254	339	173	129	1,2	3,0
142	217	65	196	298	462	219	141	1,5	3,0
129	73	22	66	133	144	164	152	0,6	3,0
141	109	33	98	182	208	180	157	0,8	3,0
177	216	65	195	279	364	232	178	1,2	3,0
177	110	33	100	159	174	210	191	0,6	3,0
189	147	44	132	196	224	225	197	0,8	3,0
237	290	87	261	306	397	285	219	1,2	3,0

Sat.	K _o	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
20%	1,40	1,39	0,259	0,99	0,029	0,98	0,030	15
88%	1,22	1,14	0,224	0,99	0,025	0,99	0,031	15
57%	1,22	1,16	0,242	0,99	0,026	0,99	0,030	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
20%	0,71	0,630	0,371	0,99	0,018	15
88%	0,61	0,609	0,498	0,99	0,022	15
57%	0,62	0,608	0,473	0,99	0,018	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
20%	0,64	0,841	-0,349	0,99	0,023	15
88%	0,49	0,906	-0,380	0,99	0,022	15
57%	0,52	0,872	-0,356	0,99	0,023	15

Note:

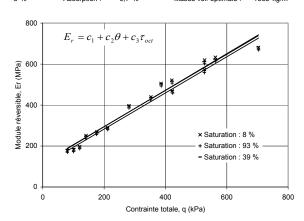
Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : 1 mai 2008 Date : 1 mai 2008

Ministère des Transports

Parisports

MÉTHODE LC 22-400


MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier AM-012-07 Type matériau : MG-112 Région : Centre-du-Québec Félix Doucet, SMI Client: Utilisation: Sous-fondation Pétrographie : Sable granitique

2,4 % Densité : 2,63 10,0 % Éprouvette : S5 Porosité : 35 % Teneur eau optimale : Teneur eau : Masse volumique: 1706 kg/m³ 8 % Masse vol. optimale: 1668 kg/m³ Saturation : Absorption : 0,7 %

Teneur	Teneur eau intiale :			2,4 %			Saturation :		%
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,8	19	106	-13	5	80	10	177	0,13
20	3,8	37	202	-33	2	101	19	183	0,16
20	5,8	55	280	-52	0	120	29	197	0,18
35	3,4	33	130	-17	2	142	17	251	0,13
35	6,9	65	240	-37	1	177	34	269	0,15
35	10,4	97	333	-60	2	212	50	290	0,18
70	6,9	65	163	-19	0	281	34	397	0,11
70	13,9	128	292	-41	2	353	67	440	0,14
70	20,9	192	409	-67	3	422	100	469	0,16
105	6,9	64	127	-13	1	386	34	506	0,10
105	10,4	96	184	-20	1	421	50	521	0,11
105	20,9	191	334	-44	3	527	100	573	0,13
140	10,4	97	156	-16	1	528	50	619	0,10
140	13,9	128	203	-22	1	563	67	633	0,11
140	27,9	255	375	-47	3	703	134	680	0,13

Teneur e	Teneur eau saturée :			19,8 %		Saturation :			93 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}	
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)		
20	1,9	19	110	-16	4	80	10	169	0,15	
20	3,8	37	213	-41	2	101	19	173	0,19	
20	5,8	55	294	-65	0	121	29	187	0,22	
35	3,4	32	138	-20	2	141	17	236	0,15	
35	6,9	65	251	-44	1	176	34	257	0,18	
35	10,3	96	345	-70	2	212	50	280	0,20	
70	6,9	64	167	-22	0	281	34	386	0,13	
70	13,8	128	302	-46	2	351	67	425	0,15	
70	20,8	192	419	-75	3	424	100	458	0,18	
105	6,9	64	130	-14	0	387	33	493	0,11	
105	10,4	96	189	-23	2	422	50	507	0,12	
105	20,8	191	342	-49	3	527	100	558	0,14	
140	10,4	96	160	-17	1	528	50	602	0,11	
140	13,9	128	208	-24	2	563	67	615	0,11	
140	27,9	255	382	-51	3	704	134	670	0,13	

Module réversible, Er (MPa)	1000 -	$E_r = k_1 p_a \left(\frac{\theta}{p_a}\right)^{k_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{k_3}$ $\times \text{ Saturation : 8 \%}$ $+ \text{ Saturation : 39 \%}$ $- \text{ Saturation : 39 \%}$	-
	100 - 1	0 100 10 Contrainte totale, q (kPa)	000

Teneur	Teneur eau drainée :			%		Saturation :			%
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	€3r	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	1,9	19	102	-13	3	80	10	183	0,13
20	3,8	37	197	-31	1	101	19	186	0,16
20	5,8	55	276	-51	0	120	29	199	0,19
35	3,4	32	130	-16	3	141	17	249	0,12
35	6,9	64	239	-36	1	175	34	269	0,15
35	10,3	96	331	-59	0	211	50	291	0,18
70	6,9	64	162	-18	2	281	34	398	0,11
70	13,8	128	293	-41	1	353	67	437	0,14
70	20,8	192	408	-66	2	422	100	470	0,16
105	6,9	64	127	-13	3	386	33	504	0,10
105	10,4	96	186	-21	1	421	50	517	0,11
105	20,8	191	335	-44	2	526	100	569	0,13
140	10,4	96	158	-16	2	526	50	611	0,10
140	13,9	128	205	-22	0	561	67	624	0,11
140	27,9	255	373	-47	3	702	134	684	0,13

93%	108	1,061	-1,169	0,99	17	15
39%	121	1,053	-1,125	0,99	16	15
Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
8%	1,98	0,776	-0,361	0,99	0,017	15
93%	1,87	0,793	-0,357	0,99	0,018	15
39%	2.00	0.755	-0.326	0.99	0.019	15

c₂ c₃ 1,080 -1,235

п				
	Sat.	v_r	σ	n
	8%	0,14	0,03	15
	93%	0,15	0,03	15
	39%	0,13	0,03	15

Conditio	Conditionnement 10 000 cycles									
No.	ϵ_{p1}	ε_{p2}	$\epsilon_{\rm p}$							
1	18	19	19							
2										

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 14 novembre 2008 Date : 14 novembre 2008

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-012-07 Type matériau : MG-112 Région : Centre-du-Québec Client : Félix Doucet, SMI Sous-fondation Utilisation: Pétrographie : Sable granitique

2,4 % Porosité : 35 % Densité: 2,632 10 % Éprouvette : S5 Teneur eau : Teneur eau optimale : Masse volumique: 1706 kg/m³ Saturation : 8 % 0,7 % Masse vol. optimale: 1668 kg/m³ Absorption :

Teneur	Teneur eau intiale :			%		Saturation :			8 %		
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp		
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)				
27	21	6	19	79	80	79	79	0,8	3,0		
34	41	12	37	136	157	91	79	1,2	3,0		
40	61	18	55	177	221	104	83	1,5	3,0		
47	36	11	33	97	98	113	111	0,8	3,0		
59	72	22	65	166	185	129	117	1,2	3,0		
71	107	32	97	213	262	151	123	1,5	3,0		
94	72	22	65	126	121	171	178	0,8	3,0		
118	142	43	128	210	222	204	193	1,2	3,0		
141	213	64	192	275	317	232	202	1,5	3,0		
129	71	21	64	101	93	212	229	0,6	3,0		
140	107	32	96	144	137	223	235	0,8	3,0		
176	212	64	191	246	251	259	253	1,2	3,0		
176	107	32	97	124	114	259	281	0,6	3,0		
188	142	43	128	159	150	269	286	0,8	3,0		
234	283	85	255	281	282	303	302	1,2	3,0		

Module volumétrique réversible, Kr (MPa)	1000 -	$ \begin{array}{c c} \times \text{Saturation}: 8 \% \\ + \text{Saturation}: 93 \% \\ - \text{Saturation}: 39 \% \\ \hline \\ K_r = K_o p_a \bigg(\frac{p}{p_a}\bigg)^{(1-n)} \bigg/ \bigg(1 - \beta \bigg(\frac{q}{p}\bigg)^2\bigg) \\ \hline \\ K_r = K_1 p_a \bigg(\frac{\theta}{p_a}\bigg)^{K_2} \bigg(\frac{\tau_{oct}}{p_a} + 1\bigg)^{K_3} - \frac{1}{2} \bigg(\frac{\tau_{oct}}{p_a} + 1\bigg)^{K_3} \bigg) \\ \end{array} $	
2	10 - 1		000
		Contrainte totale moyenne, p (kPa)	550

Teneur e	eau satur	ée :	19,8 %			Saturation :			93 %	
р	q	Δр	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	Gr	q/p	∆q/∆p	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	19	77	84	81	74	0,8	3,0	
34	41	12	37	132	169	93	73	1,2	3,0	
40	61	18	55	165	239	111	76	1,5	3,0	
47	36	11	32	97	105	111	103	0,8	3,0	
59	71	22	65	163	197	132	109	1,2	3,0	
71	107	32	96	205	276	157	116	1,5	3,0	
94	71	21	64	124	126	174	171	0,8	3,0	
117	142	43	128	210	232	204	184	1,2	3,0	
141	213	64	192	269	329	238	194	1,5	3,0	
129	71	21	64	101	96	211	222	0,6	3,0	
141	106	32	96	143	141	223	226	0,8	3,0	
176	212	64	191	244	261	261	244	1,2	3,0	
176	107	32	96	126	118	256	272	0,6	3,0	
188	142	43	128	161	155	266	276	0,8	3,0	
235	283	85	255	279	289	306	295	1,2	3,0	

Module cisaillement réversible, Gr (MPa)	1000 -	× Saturatio + Saturatio - Saturatio	n : 93 % _			*		
entr	100 -		, A				(1-)	<u>*</u> ##
cisailleme					G_r	$=G_{o}p_{a}$	$\left(\frac{p}{p_a}\right)^{(1-p)}$	" 🖠
Modul	10 -			$G_r =$	$G_1 p_a \left(\frac{\theta}{p}\right)$	$\left(\frac{g}{a}\right)^{G_2} \left(\frac{\tau}{I}\right)^{G_2}$	$\left(\frac{oct}{o_a} + 1\right)$	G ₃
		0			100			1000
			Contra	ainte totale	moyenne, p	(kPa)		

Teneur	eau drain	ée :	8,7 %			Saturation :			39 %	
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	21	6	19	76	77	83	81	0,8	3,0	
34	41	12	37	135	152	91	80	1,2	3,0	
40	61	18	55	173	218	106	84	1,5	3,0	
47	36	11	32	98	97	110	111	0,8	3,0	
58	71	21	64	166	184	129	117	1,2	3,0	
70	107	32	96	214	260	150	124	1,5	3,0	
94	71	21	64	125	120	172	179	0,8	3,0	
118	142	43	128	211	222	202	192	1,2	3,0	
141	213	64	192	276	316	232	202	1,5	3,0	
129	71	21	64	101	94	211	228	0,6	3,0	
140	106	32	96	144	138	222	232	0,8	3,0	
175	212	64	191	246	253	258	251	1,2	3,0	
175	107	32	96	126	116	256	277	0,6	3,0	
187	142	43	128	161	152	265	282	0,8	3,0	
234	283	85	255	279	281	305	303	1,2	3,0	

Sat.	K _o	G_{o}	n	R ² Kr	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
8%	1,59	1,76	0,337	0,97	0,035	0,97	0,037 0,041 0,036	15
93%	1,60	1,68	0,331	0,98	0,033	0,96	0,041	15
39%	1,60	1,76	0,349	0,97	0,034	0,97	0,036	15

Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
8%	0,91	0,614	0,044	1,00	0,007	15
93%	0,92	0,576	0,127	1,00	0,011	15
39%	0,91	0,595	0,081	1,00	0,008	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
8%	0,87	0,828	-0,491	0,99	0,023	15
93%	0,81	0,858	-0,504	0,99	0,025	15
39%	0,88	0,806	-0,457	0,99	0,024	15

Note:

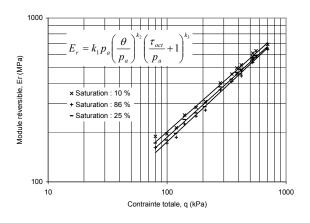
Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec. Date : 14 novembre 2008 Date : 14 novembre 2008

Ministère des Transports

Québec MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES


Dossier AM-029-09 Type matériau : MG-112 Région : Lanaudière Ferdinand Ciza Pétrographie : Sable granitique Client: Utilisation: Sous-fondation

2,69 Éprouvette : S6 2,1 % Porosité : 30 % Densité : Teneur eau optimale : Teneur eau : Masse vol. optimale : Masse volumique: 1879 kg/m³ Saturation: 10 % Absorption: 0,5 % kg/m³

Teneur	eau intiale	e :	2,1 %			Saturatio	on :	10 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	v_r
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	94	-17	9	80	9	189	0,18
20	4,0	36	181	-39	10	100	19	197	0,21
20	6,0	53	249	-61	11	119	28	214	0,24
35	3,6	32	123	-21	10	140	17	256	0,17
35	7,1	63	222	-46	11	175	33	284	0,21
35	10,6	95	306	-72	11	210	50	309	0,24
70	7,1	63	157	-26	11	280	33	402	0,16
70	14,2	126	277	-54	12	350	66	455	0,19
70	21,2	189	391	-89	12	420	99	483	0,23
105	7,1	63	127	-19	12	385	33	495	0,15
105	10,6	95	183	-29	12	420	50	518	0,16
105	21,2	189	325	-62	13	525	99	581	0,19
140	10,6	95	155	-23	13	525	50	610	0,15
140	14,1	126	200	-32	14	560	66	631	0,16
140	28,3	252	364	-69	13	700	132	690	0,19

800	$E_r = c_1 + c_2$	$\theta + c_3 \tau_{oct}$		/2	
.r. (MPa)			× × ×	-	-
Module réversible, Er (MPa) 000 000 000			*		
Wodule			+ Saturat	ltion : 10 % tion : 86 % —— tion : 25 %	
0	200	40	00 60	00	800
		Contrainte to	otale, q (kPa)		

Teneur e	eau satur	ée :	14,2 %			Saturation	on :	86 %	
σ_3	σ_{do}	$\Delta\sigma_{\text{d}}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	18	110	-22	13	80	9	162	0,20
20	4,0	36	207	-51	12	100	19	172	0,24
20	6,0	54	286	-80	12	120	28	187	0,28
35	3,5	32	140	-27	12	140	17	226	0,19
35	7,1	63	251	-58	12	175	33	252	0,23
35	10,6	95	345	-92	12	210	50	274	0,27
70	7,1	63	173	-31	13	280	33	365	0,18
70	14,2	126	307	-65	13	350	66	410	0,21
70	21,3	189	425	-106	13	420	99	444	0,25
105	7,1	63	139	-22	13	385	33	455	0,16
105	10,6	95	199	-34	14	420	50	475	0,17
105	21,2	189	352	-72	14	525	99	536	0,20
140	10,6	95	169	-27	15	525	50	558	0,16
140	14,1	126	218	-37	15	560	66	578	0,17
140	28,3	252	392	-78	15	700	132	642	0,20

R²

0,99

RMSE

Teneur e	eau drain	ée :	4,4 %			Saturatio	on :	25 %	
σ_3	σ_{do}	$\Delta\sigma_{d}$	ε _{1r moy}	ε _{3r}	$+/-\Delta\epsilon_{1r}$	θ	τ_{oct}	Er	ν_{r}
(kPa)	(kPa)	(kPa)	(με)	(με)	(%)	(kPa)	(kPa)	(MPa)	
20	2,0	17	101	-18	12	79	9	173	0,18
20	3,9	35	193	-40	11	99	18	180	0,21
20	5,8	52	265	-63	11	118	27	197	0,24
35	3,5	31	128	-21	11	139	16	240	0,17
35	6,9	61	233	-47	11	173	32	264	0,20
35	10,4	92	320	-75	12	208	48	288	0,23
70	6,9	61	162	-26	12	278	32	380	0,16
70	13,8	123	290	-56	13	347	64	424	0,19
70	20,7	184	404	-91	12	415	96	455	0,22
105	6,9	61	132	-19	12	383	32	466	0,15
105	10,3	92	190	-30	13	417	48	485	0,16
105	20,7	184	336	-64	13	520	96	547	0,19
140	10,3	92	162	-24	14	522	48	568	0,15
140	13,8	123	208	-33	14	557	64	589	0,16
140	27,6	245	375	-70	14	693	129	654	0,19

П	00 /0	100	0,937	-0,725	0,99	10	10
L	25%	120	0,936	-0,682	0,99	16	15
_							
I	Sat.	k ₁	k ₂	k ₃	R²	RMSE	n
ſ	10%	2,08	0,697	-0,209	1,00	0,014	15
ı	86%	1,81	0,733	-0,216	1,00	0,013	15
ı	25%	1,92	0,707	-0,201	1,00	0,013	15

-0,814

Sat.	ν_{r}	σ	n
10%	0,19	0,03	15
86%	0,21	0,04	15
25%	0,19	0,03	15

Sat.

10%

133

0,995

Condition	nnement	10 000 c	ycles
No.	$\epsilon_{\rm p1}$	ϵ_{p2}	$\epsilon_{\rm p}$
1	10	14	12
2			

Note:

Approuvé par : Félix Doucet, ing. M.Sc.A. Réalisé par : Bruno Auger, tech. spec.

Date : Date : 27 mai 2010

Ministère des Transports

Parisports

MÉTHODE LC 22-400

MÉTHODE LC 22-400

DÉTERMINATION DU MODULE RÉVERSIBLE DES MATÉRIAUX GRANULAIRES

Dossier : AM-029-09 Type matériau : MG-112 Région : Lanaudière Client : Ferdinand Ciza Pétrographie : Sable granitique Utilisation : Sous-fondation

Densité : 2,685 Absorption : 0,46 % S6 2,1 % Porosité : 30 % 0 % Éprouvette : Teneur eau : Teneur eau optimale : Masse volumique : 1879 kg/m³ Saturation : 10 % Masse vol. optimale : 0 kg/m³

Teneur e	Teneur eau intiale :		2,1 %			Saturation:			10 %	
р	q	Δp	Δq	$\epsilon_{ m vr}$	ϵ_{sr}	K _r	G _r	q/p	Δq/Δp	
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)			
27	20	6	18	60	74	99	80	0,7	3,0	
33	40	12	36	104	147	115	81	1,2	3,0	
40	59	18	53	128	207	139	86	1,5	3,0	
47	35	11	32	81	96	130	109	0,8	3,0	
58	70	21	63	130	178	162	118	1,2	3,0	
70	105	32	95	162	252	195	125	1,5	3,0	
93	70	21	63	106	122	199	173	0,8	3,0	
117	140	42	126	169	220	249	190	1,2	3,0	
140	210	63	189	212	320	296	197	1,5	3,0	
128	70	21	63	90	97	235	215	0,5	3,0	
140	105	32	95	124	141	253	223	0,8	3,0	
175	210	63	189	201	258	313	244	1,2	3,0	
175	105	32	95	108	119	291	265	0,6	3,0	
187	140	42	126	136	154	309	272	0,8	3,0	
233	280	84	252	227	289	369	290	1,2	3,0	

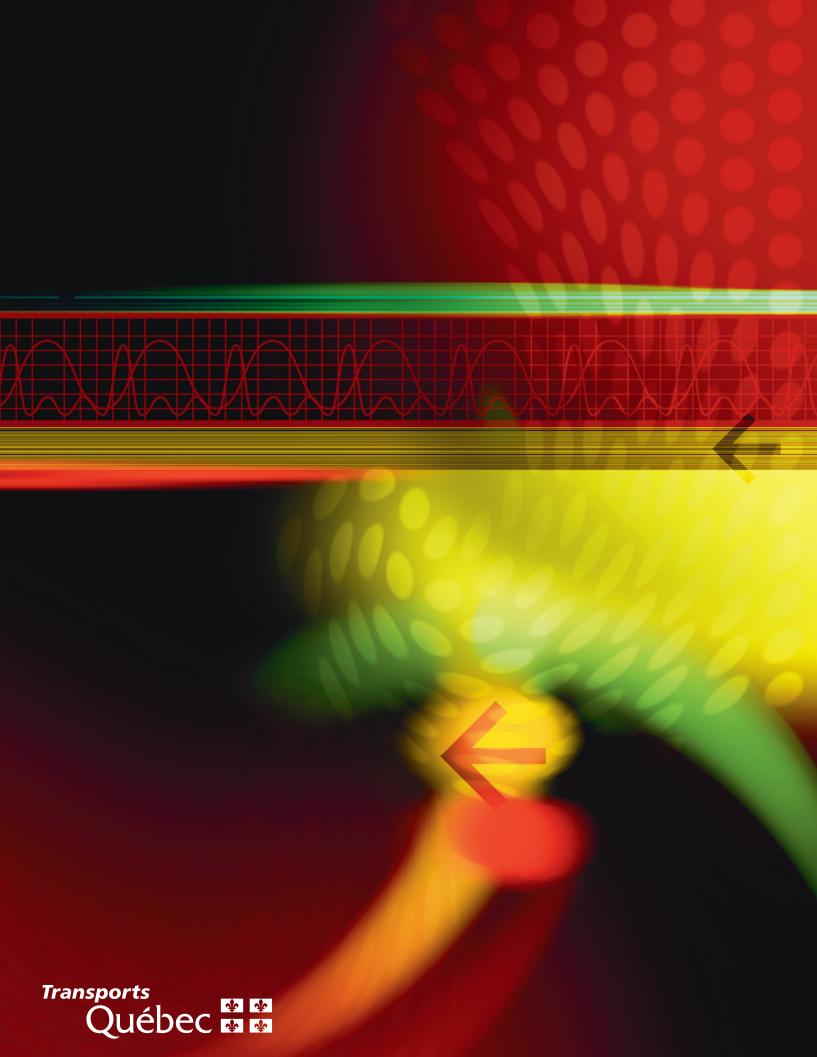
Module volumétrique réversible, Kr (MPa)	1000 -	× Saturation : 10 % + Saturation : 86 % - Saturation : 25 % $\beta = (1-n)K_o/6G_o$ $K_r = K_o P_a \left(\frac{p}{P_a}\right)^{(1-n)} / \left(1-\beta \left(\frac{q}{p}\right)^2\right)$ $K_r = K_1 P_a \left(\frac{\theta}{P_a}\right)^{K_2} \left(\frac{\tau_{oct}}{P_a} + 1\right)^{K_3}$	-
2	10 - 1	100	000
		Contrainte totale moyenne, p (kPa)	

Teneur eau saturée :			14,2 %			Saturation :			%
р	q	Δр	Δq	$\epsilon_{ m vr}$	$\epsilon_{\rm sr}$	K _r	Gr	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
27	20	6	18	66	88	90	67	0,7	3,0
33	40	12	36	106	172	112	69	1,2	3,0
40	60	18	54	125	244	143	73	1,5	3,0
47	35	11	32	86	112	123	94	0,8	3,0
58	70	21	63	135	206	156	102	1,2	3,0
70	105	32	95	161	291	196	108	1,5	3,0
93	70	21	63	111	136	190	155	0,8	3,0
117	140	42	126	177	248	237	169	1,2	3,0
140	210	63	189	214	354	294	178	1,5	3,0
128	70	21	63	94	107	223	196	0,5	3,0
140	105	32	95	131	156	241	203	0,8	3,0
175	210	63	189	208	283	303	222	1,2	3,0
175	105	32	95	115	131	275	240	0,6	3,0
187	140	42	126	144	170	291	247	0,8	3,0
233	280	84	252	235	314	356	267	1,2	3,0

	Module cisaillement réversible, Gr (MPa)	1000 -	× Saturation : 10 % + Saturation : 86 % - Saturation : 25 %
	nent i	100 -	(1-n)
$G_r = G_o p_a \left(\frac{p}{p_a}\right)$	cisaillem		$G_r = G_o p_a \left(\frac{p}{p_a}\right)^{(i-n)}$
$G_r = G_1 p_a \left(\frac{\theta}{p_a}\right)^{G_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{G_3}$	Module		$G_r = G_1 p_a \left(\frac{\theta}{p_a}\right)^{G_2} \left(\frac{\tau_{oct}}{p_a} + 1\right)^{G_3}$
10 +			
10 100 1000 Contrainte totale moyenne, p (kPa)		1	

Teneur e	Teneur eau drainée :			4,4 %		Saturation :			%
р	q	Δр	Δq	$\epsilon_{\rm vr}$	$\epsilon_{\rm sr}$	K _r	G _r	q/p	Δq/Δp
(kPa)	(kPa)	(kPa)	(kPa)	(με)	(με)	(MPa)	(MPa)		
26	19	6	17	65	79	89	73	0,7	3,0
33	39	12	35	112	155	103	74	1,2	3,0
39	58	17	52	138	219	126	79	1,5	3,0
46	34	10	31	86	100	120	103	0,7	3,0
58	68	20	61	140	186	146	110	1,2	3,0
69	103	31	92	171	263	180	117	1,5	3,0
93	68	20	61	110	125	186	164	0,7	3,0
116	137	41	123	178	230	230	178	1,2	3,0
138	205	61	184	222	330	276	186	1,5	3,0
128	68	20	61	93	101	220	203	0,5	3,0
139	102	31	92	130	146	236	209	0,7	3,0
173	205	61	184	209	266	294	230	1,2	3,0
174	102	31	92	114	124	270	247	0,6	3,0
186	137	41	123	143	161	286	254	0,7	3,0
231	273	82	245	235	296	348	276	1,2	3,0

Sat.	Κ _ο	G _o	n	R ² _{Kr}	RMSE _{Kr}	R ² _{Gr}	RMSE _{Gr}	n
10%	1,90	1,73	0,375	0,99	0,020	0,98	0,030	15
86%	1,80	1,53	0,353	0,99	0,020	0,97	0,034	15
25%	1,77	1,63	0,359	0,99	0,019	0,98	0,028	15


Sat.	K ₁	K ₂	K ₃	R²	RMSE	n
10%	1,09	0,477	0,408	0,99	0,016	15
86%	1,04	0,442	0,526	0,98	0,025	15
25%	0,99		0,419	0,99	0,015	15

Sat.	G ₁	G ₂	G ₃	R²	RMSE	n
10%	0,88	0,754	-0,371	0,99	0,020	15
86%	0,75	0,803	-0,395	0,99	0,020	15
25%	0,82	0,762	-0,365	0,99	0,019	15

Note:

Réalisé par : Bruno Auger, tech. spec. Approuvé par : Félix Doucet, ing. M.Sc.A.

Date : 27 mai 2010 Date : 27 mai 2010

