Rapport d'études

Transports intelligents
Mise en œuvre de la directive 2010/40
Eléments pour le choix d'actions publiques
pour la période 2012 - 2017
Préface

Ce rapport est issu de divers cadres de travail qui ont permis d’identifier les principaux domaines dans lesquels les acteurs s’accordent sur les besoins d’action publique. Ces cadres de travail sont principalement :
- le CoMOAR, qui a mis en place dès 2009, un groupe de travail réunissant l’État, les représentants des départements, ainsi que des autorités organisatrices de transports
- les travaux du réseau scientifique et technique en appui aux politiques d’information déplacement et de gestion des trafics de l’État ;
- les travaux des acteurs français du programme européen EasyWay, destiné à faciliter le déploiement harmonisé des services STI sur le réseau trans-européen ;
- la concertation mise en place par le Ministère en 2010, auprès des opérateurs de services d’information routière ;
- la concertation menée, depuis 2009, par l’association ATEC-ITS France.

Ce rapport s’appuie également sur le rapport du Sétra de septembre 2011 (Transports intelligents : état de lieux et perspectives), destiné à préparer le rapport présenté par la France au titre de l’article 17-1 de la Directive 2010/40 sur les actions engagées.

Ces différents cadres de travail ont permis de rassembler, puis de prioriser les attentes des acteurs qui y étaient représentés. Cependant, ces cadres de travail ne peuvent se prévaloir d’avoir permis une concertation exhaustive et approfondie des acteurs concernés par les transports intelligents, qui sont multiples.

C’est pourquoi il est important d’aborder le présent rapport avec plusieurs précautions de lecture :
- le marché des services de transports intelligents est en mouvement rapide, et des actions publiques identifiées comme pertinentes à ce jour, peuvent se révéler inadaptées d’ici quelques années. A contrario, des actions délicates à mettre en œuvre aujourd’hui peuvent s’avérer facilement déployables à court ou moyen terme ;
- les actions identifiées ci-après doivent être considérées comme des pistes pour l’action publique, qui nécessitent d’être approfondies ; cet approfondissement peut conduire soit à les infléchir, soit à les renforcer, soit à en abandonner certaines ;
- les actions identifiées ci-après peuvent alimenter d’une part la rédaction du rapport sur les actions envisagées pour la période 2012-2017, prévu par l’article 17-2 de la Directive 2010/40 ; d’autre part l’élaboration d’une éventuelle stratégie nationale sur les transports intelligents ; ce rapport ne distingue pas ces deux objectifs, à ce stade ;
- en identifiant des chantiers à ouvrir, ce document permet notamment aux acteurs qui n’auraient pas été associés dans les travaux 2011-2012, de marquer leur intérêt pour ces questions, voire de participer à ces chantiers.

2 Cf bibliographie [11]
Sommaire

Introduction ... 6
1 - Contexte .. 7
2 - Les STI : impacts, enjeux d’action publique, freins ... 7
 2.1 - Principaux enjeux pour l’action publique ... 8
 2.2 - Principaux freins au déploiement ... 8
3 - Cadre européen .. 9
4 - Etat des lieux : éléments de synthèse .. 9
5 - Attentes issues de la concertation des acteurs ... 10
 5.1 - Points saillants de la concertation .. 10
 5.2 - Enseignements pour l’élaboration d’une stratégie nationale ... 13
6 - Axes d’actions possibles : synthèse ... 15
7 - Services d’information « phare » .. 19
8 - Services de gestion des réseaux ... 22
 8.1 - Identification des enjeux .. 22
 8.2 - Doctrine d’évaluation ... 23
9 - Elaboration d’architectures .. 24
 9.1 - Définition de l’architecture .. 24
 9.2 - Besoins d’architecture et démarche proposée ... 25
10 - Cadre de « régulation » de l’information déplacement .. 26
 10.1 - Vision générale des besoins et modalités de régulation ... 26
 10.2 - Elaboration d’un cadre pour l’information routière ... 27
 10.3 - Problématique des transports collectifs ... 28
11 - Cadre d’échange et de réutilisation des données .. 29
 11.1 - Cadre de la Directive .. 29
 11.2 - Opportunité et modalités d’un entrepôt de données – exemple de la route 30
 11.3 - Principes de tarification de l’accès aux données .. 31
12 - Cadre d’interopérabilité pour la billettique sans contact ... 32
13 - Innovation et expérimentation des systèmes coopératifs .. 33
14 - - Eléments de mise en perspective .. 34
Bibliographie .. 35
Annexe 1 : échanges de données dans la Directive 2010/40 ... 37
Annexe 2 : types d’informations, modes de production et enjeux de qualité 38
Annexe 2 : types d’informations, modes de production et enjeux de qualité 39
Annexe 3 : intéropérabilité pour les applications billettique sans contact 42
Annexe 4 : architectures : aperçu de l’état des lieux .. 45
Annexe 5 : Attentes des collectivités locales européennes - POLIS .. 49
Annexe 6 : Synthèse du rapport UTP – IESF sur l’information voyageurs .. 51
Annexe 6 : sécurisation des échanges dématérialisés fret et logistique ... 53
Annexe 7 : Synthèse des contributions d’ATEC ITS France .. 54
Introduction

Les STI, qui consistent en l’application des technologies de l'informatique et des communications aux transports, sont à la base du développement de l'information déplacement. Ce marché répond à une demande forte des usagers et connaît une croissance accélérée. Il implique à la fois des autorités et gestionnaires publics et des entreprises et est potentiellement créateur d'emplois et facteur d'attractivité et de productivité. L'information déplacement a, avec l'explosion de l'équipement en terminaux, un impact croissant sur les comportements, même si cet impact est encore difficile à quantifier.

Les limites et freins au développement des STI sont maintenant identifiés de façon consensuelle :
- un manque de continuité du point de vue de l'usager : entre modes, entre échelles géographiques, entre réseaux adjacents, entre échelles de temps (avant – pendant le voyage – en prévision) ;
- une certaine fragmentation des processus de décision et de production des STI, entre différentes sources de données, différentes échelles géographiques, différents modes ;
- un défaut de champ d'expérimentation pour de nouveaux systèmes, permettant à des technologies matures, de révéler leurs impacts en situation réelle sur les comportements des usagers.

Une stratégie nationale STI nécessite d'identifier les principaux enjeux de gouvernance d'une part, de dégager des priorités dans les leviers d'action publique et dans les services STI a développer d'autre part. Il s'agit en effet de se concentrer sur les actions qui peuvent être conduites à moyen terme et sont nécessaires au développement des services. Se focaliser sur un nombre limité de services permet de donner de la visibilité aux usagers sur le niveau de services auxquels ils peuvent s'attendre malgré l'incertitude liée à la forte innovation. Se focaliser permet également aux « chefs de file » porteurs d'objectifs de politique publique (multimodalité locale ou sécurité routière par exemple) de participer dès l'origine à la spécification des systèmes.

Face à ces enjeux et pour bénéficier efficacement des potentialités des STI, les principales priorités pour une politique publique des STI apparaissent les suivantes :
- l'amélioration de la gouvernance, en vue d'une meilleure intégration multimodale dans l'information et d'une meilleure coopération dans la gestion dynamique de réseaux adjacents ;
- la mise en avant de services « phare », permettant de concentrer les efforts des acteurs sur les domaines où les enjeux d'information sont les plus forts pour l'efficacité de la gestion des réseaux, en particulier à l'échelle nationale voire européenne ; les acteurs publics ont un rôle prépondérant à jouer dans ces services (comme c'est le cas aujourd'hui pour l'information routière), notamment pour la régulation de la qualité qui conditionne des comportements vertueux des usagers ;
- le développement d'une politique de soutien à l'innovation, répondant aux spécificités des STI : des technologies en général préexistantes, mais des systèmes et des organisations innovants, notamment dans les systèmes coopératifs, qui nécessitent des cadres d'expérimentation de terrain pour évaluer leur faisabilité et surtout leur impact sur les comportements de mobilité.

Ces trois priorités pourraient constituer l'armature d'une stratégie STI, attendue par les acteurs français. Ces priorités se déclineront alors dans les domaines d’action suivants :
- l’identification de services d’information « phares », répondant à des priorités partagées entre acteurs ;
- l’identification de services de gestion dynamique des trafics, répondant aux enjeux locaux et à des besoins de coopération entre gestionnaires ;
- l’élaboration d’architectures permettant, là où c’est nécessaire, de clarifier le rôle des différents acteurs ;
- la définition d’un cadre de « régulation » de l'information déplacement, notamment en matière de qualité du service à l'usager final ;
- la définition d’un cadre facilitant l’échange de données et leur réutilisation, éventuellement par des dispositifs de mise en commun de données ;
- l’élaboration d’un cadre d’interopérabilité pour les applications billetiques sans contact ;
- l’élaboration d’un cadre de soutien à l’innovation et à l’expérimentation des systèmes coopératifs.
1 - Contexte

Les politiques des transports doivent prendre en compte des modifications à la fois structurelles et de plus en plus incertaines de la demande de transports (réorganisation des territoires, notamment vers la péri-urbanisation ? poursuite de la croissance de la demande, malgré l'augmentation des prix de l'énergie ? sensibilité croissante des usagers à l'empreinte environnementale de leur mobilité, mais jusqu’à quel point ?).

Face à ces enjeux, les politiques des transports européennes et nationales se sont engagées en faveur du développement durable, afin notamment de limiter les émissions de gaz à effet de serre, de proposer des alternatives à la saturation des réseaux routiers, d’améliorer les performances environnementales (bruit, biodiversité...), de favoriser l'accessibilité multimodale des territoires, d’améliorer l’efficacité, la sécurité et la cohérence des systèmes de transports, et d’encourager le fret ferroviaire et les transports maritimes.

Les dimensions européennes et internationales de cette cohérence souhaitée deviennent de plus en plus importantes dans les décisions, avec de forts enjeux industriels sur les infrastructures de transport et les équipements, les services de transport et les systèmes globaux d'information du grand public (réseaux sociaux, objets nomades...) qui participent dorénavant à l'organisation de la mobilité. En France, le mouvement de décentralisation et la nouvelle répartition des compétences, fait jouer aux Collectivités territoriales un rôle de plus en plus structurant dans les stratégies de déplacements et de mobilité durable.

L’apparition de nouveaux acteurs dans le champ de la mobilité (télécoms, opérateurs de réseaux sociaux, ...) a fait basculer le champ des transports traditionnellement axés autour des grands équipements et enjeux « régaliens » vers les services à haute valeur ajoutée fournis souvent par des PME, avivant en même temps la problématique de la compétitive industrielle.

La politique des transports doit prendre en compte des contraintes budgétaires de plus en plus exigeantes, tant pour les pouvoirs publics que pour les ménages et les entreprises. Ceci renforce les exigences d’optimisation de l’usage des réseaux de transports, sous-jacents aux objectifs de développement durable, ainsi que l’intégration de la notion de compétitivité dans l’ensemble des stratégies de mobilité, qu’elle soit industrielle, territoriale, sociale ou environnementale.

2 - Les STI : impacts, enjeux d’action publique, freins

Les STI, dispositifs utilisant des technologies de l'informatique et des communications appliquées aux transports, sont à la base du développement de nouvelles formes de mobilité faisant appel à de nouveaux services, notamment aux services accessibles sur Internet. De nouveaux marchés sont en jeu, comme ceux de l’information sur les services de déplacements (horaires, accès intermodaux,...), sur l’accès aux modes partagés (co-voiturage, autopartage, vélos en libre service, etc), ceux basés sur la géolocalisation (guidage et localisation de points d’intérêts,...). Ces marchés répondent à une demande forte des usagers et connaissent une croissance accélérée3. Ils impliquent à la fois des autorités et gestionnaires publics et des entreprises (PME, et, de plus en plus, acteurs d'envergure mondiale, notamment dans la téléphonie et les constructeurs d'automobile et de poids lourds). Ces marchés sont potentiellement créateurs d'emplois et facteur d'attractivité et de productivité.

Les nouveaux services de mobilité ont, avec l'explosion de l'équipement en terminaux, un impact croissant sur les comportements. A moyen terme, il est difficile d'envisager qu'un déplacement s'effectue sans une forme d'information avant ou pendant le voyage. L’impact majeur de cette information sur les comportements est à la fois aisé à percevoir, mais plus difficile à quantifier4.

3 Les STI constituent le 3ème marché par sa croissance aux Etats-Unis, après la micro-informatique et la téléphonie.
4 Qui n'a pas régulièrement regretté de n'avoir été informé d'une rupture d'itinéraire, d'un retard, ou d'un parcours alternatif qui aurait pu lui faire gagner une heure de transports ou lui éviter de perdre une opportunité professionnelle ou familiale majeure? Pour autant, les impacts détaillés restent à évaluer pour adapter l'information à la gestion optimale des réseaux.
2.1 - Principaux enjeux pour l’action publique

Les STI deviennent un levier majeur des politiques des transports, car il constituent potentiellement :

- une aide aux gestionnaires des réseaux de transports, pour optimiser ces réseaux et réduire leurs coûts d’exploitation, notamment en situation de saturation ;
- un marché croissant générateur de valeur et d'emplois, les services d'information sur les déplacements étant maintenant considérés comme partie intégrante d'une offre de transports, tant par les particuliers que par les entreprises ;
- un outil au service des politiques d'intermodalité et de multimodalité, les chaînes et parcours intermodaux ne pouvant se développer qu'au travers d'une information, voire d'un paiement intégré, de l'origine à la destination ;
- un outil au service des objectifs environnementaux et de sécurité, les meilleurs porteurs de ces objectifs étant les usagers eux-mêmes, dès lors qu'ils sont correctement informés de l'impact de leurs choix de mobilité en matière environnementale et de sécurité.

2.2 - Principaux freins au déploiement

Les STI, même s'ils répondent à une demande croissante des usagers et des gestionnaires, sont confrontés à divers limites et freins à leur développement :

- une certaine fragmentation des processus de décision et de production des STI, entre différentes sources de données, différentes échelles géographiques, différents modes ; la multiplication des acteurs impliqués rend en effet de plus en plus complexe donc difficile la décision et la production de services STI. Le développement de solutions de mobilité multimodale intelligente se heurte à des questions de gouvernance d'autant plus aigües, que les pratiques de multimodalité se diversifient (examplles : vélo et automobile en libre partage, covoiturage, véhicules électriques, etc.). Ces nouveaux modes de déplacement ont un caractère collectif, sans être des transports publics. On les désigne globalement comme le « troisième mode » parce qu'ils se développent à côté des deux modes dominants aujourd'hui (voiture automobile en solo et transport public) en faisant largement appel aux nouvelles technologies. On se trouve donc face au paradoxe où les usagers sont de plus en plus exigeants sur la fluidité des interfaces intermodaux, de l'information et du paiement, alors que les acteurs impliqués (maîtres d'ouvrages, autorités organisatrices, gestionnaires des routes et des rues et fournisseurs de services) sont de plus en plus nombreux et variés. Les autorités organisatrices de transport (AOT) sont souvent au centre de ce jeu d'acteurs, notamment au niveau régional et départemental, et ont développé diverses initiatives, notamment autour du concept de centres de mobilité regroupant les différents acteurs des transports, et traitant à la fois de l'organisation des services, de l'information et du paiement. Mais elles sont à la limite de leurs compétences, puisque le « troisième mode » n'est pas juridiquement de leur responsabilité et concerne souvent des échelles de territoires qui ne sont pas celles des autorités organisatrices ;
- par corollaire, un manque de continuité (du point de vue de l'usager) : entre modes, entre échelles géographiques, entre réseaux adjacents, entre échelles de temps (avant – pendant le voyage – en prévision) ;
- un manque d'intéropérabilité des dispositifs existants ;
- l'accès aux données, qui constitue un élément-clé du développement des STI ;
- un défaut de méthodologie d'expérimentation pour de nouveaux systèmes, permettant à des technologies matures, de révéler leurs impacts en situation réelle sur les comportements des usagers : l'intégration d'innovations (issues généralement des services informatiques et des télécommunications) exige en effet des expérimentations "de terrain" dans les transports, que les acteurs du marché ne peuvent pas toujours conduire sans l'appui des pouvoirs publics, notamment des gestionnaires d'infrastructure et des mécanismes d'achat public cohérents avec les exigences d'interopérabilité; ces expérimentations ne peuvent être efficaces qu'accompagnées de l’adoption d’une méthodologie commune permettant de les financer, conduire et évaluer de façon cohérente ;
- un manque de visibilité sur les modèles économiques viables et le manque d'évaluation, qui constituent également un frein aux déploiements futurs.
3 - Cadre européen

La Directive 2010/40 du 10 juillet 2010 sur les transports intelligents (directive « STI ») établit un cadre visant à soutenir le déploiement et l’utilisation coordonnés des STI dans le transport routier et ses interfaces avec les autres modes de transport au sein de l’UE. Elle prévoit l’élaboration en priorité de spécifications et de normes pour les domaines et les actions suivants :

Domaines prioritaires

I – utilisation optimale des données relatives à la route, à la circulation et aux déplacements;
II – continuité des services STI de gestion de la circulation et du fret;
III – applications de STI à la sécurité et à la sûreté routières ;
IV – lien entre le véhicule et les infrastructures de transport.

Actions prioritaires

a) services d'informations sur les déplacements multimodaux ;
b) services d'informations en temps réel sur la circulation ;
c) informations minimales universelles sur la circulation liées à la sécurité routière gratuites pour les usagers ;
d) service d'appel d'urgence (eCall) interopérable ;
e) services d'informations sur les aires de stationnement sûres et sécurisées pour les camions et les véhicules commerciaux ;
f) services de réservation sur les aires de stationnement sûres et sécurisées pour les camions et les véhicules commerciaux.

La Directive a été transposée en France par l’Ordonnance n° 2012-809 du 13 juin 2012 relative aux systèmes de transport intelligents, qui définit notamment, dans son article les systèmes de transport intelligents comme « des dispositifs utilisant des technologies de l'informatique et des communications électroniques et mis en œuvre dans le secteur du transport routier et ses interfaces avec d'autres modes de transport pour améliorer la gestion de la circulation, renforcer la sécurité du transport routier, accroître son efficacité en termes d'économie d'énergie et réduire ses effets sur l'environnement et permettre des utilisations plus sûres, mieux coordonnées et plus rationnelles des réseaux de transport ».

L’ordonnance prévoit qu’un décret définit « les domaines et actions prioritaires pour lesquels les systèmes de transport intelligents et les services qu'ils fournissent doivent être conformes à des spécifications de nature à assurer la compatibilité, l'interopérabilité et la continuité de ces services ».

4 - Etat des lieux : éléments de synthèse

- **Domaine 1 : utilisation des données et informations déplacements**

Le ministère en charge du développement durable (Direction des Infrastructures de Transport – DIT) met des données d’information routière à la disposition des médias et des opérateurs qui élaborent des services à valeur ajoutée. Ces données numérisées d’information routière sont constituées de données sur les événements routiers (accidents, bouchons, états des routes, mesures prises, etc.), de données mesurées ou élaborées sur le trafic (débits, vitesses, état du trafic, etc.) et de documents électroniques (bulletins, dépêches, etc.).
L'information multimodale et la billettique sont également des sujets sur lesquels le ministère a entrepris des actions (notamment avec la création de l'Agence Française pour l'Information Multimodale et la Billettique : AFIMB en 2009), comme un état de l'art de l'information multimodale en France.

Concernant l'offre d'information voyageurs, le site Internet www.bison-fute.gouv.fr présente l’information routière sous forme de textes et de cartes destinés à être lus directement par les usagers de la route, grand public et professionnels. La plateforme TIPI est en développement pour compléter puis remplacer bison futé. D'autres actions portant sur la continuité transfrontalière, l'aide au choix modal ou la continuité des moyens de paiement sont en cours. On observe, pour ce domaine, une multiplicité des initiatives locales

- **Domaine 2 : Gestion du trafic et du fret**

 La gestion intelligente des trafics, engagée via le programme EasyWay a identifié plusieurs services à déployer: la gestion dynamique des voies, la régulation dynamique de la vitesse, la régulation d’accès, l’utilisation (temporaire) de la bande d’arrêt d’urgence, la détection des incidents, la gestion des incidents, le reroutage, l’interdiction (temporaire) de dépasser les poids lourds, le stationnement intelligent des poids lourds, l'accès des transports exceptionnels et des marchandises dangereuses.

 La mise place de plans de gestion du trafic permet également de faire face notamment aux phénomènes de congestion exceptionnels tels que blocage d'un tronçon sensible ou perturbation météorologique majeure, ces plans étant à l'échelle régionale, nationale ou internationale, selon les cas.

 Il existe un plan national de déploiement de la régulation des vitesses et un plan de déploiement de l'interdiction de dépasser pour les poids lourds sur le réseau routier national.

- **Domaine 3 : Application des STI à la sécurité et à la sûreté**

 En amont, l’information mise à disposition de l’usager de la route dans son véhicule peut lui fournir différentes caractéristiques de son déplacement ayant trait à sa sécurité. Par ailleurs, l’information de sécurité embarquée présente un prolongement naturel vers les services d’aide à la conduite, notamment en matière de conseils de vitesse en fonction des conditions de circulation, de la météorologie, ou de demandes spécifiques de l’usager.

 D'autre part, les services d'appel d’urgence embarqué (eCall dans la Directive) ont été testés par les constructeurs automobiles français depuis une dizaine d'années. La commercialisation a véritablement commencé en 2005, et c'est à ce moment que les interfaces entre les plateformes de réception des appels et les services d'appel d'urgence ont été définies.

 Des mesures, visant à la sécurisation du fret, tels que l'information en temps réel sur la disponibilité des parkings sécurisés ou la traçabilité du fret commencent à être déployées.

- **Domaine 4 : Systèmes coopératifs**

 Les systèmes coopératifs sont basés sur les communications véhicule à véhicule (V2V) et véhicule à infrastructure (V2I). On y inclut maintenant les communications infrastructure à véhicule (I2V ou V2I) ainsi que les communications infrastructure à infrastructure (I2I).

5 - Attentes issues de la concertation des acteurs

5.1 - Points saillants de la concertation

Sont rappelés ci-dessous les points saillants de l’expression des attentes de départements de juin 2011, et de la consultation de l’ATEC de juin 2012. En annexe, sont également présentées:

- une synthèse des travaux des collectivités locales européennes réunies au sein de POLIS sur les besoins de recherche en matière de STI ;
- une synthèse de la consultation menée par l’Union des transports publiques et Ingénieurs et Scientifiques de France, sur l’information voyageurs.

5.1.1 - Position de l’ADSTD

Les départements, dans le rapport « Mobilité Intelligente » de juin 2011, font le constat de l’évolution des territoires et du changement des pratiques et des mentalités, avec notamment :

- la réorganisation des territoires : accentuation de la péri-urbanisation, désertification rurale, etc. ;
- la demande de transports croissante : augmentation de la population, multiplication des trajets travail/domicile, contraintes économiques pour les entreprises dans une économie mondialisée, etc. ;
- la demande d’une mobilité durable : faciliter les déplacements tout en maîtrisant les impacts économiques, sociaux et écologiques ;
- les contraintes budgétaires qui renforcent la nécessité de faire des choix.

Ces transformations conduisent les départements à trouver des solutions autres que le développement de nouvelles infrastructures de transports. Une nouvelle mobilité, intelligente, faisant appel aux technologies nouvelles et innovantes de l’information et de la communication, doit permettre :

- le développement de la multimodalité ;
- l’émergence de nouvelles pratiques: vélo et automobile en libre partage, covoiturage, etc. ;
- le développement de systèmes d’information, en temps réel, pour les usagers et les gestionnaires.

Ces objectifs nécessitent le déploiement de services et/ou technologies spécifiques qui doivent répondre à des besoins d’information, de facilité de paiement (billettique), d’optimisation des déplacements, d’optimisation des capacités, d’accessibilité des réseaux, d’accueil des usagers et de sécurité.

Depuis quelques années, les départements ont déjà déployé différents STI en partenariat avec les autorités organisatrices de transport (AOT), les gestionnaires de réseaux et le secteur privé. Cependant, ces services ne couvrent pas l’ensemble du territoire (tous les départements n’ont pas mis en place un ou des services listés ci-dessus) et peuvent, du point de vue de l’usager, apparaître comme insuffisamment harmonisés. En outre, ils peuvent être très spécifiques à certains objectifs de gestion des réseaux (viabilité hivernale, transport à la demande, etc.) et leur caractère multimodal est encore peu développé. Enfin, en raison de la mise en place récente de ces services et/ou de leur caractère expérimental, le manque d’évaluation constitue un frein qui limite les déploiements futurs.

Les départements ont identifié les actions suivantes pour faciliter le déploiement des STI :

- réfléchir sur la gouvernance,
- déploier les STI pour les usagers et en fonction des diversités territoriales,
- réfléchir aux possibilités de financement,
- développer des missions et lieux d’évaluation, d’expertise, d’échange entre le réseau scientifique et technique, les gestionnaires de réseaux, les industriels voire les usagers (enquêtes de satisfaction),
- améliorer les partenariats public-privé pour une meilleure complémentarité notamment à travers une clarification des rôles,
- adopter une vision globale à long terme conciliant besoin immédiat des usagers et investissement à court et moyen terme des exploitants de réseaux.

5 Cf bibliographie [3]
Comme indiqué en préface, les travaux menés depuis 2010, n’ont pas permis une concertation exhaustive des différents niveaux de collectivités locales potentiellement intéressées au développement des STI, notamment les communes et les régions. Cependant, on peut rappeler que le GART (Groupement des Autorités Responsables de Transport) a été, dès 2011, associé aux travaux du CoMOAR.

De plus, il est intéressant de noter la relative conjonction des attentes des collectivités locales réunies au niveau européen dans POLIS, avec les attentes exprimées par les départements. Cette remarque ne remet naturellement pas en cause le besoin de recueillir, dans la mise en œuvre des pistes d’action évoquées ci-dessous, les attentes des collectivités locales régionales et communales.

5.1.2 - Synthèse de la consultation d'ATEC-ITS

L’association ATEC ITS a poursuivi, en 2012, la consultation des acteurs qu'elle avait entamée en 2011 en vue de la rédaction des livrables français attendus par la commission européenne dans le cadre des activités de la directive 2010/40.

Il se dégage de cette concertation (cf. annexe 8 – pour les éléments disponibles à la date de ce rapport) les principaux éléments suivants :

Il convient à la fois d’exploiter de façon optimale, que ce soit de façon monomodale ou multimodale, les systèmes de transport existants (routes, rail, systèmes de transport public urbains et interurbains, voies fluviales), et de faciliter la mise en oeuvre les multiples systèmes alternatifs qui se développent aujourd’hui (covoiturage, voiture partagée, modes actifs…).

Parmi les outils à disposition, les systèmes de transport « intelligents » et les services qu’ils permettent de développer sont à la fois déjà puissants et prometteurs. Beaucoup d’entre eux sont déjà opérationnels, d’autres vont arriver avec le développement de technologies, en particulier les outils de la mobilité géo connectée.

Le but d’une stratégie nationale sur les STI serait de mettre à la disposition des acteurs de la mobilité une « boîte à outils » commune, permettant à chacun de développer à son rythme ses projets et sa stratégie, tout en assurant que, progressivement, les réalisations des uns et des autres pourront se connecter entre elles pour assurer à l’usager, voyageur ou professionnel du fret, des déplacements « sans couture ».

Il s’agit aussi de poser les problèmes de la formation aux métiers nouveaux induits par la conception, la mise en œuvre et l’exploitation de ces outils et services, ceux de l’innovation et ceux de l’exportation.

Au sein des enjeux de gouvernance, la consultation d’ATEC-ITS a pointé en particulier ceux liés à l’innovation, pour mettre le plus rapidement possible en exploitation le potentiel considérable des nouvelles technologies, à partir des principaux éléments de diagnostic suivants :

- les STI s’appuient sur des technologies dont les capacités augmentent rapidement ;
- les usages professionnels et grand public de ces technologies sont en développement rapide et les transports peuvent en bénéficier, mais l’expérience montre que les nouveaux usages entraînent des besoins de modifications des organisations ;
- du fait d’un nombre considérable d’acteurs, les transports éprouvent de grandes difficultés à modifier leurs processus opérationnels et leur méthodes de décision.

Compte tenu de la présence naturelle d’intérêts contradictoires, il semble nécessaire de créer des lieux de concertation neutres animés par des personnes bien informées en matière de transport, de systèmes d’information et d’aide à la conduite du changement. Il y a là une mission d’appui à identifier et à mettre en place. Le Code de la Voirie Routière, qui a confié conjointement à l’Etat et aux collectivités territoriales les
missions de recherche, développement, normalisation et définitions techniques permettant d’assurer la bonne gestion des différents types de réseaux, constitue une bonne base pour ce faire.

Les travaux de concertation ont également conduit à identifier, outre les enjeux de gouvernance et d’innovation mentionnés plus haut, divers services, enjeux ou actions :

- Le souhait de pouvoir développer des calculateurs d’itinéraires multimodaux et intermodaux, en vue de permettre l’optimisation des trajets selon plusieurs critères (temps, distance, nombre de changements, coût, impact écologique) ;
- Une réflexion sur une structure d’entrepôt de données, notamment à destination des collectivités territoriales, facilitant la création de services utilisant ces données ;
- La question de la qualité des données d’infrastructure communiquées aux mobiles, notamment pour des enjeux de sécurité routière ;
- Le besoin de normalisation des dialogues entre équipements terrain et systèmes de régulation des déplacements en milieu urbain ;
- Le besoin de favoriser l’échange de données en milieu urbain dense, entre les différents exploitants de réseau en milieu urbain (voies rapides, réseaux départementaux, réseaux urbains, pénétrantes autoroutières…), en distinguant les finalités d’exploitation et d’information ;
- Le besoin de développer un ingénierie de l’utilisation des STI pour la gestion prévisionnelle des événements générant des mobilités exceptionnelles (événements sportifs, festifs ou commerciaux).

Enfin, la consultation d’ATEC a mis en lumière des besoins spécifiques au fret, dans lequel les acteurs présentent des besoins importants en matière de performance de leurs systèmes d’information, mais aussi des craintes par rapport à la protection des données, aux coûts et à la pérennité de leurs équipements. Les enjeux se situent ici, plus que dans les autres domaines, au niveau international. En particulier, les échanges de données qui accompagnent les flux maritimes et aériens ont été les premiers à s’engager dans la dématérialisation. De façon générale, les entreprises sont très concernées par la généralisation, pour tous les modes et pour toutes les chaînes logistiques, des échanges de données qui accompagnent les flux de marchandises. Ce mouvement s’est mis en place à une période où Internet n’avait pas les performances d’aujourd’hui et dans un contexte où les acteurs n’envisageaient pas de communiquer autrement que deux par deux et dans le cadre de « contrats d’interchange » couvrant des envois de messages automatisés. La performance d’ensemble du système pourrait être grandement améliorée par une généralisation des techniques de collaboration. L’enjeu est encore plus important pour les PME car les solutions modernes n’exigent pas d’investissements lourds notamment lorsque les flux sont faibles. La question de la disponibilité de services et de logiciels respectant à la fois des standards ouverts, des exigences de sécurité et maintenus régulièrement, est particulièrement importante pour les entreprises. On peut citer, à cet égard, l’exemple du projet de création de services de sécurisation des échanges et de personnalisation de « connecteurs intelligents » conçus pour fiabiliser les données insérées dans les messages que les entreprises utilisent entre elles et avec les pouvoirs publics.

5.2 - Enseignements pour l’élaboration d’une stratégie nationale

De cette concertation se dégage d’abord l’importance des questions de gouvernance.

Les principales questions relevant de la gouvernance qui ont été identifiées à ce stade portent sur :

- la diversité des services, qui nécessite que les acteurs (publics et privés) dégagent des priorités communes ; pour autant, les enjeux de gouvernance peuvent être différents entre services, selon notamment l’implication des autorités et gestionnaires publics dans la fourniture de l’information ;
- les diversités territoriales, qui se traduisent par des besoins différents (les enjeux de multimodalité locale par exemple ne sont pas identiques entre territoires, selon leur densité, leur connectivité aux réseaux structurants, etc.) ;
- la diversité des réseaux, en termes de niveau d’utilisation, mais aussi de spécificités (climatiques par exemple) ; il s’agit ici de concilier des niveaux de services différents (pour des raisons d’amortissement des systèmes) avec une certaine continuité des services « de l’origine à la destination », ou, au moins, une certaine lisibilité, permettant à l’usager d’associer un niveau de service attendu à des caractéristiques simples du réseau ;
• le soutien à l'innovation et à l'expérimentation, qui doit permettre de partager efficacement entre acteurs, sachant que les terrains d'expérimentation ne peuvent pas se construire sans des acteurs publics, gestionnaires de réseaux ou autorités organisatrices et que la diffusion des résultats ne va pas de soi ;
• l'accès aux données ;
• les questions de financement, lorsque des systèmes et équipements doivent être mutualisés ;
• le partage de l'expertise et de l'évaluation, qui bénéficie à priori à tous, mais est parfois détenue par un nombre limité d'acteurs, voire, fait partie intégrante de la valeur-ajoutée de certains services sur le marché.

De cette concertation se dégage ensuite, de la part de nombreux acteurs, l'attente d'une stratégie nationale sur les transports intelligents, qui dépasse la liste des actions prioritaires de la Directive 2010/40 (dont le champ est plus restreint que celui du plan européen des STI et du livre blanc adopté par la Commission en 2011).

Une stratégie nationale STI nécessite essentiellement de préciser les enjeux de gouvernance, de dégager des priorités dans les leviers d'action publique et dans les services STI à développer. Il s'agit en effet de se concentrer sur les actions qui peuvent être conduites à moyen terme et sont nécessaires au développement des services. Se focaliser sur un nombre limité de services permet de donner de la visibilité aux usagers sur le niveau de services auxquels ils peuvent s'attendre malgré l'incertitude liée à la forte innovation. Se focaliser permet également aux « chefs de file » porteurs d'objectifs de politique publique (multimodalité locale ou sécurité routière par exemple) de participer dès l'origine à la spécification des systèmes.

Face à ces enjeux et pour bénéficier efficacement des potentialités des STI, les principales priorités pour une politique publique des STI apparaissent les suivantes :
• l'amélioration de la gouvernance, en vue d'une meilleure intégration multimodale dans l'information et d'une meilleure coopération dans la gestion dynamique de réseaux adjacents ;
• la mise en avant de services « phare », permettant de concentrer les efforts des acteurs sur les domaines où les enjeux sont les plus forts pour l'efficacité de la gestion des réseaux, en particulier à l'échelle nationale voire européenne ; les acteurs publics ont un rôle prépondérant à jouer dans ces services, notamment pour la régulation de la qualité qui conditionne des comportements vertueux des usagers ; ces services phares, identifiés à ce stade, mais qui devront être évalués plus avant, s'articulent autour des axes suivants :
 – l'information multimodale, dans une logique « sans couture », avec un accent sur le temps réel ; avec la perspective de développer à la fois des interfaces route / transports publics (notamment dans les pôles d'échanges et parcs relais) et une prise en compte des nouveaux services de mobilité (vélo en libre service, covoiturage, …) ;
 – l'information de sécurité routière, et premier lieu l'information sur les réglementations applicables au lieu où se trouve le véhicule (vitesse, poids et dimensions…) qui permet le développement de systèmes de « signalisation embarquée » ;
 – la billettique « sans couture » ;
 – les services dédiés au fret, à l’appui de la gestion des réseaux (notamment en matière de contrôle des charges, d'information sur les parkings, d'applications liées à la localisation des PL et à la dématérialisation des procédures) ;
 – l’affichage CO2, les bilans carbone et d’émissions de gaz à effet de serre ;
• le développement d'une politique de soutien à l'innovation, répondant aux spécificités des STI : des technologies en général préexistantes, mais des systèmes et des organisations innovants, notamment dans les systèmes coopératifs, qui nécessitent des cadres d'expérimentation de terrain pour évaluer leur faisabilité et surtout leur impact sur les comportements de mobilité.

Ces trois priorités pourraient constituer l'armature d'une stratégie STI, attendue par les acteurs français, qui serait déclinée selon les actions listées dans la partie suivante.
6 - Axes d'actions possibles : synthèse

En premier lieu, il est apparu que certains acteurs souhaitaient, à l’occasion du débat sur les STI, ouvrir la question de la mise en place d’Autorités organisatrices de la mobilité. Cette action présente des enjeux spécifiques, notamment sur l’organisation des responsabilités des collectivités, qui la distingue des autres enjeux, de nature plus technique listés ci-après. Cette question ne sera donc pas abordée dans ce rapport. Sur la base des enjeux identifiés ci-dessus, les actions candidates à être prises en compte dans une stratégie nationale 2012 – 2017 apparaissent les suivantes :

Au titre de l’identification de services « phares »

Les services identifiés comme « phares » peuvent relever de différentes logiques :

- correspondre aux actions prioritaires de la Directive 2010/40 ;
- traduire une volonté affichée de coopération entre acteurs (maîtres d’ouvrages, gestionnaires, fournisseurs d’information) ;
- traduire des objectifs nationaux prioritaires, notamment en terme de sécurité routière ;
- mettre en lumière, en vue de leur adaptation en fonction des besoins d’autres gestionnaires ou maîtres d’ouvrages, des expériences réussies de déploiement de ces services.

Services d’information phare

Dans le domaine de l’information multimodale, cette action porte sur :

- le développement de « référentiels qualité », là où un besoin de régulation est identifié ;
- le développement de l’information aux interfaces entre la voiture particulière et les transports collectifs ;
- l’extension des services d’information centrés sur les transports publics aux nouveaux services de mobilité ;
- le développement de services d’information multimodale offrant une couverture nationale.

Dans le domaine routier, pour ces services cette action porte notamment sur :

- la définition des services prioritaires et de leurs spécifications fonctionnelles ; à ce stade, trois « bouquets phares » de services se dégagent comme particulièrement importants à court terme :
 – avant le voyage, un service d’information événementielle (chantier, manifestation), de préparation au voyage (information sur les capacités et la disponibilité des stationnement PL, services sur les aires d’arrêt) et sur les conditions de circulation en hiver. La réalisation de sites internet de référence reprenant ces contenus doit être étudiée.
 – pendant le voyage, un service d’information sur les limites de vitesse, les conditions de circulation, les temps de parcours, les événements routiers, les conditions de circulation en hiver et la disponibilité de places de stationnement PL,
 – les services d’informations de sécurité routière en temps réel gratuits pour les usagers, qui devront faire l’objet d’une attention particulière, au regard de la Directive 2010/40 ;
- la définition des architectures pertinentes, lorsqu’elles sont nécessaires pour leur déploiement ;
- l’identification des réseaux prioritaires pour leur déploiement et/ou la hiérarchisation des niveaux de déploiement ou de service ;
- le développement de « référentiels qualité », là où un besoin de régulation est identifié.

Services de gestion du trafic routier

Pour ces services cette action porte notamment sur :

- l’identification des mesures prioritaires permettant d’améliorer et compléter les systèmes existants en vue d’améliorer la sécurité routière et la fluidité du trafic ;
• l’introduction de la multi-modalité sur les autoroutes et les voies rapides, là où elle est compatible avec les autres usages sur ces réseaux ;
• le développement d’une doctrine partagée d’utilisation des données pour la gestion dynamique et coordonnée des réseaux, tenant compte des enjeux pour les différents gestionnaires, notamment locaux ;
• le développement d’une doctrine d’évaluation.

Actions transverses au titre de la gouvernance
• Identification des besoins, propositions et priorités pour l’élaboration d’architectures, pour chacun des grands domaines des STI (mobilité, sécurité, transport de marchandises) et d’une façon générale pour les fonctions de gouvernance.
• Définition d’un cadre de « régulation » de l’information déplacement, notamment en matière de qualité du service à l’usager final ; cette action pourra se décomposer en :
 – vision générale des besoins et modalités de régulation ;
 – définition d’un cadre spécifique à l’information routière, pour laquelle le marché est déjà mature et l’État dispose déjà d’un rôle central ;
• Définition d’un cadre facilitant l’échange de données et leur réutilisation, distinguant les types d’information en fonction des enjeux de connaissance et de gestion efficace et sûre des réseaux, ainsi que du caractère stratégique de certaines informations, tout en conservant un système économiquement viable ; cette action couvrira notamment :
 – étude d’opportunité et proposition d’un dispositif de partage de données et/ou de clauses-types pour l’information déplacement (« entrepôt ») :
 – principes en matière de tarification de l’accès aux données ;
• Elaboration d’objectifs stratégiques, de principes de gouvernance et de référentiels d’interopérabilité pour les applications billettique sans contact

Au titre du soutien à l’innovation public – privé

De façon générale, le soutien à l’innovation et le déploiement de projets de recherche sur des thèmes et priorités définis en commun entre secteur public, privé et de la recherche, permettrait de soutenir le déploiement des services phares dans un premier temps, puis d’identifier les pistes d’innovation et de compétitivité pour de nouveaux services. En particulier, il apparaît nécessaire de mettre en place un cadre de soutien à l’innovation et à l’expérimentation des systèmes coopératifs.

Les parties ci-dessous détaillent ces actions, en présentant les besoins d’action publique identifiés, ainsi que des pistes de travail à poursuivre, tant au plan technique que par la concertation avec les acteurs concernés.

<table>
<thead>
<tr>
<th>Service d’information phare</th>
<th>Domaine Prioritaire I - Utilisation optimale des données</th>
<th>Domaine Prioritaire II - gestion de la circulation et du fret</th>
<th>Domaine Prioritaire III - sûreté et sécurité</th>
<th>Domaine Prioritaire IV - systèmes coopératifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dans le domaine routier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition des services prioritaires et de leurs spécifications fonctionnelles</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Définition des architectures pertinentes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification des réseaux prioritaires pour leur déploiement et/ou la hiérarchisation des niveaux de déploiement ou de service</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de référentiels qualité, là où un besoin de régulation est identifié</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dans le domaine de l’information multimodale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de référentiels qualité, là où un besoin de régulation est identifié</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de l’information aux interfaces entre la voiture particulière et les transports collectifs</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension des services d’information centrés sur les transports publics aux nouveaux services de mobilité</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de services d’information multimodale offrant une couverture nationale</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services de gestion du trafic routier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification des mesures prioritaires permettant d’améliorer et compléter les systèmes existants en vue d’améliorer la fluidité du trafic</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intégration de la multi-modalité sur les autoroutes et les voies rapides, là où elle est compatible avec les autres usages sur ces réseaux</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement d’une doctrine partagée d’utilisation des données pour la gestion dynamique et coordonnée des réseaux, tenant compte des enjeux pour les différents gestionnaires, notamment locaux</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Développement d’une doctrine d’évaluation</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification des besoins, propositions et priorités pour l’élaboration d’architectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition d’un cadre de « régulation » de l’information déplacement, notamment en matière de qualité du service à l’usager final</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision générale des besoins et modalités de régulation</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition d’un cadre spécifique à l’information routière, pour laquelle le marché est déjà mature et l’État dispose déjà d’un rôle central</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition d’un cadre facilitant l’échange de données et leur réutilisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Étude d’opportunité et proposition d’un dispositif de partage de données et/ou de clauses-types pour l’information déplacement (« entrepôt »)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Principes en matière de tarification de l’accès aux données</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Élaboration d’objectifs stratégiques, de principes de gouvernance et de référentiels d’interopérabilité pour les applications billettique sans contact</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Cadre de soutien à l’innovation et à l’expérimentation des systèmes coopératifs</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Service d'information phare</td>
<td>Action prioritaire a - mise à disposition d'informations sur les déplacements multimodaux</td>
<td>Action prioritaire b - mise à disposition en temps réel d'information sur la circulation</td>
<td>Action prioritaire c - information liées à la sécurité routière gratuite pour les usagers</td>
<td>Action prioritaire d - eCall</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>Dans le domaine routier</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Définition des services prioritaires et de leurs spécifications fonctionnelles</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification des réseaux prioritaires pour leur déploiement et/ou la hiérarchisation des niveaux de déploiement ou de service</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Développement de référentiels qualitatifs, la ou un besoin de régulation est identifié</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dans le domaine de l'information multimodale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de référentiels qualitatifs, la ou un besoin de régulation est identifié</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de l'information aux interfaces entre la voiture particulière et les transports collectifs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension des services d'information centrés sur le transport public aux nouveaux services de mobilité</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement de services d'information multimodale offrant une couverture nationale</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Services de gestion du trafic routier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification des mesures prioritaires permettant d'améliorer et compléter les systèmes existants en vue d'améliorer la fluidité du trafic</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Introduction de la multimodalité sur les autoroutes et les voies rapides, la ou elle est compatible avec les autres usages sur ces réseaux</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Développement d'une voie parallèle ou transmet des données pour la gestion dynamique et coordonnée des réseaux, tenant compte des enjeux pour les différents gestionnaires, notamment locaux</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Développement d'une doctrine d'évaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition des besoins, propositions et priorités pour l'élaboration d'architectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition d'un cadre de « régulation » de l'information déplacement, notamment en matière de qualité du service à l'usager final</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision générale des besoins et modalités de régulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Définition d'un cadre d'objectifs stratégiques, de principes de gouvernance et de référentiels d'interopérabilité pour les applications bilitique sans contact</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Cadre de soutien à l'innovation et à l'expérimentation des systèmes coopératifs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7 - Services d’information « phare »

La priorisation des services STI est nécessaire pour, au moins, trois raisons :
• les ressources (en temps et en argent), ne sont pas infinies. Il n’est donc pas possible de déployer tous les services. Dès lors, une évaluation coût / bénéfice du déploiement doit être faite afin de distinguer les services qui doivent être déployés de ceux qui peuvent l'être.
• certains services sont en cours de déploiement, d'autres sont en projet. On peut se contenter de suivre le cours "naturel" de développement des services ou, au contraire, l’infléchir.
• la place du secteur public dans le déploiement est variable : l'Etat, les collectivités, les délégataires peuvent être parties prenantes à la production de ces services ; un besoin de régulation de ces services peut se faire sentir.

L'exercice de priorisation permet de déterminer les centres d'intérêt de l'ensemble des parties prenantes. Cet exercice peut permettre de délimiter des points de convergence entre les secteurs privés et publics, faire émerger également des besoins de politiques publiques (notamment en matière de qualité), mais aussi alimenter les réflexions en cours sur la clarification des interactions entre les acteurs (architectures notamment).

La concertation a permis d’identifier différents critères de priorisation des services. De façon générale, les services identifiés comme « phares » peuvent relever de différentes logiques :
• correspondre aux actions prioritaires de la Directive 2010/40 ;
• traduire une volonté affichée de coopération entre acteurs (maîtres d’ouvrages, gestionnaires, fournisseurs d’information) ;
• traduire des objectifs nationaux prioritaires, notamment en terme de sécurité routière ;
• mettre en lumière, en vue de leur adaptation en fonction des besoins d’autres gestionnaires ou maîtres d’ouvrages, des expériences réussies de déploiement de ces services.

Plus précisément, le schéma suivant synthétise les questions et critères utilisés dans l'exercice de priorisation des services d’information routière.
Cas de la route

Les bouquets de service qui semblent répondre à la fois à des besoins affirmés du marché et à des besoins d'intervention publique (qualité, complexité des organisations d'acteurs…) sont les suivants :

- **Information routière avant le voyage**
 - événements prévisibles (chantiers, événements festifs) affectant le réseau routier
 - conditions hivernales et conseils attachés
 - prévision de conditions de circulation sur le réseau routier (type "Bison futé") et conseils attachés sur les itinéraires routiers
 - offre de P+R (parcs-relais multimodaux)

- **Information routière pendant le voyage**
 - événements en temps réel (chantiers, événements festifs, ruptures d'itinéraires) et conseil de reroutage attachés
 - temps de parcours et navigation dynamique (y compris reroutage)
 - événement affectant la sécurité en temps réel (accidents, débris, animaux errants…)
 - capacité de P+R et correspondances avec les transports en commun en temps réel

- **Information vitesse embarquée**
 - limitations de vitesse statistiques
 - zones de vigilance accrue (y-c points de danger)
 - conditions de vigilance accrue (météo)
 - limites de vitesse temporaire
 - limites de vitesse dynamiques

- **Information fret**
 - parkings PL – offre statique
 - parkings PL – offre en temps réel
 - autres services dédiés au fret, à l’appui de la gestion des réseaux (pesage embarqué pour la vérification de la répartition des charges dans le véhicule et du respect de la réglementation sur les poids total, applications de gestion liées à la localisation des PL, dématérialisation des procédures).

Au sein de cette liste de services, trois « bouquets phares » de services se dégagent comme particulièrement importants à court terme :

- avant le voyage, un service d’information événementielle (chantier, manifestation), de préparation au voyage (information sur les capacités et la disponibilité des stationnement PL, services sur les aires d’arrêt) et sur les conditions de circulation en hiver. La réalisation de sites Internet de référence reprenant ces contenus doit être étudiée.

- pendant le voyage, un service d’information sur les limites de vitesse, les conditions de circulation, les temps de parcours, les événements routiers, les conditions de circulation en hiver et la disponibilité de places de stationnements PL

- les services d’informations de sécurité routière en temps réel gratuits pour les usagers. Ils devront faire l’objet d’une attention particulière, au regard du critère de gratuité à l’usager final prévu par la Directive 2010/40, en raison des coûts élevés de qualification de la donnée.

De plus, à moyen terme, les potentialités des services coopératifs devraient être particulièrement étudiées pour :

- leur contribution aux services d’information sur les conditions de circulation et les événements routiers, y compris les conseils de routage ;

- l’avertissement de présence de personnels des gestionnaires routiers (et de leurs sous-traitants) et des services de secours ;

- leur contribution aux services d’information de sécurité routière en temps réel.
Ces « bouquets phares » présentent une certaine cohérence du point de vue des attentes des usagers. Cependant, ils recouvrent des services d’information qui peuvent se distinguer nettement les uns des autres du point de vue des architectures sous-jacentes (notamment la répartition des rôles dans la production et la qualification de la donnée, et des conseils de comportements attachés). L’annexe 2 présente une analyse plus détaillée des différents services d’information en fonction des enjeux de qualité.

De plus, la mise en avant de « bouquets phares » devrait naturellement s’accompagner d’une priorisation des réseaux sur lesquels ils seraient déployés. En effet, les enjeux de congestion, de sécurité et d’environnement pourraient justifier de différencier les segments de réseaux, pour tenir compte notamment des coûts d’acquisition et de qualification de la donnée. Cette analyse reste à conduire, en s’inspirant notamment des travaux sur les environnements d’exploitation engagés par EasyWay.

Cependant, il convient ici de tenir compte de ce que l’usager devra avoir une vision simple des réseaux sur lesquels il peut s’attendre à disposer des différents services d’information, notamment en temps réel : le pire serait de laisser croire à l’usager qu’il bénéficiera d’un service, notamment d’alertes de sécurité, alors que celles-ci ne sont pas, en fait, disponibles, ce qui pourrait conduire à des effets pervers d’hypovigilance vis à vis des dispositifs embarqués, voire de rejet de l’information embarquée.

aussi, les enjeux devront être appréciés dans la construction de ces services ou de ces bouquets, pour ce qui concerne le réseau routier national, au travers d’environnements d’exploitation simples et, si possible, parlants pour l’usager. L’idée à creuser serait de retenir trois niveaux de réseaux :
- le réseau central du RTE – T°
- le réseau complet urbain du RTE – T
- le réseau complet inter-urbain du RTE – T

La démarche envisagée consiste :
- à établir une stratégie d’information routière sur le réseau routier national, sur la base des éléments préliminaires ci-dessus ;
- à mettre à disposition des gestionnaires (notamment locaux) une méthode d’identification des niveaux de service adaptés aux différents environnements d’exploitation ;
- à mettre à disposition des acteurs les architectures qui auront été identifiées comme nécessaires au développement de ces services, sans freiner l’innovation ;
- à mettre à disposition des acteurs des états de la connaissance sur les comportements des usagers face à l’information, notamment en matière de sécurité (cf. ci-dessous sur l’évaluation)
- à mettre à disposition des acteurs des référentiels de qualité qui auront été identifiés comme nécessaires au respect des objectifs de circulation, de sécurité et d’environnement.

Cas des services d’information multimodale (SIM)

En complément aux services d’information routière, des orientations se dégagent concernant les services d’information multimodale, qui pourraient :
- Au niveau du périmètre modal :
 - avoir comme périmètre initial l’offre de transports publics.
 - développer l’information routière et les interfaces avec la route (P+R) (cf. ci-dessus)
 - prendre en compte les nouveaux services de mobilité
- Au niveau géographique :
 - offrir à terme une information de porte à porte dépassant les frontières du SIM avec un périmètre soit inter-régional, soit national

° Réseau TransEuropéen de Transports
• Au niveau des données :
 – converger progressivement vers des données et une information en temps réel
 – Information déplacement avant le voyage

8 - Services de gestion des réseaux

8.1 - Identification des enjeux

Les usagers s’attendent à disposer de services de mobilité couvrant tous les modes de transport et tous les territoires (déplacements multimodaux) et intégrant des éléments d’information liés non seulement à la desserte, aux temps de parcours et aux tarifs, mais également, de plus en plus, à l’empreinte environnementale de leurs choix de déplacements.. L’information et la gestion des réseaux sont donc indissociables.

Les mesures de gestion du trafic routier présentent des enjeux très locaux : ces mesures doivent être adaptées au contexte local qui se satisfait mal de descriptifs génériques. C’est dans cette logique que ce type de mesure n’entre pas dans le champ des spécifications de la directive STI. Pour autant, les STI peuvent contribuer à améliorer les mesures de gestion du trafic, notamment par une meilleure connaissance en temps réel du fonctionnement des réseaux, et par le développement de l’information aux usagers. A ce titre, les systèmes coopératifs peuvent, potentiellement, également participer à la performance des mesures de gestion de trafic.

Dans l’analyse de la contribution possible des STI à la gestion de trafic, il convient de regrouper les mesures selon leur finalité, en trois catégories :
• les systèmes qui permettent d’améliorer la fluidité du trafic : on retrouve ici les plans de gestion de trafic, les systèmes permettant de gérer les incidents, la détection automatisée d’incident, la gestion des accès et la régulation de vitesse ;
• les systèmes qui permettent d’améliorer les conditions de circulation d’une catégorie d’usagers : on retrouve ici les systèmes permettant l’affectation des voies à une catégorie d’usagers (transports collectifs, taxis, co-voituriers) et l’interdiction de dépasser pour les PL ;
• les systèmes qui améliorent les conditions d’intervention et la sécurité des agents des gestionnaires de route et des services d’urgence : on retrouve ici le suivi des véhicules spécifiques (forces de l’ordre, services de secours, personnels des gestionnaires routiers), les systèmes de détection et d’avertissement de présence des personnels des forces de l’ordre, des services de secours et des gestionnaires routiers et la surveillance des conditions météorologiques.

Pour la mise en œuvre des mesures de gestion dynamique du trafic routier, les questions de coopération entre gestionnaires présentent une importance particulière. Une approche cohérente du déploiement des mesures de gestion dynamique de trafic permettrait sans doute d’en exploiter tous les bénéfices potentiels, à l’échelle pertinente. L’échange d’information, en prévision et en temps réel sur l’impact « croisé » des mesures adoptées par plusieurs gestionnaires adjacents, peut améliorer la performance de ces mesures, en exploitant les potentialités d’optimisation des flux sur une plus grande échelle, tout en tenant compte des contraintes locales des réseaux (en terme de capacité et de sécurité).

La démarche envisagée ici consiste :
• à identifier les données pour lesquels les besoins de coordination des mesures entre gestionnaires nécessitent de faciliter les échanges, en allant au delà de la question des formats (abordée dans Datex). Cette démarche permettrait notamment d’alimenter les réflexions sur les architectures, la mise en commun des données, et, s’agissant de la qualité, sur des procédures de qualification commune des données entre gestionnaires ;
• à proposer un cadre méthodologique pour l’identification des réseaux pertinents pour le déploiement de mesures de gestion dynamique, en s’inspirant entre autres des réflexions menées dans le cadre des environnements d’exploitation du programme EasyWay.
S’agissant des transports collectifs, les attentes des usagers en matière d’information concernent principalement, outre les informations d’horaires et de tarifs dans une logique « sans couture » d’origine à destination :

- la transparence de l’information sur l’empreinte environnementale ;
- l’information en temps réel sur les événements qui peuvent affecter les temps de parcours ;
- l’information sur les attributs de qualité de service, notamment aux heures de pointe, qui affectent non seulement le confort, mais le temps de parcours.

A l’interface des transports collectifs et de l’utilisation de la voiture individuelle, se pose de plus en plus la question de la desserte de zones de « faible densité de demande », notamment en zone péri-urbaine et/ou hors périodes de pointe, par des modes tels que le covoiturage, l’autopartage, le transport à la demande, l’électromobilité et les modes actifs (vélo et marche à pied). Ce développement pose d’une part des questions de billettique multiopérateurs (cf. ci-dessous sur la billettique), mais également d’information multimodale intégrant ces divers modes. Le marché fait preuve d’initiatives nombreuses (notamment sur le covoiturage) dans ce domaine. Il devrait également bénéficier du déploiement des systèmes coopératifs. L’action envisagée dans ce domaine consiste notamment à mettre à disposition des acteurs, des éléments d’évaluation de la pertinence comparée de ces différents modes, en tenant compte des attentes des usagers et des initiatives du marché. Il s’agit également d’identifier les besoins d’échanges et de mise à disposition d’information (notamment dans les pôles d’échanges), qui faciliteraient le développement de ces modes.

8.2 - Doctrine d’évaluation

Les mesures de gestion des réseaux et d’information des usagers, associées à des dispositifs de transports intelligents, prennent une importance croissante dans la politique des transports : elles sont présumées peu coûteuses pour résoudre les problèmes de congestion et diminuer les consommations d’énergie et de gaz à effet de serre qui y sont liées ; elles sont orientées vers l’usager et la qualité de service, à ce titre, elles facilitent une approche intermodale ; elles jouent plus particulièrement sur la fiabilité et la sécurité des transports. Pour autant, les mesures de gestion des trafics et d’information des usagers présentent des coûts significatifs et leur bilan coûts-avantages mérite d’être évalué, au même titre que les autres projets et politiques de transports. Il est en effet souhaitable de pouvoir comparer ces projets à ceux jouant davantage sur la capacité des réseaux. Il est également souhaitable de pouvoir sélectionner les projets de gestion dynamique des trafics ou leurs variantes les plus efficaces pour la collectivité. Pour appuyer le développement des systèmes de transports intelligents, il est donc important de doter les décideurs publics et gestionnaires de méthodes et d’outils d’évaluation des projets de STI. L’absence d’évaluation est reconnue par tous les acteurs comme un frein au déploiement des STI.

Les mesures de gestion intelligente des trafics et d’information des usagers relèvent assez normalement des principes et règles applicables à l’évaluation des projets de transports en général. Pour autant, un certain nombre de difficultés rendent l’application de cette doctrine encore difficile pour les projets de STI, et notamment :

- le diagnostic précis de fonctionnement des réseaux, qui appelle une connaissance fine des conditions de trafic (parfois à un pas de quelques centaines de mètres et de quelques minutes), afin de s’assurer de l’adéquation des différentes mesures au fonctionnement des réseaux ;
- l’estimation des impacts des mesures sur les comportements, par le recours à des modèles de simulation dynamique et de prévision de court terme, et par une capitalisation des connaissances des comportements des usagers face à l’information, notamment sur les questions de sécurité et notamment issues des travaux de recherche et de recherche-développement ;
- la connaissance de la valeur du temps et en particulier valeur de la fiabilité des temps de parcours ;
- la connaissance et la prévision des coûts des systèmes et équipements, incluant les questions de maintenance et de durée de vie optimale des équipements, compte-tenu du progrès technique.

Compte-tenu de cet état des lieux, le Ministère et son réseau scientifique et technique ont mis en place une démarche comportant notamment des études et des productions méthodologiques pour répondre aux besoins des usagers.

10 Cf. bibliographie [5]
gestionnaires et maîtres d’ouvrages en termes d’évaluation et d’ingénierie de projets STI. Cette démarche vise notamment à produire un socle de doctrine d’évaluation des mesures de gestion de trafic, qui aborde notamment les points les plus sensibles du point de vue de l’évaluation cités ci-dessus. Divers travaux ont dores et déjà été engagés pour alimenter ainsi « par briques » l’élaboration d’une telle doctrine d’évaluation :

- un état de l’art des mesures, fondé sur les retours d’expérience des systèmes déjà en place : c’est l’approche initialement retenue dans le domaine routier dans le projet EasyWay de la Commission Européenne ; cette approche sera prolongée par des documents présentant de façon synthétique les domaines de pertinence des différents types de mesures de gestion dynamique des trafics et d’information des usagers ; ces travaux portent également sur les équipements : fonctionnalités, coûts, enjeux de maintenance ; lien entre la densité d’équipements et les niveaux de services attendus ;
- des travaux portant sur l’évaluation des mesures de gestion de trafic et d’information des usagers, qui se décomposent selon les principaux enjeux de connaissance mentionnés ci-dessus.

L’objectif est que le résultat de ces travaux soit mis à disposition des gestionnaires dès mi-2012, puis donnent lieu à l’établissement d’un document de doctrine (guide) pour le Réseau routier national à l’horizon de fin 2013. Cette doctrine pourra ensuite être adaptée en fonction des besoins exprimés par les autres gestionnaires et maîtres d’ouvrage pour certains types de mesures, par exemple des mesures de gestion multimodale des réseaux. Cette doctrine pourra également être déclinée sous forme d’outils pédagogiques et de modules de formation.

9 - Elaboration d'architectures

9.1 - Définition de l'architecture

Au fur et à mesure que les nouvelles technologies pénètrent le monde des transports, la complexité des dispositifs techniques et des organisations devient pour les acteurs (à tout niveau et qu’ils soient à l’intérieur ou à l’extérieur des métiers du transport) un obstacle qui leur cache la vue du fonctionnement d’ensemble, de leur rôle exact et des moyens dont ils disposent.

Les architectures sont des outils pour maîtriser cette complexité. Le terme architecture se rencontre fréquemment en informatique, en ingénierie, ou encore en productique. Il est utilisé à la fois pour construire et pour décrire un système, une application, ou une organisation généralement complexe. Dans sa première acception, l’architecture est synonyme d’armature ou de squelette. Elle sert à construire l’objet11. La construction d’une architecture est, à ce titre, essentielle, car de là découle bien souvent, la réussite du projet12. L’utilisation du terme "architecture" pour décrire des interactions procède d’une volonté de mettre en avant le caractère pérenne de celles ci. L’architecture renvoie à l’idée d’une construction réfléchie, d’une structure solide où chaque élément est défini par ses fonctions au sein d’un système stable.

Plusieurs "niveaux" d'architectures existent. Ils répondent à des objectifs différents.

- l’architecture technique13 peut être considérée comme la plus "basique". Elle ne se préoccupe des acteurs qu’à travers le prisme des équipements ou des technologies ;
- l’architecture cadre14 s’intéresse plutôt aux liens entre les acteurs et les équipements : on y détermine les procédures de validation et de qualification de l’information ;

11 C’est-à-dire définir un projet, lui associer des objectifs (créer un service, lui donner un niveau de qualité…), et sélectionner les acteurs, les normes ou encore les technologies et les équipements qui contribueront à atteindre ces objectifs L’ensemble des acteurs, normes, et technologies sont organisés ; leurs interactions sont définies de façon a remplir les objectifs dans des conditions jugées optimales.

12 L’architecture est créée en trois temps :
- la réflexion préalable qui consiste à formuler le projet le plus clairement possible,
- la sélection des éléments constitutifs du projet (acteurs, normes, technologies, équipements…),
- l’optimisation des interactions entre ces éléments constitutifs.

13 On peut considérer que l'architecture technique et l'architecture applicative sont synonymes.

14 On peut considérer que l'architecture cadre et l'architecture métier sont synonymes.
• la troisième : l'architecture décisionnelle détermine la stratégie, la "politique" voulue pour le service :
l'architecture procède, ici, davantage du choix que de la maximisation de l'efficacité. L'architecture
décisionnelle hiérarchise les acteurs.

Pour résumer, l'architecture décisionnelle répond à la question "que veut-on faire ?", l'architecture cadre
"comment faire ?" et l'architecture technique "que faut-il faire ?".

L'architecture fonctionnelle peut être considérée comme étant la plus générique, la plus englobante. Elle décrit le
fonctionnement général de l'objet (service, mesure, échange d'information…). A ce titre, elle offre une vision à
la fois de la stratégie, de l'organisation et des techniques et répond à la question "que fait-on ?".

9.2 - Besoins d'architecture et démarche proposée

La concertation et l’analyse des expériences étrangères ont fait émerger un souhait, partagé par l'ensemble des
acteurs, de développer des structures permettant aux STI de se développer dans des conditions optimales. Ces
structures peuvent prendre la forme d'architectures plus ou moins détaillées selon la nature du besoin de
structure.

Les architectures se matérialisent souvent par des schémas ou des « cartes » identifiant des fonctions et des
relations entre ces fonctions. En géographie, la bonne échelle pour une carte est celle qui permet de représenter
simultanément un nombre raisonnable d'objets et les relations entre eux avec une précision homogène. Pour les
 systèmes STI, chaque type d'acteurs a besoin d'un type d'architecture adapté à son point de vue :
• créer un vocabulaire commun entre les acteurs et clarifier leurs enjeux pour faciliter la gouvernance,
• identifier le fonctionnement des systèmes existants et évaluer les évolutions nécessaires pour répondre à des
besoins nouveaux, notamment d'interopérabilité,
• organiser les échanges entre les systèmes sur des bases pérennes, en particulier des définitions des données
qui soient partagées entre tous les acteurs,
• réaliser des interfaces réutilisables d'un projet à un autre,
• analyser les risques des systèmes et prendre les mesures de sécurité adaptées.

Ces différents points de vue sont complémentaires : le premier concerne les décideurs qui ont à prendre
l'ensemble des décisions qui amèneront à ce que les systèmes d'information qui sont sous leur responsabilité
deviennent interopérables : ces décisions ont des aspects « politiques », en particulier sur l'image de leurs
organisations (publiques ou privées) pour les usagers et pour le public, mais aussi juridiques, techniques et
financières.
Les collectivités locales, par exemple, sont demandeuses d'architecture pour organiser les interactions entre les différents partenaires et améliorer la gouvernance. L'approche architecturale est plutôt de nature décisionnelle, et l'architecture reste généraliste.

A contrario, plusieurs entreprises qui participent collectivement à la fourniture d'un service pour lequel un niveau de qualité minimal est requis ont, elles, besoin d'une architecture plus complète, de nature cadre voire technique. Ici, l'architecture ne sert pas seulement à décrire les activités de chacun, mais également à être en mesure de déterminer des responsabilités en cas de défaut de qualité.

Pour autant, si les architectures fonctionnelles présentent un intérêt pour décrire les relations entre acteurs, elles peuvent également conduire à une certaine rigidité, si l’on y prend garde, soit en étant trop détaillées, soit en étant incapables d’intégrer de nouveaux acteurs ou de nouveaux services.

Il convient donc de déterminer le bon niveau de fourniture d’architecture (la bonne échelle dans la comparaison cartographique ci-avant) ainsi que les services pour lesquels il est particulièrement utile de disposer d’une architecture, et pour quels objectifs.

La démarche proposée vise à fournir des éléments permettant d’apprécier l’opportunité de développer une ou des architectures des ITS, au niveau français et européens, en tenant compte et en se fondant si besoin sur les architectures déjà existantes, et en fonction des besoins exprimés par les acteurs. Elle vise à fournir d’abord une vision d’ensemble, partagée entre acteurs, sur les besoins d’architecture. Il s’agira ensuite d’identifier les services pour lesquels il apparaît nécessaire de développer des architectures, en tenant compte de l’existant (notamment les projets FRAME en Europe et ACTIF en France), ainsi que des expériences étrangères. Cette démarche devra également prêter une attention particulière à l’avancement des spécifications européennes, qui pourront être porteuses de prescriptions en matière d’architectures.

10 - Cadre de « régulation » de l'information déplacement

10.1 - Vision générale des besoins et modalités de régulation

La qualité de l’information déplacement et des conseils attachés est une problématique d’importance croissante pour l’ensemble des acteurs publics et privés. Les opérateurs privés cherchent à fournir le meilleur service à leurs clients, qui souhaitent bénéficier de l’information la plus fiable et la plus précise possible à des fins d’optimisation individuelle. Les équipementiers automobiles expriment par exemple le besoin de comparer objectivement les services de temps de parcours fournis par leurs sous-traitants opérateurs de services. Enfin, pour les gestionnaires routiers, la qualité de l'information est directement liée à ses effets induits, positifs ou négatifs, sur le trafic et la sécurité routière.

Les comportements induits par l'information embarquée à l'utilisateur final affectent la sécurité, la gestion du trafic et l’environnement. En particulier, les services de navigation dynamique peuvent induire des reports voire une amplification des congestions sur le réseau secondaire ou bien orienter des flux de circulation en des points ou sections non souhaitables (les usagers pouvant être plus enclins à suivre les conseils de leur géo-navigateurs plutôt que ceux de la signalisation ou des messages du gestionnaire sur les PMV). La puissance publique est donc légitime à intervenir dans la régulation de la qualité.

Pour autant, la définition d’un niveau « optimum » de qualité est une question délicate : elle fait intervenir, outre les coûts de production de cette information (en évolution constante avec les nouvelles technologies et les nouvelles sources), l’impact de cette information sur les décisions et gestes de conduite, qui est connu de façon encore fragmentaire. De plus, la qualité de l’information finale à l'usager résulte des interactions entre acteurs long de la chaîne, avec un poids croissant de la fusion de données multi-sources – multi-acteurs. Enfin, les

15 Cf : schéma page précédente.
enjeux de qualité ne sont pas les mêmes pour tous les services, et nécessitent une analyse au cas par cas, en fonction notamment des enjeux sur les comportements des usagers.

La régulation de la qualité peut prendre des formes très diverses et porter sur différents objets :

- qualité des données ou qualité des services ;
- définition d'un référentiel de qualité en partenariat avec les acteurs privés du marché (attributs de qualité, méthodes de mesures,...) ;
- mise en place d'une forme de labellisation publique garantissant un niveau donné de qualité et le respect de politiques de circulation ;
- mise en place d'un comparateur public à l'image des tests de téléphonie mobile ;
- mise en place d'obligations réglementaires : qualité minimale de sécurité, respect des politiques de circulation, professions réglementées, ...

Le label public pourrait être, parmi ces modalités, une piste à explorer car il constitue un signal pour l'usager quant à la conformité à des exigences publiques et celui d'un niveau minimal de qualité. Cet instrument comporte cependant des risques et doit donc être étudié plus précisément : visibilité du label pour l'usager ; articulation avec la certification des produits d'aide à la conduite ; niveau des seuils ; impacts sur les prix et la concurrence.

La définition d’un référentiel de qualité paraît utile pour définir une nomenclature partagée et fixer les critères et méthodes d'évaluation de l'information sur les services où les enjeux de régulation sont les plus forts. Le champ et la granulométrie de ce référentiel reste à préciser : il doit ressortir d’une analyse détaillée des services (cf. ci-dessus et annexe 2).

Au total, l’approche de régulation doit donc être prudente, adaptée au service d’information concerné, et adaptive dans le temps, en limitant au strict nécessaire l’intervention (dans les relations entre acteurs, les savoirs-faire commerciaux de traitement et fusion de données), et en se concentrant sur l’information finale, qui reste le motif principal d’intervention (au titre de la gestion de trafic et de la sécurité).

10.2 - Elaboration d’un cadre pour l’information routière

L’information routière présente des enjeux particuliers en matière de qualité, pour plusieurs raisons :

- le marché de l’information à l’usager final est relativement mature ; la rétroaction de l’usager sur la qualité commence à se mettre en place, ce qui renforce le rôle de la qualité dans le jeu de la concurrence ;
- les gestionnaires publics restent à la fois les principaux fournisseurs d’information, et, s’agissant de l’information événementielle, les seuls acteurs à même de qualifier la donnée et l’information au regard de ses impacts sur la sécurité ;
- l’enjeu du temps réel est prégnant ;
- un service public d’information routière à l’usager existe de fait, par l’intermédiaire de Bison Fûté au niveau national et des sites d’information régionaux et locaux (pour ne citer que Sytadin en région parisienne) ; de ce fait, les gestionnaires publics sont eux-mêmes soumis, comme les opérateurs privés, à des exigences des usagers en matière de qualité ;
- la Directive STI 2010/40, au travers de ses spécifications, ouvre la question de la qualité.

En particulier, les services gestionnaires de réseau produisent et diffusent de l'information routière. Une régulation de la qualité aura nécessairement des impacts sur leur production. En particulier, les opérateurs privés lieront immanquablement la qualité du service rendu à l'usager à la qualité des données publiques en entrées de leurs processus industriels. Les producteurs publics auront donc certainement à s'engager sur la qualité des données produites et des informations diffusées.

Ceci explique probablement que les travaux méthodologiques sur la qualité se soient développés récemment dans le secteur routier, notamment au niveau européen et international. Ces travaux ont notamment permis
d’identifier les principaux critères utiles pour caractériser la qualité, à l’usager final, et dans la chaîne de production de l’information à partir des données :

• fidélité (niveau d’exactitude vis-à-vis de l’objet / l’événement représenté),
• précision géographique,
• disponibilité dans le temps,
• délais de mise à jour,
• couverture géographique,
• pertinence (information cohérente avec les actes de conduite et de sécurité de l’usager),
• interprétabilité (capacité, pour l’usager, à comprendre l’information et à adapter ses actes de conduite).

Pour autant, les enjeux de qualité, et donc les critères pertinents, apparaissent spécifiques aux différents services d’information routiers, en particulier, en fonction de l’importance des questions de sécurité afférentes aux comportements induits par l’information fournie aux conducteurs.

Malgré cette diversité qui devra donner lieu à des analyses au cas par cas (cf. ci-dessus sur les services prioritaires), on peut d’ores et déjà identifier, pour les principaux groupes de services d’information présentant des enjeux de qualité, le fil directeur d’une démarche de qualité :

• événements de sécurité en temps réel : délai et distance de prévenance en fonction de la vitesse contextuelle ;
• information du conducteur sur la disponibilité, dans la zone où il circule, de cette information, afin d’éviter les phénomènes d’hypovigilance ;
• vitesses limites autorisées : précision géographique et éventuellement distance et délai de prévenance des changements de limites de vitesse ;
• événements prévisibles (chantiers, coupures...) : délais de prévenance (en temps et pour le calcul suffisamment en amont d’itinéraires de délèstage) ;
• conseils de re-routage en temps réel : diffusion de conseils respectant, pour les différentes catégories de trafic, les contraintes de circulation (itinéraires de délèstage, interdiction de circuler de certains trafics) et optimisant le temps de parcours total (en évitant les concentrations de congestion notamment).

De plus, le développement de l’information aux interfaces transports collectifs – route, qui recèle un important gisement de report modal, pourrait également soulever des questions de qualité. Les interfaces concernés sont notamment :

• l’information sur l’offre de parc-relais en temps réel : ceci concerne à la fois l’information sur les disponibilités et tarifs de parkings, et les horaires de correspondance des transports collectifs ; à terme, les conseils d’itinéraire optimisant le choix d’un parc-relais pour minimiser le temps de parcours en fonction des conditions de circulation, apparaissent également pouvoir participer à des objectifs de gestion multimodale des flux ; dans la perspective de développements de ces deux types de services, les enjeux de qualité résident, comme pour l’information routière, sur l’adéquation des conseils d’itinéraires (ici, de choix de parc-relais) aux objectifs de minimisation de la congestion (incluant, dans ce cas, les contraintes de capacité des transports collectifs) ;
• l’information sur les correspondances en temps réel entre transports « massifiés » (ex : grandes lignes ferroviaires) et les modes routiers en correspondance (cars ou bus) : la demande des usagers et gestionnaires locaux porte notamment sur une meilleure organisation des correspondances en temps réel, afin de minimiser les temps de parcours et les risques de parcours interrompus en cas de perturbations sur un segment modal ; les enjeux de qualité portent notamment sur les questions de préavis de retard permettant l’adaptation optimisée des correspondances, tout en tenant compte du besoin de fiabiliser l’information sur les retards, qui relève de la compétence des opérateurs de transport.

10.3 - Problématique des transports collectifs

Un des premiers chantiers ouverts par l’AFIMB dans le cadre du groupe de travail sur la qualité des données porte, dans une première approche et de manière pragmatique sur les offres théoriques de transports publics et en particulier sur les arrêts de transports. Cette action s’inscrit dans un objectif de labellisation à terme.
L’information multimodale recèle d’autres enjeux de qualité quant aux choix modaux qui peuvent être induits par cette information. Une réflexion sur la qualité pourrait notamment aborder la question de l’adéquation des paramètres de choix modal mis en avant aux usagers dans les comparateurs (prix, temps, carbone), aux objectifs de politique publique de report modal d’un côté, aux préférences des usagers de l’autre.

De plus, des offres privées se développent sur l’information en temps réel sur les transports collectifs, notamment en situation de perturbation, notamment sur le marché de la téléphonie mobile (applications smartphone de type « communautaire », y compris portant sur le temps réel). Ces nouveaux services pourraient faire émerger des questions de qualité de l’information à l’usager final, afin notamment de s’assurer que les comportements des usagers sont conformes aux objectifs d’optimisation des flux, voire de sécurité.

Dans cette optique, les réflexions entre l’information routière et l’information multimodale devront converger ou au moins trouver des synergies à terme.

11 - Cadre d'échange et de réutilisation des données

11.1 - Cadre de la Directive

L’offre d’information déplacements à l’usager, tant statique (cartes, limitations de vitesse, offre de transports collectifs, etc.) que dynamique (trafic, événements), se développe. De nouvelles sources d’information émergent. De nouvelles technologies de communication se répandent. Faciliter les échanges de données a été reconnu comme l’un des principaux leviers pour développer l’offre d’information déplacements.

L’accès aux données est au cœur de la Directive ITS. Cet accès vise à favoriser le développement des services d’information déplacements en facilitant les échanges et, au-delà, la fusion des données de diverses sources. La Directive prévoit (cf. annexe 1) un principe assez large d’accès aux données, y compris auprès de producteurs de données extérieurs au domaine de la route. On peut lire la Directive comme un ensemble équilibré de « droits et devoirs » entre les producteurs de données d’un côté, les fournisseurs d’information de l’autre, ensemble dans lequel les fournisseurs ont un droit d’accès facilité aux données, en contrepartie d’obligations de qualité de l’information à l’usager final. A ce stade, la question de la tarification n’est pas explicitement ouverte dans la préparation des spécifications de la Directive, à l’exception du principe de gratuité à l’usager final des services d’information de sécurité en temps réel.

On peut noter ici que, si la question de l’accès aux données pour l’information déplacements, et notamment l’information routière, se pose et justifie une action européenne (cf. Directive), elle répond à une logique différente de celle de l’open data : les principes de l’open data appliqués à l’information déplacement, et notamment l’information routière posent des questions de l’utilisation des données par des tiers conformément aux objectifs de politiques publiques (circulation, sécurité routière et environnement), de la capacité des gestionnaires à maintenir une infrastructure de production et des moyens de qualification des données. De plus, l’information déplacement, et surtout l’information routière, est spécifique par rapport aux données mises à disposition jusqu’à lors dans une logique d’open data, en raison de son caractère temps réel marqué, de sa double valorisation : individuelle pour l’usager dans son choix de mobilité ; collective pour l’optimisation de la gestion des réseaux. Ceci implique notamment de rechercher la cohérence des informations selon les différents types de médias choisis et avec les objectifs de gestion des réseaux, notamment en termes de sécurité (cf. ci-dessus sur la qualité). Enfin, la production d’information par le marché suppose de recourir à des processus (et algorithmes) complexes et coûteux à mettre en place, et qui créent des interdépendances fortes entre acteurs sur la nature et la qualité des données échangées, interdépendances qui s’abordent de façon plus efficace par des contrats d’échanges précis et pérennes.
11.2 - Opportunité et modalités d’un entrepôt de données – exemple de la route

L’intervention publique pour favoriser cet échange peut, au-delà des règles portant sur l’accès (dont on peut faire l’hypothèse qu’elles sont traitées dans le cadre de la Directive) et sur la qualité (cf. ci-dessus), s’intéresser à faciliter matériellement l’échange de données, en facilitant les mises en relation entre producteurs de données d’une part, utilisateurs d’autre part (opérateurs d'information notamment).

L'information routière recouvre un large éventail de données. L'étude des démarches entreprises dans différents pays européens fait apparaître trois éléments principaux :

- le besoin de définir un premier périmètre d'informations sur lequel faciliter en priorité l'échange de données entre gestionnaires ;
- le besoin de définir et d'alimenter un référentiel de localisation partagé entre acteurs ; ce référentiel de localisation a un impact sur le format d'échange, le catalogue de données et enfin la qualité des données ; c'est un élément essentiel.
- l’éventail des différentes modalités de mise en commun de données, qui peuvent aller :
 - de la création d’un entrepôt physique de données alimenté par les gestionnaires et dans lequel les fournisseur d’information peuvent « télécharger » des données en temps réel ;
 - à un simple entrepôt de métadonnées (descripteurs des données) et de formats ;
 - en passant par des variantes : entrepôt de contrats d’échanges de données ; bibliothèque de contrats-types d’échanges de données

Ces différentes modalités nécessitent d’être étudiées plus avant, en fonction des attentes des différents acteurs, et des services d’information considérés comme prioritaires (cf. ci-dessous).

Par ailleurs, il est important de citer le projet TIPI, qui se présente d’ores et déjà comme une forme de mise en commun de données (entre gestionnaires du réseau routier national non concédé) à des fins d’information routière des usagers : TIPI (Traitement informatique pour la production de l’information routière), est le système d’information mis en place en 2009/2010 pour récupérer l'information routière (trafic et évènements), la qualifier et la diffuser. La diffusion est faite via divers canaux dont on notera l'alimentation du site Bison Futé, l'envoi de messages au travers d'un abonnement et la fourniture de données au format européen Datex. Les données de TIPI et plus largement les données caractérisant l'information routières sont localisées à l’aide de plusieurs systèmes de localisation (principalement les PR+abscisse et GPS). Le système d'information TIPI est alimenté (cf. annexe 5) par les Sociétés Concessionnaires Autoroutières (SCA), les forces de l'ordre, les Directions Interdépartementales des Routes (DIR). Certaines collectivités locales (gestionnaires de réseau routier) peuvent d'ores et déjà alimenter TIPI. Les CRICR et le CNIR assurent le suivi, la qualification et la diffusion de l'information routière. Les formats et modes de transmission de données sont variables. Le format européen DATEX, utilisé et diffusé par le ministère se généralise chez les producteurs de données d'information routière.

Pour répondre à l’objectif de favoriser l'amélioration de l'information routière à l'usager, l'outil TIPI constitue un point de départ utile. TIPI répond en partie à cet objectif sur le réseau qui le concerne. Il s'agit donc de compléter l'information diffusée par TIPI par des sources supplémentaires d'information (notamment des gestionnaires, SCA et collectivités locales). Une démarche itérative pourrait donc être étudiée :

- développement des capacités de diffusion de l'application TIPI (ex : webservice).
- définition d'un catalogue de données commun s'appuyant sur les standards européens Datex. Ce catalogue définira notamment un système de localisation partagé.
- mise en place d'un outil d'agrégation, de qualification et de redistribution de l'information (de type entrepôt de données).

16 CRICR : Centre régional d'information et de coordination routière
17 CNIR : Conseil national interrégional
L’enjeu et la difficulté de la seconde étape est l’ouverture du cadre aux acteurs autres que l’État (collectivités locales, SCA), tout en autorisant le passage à l’étape suivante. La troisième étape pourrait dans un premier temps réunir les différents gestionnaires et correspondre ainsi à une extension géographique de l’offre TIPI.

11.3 - Principes de tarification de l’accès aux données

Comme dans toute régulation portant sur l’accès à des ressources, la question de la tarification de l’accès aux données est posée. Les gestionnaires (notamment les collectivités locales, principaux producteurs de données de connaissance du trafic et des événements, ont notamment fait part de leurs préoccupations de devoir fournir gratuitement des données, alors que leur production représente un coût.

L’accès gratuit (tel qu’il peut sous-tendre par exemple une politique d’open data) présente en effet des limites : sous-investissement dans la production des données, risque d’entraves non tarifaires aux échanges, notamment défaut de qualité. Pour autant, le risque de sur-taxation des données par des producteurs qui en détiennent le monopole, existe également.

On se retrouve ainsi dans le cas de la tarification de l’accès à une ressource essentielle, pour laquelle on peut s’appuyer sur des principes maintenant éprouvés :

- la tarification doit refléter le coût marginal de développement à long terme de la ressource ;
- la tarification doit intégrer la rémunération des investissements nécessaires à ce développement, dans une logique « forward-looking » (technologies nouvelles) ;
- le coût du capital doit refléter l’activité de production de la ressource (qui peut différer du coût du capital de l’entreprise sur l’ensemble de ses activités) ;
- une participation au financement des coûts fixes est éligible, les règles de partage des coûts fixes doivent être équitables ;
- l’application d’une régulation a priori des coûts d’accès à la ressource doit être limitée aux ressources (et aux opérateurs) qui constituent une ressource essentielle, non duplicable ;
- pour les ressources duplicables (techniquement), le champ d’application de la régulation a priori est délicat18 : il s’agit de concilier le fait qu’une duplication des ressources constitue à la fois un sur-coût collectif, mais également une incitation au progrès technique.

En pratique, pour les données d’information déplacements, le caractère duplicable des données est assez difficile à définir : le développement des données mobiles et des systèmes coopératifs (y compris type « réseaux sociaux »), permet d’envisager à terme la fourniture de données « concurrentes » aux données des opérateurs routiers et de transports, y compris pour le temps réel et les événements. La question posée est davantage celle de la qualité que de sa disponibilité. De plus, on se situe davantage dans une logique de complémentarité des différentes sources, que de concurrence : la fusion des données permet en effet d’en améliorer la qualité. Enfin, le développement des sources mobiles et coopératives, ajouté à la multiplicité des fournisseurs de données actuels (gestionnaires routiers, opérateurs de transports, autorité organisatrice de transports), rend probablement inapplicable une approche dans laquelle on chercherait à déterminer quel opérateur détient réellement une ressource de données essentielle et serait donc éligible à une régulation a priori.

Dans ce contexte, il semble que le principal écueil à éviter soit de freiner le développement des sources innovantes de données, alors que ces sources permettraient à terme de compléter les données existantes, probablement à moindre coût. La régulation a priori de la tarification des données ne semble donc pas se justifier. Une piste à creuser pourrait alors être de mettre à disposition des acteurs du marché une déclinaison, pour les données de connaissance des trafics et des événements, du principe de tarification au coût marginal de développement. Les opérateurs pourraient alors utiliser ces référentiels dans leurs relations contractuelles, de façon volontaire. Les opérateurs considérés comme incontournables (réseau routier national, opérateurs de transports publics d’importance nationale) pourraient appliquer ce référentiel dans une démarche d’exemplarité.

18 La régulation a priori consiste, schématiquement, en une approbation des tarifs et se distingue de la régulation a posteriori qui s’opère via le règlement des différends.
Si cette démarche « volontaire » des opérateurs se révélait insuffisante, on pourrait envisager une « review » au terme de quelques années pouvant éventuellement conduire à renforcer la régulation a priori.

12 - Cadre d’interopérabilité pour la billettique sans contact

De nombreux acteurs et le groupe de travail mis en place par l’AFIMB en 2011 ont conclu à l’intérêt majeur d’une application billettique commune (désignée ci-après par le sigle ABC) - commune aux autorités organisatrices -, utilisables dans l'ensemble des territoires pour les déplacements occasionnels, ainsi que pour les déplacements inter-régionaux. En effet, si des progrès significatifs restent à faire en matière de billettique, c’est bien pour faciliter l’achat et la validation de titres pour des déplacements occasionnels plutôt que pour les déplacements réguliers d’utilisateurs abonnés munis de passe transport.

Dans le cadre du programme d’investissements d’avenir dit « grand emprunt » avec l’appel à projets « Ville numérique N°2 » dédiés aux services mobiles sans contact, plusieurs territoires souhaitent mettre en œuvre cette application billettique commune.

Les utilisateurs de téléphones sans contact NFC seront les premiers à pouvoir profiter de cette application, qui pourra être proposée sur cartes à puce (passe transport, carte bancaire) ou sur d’autres supports sans contact (clés USB, ticket sans contact …) dans une étape ultérieure.

Il s'agit pour le moment de décrire l’application billettique commune, la façon dont elle complète les applications billettiques locales existantes, les éléments d’architecture mutualisés nécessaire à son déploiement et ses grands principes en matière de gestion des titres.

L’annexe 3 détaille les enjeux et les pistes d’action en vue d’établir un cadre d’interopérabilité. Les pistes d’action pour la mise en œuvre de cette application billettique commune (ABC) portent notamment sur la mise en place d’une structure porteuse, qui a pour vocation d’établir un référentiel ABC reposant sur le cahier des charges du projet ABC et sur des tests de conformité pour garantir l’intéropérabilité de la Solution ABC et de ses évolutions.

Une structure conventionnelle est proposée pour permettre une mise en œuvre de l’ABC dans des délais raisonnables, par rapport à une structure juridique autonome, telle un Groupement d’Intérêt Public (GIP). Cette structure conventionnelle pourrait :

- engager les AOT membres quant au respect du futur référentiel ABC,
- engager les intervenants industriels ABC à respecter le futur référentiel ABC,
- ne pas engager financièrement les AOT,
- ne pas engager juridiquement les AOT hormis le respect de la conformité au référentiel.

Les membres signataires de la convention seraient :

- les AOT acceptant de déployer l’ABC, dont un ou deux chefs de files : elles ont voix au chapitre pour la réalisation de l’ABC,
- l’AFIMB, pour accompagner les démarches et être un facilitateur,
- un organisme représentatif des AOT, tel que le GART.

Cette structure permettrait également à des AOT non signataires (cercle des observateurs) d’être informées des évolutions du Référentiel ABC et de formuler des observations, afin de leur permettre de décider de souscrire ultérieurement.
13 - Innovation et expérimentation des systèmes coopératifs

Les systèmes coopératifs\(^{19}\) sont basés sur les communications véhicule à véhicule (V2V) et véhicule à infrastructure (V2I). On y inclut également les communications infrastructure à véhicule (I2V ou V2I) ainsi que les communications infrastructure à infrastructure (I2I). Ces systèmes visent à améliorer la sécurité de l’ensemble des usagers de la route et l’efficacité des systèmes de transports. Les systèmes coopératifs augmentent l’horizon temporel des conducteurs, la qualité et la fiabilité de l’information concernant l’environnement immédiat des conducteurs, les autres véhicules et usagers de la route. Ils permettent d’améliorer les conditions de conduite, ce qui doit tendre à améliorer la sécurité et la mobilité. De même, les systèmes coopératifs offrent une information accrue sur les véhicules, leur position et les conditions de circulation aux exploitants de la route, permettant ainsi un usage optimisé et plus sûr du réseau routier disponible ainsi qu’une meilleure réponse aux incidents et aux dangers.

Des activités sont en cours en Europe, aux États-Unis et au Japon. Les projets de recherche qui ont lieu sont vus comme le prolongement de ceux sur les systèmes autonomes qui avaient été menés pendant près de dix ans.

Les besoins d’intervention publique dans le champs des systèmes coopératifs se situent sur plusieurs plans :

- en tant que régulateur : il s’agit de s’assurer que le déploiement de tels systèmes s’effectue dans de bonnes conditions, en veillant à un accès équitable à ces technologies, notamment aux données, en s’assurant du respect des règles et normes en matière de sécurité routière (ergonomie, non-distraction) et en promouvant les services et applications qui doivent contribuer au respect des objectifs de la directive 2010/40/UE ;

- en tant que gestionnaire de réseau ou d’autorité organisatrice des transports : dans ce cas l’État ou la collectivité peut avoir intérêt à (faire) lancer certains services particuliers qui vont soit participer à l’exercice de ses missions de gestionnaire (collecte de données), soit participer à la mise en œuvre de politiques publiques (information voyageurs). Par ailleurs le déploiement des unités de bord de route comme celui de systèmes centraux vont entraîner des investissements conséquents qui doivent profiter des opportunités qui vont se présenter à l’occasion du nécessaire renouvellement de certains équipements dynamiques ;

- à plus court terme, il s’agit de combler les lacunes dans la connaissance des coûts et des impacts des systèmes coopératifs, ce qui peut justifier d’accompagner l’innovation et les expérimentations, dans un objectif d’évaluation de leur faisabilité et de leur impact sur les comportements. En effet, le déploiement des STI suppose d’intégrer des technologies de communication en général matures, dans des systèmes de transports complexes, et leur efficacité dépend de la composante humaine et organisationnelle de leur mise en œuvre. Dans ce contexte, des tests de terrain constituent un point de passage obligé pour le déploiement. Ces tests nécessitent de lourds investissements. Pour optimiser ces investissements, il peut être utile de concentrer les besoins sur des sites adaptés au test de divers systèmes et services.

Les pistes d’action à approfondir portent donc sur la mise en commun des besoins des gestionnaires et autorités organisatrices de transports pour le déploiement de services qui pourraient faire appel à des systèmes coopératifs. Il s’agit notamment d’identifier, parmi ces services, ceux qui nécessitent de lever les lacunes de connaissance par des expérimentations de terrain. Ceci permettra notamment de donner de la visibilité à moyen terme et de la cohérence aux différents projets de déploiement des sites d’expérimentation. Il apparaît souhaitable que cette démarche soit coordinée au niveau européen.

\(^{19}\) Ceci est le nom couramment utilisé. Au départ on parlait de système coopératif intelligent. L’expression correcte devrait être « système coopératif de transport intelligent » (ou en anglais « cooperative ITS »).
14 - Eléments de mise en perspective

Ce document vise à synthétiser les besoins d’accompagnement du développement des systèmes de transports intelligents, sous forme d’axes possibles pour l’action publique. Il est important de conserver en tête quelques éléments de perspective dans la lecture de ces pistes d’action :

- les services d’information déplacement peuvent être considérés comme un marché, sur lequel des logiques d’acteurs privés et d’acteurs publics coexistent et doivent être conciliées ; un des enjeux principaux de ce document porte sur la prise en compte d’objectifs publics dans le fonctionnement de ce marché ; les services de gestion des réseaux et, plus largement, d’aide à la mobilité, sont, quant à eux, caractérisés par la prééminence des objectifs publics, avec des financements importants, et de plus en plus contraints ;

- les modèles économiques sous-jacents au marché de l’information déplacement sont divers et en évolution constante ; ainsi, l’information déplacements se développe à la fois comme un marché « autonome », et d’un autre côté, fait de plus en plus partie de l’offre de transports, que ce soit dans les transports collectifs ou dans l’automobile ; les opérateurs de ces modes de transports sont ainsi attachés à assurer la cohérence de cette information avec les autres composantes de leur offre, y compris celles qui concernent le confort et la sécurité, comme c’est le cas notamment dans le secteur automobile ; les acteurs attachent une valeur économique et donc un prix à l’information déplacements ; ce prix doit refléter son coût de production et traduit l’existence d’une réelle demande, en général solvable, de l’usager ; pour autant, il n’est pas dans les objectifs de ce rapport de prévoir ni a fortiori de prescrire de « modèle économique » normé de l’information déplacement ;

- le marché des services de transports intelligents est en mouvement rapide, et des actions publiques identifiées comme pertinentes à ce jour, peuvent se révéler inadaptées d’ici quelques années ;

- c’est pourquoi les actions identifiées ici doivent être considérées comme des pistes pour l’action publique, qui nécessitent d’être approfondies ; cet approfondissement peut conduire soit à les infléchir, soit à les renforcer, soit à en abandonner certaines ;

- les actions identifiées se présentent davantage comme des chantiers à ouvrir que des engagements de déploiement de services, de systèmes ou d’équipements ; ceci se justifie d’une part par le fait que les spécifications des systèmes de transports intelligents prévus par la Directive 2010/40 européennes restent à venir, et d’autre part par le fait que le déploiement des services de transports intelligents se fera en grande partie par les autorités locales et/ou le marché. Une stratégie nationale à vocation prescriptive n’est pas adaptée à ce contexte ;

- un certain nombre d’actions identifiées présentent une articulation forte avec les spécifications de la Directive 2010/40 ; il y a donc certes un risque de « recouvrement » entre ces chantiers engagés, et les travaux sur les spécifications, mais, il a semblé préférable d’ouvrir ces chantiers, quitte à ce qu’ils soient ensuite adaptés lorsque le champs des spécifications européennes sera connu ; de plus, le fait d’ouvrir ces chantiers, permet de signaler les questions considérées comme importantes du point de vue des acteurs français ;

- le besoin de « standardisation » qui peut apparaître de façon sous-jacente à certaines actions, doit être évalué avec soin, afin de ne pas freiner l’innovation ;

- le « pas de temps » du développement des systèmes de transports intelligents n’est pas négligeable ; en particulier, la connaissance des interfaces « homme-information » (IHI) nécessite souvent des expérimentations et des tests coûteux, notamment sur les questions de sécurité liée à l’information embarquée et aux gestes de conduite ; la connaissance des IHI apparaît comme un axe important de développement des connaissance partagées entre acteurs.

De plus, ce rapport n’aborde pas des questions pourtant relevées comme importantes par les acteurs des STI, et qui pourraient donner lieu à des compléments à ce rapport :

- les besoins en recherche-développement dans le domaine des STI,

- plus largement, les questions de compétitivité de la « filière STI » en France,

- les questions de formation des acteurs, indispensables pour un dialogue cohérent entre les différents types et niveaux d’acteurs, donc à la gouvernance et au déploiement des services.
Bibliographie

[10] POLIS, Research/cooperation needs for urban and regional network management and ITS. 2011, 9p.

Annexes
Annexe 1 : échanges de données dans la Directive 2010/40

Cette annexe présente de façon très schématique les échanges de données tels qu’il apparaissent dans son annexe sur les spécifications : les graphiques ci-dessous présentent les catégories d’acteurs identifiées, ainsi que les interactions citées comme pouvant être couvertes par les spécifications.

Services d’information déplacement

![Diagramme des échanges de données](image)
Systèmes coopératifs et dispositifs embarqués

Accédent (plug and play)

Mettent à disposition et à jour

Prestataires de service ITS

Centres de contrôle

Routes et circulation

Véhicules

Communiquent

Communiquent

Véhicules
Annexe 2 : types d’informations, modes de production et enjeux de qualité

Les travaux préparatoires à la stratégie nationale STI ont en effet mis en lumière le besoin d’établir une cartographie des relations entre acteurs au sein de la « chaîne de valeur » de l’information routière, notamment pour aborder les chantiers « architectures », « régulation de la qualité » et « mise en commun – entrepôt de données ».

Cette annexe propose une typologie relativement simple de ces informations, en prenant en compte les principaux critères qui semblent devoir les distinguer lorsque l’on s’intéresse :

- aux enjeux publics en termes de qualité :
 - sécurité routière,
 - gestion des flux en temps réel – délestage,
 - optimisation des choix ex ante ;
- à la chaîne de production (et de valeur) de cette information, i.e. à l’architecture sous-jacente :
 - distinction entre données brutes et informations plus ou moins élaborées (avec des solutions souvent propriétaires),
 - importance de la qualification de la donnée brute dans la qualité de l’information à l’usager final.

Le tableau suivant présente cette typologie ; les tableaux qui suivent présentent la correspondance avec des « nomenclatures » de référence (Directive ITS ; Datex 2).
Typologie des informations et données au regard des chaînes de valeur sous-jacentes et des enjeux publics en termes de qualité

<table>
<thead>
<tr>
<th>Catégorie d’informations</th>
<th>Exemples</th>
<th>Spécificités ; enjeux publics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informations de trafic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Données de comptage</td>
<td>Débit, vitesse</td>
<td>Donnée brute Localisé, instantané</td>
</tr>
<tr>
<td>Données de mobilité</td>
<td>O/D ou entrées / sorties</td>
<td>Donnée brute</td>
</tr>
<tr>
<td>Conditions de trafic</td>
<td>Temps de parcours</td>
<td>Calculé ; Enjeux de délestage « efficace »</td>
</tr>
<tr>
<td>Prévisions de trafic et de conditions de circulation</td>
<td>Temps de parcours prévus</td>
<td>Calculé (modèles statistiques et phénoménologiques) ; Enjeux d’optimisation des choix ex ante</td>
</tr>
<tr>
<td>Conseils de choix d’itinéraire en temps réel</td>
<td>Calculé et « optimisé » ; Enjeux de délestage « efficace »</td>
<td></td>
</tr>
<tr>
<td>Conseils de choix de mode / itinéraire / horaire ex ante</td>
<td>Calculé et « optimisé » ; Enjeux d’optimisation des choix ex ante</td>
<td></td>
</tr>
<tr>
<td>Référentiel de réseau (pour mémoire)</td>
<td>AlertC ; RIU V2</td>
<td></td>
</tr>
<tr>
<td>Informations événementielles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evénements inopinés localisés</td>
<td>Accident non protégé, débris, personne ou animal errant</td>
<td>Enjeux de sécurités localisés ; enjeux de qualification de l’événement « brut »</td>
</tr>
<tr>
<td>Evénements inopinés de restriction de capacité</td>
<td>Accident protégé avec restriction de voies, rupture d’itinéraire</td>
<td>Enjeux de qualification de l’événement « brut » et de délestage « efficace »</td>
</tr>
<tr>
<td>Evénements prévisibles du gestionnaire</td>
<td>Travaux</td>
<td>Enjeux d’optimisation des choix ex ante</td>
</tr>
<tr>
<td>Evénements de demande prévisibles hors gestionnaires</td>
<td>Evénements festifs, sportifs</td>
<td>Enjeux d’optimisation des choix ex ante</td>
</tr>
<tr>
<td>Evénements météo non prévisibles au niveau local</td>
<td>Orage, coup de vent, forte chute de neige localisée, verglas</td>
<td>Enjeux de sécurité localisés</td>
</tr>
<tr>
<td>Evénements météo prévisibles</td>
<td></td>
<td>Enjeux d’optimisation des choix ex ante</td>
</tr>
<tr>
<td>Informations hybrides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prévisions de conditions de circulation en cas de restriction inopinée de capacité</td>
<td></td>
<td>Enjeux de délestage « efficace »</td>
</tr>
<tr>
<td>Prévisions de conditions de circulation en cas d’événement de demande prévisible</td>
<td></td>
<td>Enjeux d’optimisation des choix ex ante</td>
</tr>
<tr>
<td>Conseils d’itinéraire en cas de restriction inopinée de capacité</td>
<td></td>
<td>Enjeux de délestage « efficace »</td>
</tr>
<tr>
<td>Conseils d’itinéraire en cas d’événement de demande prévisible</td>
<td></td>
<td>Enjeux d’optimisation des choix ex ante</td>
</tr>
</tbody>
</table>
Correspondance avec les catégories existantes

<table>
<thead>
<tr>
<th>Catégorie d'informations</th>
<th>Datex 2</th>
<th>Directive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informations de trafic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Données de comptage</td>
<td></td>
<td>Donnée brute</td>
</tr>
<tr>
<td>Données de mobilité</td>
<td></td>
<td>Donnée brute</td>
</tr>
<tr>
<td>Conditions de trafic</td>
<td></td>
<td>Action b</td>
</tr>
<tr>
<td>Prévisions de trafic et de conditions de circulation</td>
<td></td>
<td>Action b</td>
</tr>
<tr>
<td>Conseils de choix d’itinéraire en temps réel</td>
<td></td>
<td>Action b</td>
</tr>
<tr>
<td>Informations événementielles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evénements inopinés localisés</td>
<td>Accident</td>
<td>Action c</td>
</tr>
<tr>
<td></td>
<td>Obstacles et incidents</td>
<td></td>
</tr>
<tr>
<td>Evénements inopinés de restriction de capacité</td>
<td>Bouchons et ralentissements</td>
<td>Action c</td>
</tr>
<tr>
<td>Evénements prévisibles du gestionnaire</td>
<td>Chantiers</td>
<td>Action a</td>
</tr>
<tr>
<td>Evénements de demande prévisibles hors gestionnaires</td>
<td>Manifestations Restrictions et mesures de gestion de trafic</td>
<td>Action a</td>
</tr>
<tr>
<td>Evénements météo non prévisibles au niveau local</td>
<td>Intempéries et pollution</td>
<td>Action c</td>
</tr>
<tr>
<td>Evénements météo prévisibles</td>
<td>Etat des routes hivernal</td>
<td>Action a</td>
</tr>
<tr>
<td>Informations hybrides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prévisions de conditions de circulation en cas de restriction inopinée de capacité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prévisions de conditions de circulation en cas d’événement de demande prévisible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conseils d’itinéraire en cas de restriction inopinée de capacité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conseils d’itinéraire en cas d’événement de demande prévisible</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Annexe 3 : intéropérabilité pour les applications billettique sans contact

Enjeux de l'application billettique commune et principes fonctionnels

Plusieurs réseaux de transport souhaitent distribuer et utiliser une « Application Billettique Commune » (ABC) venant en complément des applications billettiques locales actuelles et répondant notamment aux besoins des déplacements occasionnels et interrégionaux de leurs usagers.

L’ABC vient compléter les services qu’offrent les applications billettiques locales en ce sens que chaque AOT pourra continuer de distribuer à ses usagers son application billettique locale mais pourra également leur proposer l’ABC.

Plusieurs cas de figures sont envisageables selon le souhait des AOT ou le choix des usagers :

- Cas général : L’usager charge l’ABC sur son téléphone NFC depuis un magasin d’applications mobiles. L’usager peut ainsi utiliser l’ABC pour ses déplacements occasionnels en transport public dans tous les réseaux de transport où l’ABC est acceptée ;

- Cas des réseaux disposant d’une application billettique locale (ABL) sur mobile NFC et souhaitant la compléter avec l’ABC : L’ABC est distribuée par une AOT avec son application billettique locale sur le téléphone NFC de l’usager. L’usager peut utiliser l’ABC pour ses déplacements occasionnels en transport public en dehors du périmètre de mobilité couvert par l’application billettique locale de son AOT (trajets hors agglomération ou hors région) ;

- Cas des réseaux n’envisageant pas d’application billettique locale autre que l’ABC sur mobile NFC : L’ABC est distribuée par une AOT comme seule application billettique sur téléphone NFC pour son réseau. L’usager peut utiliser l’ABC pour ses déplacements occasionnels sur le périmètre de mobilité couvert par l’AOT.

Du point de vue d’une autorité organisatrice des transports, l’ABC a donc un double objectif :

- inciter les usagers occasionnels qui ne sont pas des usagers réguliers en possession d’un passe transport à l’utilisation des transports publics, en facilitant l’achat et la validation de titres ;

- permettre aux usagers réguliers d’un réseau de disposer d’une application de transport prête à l’emploi lors de leurs déplacements occasionnels en dehors de leur réseau de transport habituel.

L’ABC propose à travers une application mobile unique un ensemble de fonctions visant à faciliter l’usage occasionnel des transports publics et des autres modes de déplacements alternatifs à la voiture particulière :

- Identifier les réseaux acceptant l’ABC, à partir de la liste des réseaux partenaires ou à partir d’informations de géolocalisation (si autorisée par l’usager) ;

- Acheter des titres de transport occasionnels (tickets unitaires, carnet de tickets, forfait de courte durée, billet aéroport centre ville…) auprès de chacun des réseaux partenaires ABC ;

- Consulter ses titres disponibles, leur date de validité et l’historique de ses achats ;

- Sélectionner parmi ses titres le prochain à utiliser ;

- Permettre de lire les titres et informations de validation en cas de contrôle ;

- Pour chaque réseau partenaire, offrir des liens vers des services locaux de mobilités urbaines (site mobile d’informations voyageurs, calcul d’itinéraire, chargement d’applications mobiles, y compris une application billettique locale, …) ;

- Offrir la possibilité d’identifier de façon sécurisée l’usager de l’ABC lui permettant :
 – d’utiliser aisément d’autres services de mobilité (auto partage, covoiturage, vélo partage, vélo en libre service…) comme cela se fait avec les porteurs de passe transport sans contact hébergeant une application billettique locale, mais aussi ;
 – de gérer un dossier de voyage longue distance (billets SNCF TGV ou grandes lignes…).
Schéma d'ensemble

L’ABC se compose de deux éléments dans le téléphone mobile :

- une application mobile gérant la navigation sur l’écran du téléphone. Une gamme de titres anonymes particulièrement adaptés pour les déplacements occasionnels (titres ABC) est accessible à la vente depuis cette application mobile. Les titres ABC valables sur un réseau sont définis librement par l’AOT responsable du réseau parmi une gamme de titres possibles occasionnels ;
- une application de stockage sécurisé (sorte de coffre-fort numérique et surtout équivalent des passes transport sur carte à puce) installée dans un élément sécurisé du téléphone (généralement la carte SIM) assure l’enregistrement protégé des titres ABC et leur validation lors de la présentation du téléphone devant un « valideur ».

Ces deux éléments de l’ABC peuvent coexister dans le téléphone NFC avec les éléments composant une application billettique locale (ABL) que sont l’application mobile et l’application de stockage sécurisé locales.

Le schéma ci-après résume le dispositif d'ensemble :

Gouvernance de l'application billettique commune

La mise en œuvre de cette application billettique commune (ABC) s’effectue grâce à la mise en place d’une structure porteuse, qui a pour vocation d’établir un référentiel ABC reposant sur le cahier des charges du projet ABC et sur des tests de conformité pour garantir l’intéropérabilité de la Solution ABC et de ses évolutions.

Une structure conventionnelle a été choisie pour permettre une mise en œuvre de l’ABC dans des délais raisonnables, par rapport à une structure juridique autonome, telle un GIP. Cette structure conventionnelle :

- engage les AOT membres quant au respect du futur référentiel ABC,
- engage les intervenants industriels ABC à respecter le futur référentiel ABC,
- n’engage pas financièrement les AOT,
- n’engage pas juridiquement les AOT hormis le respect de la conformité au référentiel.

Les membres signataires de la convention sont :

- Les AOT acceptant de déployer l’ABC, dont un ou deux chefs de files : elles ont voix au chapitre pour la réalisation de l’ABC,
- L’AFIMB, pour accompagner les démarches et être un facilitateur,
- un organisme représentatif des AOT, tel que le GART.
Cette structure permet également à des AOT non signataires (cercle des observateurs) d’être informées des évolutions du Référentiel ABC et de formuler des observations, afin de leur permettre de décider de souscrire ultérieurement.

Les investissements financiers sont décidés au niveau de chaque AOT : la structure ne porte aucun flux financier ni aucun engagement financier. De plus, la responsabilité de la structure se limite au référentiel : la convention n’engage personne.

Le référentiel sera la propriété de l’AFIMB pour garantir sa pérennité, écarter toute appropriation par un tiers, et pour faire respecter la conformité du Référentiel ABC via chaque AOT signataire de la convention ABC et l’UGAP.

L’achat de la Solution de services ABC se fera au travers de la centrale d’achat UGAP : Le ou les chef(s) de file avec l’AFIMB, accompagne(nt) l’UGAP dans la procédure de dialogue compétitif qui permettra à l’UGAP de retenir un prestataire unique pour les AOT désireuses de disposer de la Solution ABC. Chaque AOT membre de la structure conventionnelle ABC pourra commander ainsi la même Solution de services ABC auprès de l’UGAP.
Annexe 4 : architectures : aperçu de l’état des lieux

Cette annexe présente succinctement quelques références dans le domaine des architectures. Elle ne vise pas à l’exhaustivité, étant entendu que les architectures sur les services STI peuvent être produites dans des référentiels non explicitement consacrés aux architectures, notamment dans les documents de normalisation ou des référentiels portant sur la qualité, les modalités et les contrats d’échanges de données, etc.

En France, le projet ACTIF

Lancé dans les années 1990\(^{20}\), l’outil ACTIF\(^{21}\) « Aide à la Conception de systèmes de Transports Intelligents en France » insiste sur le besoin d’interopérabilité des services. ACTIF est conçu pour faciliter le travail des assistants aux maîtres d'ouvrage et des bureaux d'études chargés de la réalisation de systèmes dans 9 « domaines fonctionnels » (DF) suivants (cf http://www.its-actif.org):

- DF1 « Fournir des moyens de paiement électronique »
- DF2 « Gérer les services d’urgence et de sécurité »
- DF3 « Gérer les infrastructures de transports et leurs trafics »
- DF4 « Exploiter les transports publics »
- DF5 « Fournir des systèmes d’assistance à la conduite »
- DF6 « Gérer et Informer sur les déplacements multimodaux »
- DF7 « Faire appliquer la réglementation »
- DF8 « Exploiter les transports de marchandises et les flottes »
- DF9 « Gérer les données partagées »

Ceci a conduit à concevoir le besoin d’architecture non pas seulement parce que le service est complexe, mais parce qu’il fait intervenir de nombreux acteurs. ACTIF est pensé comme un outil au service de la régulation des interactions entre acteurs (échange de données, qualification des données…).

La démarche d'architecture, dans le cadre d'ACTIF, est considérée comme souhaitable dans deux situations.

- Lors d'une planification territoriale, en vue d’une meilleure articulation des STI avec la politique de transport
- Lorsque l’on vise à développer un projet spécifique « multi-acteurs », l’architecture est nécessaire à l’élaboration de ce projet. Dès lors qu’il y a plus de deux acteurs, la négociation directe et continue entre les acteurs est rendu plus complexe\(^{22}\).

Cette démarche conduit à la construction d’une architecture « multi-projet » en plusieurs étapes :

- Connaître les parties prenantes
- Connaître l’existant (notamment les interactions entre les parties prenantes)
- Lister ce qui doit être fait (démarche fonctionnelle)
- Décrire comment cela doit être fait (démarche organisationnelle)
- Définir les interfaces (s’appuyer sur les normes et standards existants)
- Elaborer un scénario de mise en œuvre.

\(^{22}\) L’architecture, conçue comme une règle du jeu qui s’applique à tous les partenaires a l’avantage d’être plus facile à mettre en place qu’un empilement de contrats bilatéraux entre acteurs, mais l’inconvénient de nécessiter l’adhésion de chacun à ces règles du jeu. Il existe, à ce sujet, quelques « zones fragiles », notamment la gestion des interfaces et des sous-systèmes.
Aux États Unis : l'architecture nationale

L'architecture nationale des ITS23, développée aux États-Unis depuis les années 1980 est aujourd'hui arrivée à maturité24 : La \textit{National ITS Architecture} est un modèle suffisamment souple pour être adapté aux besoins. L'outil "Turbo Architecture" permet de décliner cette architecture nationale en plusieurs architectures ITS régionales appropriée à une situation particulière (région métropolitaine, corridor important ou parc national). Aujourd'hui, il existe environ 300 déclinaisons régionales de l'architecture nationale. Le 8 Janvier 2001 la \textit{federal highway administration} (FHWA) et la \textit{federal transit administration} ont adopté un règlement sur les architectures ITS. Ce règlement dispose que tous les projets réalisés à l'aide des fonds du \textit{highway trust fund}, doivent se conformer à l'architecture nationale. Dès lors, l'architecture devient un levier d'harmonisation des procédures et d'intensifications des interactions entre les acteurs.

L’organisation de l’architecture se fait sur plusieurs niveaux

- La couche institutionnelle comprend la couche décisionnelle : le politique, les mécanismes de financement, et les processus nécessaires à la mise en œuvre effective du système, sa maintenance et son exploitation.

- La couche transport définit les fonctions qui sont exécutées. Elle est organisée en plusieurs ensembles :
 - L'architecture physique qui définit les sous-systèmes et les interfaces
 - L'architecture logique qui définit les fonctions qui sont exécutées et les données qui sont échangées entre les fonctions.
 - Le menu de services de transports.

- La couche communication, enfin, permet de créer le lien entre les secteurs du transport et des télécommunications. Il existe de nombreux modes de communication entre lesquels il faut faire un choix.

23 Cf. bibliographie [8]

24 Le logiciel "Turbo Architecture" est opérationnel, et la version 7.0 de l'architecture vient de paraître et va progressivement remplacer la version 6.2 (qui datait de 2010)
L'approche Européenne FRAME

FRAME\(^{25}\) est un outil développé en 2000 par le projet KAREN. Il se veut une réponse au besoin de création d'un cadre stratégique, inhérent à tous systèmes complexes, dont les STI font partie. Frame vise à être parfaitement compatible avec les modèles européens, déjà existants, d'architectures fonctionnelles et, de manière générale, vise à créer des architectures très génériques, en lien avec les autres services ITS, y compris multimodaux. Les partenaires du projet Frame sont issus de plusieurs organismes (dont le Certu) issus de plusieurs pays européens.

Tout comme Aux Etats-Unis, l'architecture Frame traite des aspects techniques juridiques et commerciaux. Elle définit le rôle des partenaires de l’organisation. Cependant, la définition européenne de l’architecture fonctionnelle est sensiblement différente de la vision américaine. Les Etats-Unis voient l’architecture comme une structure organisée et harmonisée. La conception européenne est, en revanche, beaucoup moins centralisée. Là où aux Etats-Unis il y a une architecture nationale déclinable régionalement, en Europe, il existe plusieurs architectures fonctionnelles dont on doit assurer l’interopérabilité.

L’architecture fonctionnelle doit permettre de s’assurer que le service

- Intègre d’autres systèmes
- Répond aux niveaux de performance souhaités
- Conduit au comportement escompté
- Est facile à gérer
- Est facile à entretenir
- Est facile à généraliser
- Répond aux attentes des utilisateurs.

L’architecture, est vue comme un outil de facilitation de création et déploiement de systèmes. Sa structure type est la suivante :

- Une architecture décisionnelle (a top-level framework) où sont décidées les règles fondamentales du service (objet, partenaires…)
- Une architecture « design » ayant pour tâche la conception du service. La démarche de conception est « non déterministe ». On décrit ce qui est nécessaire au fonctionnement du service, et non la façon dont il doit être organisé.

Une seconde différence notable entre les architectures américaines et européenne est la place de la technologie. Aux Etats-unis, l’architecture évolue avec la technologie. En Europe, l’architecture est indépendante de la technologie (l’architecture est réputée pérenne, tandis que la technologie évolue rapidement).

Frame n’a pas pour objet la création d'une architecture. Son objectif est de s'assurer que les architectures développées en Europe convergent et soient facilement interopérables entre elles.

\(^{25}\) http://www.frame-online.net/
Architecture sous-jacente au projet TIPI d’information routière
Annexe 5 : Attentes des collectivités locales européennes - POLIS

Synthèse du rapport POLIS 26

Le rapport POLIS recommande une meilleure prise en compte des rôles et besoins des collectivités locales dans les programmes de recherche, de développement et de déploiement des ITS, sur la base de deux constats :

- sous représentation des collectivités locales dans les programmes européens : déséquilibre entre les programmes répondant à des problématiques nationales et ceux répondant à des besoins locaux. Les premiers sont plus nombreux, plus souvent financés par l'Union Européenne alors même qu'ils n'aboutissent pas nécessairement à des applications déployables à court terme 27. Il existe en revanche peu de programmes dont les résultats bénéficient principalement aux collectivités locales et ces programmes sont rarement financés par l'UE ;
- sous représentation des programmes "non technologiques" : les programmes sur les ITS portent quasi exclusivement sur de la technologie ; cette situation dessert les collectivités locales dont les besoins portent bien plus sur des questions organisationnelles que technologiques.

Le rapport identifie les priorités des collectivités, sur la base d'une enquête dans les différents pays présentée en distinguant trois niveaux de gestion de réseau : stratégique, tactique (qui découle de la stratégie) et opérationnel.

Quels ITS au niveau local ?

La "gestion de trafic" cède progressivement du terrain au concept, plus large de "gestion de réseaux". Il s'agit, là, de la première étape permettant de comprendre le besoin de développer des ITS au niveau local. En effet, la gestion de trafic ne s'intéresse principalement qu'au réseau routier, motorisé, alors que la gestion de réseaux aborde l'ensemble des transports, donc différents modes. Le premier est largement tourné vers l'étude des flux interurbains alors que le second donne une part importante aux flux urbains. Ce glissement sémantique permet d'avoir une vision plus large de la gestion des flux puisqu'il permet d'introduire les problématiques liées aux transports collectifs, à la pollution et aux externalités en général...en bref, les principales questions que peuvent se poser les collectivités locales.

Chaque acteur donne un rôle différent aux ITS selon son champ d'activités. Les collectivités locales, puisqu'elles sont engagées dans un besoin de gestion de réseau, ont une vision large des ITS 28 : outre la gestion du trafic, les ITS sont des outils d'information multimodale et de promotions de plusieurs mobilités.

Au final, la nature des ITS a déployer (connaissance du réseau, gestion de trafic, information voyageur, gestion multimodale des déplacements...) est bien trop variée pour que les collectivités puissent se passer de support et d'assistance.

Un besoin de recherche mais surtout de coopération.

Le rapport n'oppose pas recherche technologique et outils de mise en œuvre des ITS, mais souligne que la première n'est pas suffisante pour qu'un ITS soit déployé au niveau local. Il existe, certes, des besoins spécifiques de recherche technologique dans les collectivités, mais, et c'est particulièrement vrai au niveau local, l'existence d'une technologie doit s'accompagner des outils permettant de la mettre en place.

26 Source : Research/cooperation needs for urban and regional network management and ITS, POLIS, novembre 2011
27 Les programmes sur les "systèmes coopératifs" sont cités en exemple : ils font l'objet de beaucoup d'attention alors même qu'ils n'impliquent pratiquement pas les collectivités locales et n'auront que peu d'impacts sur la gestion des réseaux locaux.
28 A la différence des autorités organisatrices de transport pour qui les ITS sont des outils de gestion de trafic (vision restrictive), ou encore pour les fournisseurs de services pour qui ITS veut souvent dire "services d'information" (autre vision restrictive)…
Le fossé entre la recherche et la mise en œuvre est croissant parce que la recherche ne se poursuit pas au delà de considérations technologiques. Les collectivités locales ne sont pas en mesure de déterminer, seules, les bonnes pratiques. Dans certains cas, la recherche stricto sensu ne répond pas à ces problématiques. Apprendre à partir de bonnes pratiques existantes via un transfert de connaissance peut également s'avérer efficace. Comme elles partagent des objectifs communs, les autorités locales ont intérêt à partager leurs expériences dans un cadre "peer to peer". La généralisation de ces échanges peut permettre de combler le fossé entre la recherche et le déploiement.

Les services identifiés comme prioritaires sont les suivants :

- Développement des applications de géolocalisation en temps réel sur téléphones mobiles
- Test dans certaines zones urbaines, d'applications basées sur les communications sans fil pour servir de base à des communications V2V et V2I (en lien, éventuellement, avec des opérateurs de services publics)
- Mise en place de capteurs de pollutions reliés à un système central de contrôle automatisé du trafic
- Développement d'outils de modélisation de la marchandise
- Études, développement et déploiement de service NFC
- Expérimentation de plates-formes multimodales centralisant les données de transports collectif, de la route et de l'utilisation des vélos, et fournissant plusieurs services : calculateur d'itinéraires, cartographie…
- Services innovants d'échange de transport efficace pour améliorer l'accessibilité des utilisateurs (park & ride) et l'optimisation des déplacements voyageurs.
Annexe 6 : Synthèse du rapport UTP – IESF sur l’information voyageurs

Les auteurs partent du constat que l'information est un élément fondamental permettant d'améliorer la qualité des réseaux de transport urbain. S'il existe un "droit à l'information" inscrit dans la loi, il est surtout souhaitable de tendre vers un objectif commun de service au voyageur. Ce dernier n'a, d'ailleurs, pas à connaître les frontières administratives. Il souhaite disposer d'une information permanente, en temps réel, multimodes et multiréseaux couvrant son "bassin de vie" même s'il utilise plusieurs offres de services de transport ne relevant pas toutes de la même autorité publique ou du même exploitant.

Pour ce, il peut être intéressant de se doter d'une infrastructure nouvelle : l'information dynamique multiréseaux, reliant tous les opérateurs des réseaux de transport et de circulation dans un même territoire. Ces systèmes couvrent l'ensemble des réseaux de déplacement dans un "bassin de vie" et contribuent à créer un climat de confiance entre les voyageurs et les autorités gestionnaires des réseaux de transport. Enfin, le développement de l'information dynamique multiréseaux, contribue à favoriser le passage de "l'ère du transport" à celle de la mobilité, notamment numérique.

Les dix actions prioritaires, proposées par l'IESF et l'UTP sont regroupées en cinq axes et son assorties de préconisations.

Ces actions sont les suivantes :

<table>
<thead>
<tr>
<th>Axe</th>
<th>Action prioritaire</th>
<th>Préconisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>partenariat entre les autorités publiques et les exploitants des infrastructures et services de transport dans chaque bassin de mobilité.</td>
<td>• maîtrise d'ouvrage commune, qui analyse les interactions entre les réseaux et les conséquences en cas de perturbation.</td>
</tr>
<tr>
<td></td>
<td>• Penser le vécu et les besoins des voyageurs en situation perturbée</td>
<td>• Centrale d'information commune à tous les réseaux (collecte, validation, diffusion). Commencer par missionner un chef de file opérationnel/</td>
</tr>
<tr>
<td></td>
<td>• Fixer les conditions de constitution d'une centrale d'information commune à tous les exploitants concernés</td>
<td>• Définir les contenus, formats et conditions d'échanges de données entre la centrale et ses partenaires</td>
</tr>
<tr>
<td></td>
<td>• S'assurer du financement des équipements nécessaires.</td>
<td>• Trouver les synergies</td>
</tr>
<tr>
<td>02</td>
<td>Equipe opérationnelle des exploitants de réseaux pour bâtir la plate-forme</td>
<td>• Préciser les conditions d'externalisation de l'information dynamique</td>
</tr>
<tr>
<td></td>
<td>• Chacun des exploitants recueille, transmet et diffuse les informations communes utile à ses clients "en situation".</td>
<td>• Définir le bon "socle d'information dynamique</td>
</tr>
<tr>
<td></td>
<td>• Une centre d'information commune, avec des modalités d'échanges de données précisées par un dispositif contractuel croisé</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Les opérateurs de communication commercialisent des services personnalisés aux voyageurs, à partir de cette plate-forme.</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>Normaliser les formats et protocoles d'échanges d'informations</td>
<td>L’AFIMB devrait :</td>
</tr>
<tr>
<td>Numéro</td>
<td>Titre</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>03</td>
<td>Normaliser les formats et protocoles d'échanges d'informations</td>
<td>• Poursuite des travaux de normalisation. Certaines normes sont déjà disponibles (TRIDENT, TRANS-MODEL, SIRI, IFOPT). • L’Agence Française de l'Information Multimodale et de la Billettique (AFIMB) facilite l'intégration des bases de données régionales et locales pour créer les conditions d'une approche intégrée de la gestion des mobilités.</td>
</tr>
<tr>
<td>04</td>
<td>Diffuser l'information aux voyageurs par tous les canaux disponibles</td>
<td>• Clarifier le statut des données publiques et les conditions de réutilisation. • Priorité systématique de diffusion aux voyageurs par tous les canaux disponibles. • Diffusion d'information sur les perturbations éventuelles. • Définir des critères et des procédures de contrôle de qualité des données.</td>
</tr>
<tr>
<td>05</td>
<td>Equiper les lignes et les réseaux de systèmes de détection et de communication</td>
<td>• Les investissements de communication assez conséquents (sur les mobiles, sur l'infrastructure : systèmes de détections, réseaux de communication, affichage sur la voie publique, dans les gares et les trains…). • Maintenance et renouvellement de ces équipements. • Procesus de formation et d'apprentissage à prendre en compte.</td>
</tr>
<tr>
<td>06</td>
<td>Equiper et former le personnel d'exploitation en contact avec les voyageurs</td>
<td>• Equiper les personnels en contact de "terminaux mobiles" affichant les consignes. • Informer prioritairement le personnels en contact avec les voyageurs sur les perturbations du réseau. • Mobiliser le personnel pour assurer une information personnalisée aux voyageurs.</td>
</tr>
<tr>
<td>07</td>
<td>Faciliter l'innovation dans les services d'information</td>
<td>• Expérimenter et tester des applications multicanaux, alimentant les services d'information. Que les exploitants de transports utilisent les informations fournies par les voyageurs et établissent des règles de bonnes pratiques avec les réseaux sociaux. • Expérimenter et observer avant de réglementer • Un standard minimum de mise à disposition des données publiques, qui conditionne les performances, la fiabilité et le coût du système d'informations, soit défini par l'AFIMB en concertation avec les exploitants et les opérateurs de réseaux sociaux.</td>
</tr>
<tr>
<td>08</td>
<td>Rechercher le bon modèle de mise à disposition des données publiques (open data)</td>
<td>• Faut-il réguler le "marché de l'information" par des règles édictées a priori ou véhiculées par des contrats de mise à disposition des données publiques ? • Faut-il laisser faire le marché faire le tri entre les différentes qualités de service ?</td>
</tr>
<tr>
<td>09</td>
<td>Expérimenter des plans de crise associant tous les acteurs</td>
<td>• Expérimenter des plans de crise associant tous les acteurs.</td>
</tr>
</tbody>
</table>
Annexe 6 : sécurisation des échanges dématérialisés fret et logistique

Depuis 2003, le ministère accompagne les opérateurs du transport de marchandises et de la logistique en soutenant un programme de déploiement des échanges de données informatisées (EDI-XML), appelé NORMAFRET.

Ce programme a permis, en effet, de réunir les représentants des acteurs du fret pour la définition de services et d’outils nécessaires à l’utilisation systématique de messages normalisés. Ceux actuellement utilisés pour mettre en relation les systèmes d’information des entreprises pour des échanges électroniques sont trop complexes et souvent trop coûteux. C’est ainsi qu’à la suite de différents travaux effectués dans le cadre de programmes de recherche des départements ministériels en charge des transports et de l’industrie, les partenaires NORMAFRET ont lancé l’idée d’un « connecteur intelligent » qui pourrait être d’une part distribué aux entreprises ne disposant que d’outils bureautiques simples et d’autre part paramétré rapidement en fonction des spécifications exigées par leurs donneurs d’ordres et leurs mandataires. De nouveaux processus coopératifs permettraient ainsi de répondre aux exigences de l’ensemble des donneurs d’ordres comme l'obtention du label Opérateur Economique Agréé (OEA) et de satisfaire à l’obligation d’évaluer les émissions de gaz à effet de serre sur une chaîne de transport de bout en bout.

Un projet, appelé NOSCIFEL (NOrmafret Services, Connecteur Intelligent pour le Fret Et la Logistique) et lancé en avril 2012, rassemble les compétences : d’acteurs clés du territoire national, maîtrisant les aspects stratégiques, socio-économiques, réglementaires et normatifs ; de transfert de connaissances et de modélisation de systèmes de production de biens ; de services et de développement de connecteurs techniques et informatiques pour chacune des étapes de la chaîne logistique.

Le consortium du projet propose d’élaborer une offre cohérente, modulaire, variée, adaptée, riche et incitative de solutions depuis le simple connecteur autonome, intégré au système existant de l’entreprise, jusqu’à la plate forme de services, assurant l’échange des informations et l’automatisation de tâches pour tous les processus de la chaîne logistique, depuis l’approvisionnement jusqu’à la distribution. Ces solutions permettront aussi de :

- vérifier la qualité des opérations (planification et reporting) ;
- mesurer les émissions de pollution sur la base de critères réalistes et pertinents, et calculer l’empreinte carbone liée aux moyens de transport, contribuant ainsi aux objectifs de protection de l’environnement et de développement durable ;
- travailler sur la normalisation des protocoles d'échange des données d'émission de CO2 et des données de géo-localisation dans le cadre d’une prestation de transport.

Il s’agit bien de créer un système dont l’action permettra de favoriser, dans le domaine du transport multimodal des marchandises, du lieu d’expédition jusqu’à l’acheminement final des marchandises (derniers kilomètres), les échanges entre les systèmes d'information des différents opérateurs successifs et l’interopérabilité de ces derniers pour qu’ils puissent fonctionner de manière complémentaire.
Annexe 7 : Synthèse des contributions d’ATEC ITS France

Le Ministère en charge du développement durable a demandé à l’ATEC de recueillir et hiérarchiser les actions prioritaires des acteurs des ITS dans leurs domaines respectifs. Afin de faciliter la démarche, l’ATEC a mis en place trois instances de concertation :

- **groupe 1 :** Qualité des données, information multimodale, billettique et nouveaux moyens de paiement
- **groupe 2 :** Régulation et gestion du trafic, gestion des parkings, sécurité en mobilité et fret
- **groupe 3 :** Facteurs de réussite : priorisation, formation, coûts/bénéfices, normes et international

Cette annexe présente la liste des actions résultant de cette démarche, à la date du 24 août 2012 :

<table>
<thead>
<tr>
<th>Groupe 1</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| Développement et certification de nouveaux systèmes de collecte de données d’infrastructure (circulation et stationnement) | Déploiement de systèmes de détection du stationnement couplés à autorisation de la gestion du stationnement à la place sous délégation publique.
Information multimodale : référentiel national des points d’arrêt
Déployer les services de navigation intermodale
Concevoir et mettre à disposition un calcul d’itinéraires multimodaux et intermodaux en open source
Définir et promouvoir la structure « d’entrepôt open data » à déployer par les collectivités territoriales
Qualité des données : qualification des données d’infrastructure communiquées aux mobiles (information et injonction, référéalient, outils open source)
Qualité des données et des services : Information sur les temps de parcours pour des trajets routiers. Qualification des systèmes FCD et FMD de collecte de données
Billettique : communauté tarifaire, intermodalité et interopérabilité technique (TC, TAD, VLS, stationnement). Options sans contact : RFID ou NFC
Billettique : spécifier et expérimenter un titre péage/stationnement/transport, RFID et NFC, interopérable permettant de traiter l’abonné et l’occasionnel | |
| **Groupe 2** | | |
| Voie multimodale à temps de parcours garanti
Rénovation des postes centraux de régulation du trafic
Gestion événementielle et gestion de crise
Interconnexion des Data Center
Les plateformes technologiques ITS par thème
Favoriser le déploiement des STI et tous les moyens de communications
Innovation – signalisation dynamique routière et autoroutière
Péage – Taxe PL – Péage urbain
Stationnement - jalonnement dynamique, paiement à la place
Fret – logistique urbaine
Réseaux collaboratifs | | |
Transports intelligents

Mise en œuvre de la directive 2010/40 pour la période 2012 - 2017 – Rapport d’études

<table>
<thead>
<tr>
<th>Groupe 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etat des normes – diaser – autres</td>
</tr>
<tr>
<td>Echanges de données – Open Data</td>
</tr>
<tr>
<td>Financement - gouvernance – marché</td>
</tr>
<tr>
<td>Innovation – Living Lab.</td>
</tr>
<tr>
<td>Diffusion des ITS – Formations – Veille technologique</td>
</tr>
<tr>
<td>Recherche – Expérimentation – sites pilotes</td>
</tr>
<tr>
<td>Les plateformes d’études et de déploiement des ITS</td>
</tr>
<tr>
<td>Outils de normalisation adaptés au développement des STI</td>
</tr>
<tr>
<td>Une meilleure gouvernance des STI en France</td>
</tr>
<tr>
<td>Sensibilisation des régions et collectivités aux services STI</td>
</tr>
<tr>
<td>Nouvelles formations aux STI</td>
</tr>
<tr>
<td>Stratégie STI à l’international</td>
</tr>
</tbody>
</table>
Quelques exemples d'actions détaillées :

Groupe 1 : Qualité des données, information multimodale, billettique et nouveaux moyens de paiement

« Information multimodale : référentiel national des points d'arrêts »

Ce référentiel permettrait de disposer dans une base de données d'un identifiant unique et pérenne sur le territoire donné. Il se traduit par la construction d'une architecture organisationnelle, technique, etc. afin de pouvoir définir, distribuer et gérer ces identifiants.

Objectifs :
- identifier et localiser les arrêts, en relation avec la topographie, de façon cohérente et économique
- pouvoir disposer d'une couverture au niveau national ;
- servir de support au portail Transport Direct.

« Concevoir et mettre à disposition un calcul d'itinéraire multimodaux et intermodaux en open source »

Un calculateur de recherche d'itinéraire est un outil qui permet aux utilisateurs de trouver un trajet optimal entre deux points géographiques ou points d’intérêts. Les modes de transport proposés doivent intégrer la voiture individuelle, les transports en commun et les modes doux.

Objectifs :
- optimiser les trajets intermodaux ;
- fédérer et centraliser les investissements sur un seul projet.

« Définir et développer une structure d'entrepôt open data à destination des collectivités territoriales »

Aujourd'hui l'hétérogénéité des données publiques des collectivités qui les publient et l’absence d'outils de publication et de format commun est à la fois un frein à la publication de ces données et une source de surcoût pour la mise en place de services de mobilité valorisant ces données au profit du citoyen.

Objectifs :
- faciliter la mise à disposition et l'accessibilité des données via un open data ;
- diminuer les coûts de mise à disposition et de création de services par une standardisation des formats ;
- faciliter la création de services utilisant ces données.

« Qualité des données : qualification des données d'infrastructures communiquées aux mobiles (information et injonction, référentiel, outils open source) »

Les données d’infrastructure (essentiellement signalisation) communiquées et/ou enregistrées par les dispositifs embarqués nécessitent un important degré de fiabilité. La mise en place des données d’infrastructure devra donc répondre à des spécifications de type normalisé tenant compte de paramètre définis. Chaque type d’information doit alors disposer d’un cahier des charges.

Objectifs :
- contribuer à la fluidité du trafic et sa cohérence ;
- favoriser la compréhension et l'acceptation de la signalisation par les conducteurs ;
- éviter les signalisations contradictoires.
La régulation des déplacements en milieu urbain nécessite la mise en œuvre de nombreux équipements (contrôleurs de carrefour, réseaux de transmissions, stations de mesure, panneaux d’information des déplacements, bornes escamotables …) en liaison avec un ou plusieurs systèmes centraux permettant le recueil et l’analyse des conditions de trafic et la mise en place automatique ou manuelle de stratégies de déplacement optimisant les différentes ressources.

Le point clé de la mise en œuvre d’une telle architecture est la définition du protocole permettant le dialogue entre équipements de terrain et systèmes centraux.

Objectifs :
• permettre des échanges normalisés ;
• gérer tous les types d'équipement de terrains usuels ;
• configurer le fonctionnement et le recueil des états et des données.

Il s’agit de mettre en place l’échange de données entre les différents exploitants de réseau en milieu urbain (voies rapides, réseaux départementaux, réseaux urbains, pénétrantes autoroutières). La nature des données échangées diffère selon la finalité : exploitation (données trafic, événements, mesures d’exploitation, temps de parcours…) ou information (événements importants, état trafic, temps de parcours).

La mise en œuvre des échanges de données entre les différents exploitants nécessite de définir au préalable un référentiel « métier » commun (nomenclature des événements…) ainsi que l’utilisation d’un format d’échange commun (structure, protocole…) pour garantir la pérennité des développements et favoriser l’interopérabilité des systèmes.

Objectifs :
• optimiser l'exploitation des réseaux par une meilleure connaissance des conditions de circulation sur les réseaux voisins ;
• fournir une information cohérente et homogène aux usagers ;
• donner accès à des données statiques et dynamiques pour permettre l'émergence de nouveaux services à valeur ajoutée via des opérateurs de services.

L’ingénierie événementielle repose sur des actions souvent exceptionnelles engagées par les acteurs publics et privés pour résoudre des situations devenus critiques qui nécessitent des mesures appropriées pour résoudre géographiquement les problématiques du moment. Elle repose sur une organisation, des moyens matériels et humains en général plus important qu’en situation normale.

Objectifs :
• gérer et optimiser les afflux exceptionnels d'usagers, connaissant ou pas les sites de manifestations, sur les réseaux.

Les voies multimodales à temps de parcours garanti, aménagées sur les réseaux de voies rapides en périphérie des métropoles régionales, reposent sur les principes de :
• priorité d’accès pour les véhicules à fort taux d’occupation (bus, covoiturage…) ainsi que les véhicules de service public ou d’urgence (police, pompiers, ambulances,…),
• régulation d’accès pour les autres véhicules au moyen d’une tarification.

Ce mode d’exploitation de la route permet de garantir à l’ensemble des voyageurs de ces voies :
• un temps de parcours garanti et compétitif,
• une liberté de choix dans les solutions de mobilité.
Objectifs :

• favoriser des modes de transport à fort taux d'occupation ;
• optimiser la capacité des infrastructures de transport existantes ;
• financer l'entretien des infrastructures existantes et le développement des transports.

« Péage – Taxe PL – Péage urbain »

Un péage urbain impose un paiement au véhicule pour pouvoir circuler dans tout ou partie des zones urbaines.

Objectifs :

• réduire les émissions de gaz à effets de serre ;
• diminuer les niveaux de trafic et la congestion ;
• financer les infrastructures routières et les transports publics.

« Innovation – Living Lab »

Le passage de la phase « prototype » à la phase « test de terrain » puis à la phase « déploiement » en matière de transport, nécessite l'implication d'un gestionnaire de réseau qui voit un intérêt à investir pour répondre à un besoin qu'il a bien identifié. Cet intérêt au niveau d'un territoire peut se trouver renforcé par une volonté de développement économique du fait de cette innovation. En tant « qu'acheteurs avisés » , d'autres territoires voient un intérêt à suivre comment les tests de terrain se déroulent et les représentants de la gouvernance du domaine y voient l'intérêt de préparer l'avenir de l'ensemble des acteurs qu'ils représentent.

Objectifs :

• organiser les acteurs pour éviter les dépenses inutiles tout en permettant les retours sur investissement des entrepreneurs ;
• répartir les investissements initiaux entre les acteurs ;
• trouver un marché pour les industriels qui auront intégré l'innovation ;
• ouvrir l'accessibilité des systèmes exploités ;
• organiser la diffusion des éléments de cahier des charges pour constituer une communauté d'acheteurs.
Groupe 3 : Facteurs de réussite : priorisation, formation, coûts/bénéfices, normes et international

« Une meilleure gouvernance des STI en France »

Bâtir un « système de systèmes » multimodal et multi-territoire en France, fondé sur une interoperabilité qui s'appuiera sur des normes et sur des spécifications existantes lorsque cela s'avère pertinent en termes de coûts- bénéfices. Cela passe par la création d'une stratégie nationale déclinable en plans régional, départemental et local.

Objectifs :
- permettre la coopération de l'ensemble des acteurs ;
- partager le financement des différents systèmes.

« Stratégie ITS à l'international »

Les perspectives de déploiements de systèmes STI en Europe attirent l'intérêt des industriels du monde entier qui y voient une source de revenus importante compte tenu des prix pratiqués jusqu'ici pour des équipements/services qui apparaissent aujourd'hui comme des « prototypes » par rapport à ce qui sera déployé dans le futur dans les pays émergents.

L'interopérabilité européenne est d'autant plus intéressante pour eux qu'elle peut servir de banc d'essai pour leurs produits, quitte à ce que leurs marchés nationaux soient protégés par des normes nationales. Le risque majeur pour notre pays dont l'« écosystème » a été initié il y a plus de 30 ans serait d'être obligé de le changer sous prétexte d'interopérabilité européenne, sans que nos entreprises soient compétitives sur le marché international, et que nous nous retrouvions avec des systèmes moins adaptés à nos besoins que ceux que nous avons aujourd'hui et dont la valeur serait récupérée ailleurs.

Objectifs :
- participer aux instances internationales (ERTICO, TISA, CEN, ISO, etc.) ;
- soutenir l'expertise, les techniques et les systèmes français.
Page laissée blanche intentionnellement
Ce rapport présente des actions publiques candidates à être abordées dans une stratégie nationale sur les transports intelligents.

Il synthétise, pour ce faire, les travaux de concertation et d’étude menés depuis 2009 dans le cadre de la mise en œuvre de la Directive 2010/40 sur les transports intelligents.

Rédacteurs
Xavier DELACHE, Romain SEVESTRE, Etienne CASTILLO
avec les membres du groupe ITS du Comité des maîtres d’ouvrage routiers (CoMOaR)

Contact technique
Romain SEVESTRE. Téléphone : 33 (0) 60 52 31 31
mél : romain.sevestre@developpement-durable.gouv.fr