

Report on the workshop of March 25, 2010

Quantifying and Forecasting Greenhouse Gas Emissions from Urban Passenger Transportation

TECHNICAL ANNEX: SLIDE DECKS

Prepared for Transportation Association of Canada

By Noxon Associates Limited

January 2011

This Technical Annex reproduces the PowerPoint slide decks used by four invited speakers at the "Quantifying and Forecasting Greenhouse Gas Emissions from Urban Passenger Transportation" workshop hosted by the Transportation Association of Canada (TAC) at the Crowne Plaza Hotel in Ottawa, Ontario on March 25, 2010. Following are the titles and presenters of the four decks.

Planning for transportation greenhouse gas emissions reductions in the Greater Toronto and Hamilton Area

Joshua Engel-Yan - Senior Advisor, Policy and Planning, Metrolinx

Public transit: A key to reducing greenhouse gases - The Montréal case

Catherine Laplante - Head Economist, ADEC Consultants

Visioning and backcasting for transport in Victoria, B.C.

David Crowley - Vice President, Halcrow Consulting

Dr. Robin Hickman – Associate Director, Halcrow and Research Fellow & Lecturer, Transport Studies Unit, University of Oxford

Moving Cooler: An analysis of transportation strategies for reducing greenhouse gas emissions

Joanne Potter - Senior Associate, Cambridge Systems

An agency of the Government of Ontario

Planning for Transportation GHG Emission Reductions in the Greater Toronto and Hamilton Area

Joshua Engel-Yan Senior Advisor, Policy and Planning Metrolinx

Quantifying and Forecasting GHG Emissions from the Urban Passenger Transportation Sector

Ottawa, ON

March 25, 2010

The Issue

- Today, the Intergovernmental Panel on Climate Change says:
- "Warming of the climate system is unequivocal."
- "Many natural systems are being affected by regional climate changes."
- * "Most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in anthropogenic GHG concentrations."
- Continued GHG emissions at or above current rates would cause further warming and induce many changes in the global climate system during the 21st century that would very likely be larger than those observed during the 20th century."
- Therefore, we must stabilize concentrations of CO₂. How fast we act will determine the level, and the impact on the climate.

The Response

Governments are responding

- Kyoto
- EU, country-specific targets
- Federal, provincial, municipal targets all different
- Some are not sufficient to stabilize concentrations, but all are ambitious

The Response

- Ontario's Go Green Action Plan for Climate Change
 - - 6% from 1990 levels by 2014
 - - 20% from 1990 levels by 2020
 - - 80% from 1990 levels by 2050

Figure 8. Where Emissions Reductions Will Have Been Achieved by 2020:

Based on Current and New Policies

Metrolinx Mission

- Deliver rapid transit improvement
- Make up for lost generation of rapid transit investment
- Lay foundation for long-term sustainable strategy of investment in rapid transit

A Bold Plan

The Big Move Vision (in numbers)

6

60

Ð

25 Years from now:

- The distance that people drive every day will drop by ONE-THIRD
- We will accommodate 50% MORE PEOPLE in the region with LESS CONGESTION than we have today
- On average, ONE-THIRD of trips to work will be taken by transit and ONE in FIVE will be taken by walking or cycling.
- **60%** of all children will walk or cycle to school
- There will be SIX times more bike lanes and trails than today.
 - ALL transit vehicles will be accessible.
 - Customer satisfaction with the transportation system will exceed **90%**.
 - A single fare card will be used for **ALL** transit trips and **ALL** fares will be integrated.
 - By transforming the GTHA's transportation system, we will help meet the province's Go Green Action Plan for Climate Change.
 - Per person, our emissions from passenger transportation will be **HALF** what they are today.

The Magnitude of the Challenge

Source: National Inventory Report 1990–2004, Greenhouse Gas Sources and Sinks in Canada

Trends and targets

The Magnitude of the Challenge in the Greater Toronto and Hamilton Area

- 5.8 million people in2001...
- 8.6 million in 2031
- 48% more people = 48% more cars, trips, distances travelled and emissions?
- We assume that the GTHA will pull its weight.

What are 2020 GHG reduction targets for the GTHA?

- Assume GTHA will aim for reductions proportional to 2006 emissions
 - ~50% of provincial emissions for passenger vehicles
 - Less than 50% for freight and diesel since a share of goods movement is inter-regional
- Reductions from Go Green Business-as-Usual scenario:
 - Passenger vehicles and transit: 5-7 Mt CO2e annually
 - Freight and diesel: 0.8-2.5 Mt CO2e annually

Potential Strategies

Three types of GHG reduction strategies for transportation:

- Travel: Reduce vehicle-kilometres travelled (km)
- Technology: Increasing energy efficiency of vehicles (L/km)
- Fuel Carbon Content: Decrease carbon content of fuels (kg CO2e/L)

Travel: Reduce vehicle-kilometres travelled

- Land use strategies to reduce auto use (e.g., TOD)
- Initiatives to reduce commuting at peak times
- Investment in public transit
- Road and parking pricing
- Soft TDM measures (e.g., carsharing, ridematching, parking cash out)

Technology: Increase energy efficiency of vehicles

- Fuel efficiency standards
- Aerodynamic improvements, speed limiters, and anti-idling devices for trucks
- Policies to encourage purchase of low-emission vehicles (e.g., hybrids) and technologies

Fuel Carbon Content: Decrease carbon content of fuels

- Targets for alternative fuel use
- Support development of distribution network for alternative fuels
- Preferential taxation system for biofuels
- Clean electricity

GHG Emissions Forecasting Methodology

- 1. Travel demand forecasts (MTO Greater Golden Horseshoe Model)
 - Peak hour vehicle kilometres travelled (VKT) for 2021 and 2031
 - Peak hour transit passenger kilometres travelled (PKT) for 2021 and 2031
- 2. TDM related post-processing (adjustments to vehicle occupancy, transit mode split, work from home activity)
- 3. Convert to vkt&pkt to annual values using expansion factors
- 4. GHG emissions estimation (Transport Canada Urban Transportation Emissions Calculator)
 - "Well to Wheels"
 - Upstream emissions
 - Operation emissions

Existing Regional Rapid Transit Network

2

The region today

The Region in 25 Years

The Region in 15 Years

Promoting Modal Shift and Reducing Vehicle Travel Demand

- 15-year regional rapid transit network
- Land use measures building on the Growth Plan for the Greater Golden Horseshoe
- Aggressive package of transportation demand management measures (soft and hard measures)

%1.6 Mt CO2e reduction

Promoting Modal Shift and Reducing Vehicle Travel Demand

- Aggressive transit investment, more concentrated land use and aggressive TDM measures are mutually supportive
- Relevant technology is available immediately
- Many TDM measures can be implemented relatively quickly
- Land use changes happen slowly, but intensification is key to success

Improving Fuel Efficiency

- 25% improvement in fuel efficiency of light duty fleet assumed
- California Air Resource Board (CARB): 5.5 L/100km target to 2020 vs. current standard of 9.4 L/100km
- Depends on consumer buying preferences
- Requires major effort by auto manufacturers

\$2.7 Mt CO2e reduction

Reducing Fuel Carbon Content

 Provincial low carbon fuel standard to reduce the carbon content of fuels by 10% to 2020

%1.1 Mt CO2e reduction

GHG Planning, Quantification, and Forecasting Challenges

- Expanding from modelled peak hour VKT & PKT to annual results, particularly for transit modes
- Developing consistent GHG reduction targets between municipal, regional, provincial, federal levels
- Connecting economy-wide targets to passenger transportation targets. Should the passenger transport sector pull its weight?
- Consideration of upstream emissions in the context of GHG reduction targets

Conclusions: Planning for Targeted GHG Reductions

- Aggressive GHG reduction targets are achievable, but will require system-wide changes
- Future conditions will have a large impact on the potential success of individual strategies
- No silver bullet we need to pursue lots of different strategies at the same time
- Effect of additional enabling measures need to be considered: rising oil prices, carbon pricing/rationing
- New infrastructure, fleet turnover take time we need to start now

Opportunities

Reducing travel and using less oil are "no-regret" moves

- A "built in" reduced need to travel has long-term effects
- More efficient and resilient companies and households
- Lower costs to individuals greater equity
- Lower costs to governments reduced infrastructure needs
- Reduced human and financial costs from traffic injuries and deaths
- Cleaner air, less incidence of cardio-respiratory disease
- More money in the Ontario economy
 - Ontario does not use Canadian oil, imports it from the same "problematic" places as the US, without strategic reserves
- More flexibility to switch to alternate fuels

An agency of the Government of Ontario

www.metrolinx.com

Joshua Engel-Yan

Joshua.engel-yan@metrolinx.com

Public transit: the key to reducing Greenhouse gases, the Montreal case

DEC

1C — March 2010	and the second s	1
atherine Laplante es Conseillers ADEC Inc.		
ocelyn Grondines ociété de transport de Montréal		

TC/ Fuel Price	USA	Melbourne	Adelaïde	Brisbane
LRT	0,27 à 0,38			-
Train	0,17	0,48	0,09	0,0
Bus	0,04	0,22	0,21	0,26
BRT	-	-	0,28	0
All modes combined	0,12	0,22	0,22	0,14

	aa (m)			aa (2)	(=)	
Convise instance (.)	CO (T)	HC (T)	NO _x (T)	50 ₂ (T)	PM(T)	<u>co</u>
Modal shift S1 (-)	503	2,311	3/5	0.3	1,114	+ 9,
Modal shift S2 (-)	1,252	69	87	0.8	3,3	- 58
Modal shift S3 (-)	1,397	76	97	0.9	3.7	- 65
Source : EMME (M	τς)					

3.3.1 Reduction in energy							
	C	onsı	ımpti	ion			
	LC	s	Fare by d	istance	LOS and Fare		
Origine	1,000 L/Yr	("%)	1,000 L/Yr	(%)	1,000 L/Yr	(%)	
Downtown	76	0.7%	140	0.5%	189	0.6%	
Montreal Center	1,590	15.0%	3,805	14.5%	4,501	15.3%	
Montreal East	1,255	11.8%	2,475	9.4%	3,154	10.7%	
Montreal West		20.1%	4,016	15.3%	4,779	16.2%	
Laval	1,392	13.1%	3,462	13.2%	3,970	13.5%	
Northern Ring	<i>1,004</i>	17.0%	4,070	17.7%	4,091	16.6%	
Sothern Ring	908	8.5%	2,887	11.0%	2,954	10.0%	
South shore	1,464	13.8%		18.5%	077	17.0%	
Total	10,629	100.0%	20,510	100.0%	29,402	100.0%	
-				10000	A Stranger	100	

3.3.3 Economic benefits of modal shift

Generalized price of transportation related to modal shift 2011 (M\$ 2006)

	51	S2	S 3
ime and fuel taxes	4.9\$	26.2 \$	37-4 \$
/OC	16.4 \$	40.7 \$	45-5\$
uel	6.5\$	16.2 \$	18.1 \$
ollution emissions	2.0 \$	5.1 \$	5.7 \$
Accidents	10.3 \$	25.4 \$	28.5\$
fotal	40.2 \$	113.6 \$	135.1 \$

Additional bus services Additional busses (cumulative)		2008 90	2009 121	2010	2011 234
				185	
/ehicles-Km (M)	6 h/day*17,8 Km/h *bus	2.40	3.23	4-97	6.25
Driver (M\$)	65\$/h	8.77	11.80	18.14	22.82
Operations (M\$)	0,8593\$/km	2.06	2.78	4.27	5-37
Fuel (M\$)	0,585\$/L	0.93	1.26	1.91	2.41
Fotal cost	(M\$)	11.76	15.82	24.32	30.60
Pollution cost	(M\$)	19.62	25.27	33.40	38.20
Total (\$)	(M\$)	31.39	41.09	57.72	68.79

Visioning and Backcasting for Transport (VIBAT-Victoria)

Greenhouse Gas Emission Quantification and Forecasting Workshop

Dr Robin Hickman Dave Crowley

Outline

- Context
- VIBAT-Victoria (CRD)
- Transport and CO2 calculators
- Wider multi-criteria assessment
- Conclusions

Scenario Testing and Backcasting

- Baseline and projection
- Alternative image(s) of the future
 - Policy measures and packages available

 Appraisal, costing, optimum pathways

VIBAT-Victoria Methodology

Systematic packaging of interventions/sifting, and scenario testing/optioneering:

- Consider likely policy interventions (OCC remit and beyond)
- Group interventions into packages
- Model impacts against CO2
- [Potential for wider multi-criteria (WebTAG): local environment, economy, accessibility and safety]
- Cluster policy packages, at various levels of application, into scenarios
- Systematically assess strategic policy choices and priorities
- Discuss and prioritise most likely strategies

B.C. Baseline

CRD Baseline GHG Emissions and Projection

Halcrow OXFORD

Policy Packages Considered

- PP1: Low Emission Vehicles and Alternative Fuels;
- PP2: Pricing Mechanisms;
- PP3: Transit;
- PP4: Walking and Cycling;
- PP5: Urban Planning;
- PP6: Mobility Management/Traffic
- **Demand Management (TDM);**
- PP7: Ecological Driving and
- Slower Speeds/Idling.

Modelling Assumptions

PP3: Transit		GHG Emissions Reduction (KtCO2e)	GHG Emissions Reduction (%) of 2020 BAU
Current	Large investment plans via the C.C. Transit Plan, but much of the focus on Vancouver rather than Victoria.		
Low	'Low level' of further network investment	11	1.2%
Mediu m	'Medium level' of further network investment and marketing initiatives	23	2.5%
High	'High level' of further network investment and incentives for use	46	4.9%

*Modelling based largely on mode share changes. Different levels of policy package application illustrative, and not exhaustive.

PP5: Urban Planning		GHG Emission s Reductio n (KtCO2e)	GHG Emissions Reduction (%) of 2020 BAU
Current	Some efforts to improve densit public transit network	ies and develo	p around the
Low	'Low level' of further intensity of application – thickening of densities along key public transport corridors	8	0.8%
Medium	'Medium level' of further intensity of application – polycentric concentration efforts in suburbs	19	2.1%
High *Modelling Different k	'High level' of further intensity – urban structure index used to integrate urban and transport planning effectively in centres and suburbs (density, location of based argelyt, caccess divity in ca evelanting invised tage etcplication and not exhaustive	38 ar distance. pn	4.1%

Exploratory Results

Policy Package Description		Implementatio n Level	GHG Emissions Reduction (KtCO2e)	GHG Emissions Reduction (%) of 2020 BAU
PP1	Low Emission Vehicles and Alternative	Low	28	3.0%
		Medium	94	10.1%
		High	160	17.1%
PP2	Pricing Mechanisms	Low	17	1.9%
		Medium	38	4.1%
		High	76	8.1%
PP3	Transit	Low	11	1.2%
		Medium	23	2.5%
		High	46	4.9%
PP4	Walking and Cycling	Low	6	0.6%
		Medium	17	1.8%
		High	34	3.6%
PP5	Urban Planning	Low	8	0.8%
		Medium	19	2.1%
		High	38	4.1%
PP6	Mobility Management	Low	8	0.8%
		Medium	23	2.5%
		High	38	4.1%
PP7	Ecological Driving and Slower Speeds	Low	19	2.0%
		Medium	47	5.0%
		High	93	10.0%

Modelling Approach

 A road-based transport and carbon simulation spreadsheet model

 use of Canadian version of US EPA MOBIL emission model (v. 6.2C)

[estimates emission factors from motor vehicles and VKT]

- Input road traffic and transit data from CRD Emme/2 model (Halcrow)
- Use of CRD 2004 GHG inventory (SENES, 2006)
- 2006-2020, pm peak

Exploratory Results

Halcrow OXFORD

VIBAT series of studies

People

Vibat

Robin Hickman ssociate Director, ransport Research Sector, alcrow Group Ltd, bndon, V6 78Y

Papers & Publications

hickmanro@halcrow.com www.halcrow.com

Research Fellow Fransport Studies Unit University of Oxford, South Parks Road Oxford, OX1 3OY

>robin.hickman@ouce.ox.ac.uk >www.tsu.ox.ac.uk/people/rhickman.php

Professor David Banister

Professor of Transport Studies University of Oxford, South Parks Road.

The Projection and Mitigation Pathway

Backcasting (the programme from 2025)

The CO2/Multi-Criteria Analysis Methodology

TC-SIM London

TC-SIM LONDON

Local Version 03	C:\tcsim\tcsim_version_02\tcsim_65\vibat.html
Web Version 03	www.vibat.org/vibat_ldn/tcsim3/tcsim.html
	tcsim; topgear

'Optimising' the strategy

INTRA-SIM Oxfordshire

Local Version 03

C:\Documents and Settings\hickmanro\My Documents\oxfordshire intra-sim\bin\intrasim.html

Web Version 03

http://www.vibat.org/intrasim_ox/intrasim.html intrasim halcrow

Conclusions

 VIBAT-Victoria - an initial, exploratory study for TC

 Builds on methodology developed in other international studies from Halcrow/University of Oxford

 More detailed analysis useful – with series of case studies

 Perhaps with simulation capability to enhance discussion and 'ownership' of future decision-making

 Perhaps MCA-based, including CO2 impacts

Further Application?

A typical study methodology (VIBAT Canada / Vancouver / Toronto etc)

- 1. Baseline: quantification of existing transport, technology and carbon policy approaches
- 2. Evidence base: derivation of local or organisation carbon reduction potential (technology/behavioural), possibly including SP analysis
- 3. Simulation framework design & development; model design, algorithm development
- 4. Alternative image(s) of the future
- **5.** Development of simulation model
- 6. Policy packaging and scenario development
- 7. Appraisal of packages
- 8. Dissemination.

Visioning and Backcasting for Transport (VIBAT-Victoria)

Greenhouse Gas Emission Quantification and Forecasting Workshop

Dr Robin Hickman Dave Crowley

Halcrow Consulting Inc.

Halcrow provides:

 Expertise in transport planning, policy and strategy, futures research, accessibility planning, transport modelling and economics and traffic engineering;

 Urban planning, environment and sustainability, including regional and sub-regional development, urban strategy, urban design and masterplanning, environmental assessment and ecology, consultation and institutional strengthening and capacity building;

- Expertise in station and interchange design, PTOD, urban metros, public transport operations, road pricing and tolled highways;
- Support for the group's engineering teams, taking projects through to implementation;
- Project management expertise, managing complex multidisciplinary commissions, and providing assurance of timely and appropriate project outputs.

Halcrow Consulting Inc.

- Established multi-disciplinary firm with 2 Canadian (Toronto and Vancouver) and 61 international offices
- International research leaders in the field of sustainable transport planning, incl. carbon emissions, able to draw on global expertise
- Diverse team of transport planners, urban planners, and policy experts, with significant international experience

- VIBAT Victoria scoping study
- VIBAT UK/London/Delhi/India/Auckland
- impact of carbon reduction policies
 (using backcasting methodologies)
- INTRA-SIM Oxfordshire, Swindon, Corridor 10 (UK LA and DfT studies)
- The Impact of transit improvements on GHG emissions (Canada)
- Carbon emission impacts of major transport projects (ADB Asia)

Moving Cooler Process, Results, and Next Steps

presented by Joanne R. Potter Cambridge Systematics, Inc.

Transportation leadership you can trust.

e systemat

Transportation's Contribution to U.S. GHGs

Source: Environmental Protection Agency (EPA). "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2007," April 2009, http://epa.gov/climagechange/emissions/usinventory.html.

1

Moving Cooler

- Analytic Team Cambridge Systematics, Inc.
- Multiple partners on Steering Committee
 - U.S. Environmental Protection Agency
 - U.S. Federal Highway Administration
 - U.S. Federal Transit Administration
 - American Public Transportation Association
 - Environmental Defense
 - Urban Land Institute

- ITS America
- Shell Oil
- Natural Resources
 Defense Council
- Foundation Sponsors
 - Kresge Foundation
 - Surdna Foundation
 - Rockefeller Brothers Fund
 - Rockefeller Foundation

Objectives

- Fill a gap left by McKinsey and others who analyzed future technologies and fuels but not travel behavior
- Goal of consistent analysis across strategy types
- Multiple parameters
 - Effectiveness in reducing GHGs
 - Cost
 - Externalities/co-benefits
 - Equity

Focus of Analysis

- Estimates GHG effectiveness and direct implementation costs
- Not a full cost-benefit analysis therefore not a complete basis for decisions
 - GHG benefits only
 - Direct agency monetary implementation costs
 - Vehicle operating costs (savings) fuel, ownership, maintenance, insurance
- Allows comparison to McKinsey Report findings on fuels and technology
- Political feasibility not assessed

Wide Range of Strategies Examined

- Pricing, tolls, Pay As You
 Drive (PAYD) insurance,
 VMT fees, carbon/
 fuel taxes
- Land use and smart growth
- Nonmotorized transportation
- Public transportation improvements

- Regional ride-sharing, commute measures
- Regulatory measures
- Operational/ITS strategies
- Capacity/bottleneck relief
- Freight sector strategies

Levels of Implementation Vary Example – Pricing Strategies

Analytic Approach

- 1. Establish baseline
- 2. Select strategies and define parameters
- **3.** Estimate the GHG reduction of each individual strategy
- 4. "Bundle" the strategies and examine the combined impacts

Analytic Approach

1. Establish baseline

- Consider sensitivity analyses
- 2. Select strategies and define parameters
- 3. Estimate the GHG reduction of each individual strategy
- 4. "Bundle" the strategies and examine the combined impacts

Assumptions for Baseline

Travel continues to grow

- Vehicle miles traveled (VMT) growth of 1.4% per year
- Transit ridership growth 2.4%/year
- Fuel prices increase
 - 1.2% per year, beginning at \$3.70/gallon in 2009*

Fuel economy improves steadily

- Light-duty vehicles at 1.91% annually
- Heavy-duty vehicles at 0.61% annually

Moving Cooler Baseline to 2050

Note: This figure displays National On-Road GHG emissions as estimated in the Moving Cooler baseline, compared with GHG emission estimates based on President Obama's May 19, 2009, national fuel efficiency standard proposal of 35.5 mpg in 2016. Both emission forecasts assume an annual VMT growth rate of 1.4 percent. The American Clean Energy and Security Act (H.R. 2454) identifies GHG reduction targets in 2012, 2020, 2030, and 2050. The 2020 and 2050 targets applied to the on-road mobile transportation sector are shown here.

Moving Cooler Sensitivity Tests to 2050

• High Fuel Price/Low VMT: Fuel prices increase dramatically, resulting in lower VMT and improved vehicle technology.

• Low Fuel Price/High VMT: Lower fuel prices drive higher VMT growth and less investment in improved technology.

• High-technology/High VMT: Technology progresses rapidly, leading to decreased driving cost and higher VMT.

Analytic Approach

1. Establish baseline

- 2. Select strategies and define parameters
 - 3 levels of intensity of implementation

3. Estimate the GHG reduction of each individual strategy

4. "Bundle" the strategies and examine the combined impacts

Deployment Levels

3 Deployment Levels per Strategy Example – Pricing Strategies Sample Parameters

	Expanded Current Practice	More Aggressive	Maximum Effort
Geographic Scope	Large Urban Areas	Large and Medium Urban Areas	Large, Medium, and Small Urban Areas
Intensity	Peak Hour at	Peak Hour at	Peak Hour at
	\$0.45/Mile	\$0.69/Mile	\$0.69/Mile
Timeframe	Complete in 15	Complete in 10	Complete in 10
	years	years	years

Analytic Approach

1. Establish baseline

- 2. Select strategies and define parameters
- **3.** Estimate the GHG reduction of each individual strategy
 - Cumulative reduction through 2030 and through 2050
 - Annual reductions in critical target years
- 4. "Bundle" the strategies and examine the combined impacts

Findings Individual Strategies

 Individual strategies achieve varying levels of GHG reductions

• <0.5% to over 4.0% cumulatively to 2050</p>

Example Findings Individual Strategies

Strategy	Cumulative Percent GHG Reduction from Baseline (2050)
VMT Fees	0.4-4.9%
Speed Limit Reductions	1.7-3.5%
PAYD Insurance	1.1-3.2%
Congestion Pricing	0.8-1.8%
Eco-Driving	1.0-2.6%
Land Use/Smart Growth	0.2-2.0%
Urban Public Transit LOS/Expansion	0.3-1.1%
Employer-Based Commute/Parking Pricing	0.4-1.7%
Operational and ITS Improvements	0.3-0.7%

Analytic Approach

1. Establish baseline

- 2. Select strategies and define parameters
- 3. Estimate the GHG reduction of each individual strategy
- 4. "Bundle" the strategies and examine combined impacts
 - Effectiveness
 - Interactions, synergies, antagonistic effects
 - Cost
 - Other societal impacts/co-benefits/externalities
 - Equity effects

Strategy Bundles Illustrative Analysis

Example: System and Driver Efficiency Bundle

- Combination of strategies to enhance the efficiency of transportation networks
 - Congestion pricing, transit LOS, HOV lanes, car sharing, speed limits, system operations and management, multimodal freight strategies
 - Improve travel speeds, reduce congestion and idling, create viable alternatives to driving alone

Findings Strategy Bundles

 Combinations of transportation strategies can achieve GHG reductions from transportation

- 4% to 18% GHG reduction from baseline* in 2050 (aggressive deployment, without economy-wide pricing)
- Up to 24% GHG reduction from baseline* in 2050 (maximum deployment, without economy-wide pricing)

 These strategies complement the important reductions anticipated from fuel and technology advancements

* Projections for on-road surface transportation GHG emissions.

Range of Annual GHG Reductions of Six Strategy Bundles Aggressive and Maximum Deployment

Note: This figure displays the GHG emission range across the six bundles for the aggressive and maximum deployment scenarios. The percent reductions are on an annual basis from the Study Baseline. The 1990 and 2005 baseline are included for reference.

Moving Cooler

Economy-Wide Pricing

Mechanisms – Carbon pricing, VMT fee, and/or PAYD insurance

- Strong economy-wide pricing measures added to bundles achieve additional GHG reductions
 - Aggressive deployment additional fee (in current dollars) starting at the equivalent of \$0.60 per gallon in 2015 and increasing to \$1.25 per gallon in 2050 could result in an additional 17% reduction in GHG emissions in 2050
- Two factors would drive this increased reduction
 - Reduction in vehicle-miles traveled (VMT)
 - More rapid technology advances

Economy-Wide Pricing

Total Surface Transportation Sector GHG Emissions (mmt)

Direct Vehicle Costs and Costs of Implementing Strategy Bundles

Note: This figure displays estimated annual implementation costs (capital, maintenance, operations, and administrative) and annual vehicle cost savings [reduction in the costs of owning and operating a vehicle from reduced vehicle-miles traveled (VMT) and delay. Vehicle cost savings DO NOT include other costs and benefits that could be experienced as a consequence of implementing each bundle, such as changes in travel time, safety, user fees, environmental quality, and public health.

Near-Term and Long-Range Strategies

 Some strategies are effective in achieving near-term reductions, reducing the cumulative GHG challenge in later years

 Investments in land use and improved travel options involved longer timeframes but would have enduring benefits

Scale of Implementation

- Both national level and state/regional/local strategies are important
- GHG reductions should be viewed relative to the scale of potential implementation
 - While effect on national emissions may be modest, some strategies may be more beneficial at regional scales

Other Societal Goals

 Many strategies contribute to other social, economic and environmental goals while reducing GHGs

 Some strategies have significant equity implications that should be examined and addressed

Outcomes from Moving Cooler Three Critical Foundations

Framework

Inventory and typology of transportation activity strategies

Specification

Baseline assumptions and sensitivity scenarios Strategy specification – parameters, units of measurements, ranges based on regional and national experience

Evaluation of Individual and Bundled Strategies

Appropriate short- and long-term analytic methods for individual strategies Evaluate bundles and interactions between strategies

Next Steps - Research and Analysis

- Further analyses of individual strategies/bundles
 - Sensitivity to various parameters
 - Vehicle conditions / traffic flow modeling
 - Synergies and interactive effects
 - Interactions with pricing
 - Quantifying co-benefits
 - Induced demand
- Interactions with fuel and vehicle technology pathways
- Sub-national analyses
- Pilot regional assessments
- **Cross-sector comparisons**

Next Steps – Policy and Practice

- Regionally-tailored strategy packages
- Climate action planning and implementation
- Performance tracking and adaptive management of action plans

For More Information...

http://movingcooler.info

http://www.uli.org/Books

jpotter@camsys.com

Moving Cooler

Levels of Implementation Vary Example – Operational/ITS Strategies

Federal	Investments/Incentives Performance Requirements
State	Eco-Driving Training Variable Message Signage Traveler Information (511) Vehicle Infrastructure Integration (VII)
Regional	Eco-Driving Training Variable Message Signage Road Weather Management Vehicle Infrastructure Integration (VII)
Local	Ramp Metering Incident Management Active Traffic Management Integrated Corridor Management Road Weather Management Arterial Management

Example: System and Driver Efficiency Bundle

- Combination of strategies to enhance the efficiency of transportation networks
 - Congestion pricing, transit LOS, HOV lanes, car sharing, speed limits, system operations and management, multimodal freight strategies
 - Improve travel speeds, reduce congestion and idling, create viable alternatives to driving alone

Strategy Parameters 7 Area Types

	Density/Level of Transit			
Large Urban	Hi	Low		
Medium Urban	Hi	Low		
Small Urban	Hi	Low		
Nonurban				

Land Use Key Assumptions

43-90% of new urban development occurs in "compact neighborhoods"

- >4,000 persons per square mile
- Walkable, mixed-use neighborhood centers
- VMT/capita 35% lower in compact versus "sprawl" neighborhoods; 60% lower for highest-density versus lowest-density census tracts
- Turnover rates residential 6%/decade, commercial 20%/decade

VMT Per Capita by Population Density

Research at University of South Florida, based on 2001 National Household Travel Survey & 2000 Census.

Tract Density Ranges

Watertown, MA: 4,000-10,000 ppsm

Image source: TeleAtlas and Google Earth.

Lexington, MA: 2,000-4,000 ppsm

Somerville, MA: >10,000 ppsm

