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Abstract In northern latitudes, road salt remains a key element of winter 
maintenance operations.  At the same time, there is increased pressure to 
reduce salt usage without compromising level of service or safety. Road 
salt usage models provide a way of benchmarking and understanding 
spatial-temporal variations in maintenance operations, and therefore have 
value in working toward improved salt management practices.  The current 
study outlines a new approach for modeling road salt usage that addresses 
many of the limitations of past models.  This approach is developed and 
illustrated using automatic vehicle locator data for three seasons and one 
provincial highway patrol near Ottawa, Canada.  Using categorical, hourly 
salt application rates as the dependent variable, and various sources and 
types of forecast and observed weather conditions as the independent 
variables, five different treatment modes are modeled using classification 
trees and various types of “indirect” modeling.  Results are promising in 
terms of both the accuracy of predictions and the ability of this inductive 
approach to identify key explanatory variables and related threshold values 
that affect the probability of different treatment options.   
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Introduction 
 

WHY DEVELOP WINTER SEVERITY MODELS FOR ONTARIO 

HIGHWAYS? 
 

Winter weather creates mobility challenges for virtually all northern jurisdictions.  Each year road 

maintenance authorities in Canada spend in the order of 1.3 billion dollars on snow removal and 

other winter maintenance activities (Jones, 2003; Morin and Perchanok, 2003).  As well, the science 

of snow control is evolving quickly, and increasingly involves private firms who enter into 

contractual arrangements with governments.   

 

Various agencies produce documents outlining best practices in winter road maintenance and salt 

management.  However, in order to further improve winter maintenance, there is increasing interest 

in the development of winter indices that rate the severity of weather conditions in a given time 

period with respect to resource use (salt, sand, equipment or personnel hours).   

 

Atmospheric/weather indices are widely used. Within the road transport sector, freezing and thawing 

indices are considered in highway design, in modeling pavement deterioration and in setting spring 

load restrictions on secondary roads.  In each case, the challenge is to identify how specific 

atmospheric conditions translate into a particular risk and/or prompt a particular response.   

 

For the past 25 years, there has been interest in identifying different weather conditions that trigger 

specific maintenance responses with a long-term view of developing improved winter weather 

indices that are specific to road maintenance activities.  This is challenging work because of the 

many factors that affect maintenance decisions.  These extend beyond weather to include terrain, 

road and traffic characteristics.  As well, road maintenance activities are essentially behavioural 

responses to predicted weather—and thus one would expect there to be sometimes different, but 

possibly equally appropriate, responses to the same situation.   
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EXISTING INDICES AND THEIR LIMITATIONS 
 

Several winter severity indices have already been developed.  Most of the work has been conducted 

by or for road authorities in North America and northern Europe.  Examples of related indices and 

publications are listed below:  

- PennDOT winter severity index (Rissel and Scott, 1985) 

- Cost 309 index (Knudsen, 1994; Gustavsson, 1996) 

- GAB index (Gustavsson, 1996) 

- MOORI index (Johns, 1996) 

- Strategic Highway Research Program (SHRP) index (Boselly et al., 1996; Andrey et 

al., 2001; Decker et al., 2001) 

- Hulme Index (Cornford and Thornes, 1996; Andrey et al., 2001) 

- Finnish Meteorological Institute Index (Venalainen, 2001) 

- Salt day index (Andrey et al., 2001) 

- Wisconsin winter severity index (Adams, 2001) 

- NORIKS index (Mahle et al., 2002) 

- Indiana DOT winter severity index (McCullouch et al., 2004) 

- Iowa DOT winter severity index (Carmichael et al., 2004) 

- Nixon and Qui’s (2005) storm typology 

- TAC’s winter severity index models for Canadian roads (Suggett et al., 2006 and 

2007) 

 

While the list of winter indices is extensive, the progress to date has actually been quite limited.  

Indeed, most current models suffer from four main deficiencies: 

 

1. Model fit is typically low for small spatial and temporal units of analysis, and is best 

when modeling seasonal variations in expenditures or salt use for relatively large 
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areas.  This limits the usefulness of these indices and suggests only a limited 

understanding of winter maintenance decision making. 
 

2. Model parameters may be biased because some of the assumptions of the statistical 

techniques are violated, e.g., independence of observations across jurisdictions, 

independence of weather variables, and lack of normally distributed residuals  The 

multi-collinearity between weather variables is particularly problematic.  For 

example, because of the importance of snowfall amount/duration in predicting salt 

use, temperature and wind variables, which are somewhat related to snowfall 

conditions, appear unimportant in most linear models.   

 

3. Most researchers employ some form of linear modeling where the explanatory terms 

are additive.  Often, however, responses are non-linear, data transformations are not 

well justified and explanatory variables are interactive or conditional in their 

influence. For example, precipitation amount only plays a role below some critical 

temperature.  

 

4. Most models are calibrated with weather observations from national weather services. 

This creates two problems.  First, since maintenance decisions are based primarily on 

predicted weather and given the probabilistic nature of weather forecasting, it is 

reasonable to assume that some of the unexplained variance in winter maintenance 

activities is associated with the mismatch between predicted and observed weather.  

Second, weather conditions vary locally, and site measurements—particularly those 

at some distance from the roads under study—may not be representative of local road 

conditions.  Road weather information systems are beginning to remedy this situation 

for some variables, but the most important variables, which are related to winter 

precipitation type and amount, are not well captured by these sensors.   

 

There is thus a need to explore the potential benefit of alternate modeling approaches, as well as the 

usefulness of both forecast and observed weather data from multiple sources 
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Ongoing research by MTO on winter indices 

 

In winter, 2005, the Ministry of Transportation of Ontario commissioned Synectics Transportation 

Consultants to lead a study entitled, “Operational index of the severity of winter weather for 

maintenance operations on Provincial highways”.  Synectics has been working with researchers at 

the University of Waterloo, AIRD of Environment Canada, IMOS Inc. and ASI Technologies. 

 

To date, the research team has reported on: 

- The appropriateness and quality of winter maintenance data for Ontario Provincial 

highways, and in particular the promising nature of Automated Vehicle Location 

(AVL) data and the need to do data quality checks on Maintenance Management 

Information System (MMIS) data; 

 

- The results of multiple regression models using daily salt use (tonnes per lane-

kilometre) as the dependent variable, focusing specifically on selected routes in the 

Chatham, New Liskeard, Ottawa and Thunder Bay-Kenora areas; 

 

- The limited value of incorporating terrain variables related to drifting such as 

“percent of the highway segment that is wooded” in modeling daily patrol-level 

maintenance activity; 

 

- The challenges associated with relying exclusively on one source for weather data; 

 

- The need to incorporate either data filters or classification techniques into the 

development of winter indices.  The reason for this is that individual weather 

variables have different effects, depending on their co-occurrence or the sequence of 

events.   For example, current models do not adequately predict maintenance activity 

for ground frosts, early winter snowfalls, some freezing rain events, extended periods 

of very low temperatures, and prolonged winter storms where operators are working 
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In March, 2007 Synectics submitted its recommended next steps in the project, which included a 

more detailed analysis of how decisions are made.  The current project addresses this 

recommendation by focusing on a smaller unit of analysis—the individual truck on an hour-by-hour 

basis—and modeling these data in non-traditional ways that incorporate a wide variety of weather 

data.  In the current project, salt is applied on each individual highway segment by only one truck; 

thus the results can be interpreted as being either truck-specific or highway segment-specific, since 

the two are interchangeable in the case study area.    

 

OBJECTIVES  
 

The overall goal of the project is to build on the work that has been completed on winter indices by 

the Synectics team by using classification techniques of various types.  The specific objectives are as 

follows: 

 

a) To use reliable data at a fine spatial-temporal resolution to characterize both weather 

conditions and winter maintenance decisions.  The project focused specifically on the 

decision to apply rock salt at particular rates. 

 

b) To explore the value of different types of classification modeling in linking salt application 

decisions to winter weather variables—both forecast and observed. 

 

c) To explore, to the extent possible given the data, the effects of direct liquid application on 

road salt usage.   
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Approach and data 
 

GENERAL ANALYTIC FRAMEWORK 
 

In any modeling exercise, it is important to begin with a conceptualization of what it is that we want 

to understand.  In modeling winter maintenance, the dependent variable is usually some measure of 

resource use, which is based on human responses to a combination of expected and observed 

physical conditions.  As a result: 

 

1. Human behaviour in the form of operation decisions is, in essence, the process that we are 

trying to understand and/or prescribe in models of winter road maintenance.  Accordingly, 

any model of past activity will likely have a local signature, i.e., it will incorporate local 

knowledge and will reflect local practices.  Since it is reasonable to assume that different 

combinations of activities may have similar effects with similar costs (Mahoney et al., 2005), 

it is unrealistic to expect that identical weather and road conditions will result in identical 

treatment on an hour-by-hour and truck-by-truck basis.  Thus as a starting point, we do not 

expect any model of multiple jurisdictions or highway segments to achieve 100% fit based on 

weather data alone.  This has implications for the generalizability of model specifications—

an issue that requires more attention than has been previously acknowledged.  

 

2. Operational decisions (and adjustments to those decisions) are made continually at the truck 

or patrol level; discerning the effect of such decisions requires data in small units of time and 

space.  Therefore, even in instances where fine-scale predictions do not produce excellent fit 

or where only aggregate results are required for decision making, it is important to work with 

a small spatial-temporal unit of analysis if error terms are to be understood, and models are to 

be improved. 
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3. Although maintenance activities, when aggregated over time and space, define continuous 

variables (e.g., weekly salt totals, seasonal equipment hours), individual decisions are usually 

categorical.  Indeed, the decision to treat is binary, and there is a finite number of discrete 

treatment modes used by any one truck on any single highway segment.  It is therefore 

important to explore modeling approaches than are consistent with the inherent nature of the 

dependent variable(s).    

 

Despite the importance of the above issues, most models reported in the literature have over-

simplified the characterization of decision making by maintenance personnel, have modeled 

maintenance activity in coarse spatial-temporal units, and have treated the dependent variable as 

continuous.   Examples of such models include the Hulme (Hulme, 1982; Cornford, D. and Thornes, 

1996) and SHRP (Thornes, 1993; Andrey et al., 2001; Decker et al, 2001) indices.   

 

In terms of the modeling approach, some studies begin with no prior assumptions about the 

importance of specific weather variables (Suggett, 2007), while others attempt to capture different 

types of treatable events; an example of the latter is the inclusion of snowfall and frost events as 

additive terms in the SHRP model (Thornes, 1993).  Regardless, most models are based on some type 

of regression modeling, and thus are constrained by the issue of multi-collinearity and the limitations 

of linearly additive models.  Alternate approaches, such as storm event classifications (Nixon and 

Qiu, 2005) are also being explored, but their association with specific treatments has yet to be 

objectively validated using recorded maintenance data.   

 

In terms of model fit, some past studies have report r-squared values greater than 0.9 (Thornes, 1993, 

Boselly et al, 1993), but these are based on highly aggregated data.  In addition, when transferred to 

other regions, these models do not perform well, even when re-calibrated locally (Andrey et al., 

2001; Decker et al., 2001).  Models that have been developed at somewhat finer spatial-temporal 

units (Carmichael et al., 2004) typically have achieved much poorer fit, also limiting their usefulness. 

There is the added problem that some key variables produce different coefficients in different 

circumstances, and in virtually all cases assumptions about data distributions, linearity and 

independence are violated.  The net effect is that many winter severity models and indices are useful 
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only for benchmarking use of materials from season to season in the same geographic area.  They 

add little to our understanding of what triggers or sustains specific maintenance operations. 

 

The current project introduces a new approach for modeling winter maintenance using classification 

techniques applied to hourly level data for individual highway segments.  The dependent variable is 

the salt treatment mode, as explained in more detail below, and the independent variables include 

numerous forecast and observed weather variables.    

 

STUDY AREA 
 

The current project uses data from Highways 417 and 138 in the Province of Ontario, Canada.   

These highways are located in the VanKleek Hill patrol of the Ottawa District.  Highway 417 is a 

four-lane freeway designated by the Ministry of Transportation as Winter Service Class 1, running 

135 km from Ottawa, Ontario toward Montreal, Quebec; whereas Highway 138 is a 35 km, Class 2, 

2-lane rural highway.  The VanKleek Hill patrol contains approximately110 km of Highway 417 and 

all of Highway 138.   

 

Winter Service Class 1 stipulates that snow removal begins before 2.0 cm of snow accumulation on 

the roadway, plowing and salting continues with 1.3 hour circuit time, and pavement is essentially 

bare within 8 hours of the end of the storm.  Service Class 2 stipulates a 1.8 hour circuit time and that 

pavement is essentially bare within 16 hours. Winter sand is applied when temperatures fall below -

12˚C and snow cannot be removed by plowing and salting.  In addition, anti-icing liquid is applied 

by truck to bridge decks and other ice-prone spots on Hwy 417 in advance of storms, except at one 

location where it is applied by a Fixed Automated Spray Technology (FAST).  Granular salt is pre-

wetted with anti-icing liquid and applied at rates varying with pavement temperature and snowfall, 

from 50 to 170 kg/2-lane km (6.8-23.3 g/m2). Plows and combination plow-spreader units are used to 

anti-ice and clear snow.  Winter operations are planned using data from the provincial Road Weather 

Information System (RWIS).    
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Figure 1 – The study area including information on the individual 
trucks/highway segments 

 
 

AVL DATA AND THE DEPENDENT VARIABLE 
 
Winter maintenance activity data were extracted from the internet-based system of Automated 

Vehicle Location (AVL) records.  These were extracted using the “Query” and “Winter operation 

report” (WOR) functions, and were downloaded as CSV spreadsheets.  The query function, which 

provides readings in time intervals as short as 5 seconds, was used to extract details on maintenance 

operations.  Each reading provides information on materials used, driving speed and exact location.  

Data were extracted for three seasons, from November1 to April 30, 2004-2007.   

 

Winter operation reports were used to validate daily and seasonal materials usage. They provide 
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information on trips, i.e., vehicles entering and leaving yards (Ministry of Transportation, Ontario), 

and include the date of the report as well as the start time and return-to-yard time. They also include 

total kilometers serviced, material usage and average rate of application during the treatment period.  

 

The unit of analysis adopted for the study is the truck-hour. A spreadsheet was developed where each 

row represents a unique hour for one truck and the columns include information on the dependent 

variable (treatment activity) and the independent variables (primarily weather variables).  To 

simplify the task, we focused only on material application rates and used these to create what we 

called “treatment modes” (e.g., a treatment mode of 65-39 means that the salt application rate was 65 

kg/ km and the pre-wet application rate was 39 liters/tonne of salt).   

 

Since the data set used for modeling contains information on every hour from November 1st to April 

30th, the AVL system was not active for a majority of the hours; these hours were coded as n/a.  The 

number of n/a readings varied by truck from 10,892 to 12,466, out of the total of 13,032 hours during 

the three-season study period.  In total, 86 percent of hourly records were n/a hours indicating no 

AVL readings.  During the remaining 14 percent of the hours, when there were AVL readings, zero 

was the most common reading, occurring between 34 and 69 percent of the time, depending on the 

truck and season. In these instances, the truck was active but salt was not being applied.  The focus of 

the modeling exercise was to separate out these n/a and zero hours from the non-zero or “treatment” 

hours (approximately 7 percent of the total) based on forecast and observed weather.  

 

Preliminary examination of the AVL data indicated a small number of treatment modes.  The 

dominant salt application rates were 100, 130, and 170 kg per two-lane km (as well as 50, 65 and 85 

mostly for one-lane treatments on Highway 138).  There were also relatively frequent readings of 70 

and 260 kg/km travelled.  The frequency distributions for the seven trucks (7805, 7808, 7809, 7811, 

7813, 7815, 7818) used in the analysis are provided in Figure 2. It is worth noting that the 

instantaneous AVL readings showed a fair degree of oscillation around these values, partly due to 

mechanical lag as the spreader attempts to maintain a uniform application rate in response to varying 

the truck’s speed, but also because treatment was sometimes intermittent or changed within the hour. 

Individual readings were thus assigned to the closest of the primary values noted above.  



13 
 
 

 
 

Figure 2 – Salt application rates by truck and season 
 

The first step taken in creating the dependent variable was to aggregate the AVL readings for an 

individual truck for each hour using pivot tables so that the frequency distribution of treatment 

modes, i.e., application rates of salt and pre-wet, could be examined.  An hour in which the truck was 

active for the whole 60 minutes produced up to 300 readings, but the number varied depending on 

how the truck was operating, i.e. spreading salt or just plowing.  This pivot table was then used to 

determine the “dominant mode” for that hour.  More specifically, if during a one-hour period the 

vehicle had more that 75 percent of the readings recorded as zero, then that hour was assigned a 

value of zero, indicating that no dry salt was applied. If material application was observed for at least 

25 percent of the readings in an hour, then the mode that had the most readings was chosen as the 

dominant mode for that hour.  Sensitivity analysis was performed with different cut-off values and 

assignment rules, but the above worked comparatively well in reproducing daily and seasonal salt 

usage.   
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Second, the hourly treatment modes were combined with average truck speed and the percentage of 

the time that treatment occurred in “treatment hours” to estimate daily and seasonal salt use.  Figure 

3 presents a comparison between the daily estimate and the actual amount of salt used for one of the 

trucks for one season.  The estimate of dry-salt usage was within 5 percent of actual usage.  On a 

daily basis, the fit was within 1 tonne for most days.  The other seven trucks typically performed 

better than the one illustrated. This suggests that if the modeling exercise can accurately assign hours 

to a treatment mode, then it is possible to estimate seasonal salt usage with a high degree of accuracy 

and daily or storm-level salt usage with a fair degree of accuracy.   

 

Comparison between estimate and actual amount of salt used per day for the winter season of 2004/2005 - 
Truck 7815
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Figure 3 – Comparison between daily estimate and actual salt use (Truck 7815) 
 

Once the treatment modes were determined for individual truck-hours, these data were examined in 

terms of their temporal variations.  The data make it clear that treatment patterns are not the same for 

all trucks operating in a patrol, highlighting the importance of highway-specific variables and the 

limitations of using only weather data to model and ultimately predict salt usage.  Table 1, which 

provides salt data for February 14, 2007 for four trucks, illustrates this point.  Using the approach 

outlined in the previous paragraph, these treatments would have resulted in the following daily totals 

in salt usage (kg) for trucks 7805, 7808, 7811 and 7813, respectively:  58, 42, 42 and 60 tonnes. 
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While these values are similar, they are not identical even though they are in response to the same 

general weather conditions.  Unless, highly relevant and site-specific variables can be included in 

future work, there will always be some unexplained variation in salt use. 

 

Table 1 – Example of how salt application rates (kg/km) vary  
 

Hour Truck 7805 Truck 7808 Truck 7811 Truck 7813 
00 0 0 0 0 
01 0 0 0 0 
02 0 0 0 0 
03 0 0 0 0 
04 0 0 0 130 
05 130 130 130 130 
06 170 130 130 130 
07 130 130 130 130 
08 130 130 0 130 
09 170 170 130 170 
10 170 170 170 170 
11 130 0 170 170 
12 130 0 170 170 
13 130 170 130 130 
14 130 130 0 130 
15 130 130 130 130 
16 130 170 130 170 
17 170 170 0 130 
18 170 0 170 130 
19 130 0 170 130 
20 130 130 130 130 
21 100 130 0 0 
22 100 0 0 130 
23 130 0 0 130 

 

Also, even within treatment periods when there is little variation in weather, material application 

rates vary, in response to past treatment and the observed road conditions.  This is illustrated in 

Figure 4 for truck 7818 on Highway138 for over a two-day period in March, 2005.  Truck 7818 spot 

treated certain stretches of road on the morning of March 6th and then applied salt on a nearly 

continuous basis, at variable rates, for more than 24 hours.  Light snowfall occurred on the morning 

of the 6th and somewhat heavier accumulation occurred over a 12-hour period starting on the 

morning of the 7th.   
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Figure 4 – Temporal Variation in Salt Application Rate (Truck 7818) 

 

The number of salt application rates was still fairly large after the assignment procedure was applied 

such that it would complicate the classification modeling.  We therefore further simplified the 

dependent variable as follows.  Each hour was assigned to one of the following categories of dry salt 

usage:  n/a (no AVL data for this hour indicating that it is not in a treatment period), zero (truck 

controller is active but no/little dry salt was applied, for example when driving back to yard, plowing 

only or doing spot treatment), low (~50 kg of salt per lane-km, i.e. controller readings of 50 or 100), 

medium (~65 kg of salt per lane-km, i.e. controller readings of 65, 70, or 130) and high (~85 kg of 

salt per lane-km, i.e. controller readings of 85, 170 or 260).  From the point of view of salt usage, the 

n/a and zero categories are equivalent. The reason for treating them separately is that we would 

expect different weather conditions to be associated with each: the n/a would be associated with 

times when snowfall, icy conditions, and drifting are all absent; by contrast the zero category would 

reflect winter weather conditions when dry salt was not being continuously applied but maintenance 

activities were being performed (e.g., plowing during very cold weather).    
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EXPLANATORY VARIABLES 
 
A summary of the explanatory variables incorporated in the analysis is presented in Table 2, and a 

full listing in provided in the Appendix.  The selection of variables was driven by two primary 

assumptions: 1) that winter maintenance operations are influenced by both the expected and the 

actual occurrence of particular weather and road conditions; and 2) the frequency, timing, intensity 

and duration of these conditions is related, though not necessarily directly/linearly, to the amount of 

salt applied. Thus variables describing both forecast and observed conditions were chosen. In 

general, the location and spatial/temporal resolution of the dependent variable dictated the form of 

the explanatory variables. 

 

Table 2 — General description of explanatory variables 
 

General category Temporal resolution Variable description 
Weather Forecasts Semi-daily (tonight 

1800-0500/tomorrow 
0600-1700) 

occurrence, type, amount and probability of 
precipitation occurrence of blowing snow 
temperature and trend 

Weather Warnings Hourly watches, warnings and advisories for winter storm, 
heavy snowfall, freezing rain, flash freeze, or 
blowing snow conditions 
 

Standard Weather 
Observations 

Hourly visibility, wind speed and direction, air and 
dewpoint temperature occurrence, type and 
intensity of precipitation occurrence of blowing 
snow 

 6-hourly liquid-equivalent precipitation accumulation 
 Daily snowfall, rainfall and total liquid-equivalent 

precipitation accumulation minimum, maximum 
and mean temperature depth of snow on the 
ground 

Radar-derived 
Observations 

Hourly presence of precipitation near or over study area 
estimated average and peak precipitation intensity 
over study area 

Road Weather 
Conditions 

Hourly air and dewpoint temperature occurrence, type and 
intensity of precipitation pavement surface 
temperature road surface condition (e.g., dry, wet, 
icy, etc.) 
 

 

Weather forecast and warning data were obtained from Environment Canada for the Prescott and 
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Russell forecast region in which the study area is located. Short-term weather forecasts issued in the 

afternoon of a given day predict conditions for that night and the following day. For the analysis, we 

have assumed that tonight conditions are valid from 1800-0500 hours and tomorrow conditions 

represent 0600-1700 hours. Inclusion of forecast variables is an explicit attempt to recognize the 

decision-making behavior of maintenance staff in advance of sensible weather or road conditions. 

Like forecasts, the issuance of weather warnings (watches, warnings or advisories) is assumed to 

provide maintenance personnel with early notice of treatable events and greater confidence that they 

will occur. 

 

As noted, past research efforts have often relied exclusively on standard weather observation data to 

model road salt and other measures of winter road maintenance. Although the current study 

incorporates other sources of information, standard observations are also an important set of 

explanatory variables. Data for the variables identified in Table 2 were obtained from Environment 

Canada for the Ottawa MacDonald-Cartier International Airport observing station. While this is the 

closest primary observation station—and thus collects the full suite of required variables with high 

quality and continuity—it is situated in the extreme northwest corner of the study area and may not 

be fully representative of conditions, especially for precipitation. 

 

Inclusion of radar-derived estimates of precipitation occurrence and intensity should help to address 

inadequacies in standard observations related to areal coverage. Hourly radar imagery (CAPPI, 

snowfall mode) was obtained through Environment Canada for the Franktown radar station located 

about 80 km west of the study area. For the pilot study, images were subjectively interpreted to 

determine the location and intensity of precipitation. 

 

Road Weather Information Systems (RWIS) can also be used to improve the spatial 

representativeness of standard observing stations and, more importantly, provide several variables 

unique to the road condition. Hourly measurements were selected or derived from data for the 

Casselman RWIS station (Eastern Region-16) obtained from the Ontario Ministry of Transportation. 

 

For this exploratory work, highway geometrics and other road attribute data were not included. 
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However, potential influences related to the different highway segments and to seasonal and diurnal 

variations were represented by truck, month and hour variables. 

 

Modeling  
 

Two complementary modeling approaches were used in exploring the relationships between weather 

and salt application rates on Ontario highways— classification trees on their own, and  then two 

types of direct and indirect models, three of which include tree-based techniques.  All analyses were 

conducted in the data analysis environment R (Ihaka, and Gentleman, 1996) and its packages, 

“rpart”, “ipred”, and “mda”.  In all cases, the modeling was completed using data from three seasons 

(13,032 hours) and seven trucks from the Vankleek Hill Patrol near Ottawa, Ontario.   

 

CLASSIFICATION TREES 
 

A classifier is a function that predicts the (unknown) class membership of an object based on 

(known) explanatory variables. In supervised classification, as was done in this study, this function is 

fitted to a training data set for which the class membership of each object is known. The fit of the 

model can then be tested on a different test data set, to avoid overfitting and reporting over-optimistic 

error estimates. In the present setting, the objective was to model the ordinal-scale treatment mode of 

truck-hours as a function of the weather variables presented above. To account for the potential delay 

between treatment decision and implementation, variables shifted back by one hour and two hours 

were also considered.  Future work will incorporate a 24-hour lag as well, to account for the clean-up 

effects of major snowfalls as recorded in the daily records of snowfall amount.   

 

In this exploratory analysis of winter maintenance activities we used classification trees because they 

provide a simple means for modeling complex interactions between explanatory variables (Breiman 

et al., 1984). This appears to be more appropriate in this context than the additive combination of 

variables by linear or logistic models.  
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Classification trees are hierarchical sets of yes/no questions that are derived from a training data set 

by minimizing a loss function.  In statistics, a loss function represents the cost associated with being 

wrong in certain ways.  For instance, this function may allocate different costs to, for example, false-

positive predictions (incorrect prediction of belonging to a treatment period) or the misclassification 

of a high-treatment truck-hour as a low-treatment hour. We use pruning to cut down the classification 

tree to a reasonable size and avoid over-fitting the classifier to the data. 

 

INDIRECT MODELS 
 

Indirect models try to make use of intermediate variables to improve the prediction of structured 

data. Examples are structured class definitions in classification (Hand et al., 2001; Peters et al., 

2005), or a priori knowledge on the structure of regression relationships (“coaching variables” in 

regression; Tibshirani and Hinton, 1998). In conventional direct modeling, by contrast, a response 

variable y is predicted directly from some combination of predictor variables x1,…,xn. In many 

practical situations such as medical diagnostics, however, there are additional variables w1,…,wk that 

are more closely related to the response, but that are expensive or hard to obtain (e.g. from tissue 

samples or specialized technology) than the predictors xi, which are available in the standard 

situation.  If the variables wi are known on some learning sample, then it is often possible to obtain 

improved indirect predictors of y by first predicting the so-called intermediate variables wi from the 

predictors xi, and in a second step the response y from the predicted intermediate variables. 

 

The previous discussion of the dependent variable illustrated that accurate predictions of hourly 

treatment modes will result in accurate estimates of aggregate salt use.  The key therefore is to build 

an indirect model that predicts treatment modes from weather and road conditions, and then integrate 

these intermediate predictions into the estimation of salt use. Thus, the final predictive model only 

depends on the predictors x1,…,xn, but exploits our knowledge of the structured relationship between 

salt use and treatment mode. 
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The concept of indirect modeling was introduced by Hand et al. (2001) and extended by Peters et al. 

(2005) in the context of classification using machine-learning techniques, especially ensemble 

methods. Tibshirani and Hinton’s study (1998) on coaching variables in regression shows that a 

similar approach can be useful in regression. We will therefore extend the generalized indirect 

classification approach of Peters et al. (2005) to a regression context where classification techniques 

serve as intermediate models. We compare and combine both machine-learning techniques and 

statistical techniques in two indirect models, and compare their results with two direct models: 

 

o Linear regression model with stepwise forward variable selection (acronym: LM): This is a 

standard statistical technique and the most commonly used form of direct modeling.  In the 

current analysis, the number of variable selection steps (based on the Akaike Information 

Criterion, AIC) was limited to 30. Linear models may give good explanatory models when 

few variables are involved, and are relatively resistant to overfitting because of their 

inflexible linear structure.  The coefficients may be misleading, however, because of 

problems of non-linearity or multi-collinearity.   

 

o Bagging: Bootstrap-aggregated regression trees, which are another form of direct modeling, 

were obtained by averaging over 50 individual regression trees that were grown up to a 

maximum depth of 15. This results in a highly flexible regression technique that should be 

able to detect higher-order interactions between predictor variables, such as influences of 

certain weather variables only during specific storm types. Bagging was introduced by 

Breiman (1996). 

 

o Linear regression combined with bundling (acronym LM-bund): Here the bundling approach 

of Hothorn & Lausen (2005) was used to build an efficient classifier that combines the 

capabilities of a tree-based classifier (as in bagging) with the advantages of an ancillary 

classifier (here: penalized linear discriminant analysis, PLDA; Hastie et al., 1995) capable of 

detecting linear class boundaries. This is an example of indirect modeling in that both the 

predicted intermediate variables and the original predictors were fed into a linear regression 

with stepwise forward variables selection (maximum 30 steps) to obtain results that were 
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compared to the direct LM approach. We used 25 trees with a maximum depth of 7 for 

bundling. 

 

o Bagging with regression trees and PLDA (Bagging-CT/PLDA): This is an indirect version of 

the direct bagging technique, in which two classification techniques (individual classification 

trees, Breiman et al., 1984; and PLDA) were used as competing intermediate classifiers, each 

predicting treatment modes and their probabilities. The simpler CT/PLDA was preferred to a 

nested bundling classifier to avoid a prohibitive increase in computing time. Pruning was 

applied to avoid overfitting CT growth. 

 

In building the indirect models, the training dataset was subsampled (on the day level) to obtain two 

independent data sets of equal size; the intermediate classifiers are trained on one of these sets, and 

the regression technique on the other one in order to avoid overfitting (compare Peters et al., 2005). 

 

We used weather variables, as listed in Appendix A, as predictor variables (in addition, effects 

related to truck, month, and hour of the day were allowed), the daily amount of salt use (average 

amount in kg/h) as response, and the predicted treatment modes (n/a, zero, low, medium and high) 

and number of lanes treated (n/a, zero, one and two) and respective probability predictions as 

intermediate variables. 

 

An important issue in the comparison of different predictors is the unbiased error estimation. Modern 

resampling-based approaches are the cross-validation and the bootstrap (e.g., Efron and Tibshirani, 

1993; Hand, 1997). The bootstrap consists of resampling of observations with replacement, thus 

simulating the generation of a new random sample from the unknown random process that is 

approximated by the empirical distribution of the observed data set. Two independently sampled 

bootstrap samples from the available data are then used as training and test data sets. The sub-

sampling is carried out at the day level because different hours of a day are likely to show very 

similar weather and road management conditions. Note that this grouping by day also implies that 

data from different trucks on the same day is kept together in resampling. Similar approaches for 

resampling dependent or grouped data have been applied elsewhere (compare Bühlmann, 2002; 
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Davison et al., 2003; Brenning, 2005; Brenning et al., 2006; Brenning and Lausen, 2008). We report 

the average accuracies (r-squared) of the models estimated on the test data sets. 

 

While the bootstrap is usually based on randomly drawing N out of the N available samples, we only 

use bootstrap samples of size 0.4N because of the large size of our data set. A favorable side effect of 

sub-sampling is that the number of objects (here: days) sampled into both the training and test set is 

greatly reduced, making a bias reduction (such as the .632 bootstrap) unnecessary. 

 

Results  
 

CLASSIFICATION TREES 
 

In this exploratory analysis of winter maintenance activities we used classification trees to 

distinguish between five salt application rates (n/a, zero, low, medium and high), based on AVL 

hourly data.  The classification tree algorithm was run for each of the seven trucks separately and 

then for all seven trucks together.  Trees were grown based on the training data set and then 

tested on a second, independently drawn sub-sample (drawn on the day level) of the same size.  

In growing the trees, the cost structure reflected the importance of non-zero treatment modes, i.e., 

it put little penalty on misclassifying an n/a as zero or vice versa, moderate penalty on incorrectly 

assigning a low, medium or high treatment modes to another one of these classes, and high 

penalty on assigning an n/a or zero to a non-zero mode or vice versa.  

 

The results, which are summarized in Tables 3 and 4, provide an indication of the overall high 

level of accuracy achieved in assigning treatment hours to the correct category.  For all trucks 

together, 81.3 percent of all hours were correctly assigned and for individual trucks the 

percentages varied from 81.1 to 86.1.  As well, the models performed well in correctly assigning 

hours where no salt was applied to either the n/a or zero class.  However, the models performed 

less well in designating treatment hours as such, which would overall result in an under-
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estimation of aggregate salt use.  Future work will concentrate on adjustments to the loss function 

in order to improve the assignment outcomes.  Another approach for dealing with the 

underestimation is to use the tree-based assignments along with weather variables to derive an 

unbiased indirect model of salt use, as discussed in the next section.   

 

Table 3 — Classification Tree Results, All Trucks Together 
 

n/a zero low medium high # hours
n/a 27627 2112 0 849 195 30783
zero 1194 590 0 799 69 2652
low 128 99 0 299 9 535

medium 303 217 0 1086 39 1645
high 71 62 0 299 3 435

Accuracy (% hours correctly assigned) =  81.3
Specificity (% hours correctly assigned to n/a , zero) =  94.3
Sensitivity (% hours correctly assigned to non‐zero) =  66.3

P R E D I C T E D 
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Table 4 — Classification Tree Results, Individual Trucks 
 

  T R U C K 
  7508  7808 7809  7811  7813  7815 7818 
Accuracy (% hours correctly assigned)   81.7  84.3  86.1  83.7  85.6  81.1  82.2 
Specificity (% hours correctly assigned to n/a , zero)   95.2  97.1  98  95.1  93.1  94.3  94.3 
Sensitivity (% hours correctly assigned to non‐zero)   66.5  58.1  33.6  69.3  77.4  70  66.1 

 

Before turning to the preliminary results on indirect modeling, however, it is important to 

comment on the nature of derived trees, since this is perhaps the most promising aspect of this 

approach for potentially building decision-support systems.   The promise lies in the fact that 

classification trees identified both variables and threshold values that are consistent with expert 

knowledge and scientific principles.  While individual trees differ, and thus we are not yet at a 

point where we can identify a robust tree with a high degree of fit, the results for pruned trees, 

based on a 40 percent sample of data from all trucks, illustrate the results.   
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Table 5 summarizes the two paths that predict high salt application rates—typically 170 kg/two-

lane km.  The first tree path describes those conditions when then is little snowfall but freezing 

rain is expected or occurring, and the second situations depicts snowfall occurring with mild 

temperatures.  In both instances, a mix of information sources (e.g., standard weather 

observations, RWIS, radar) and information at various time stamps (e.g., recent past, present, 

forecast) is used to define the trees, similar to what would occur in the yard.    

 

This mixing of information types is also evident in the three tree paths that predict medium salt 

application rates—typically 130 kg/two-lane km.  The first of these three paths describe 

conditions when there is light rain, freezing rain or snowfall and pavement temperature below 1 

degree Celsius.  The second and third paths describe situations when snowfall is occurring; for 

the second path the snowfall is widespread and there are gentle or moderate winds, and for the 

third there is lower visibility and the pavement surface is below zero.   

 

Table 5 — Tree Paths Predicting High Hourly Salt Application 
 

 1st tree to predict high salt application 2nd tree to predict high salt application 
1st split Daily snowfall amount, 2 hrs ago, < 0.7 

cm 
Daily snowfall amount, 2 hrs ago ≥ 0.7 cm 

2nd split Slight snow or unidentified 
precipitation (RWIS) 

Visibility distance ≤ 14.5 km 

3rd split Daily snowfall amount, 2 hrs ago, < 
0.025 cm 

Pavement surface temperature < 0.15°C 
(RWIS) 

4th split Freezing rain warning, 2 hrs ago Daily snowfall amount ≥ 2.1 cm 
5th split Pavement surface temperature, 2 hrs 

ago,      < 0.9°C (RWIS) 
Air temperature, 2 hrs ago, ≥ 0.5°C 

6th split Dewpoint temperature, ≥ -6.6°C 
(RWIS) 
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Table 6 — Tree Paths Predicting Medium Hourly Salt Application 

 

 1st tree to predict 
medium salt application 

2nd tree to predict medium 
salt application 

3rd tree to predict 
medium salt application 

1st split Daily snowfall amount, 2 
hrs ago < 0.7 cm 

Daily snowfall amount, 2 hrs 
ago ≥ 0.7 cm 

Daily snowfall amount, 2 
hrs ago ≥ 0.7 cm 

2nd split Rain, snow or freezing 
rain  (RWIS) 

Visibility distance >14.5 km Visibility distance ≤ 14.5 
km 

3rd split Pavement surface 
temperature, 2 hrs ago,     
  
≤ 0.9°C (RWIS) 

Precipitation echoes cover at 
least 25% of the study 
region (Radar) 

Pavement surface 
temperature, < 0.15°C 
(RWIS)  

4th split  Wind speed at 10 m ≥ 12 
kph 

 

 

 

It is worth noting that, despite the interpretability of these tree paths, the model did not perform 

well at predicting hours of high salt application (Table 3), with many false positives and false 

negatives.  For moderate salt application rates, the model performed better with 1086 correctly 

assigned hours, but there were also a large number of hours where medium-level salt application 

occurred but the model predicted no treatment (520 hours) or a high rate of salt application (39).  

There were also numerous hours assigned to the medium treatment category, when either no 

treatment was observed (2246 hours) or where a different level of treatment was observed (299 

high and 299 low).  Future work will focus on improving the performance of tree classifiers, as 

discussed later.    

 

INDIRECT MODELS 
 

In this section, we discuss the results of four different modeling approaches—two direct and two 

indirect. The goal of this exercise is to demonstrate the improved model fit of newer, more 

sophisticated approaches relative to linear regression, which is the basis of many previous models.  

In order to achieve robust results, each of the four models were run multiple times—initially 14 times 

(Tables 3 and 4 below reflect the values for these), and then later for a total of 100 times (with nearly 

identical results to what was achieved with the initial 14).  For each of the “runs”, the models were 
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calibrated on a training data set that comprised a randomly selected subset of 40 percent of the days 

in the data set.  The estimated values of salt use were then calculated for a test data set, comprising a 

40 percent sample, and aggregated to the day.  The latter were then compared to the salt usage that 

would have occurred had each of the 24 hours been perfectly assigned to their respective salt 

application rates on that day.   

 

Results are summarized in Table 7, and results of Wilcoxon signed rank tests for pairwise 

comparisons of the r-squared estimates are given in Table 8. The results show that the indirect 

method of bagging with intermediate classification tree and PLDA models (Bagging-CT/PLDA) 

performs significantly better than the other three approaches, yielding a bootstrapped r-squared value 

that is between 6.1  and 8.1 percentage points higher than was found for the other methods. Pairwise 

differences between the other models are between 0.1 and 2.1 percentage points; however they are 

not significant at the nominal 5 percent significance level from each other with only 14 bootstrap 

replications. (Additional bootstrap replications that were later computed confirm the small magnitude 

of these pairwise differences, but provide significant results because of the larger number of 

replications.) 

 

Table 7 – Estimates of R² based on 14 replications 

 
 Method R² (std. dev.) 

LM 61.6% (4.3%) Direct methods 

Bagging 63.6% (7.4%) 

LM-bund 61.5% (5.0%) Indirect methods 

Bagging-CT/PLDA 69.7% (5.0%) 
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Table 8: Mean differences in estimates of R² and results of Wilcoxon signed rank 
tests at the 5% significance level 

 

 Direct Models Indirect Models 

 LM Bagging LM-bund Bagging-CT/PLDA

LM  -2.1% -0.1% 8.1% *** 

Bagging 2.1%  -2.1% 6.0% ** 

LM-bund 0.1% 2.1%  8.2% *** 

Bagging-CT/PLDA -8.1% -6.0% -8.2%  

(*** p-value <0.001; ** <0.01; * <0.05). 
 

The indirect modeling approach that combines tree-based and linear intermediate learners of 

treatment mode with a tree-based ensemble learner of the final response variable (salt use) achieved 

statistically significantly better results compared to direct approaches and compared to an indirect 

approach that assumes a linear relationship between predictors and salt use response. The 

improvement achieved with this novel modeling approach compared to more traditional ones is not 

only statistically significant, but also of a magnitude (6.1-8.1 percentage points of the R²) that is 

substantial from a practical perspective. The use of bootstrap estimation techniques ensures that these 

error estimates are unaffected by potential overfitting of models. 

 

In addition to the superior predictive performance of the indirect “Bagging-CT/PLDA” approach, it 

has to be pointed out that this “black-box” machine-learning approach is not less attractive in terms 

of model interpretability than the direct linear regression model with stepwise variable selection from 

the available predictors. While the linear regression model is often assumed to produce an 

interpretable “white-box” model with a simple model structure and simple relationships between 

individual predictors and the response, the result of a stepwise variable selection with up to 30 

predictor variables in the final model (as in the present study) can, if anything, result in misleading 

interpretations of the model structure. The reason for this is in highly correlated variables with very 

different semantics, nonlinear relationships that are captured by combining several correlated 

variables with counterintuitive coefficient estimates, and unobserved confounders. Thus, model 
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interpretability is not lost by using indirect and/or machine-learning techniques. Moreover, the 

indirect approach is able to capture our knowledge about the structured relationships between 

weather and salt use amounts through the selection of treatment modes (compare Hand et al., 2001; 

Peters et al., 2005), resulting in a “modular” model design and the possibility of evaluating model 

components such as the intermediate models separately. 
 
 

Conclusions and Recommendations  
 

CONCLUSIONS 
 

Models of winter maintenance activities, and associated winter weather indices, provide insight 

into the link between weather/road conditions and maintenance decisions/outcomes.  These 

models can be used in various ways—to understand how particular weather triggers specific 

actions (descriptive), to predict probable resource use given forecast conditions (predictive) or to 

provide guidelines as to optimal response to various conditions (normative).  Ultimately, one 

would expect that descriptive models would be the basis for, or at least inform, the development 

of both predictive and normative models and indices.  The current paper reports on a new 

approach for developing descriptive models of salt usage, using classification techniques and 

highway-segment specific data on an hourly basis.    

 

The overall conclusion of the study is that classification trees show considerable promise in 

identifying the different weather conditions that result in specific salt application rates.  This 

conclusion is based on the fact that the trees developed for the Highways 417 and 138 in the 

Vankleek Hill patrol near Ottawa identified both variables and threshold values that are 

consistent with expert knowledge (e.g., the need to apply salt prior to freezing rain) and scientific 

principles (e.g., ground frosts occur when the air and dewpoint temperature converge).  Key to 

this success was the use of fine-scale salt usage data (the AVL data were easy to use and 

appeared accurate) and a wide range of weather and road condition variables from multiple data 
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sources.   

 

As well, it was determined that various types of classification trees can be used to predict the 

most likely hourly salt application rate for individual trucks or highway segments.  Furthermore,  

these predictions can be used to estimate salt use at the daily or weekly level with a relatively 

high level of accuracy; when compared to conventional regression modeling this new approach 

produced r-squared values that are considerably higher—approximately 8 percent higher at the 

daily level (R2 values of 0.69).  Preliminary analysis at the weekly provides even better results.   

 

In terms of objective three, the current study was not able to develop any empirical estimates of 

salt savings due to direct liquid application (DLA) of chemicals because of the nature of the data 

set used.  In the three seasons analyzed, there were only 17 days on which DLA was applied and 

it was applied to only one of the seven highway segments examined.  Thus the data set was too 

small to detect any effects.  That said, it is important to note that the modeling structure used 

could accommodate DLA and other maintenance practices as additional explanatory variables 

and the expected result would be that DLA would lead to fewer treatment hours or possibly lower 

salt application rates than would otherwise have occurred.   

 

RECOMMENDATIONS 
 

Given the promising nature of the results, there are three recommendations for further work.  

 

1. The data set used to develop the tree-based classifications should be expanded to include 

more patrols and/or seasons.  Based on this expanded data set, a set of pruned trees that 

represent the most important conditions leading to salt applications of different amounts 

should be developed—initially for each individual highway segment, and then for all 

segments combined.  

 

2. The results of the exercise should be shared with Ministry personnel and contractors who 
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are in charge of operational decisions, in order to explore the thinking behind certain 

types of decisions and to identify other explanatory variables that have not been included 

in the analysis and/or captured by the models.   

 

3. Other explanatory variables that pertain to weather (e.g., the difference between the 

ambient and dew point temperature) and local factors (e.g., terrain, orientation, snow 

fencing) should be included in the analysis, where possible.   

 

4. The list of explanatory variables should be expanded to include information on plowing, 

pre-wetting and DLA, as a way of exploring the combined or offsetting effects of 

different maintenance operations.  

 

5. Residual analyses should be conducted throughout the modeling exercise in order to 

better understand those conditions when the models perform well and when the models do 

not perform well.   

 

6. Different levels of aggregation should be explored so that model fit can be reported at 

different spatial-temporal units of analysis in ways consistent with different Ministry 

needs.   
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Appendix  
 

Independent Variable Valid Values 
Data from Environment Canada and AMEC/MTO  

Weather conditions reported at beginning of the hour 

WxVisibility 0-25 Visibility distance (km) 

WxWindDir Sin (0-360) Direction of wind (decimal degrees based on 16 cardinal 
points) 

WxWindSpeed 0-100 Wind speed measured at 10m height (km/h) 

WxTemp -40 to 40 Dry bulb air temperature (˚C) 

WxDewpoint -40 to 30 Dewpoint temperature (˚C) 

WxRH 10-100 Relative humidity (%) 

WxSLP 95-107 Sea level air pressure (kPa) 

WxCloud 0-10 Cloud amount where 0 clear and 10 is overcast(tenths) 

WxR 0-3 Reported occurrence and intensity of rain. Light (1), 
Moderate (2), Heavy (3) 

WxRW 0-3 Reported occurrence and intensity of rain showers. Light 
(1), Moderate (2), Heavy (3) 

WxL 0-3 Reported occurrence and intensity of drizzle. Light (1), 
Moderate (2), Heavy (3) 

WxZR 0-3 Reported occurrence and intensity of freezing rain. Light 
(1), Moderate (2), Heavy (3) 

WxZL 0-3 Reported occurrence and intensity of freezing drizzle. Light 
(1), Moderate (2), Heavy (3) 

WxS 0-3 Reported occurrence and intensity of snow. Light (1), 
Moderate (2), Heavy (3) 

WxSG 0-3 Reported occurrence and intensity of snow grains. Light (1), 
Moderate (2), Heavy (3) 

WxIP 0-3 Reported occurrence and intensity of ice pellets. Light (1), 
Moderate (2), Heavy (3) 

WxSW 0-3 Reported occurrence and intensity of snow showers. Light 
(1), Moderate (2), Heavy (3) 

WxSP 0-3 Reported occurrence and intensity of snow pellets. Light 
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Independent Variable Valid Values 
Data from Environment Canada and AMEC/MTO  

Weather conditions reported at beginning of the hour 

(1), Moderate (2), Heavy (3) 

WxFog 0,1 Reported occurrence of fog 

WxBS 0,1 Reported occurrence of blowing snow 

Wx6hrPam 0-50 Accumulated liquid-equivalent precipitation over 6-hour 
period in which hour occurs (mm). Trace reported as 0.05. 

WxDlyRainAm 0-100 Accumulated daily rainfall in which hour occurs (mm). 
Trace reported as 0.05. 

WxDlySnowAm 0-100 Accumulated daily snowfall in which hour occurs (cm). 
Trace reported as 0.05. 

WxDlyPrecipAm 0-100 Accumulated daily liquid-equivalent precipitation in which 
hour occurs (mm). Trace reported as 0.05. 

WxSnowDepth 0-100 Depth of snow on the ground measured in the morning (cm) 

WxWsWatch 0,1 Winter storm watch in effect  

WxWsWarn 0,1 Winter storm warning in effect 

WxSnowWarn 0,1 Snowfall warning in effect 

WxZrWarn 0,1 Freezing rain warning in effect 

WxFlashWarn 0,1 Flash freeze warning in effect 

WxBlowSnowWarn 0,1 Blowing snow warning 

WxWsAdv 0,1 Advisory of potential for winter storm conditions in effect 

WxSnowAdv 0,1 Advisory of potential for heavy snowfall, snowfall just 
below warning criteria, or changeover from rain to snow 

WxZlAdv 0,1 Advisory of potential for freezing drizzle or rain below 
warning criteria 

WxBlowSnowAdv 0,1 Advisory of potential for blowing snow 

WxRadObs 0,1 Valid or invalid observation during event (assumed during 
non-event periods) 

WxRadPrecipAny 0,1 Identification of precipitation echoes on the image that are 
moving towards and may reach study region 

WxRadPrecipStudy 0,1 Precipitation echoes observed in study region 

WxRadNature 0-2 Morphology of precipitation echoes observed in study 
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Independent Variable Valid Values 
Data from Environment Canada and AMEC/MTO  

Weather conditions reported at beginning of the hour 

region (0 no echoes, 1 cellular/scattered, 2 solid/continuous) 

WxRadCov  0-3 Precipitation echoes cover 0% (0), <25% (1), 25-50% (2), 
or >50% (3) of the study region 

WxRadIntensityAvg 0-4 

Most common intensity of precipitation echoes observed in 
the study region. Precipitation echoes not observed in study 
area portion of image (0), 9-20db or 0.1-.3cm/hour (1), 20-
29db or 0.3-.75cm/hour (2), 29-35db or 0.75-1.5cm/hour 
(3), >=35db or >=1.5cm/hour (4) 

WxRadIntensityMax 0-10 

Maximum intensity of precipitation echoes observed in the 
study region. Precipitation echoes not observed in study 
area portion of image (0), 9-20db or 0.1-.3cm/h (1), 20-
25db or 0.3-.5cm/h (2), 25-29db or 0.5-.75cm/h (3), 29-
32db or 0.75-1.0cm/h (4), 32-35db or 1.0-1.5cm/h (5), 35-
38db or 1.5-2.0cm/h (6), 38-42db or 2-3cm/h (7), 42-45db 
or 3-4cm/h (8), 45-47db or 4-5cm/h (9), >=47db or 
>=5cm/h (10).  

WxFxTonightTomorrowTemp -40 to 40 
Air temperature (˚C) forecast based on 1530h forecast by 
Environment Canada. Tonight applies from 1800h to 0600h 
next day. Tomorrow applies from 0600h-1800h next day. 

WxFxTonightTomorrowTempTrend -1,0,1 

Air temperature (˚C) trend (falling, nothing stated, rising) 
based on 1530h forecast by Environment Canada. Tonight 
applies from 1800h to 0600h next day. Tomorrow applies 
from 0600h-1800h next day. 

WxFxTonightTomorrowSnow 0,1 

Precipitation (flurries, snow showers or snow) based on 
1530h forecast by Environment Canada. Tonight applies 
from 1800h to 0600h next day. Tomorrow applies from 
0600h-1800h next day. 

WxFxTonightTomorrowRain 0,1 

Precipitation (drizzle, rain showers, or rain) based on 1530h 
forecast by Environment Canada. Tonight applies from 
1800h to 0600h next day. Tomorrow applies from 0600h-
1800h next day. 

WxFxTonightTomorrowMixed 0,1 

Precipitation (freezing drizzle, freezing rain, or ice pellets) 
based on 1530h forecast by Environment Canada. Tonight 
applies from 1800h to 0600h next day. Tomorrow applies 
from 0600h-1800h next day. 

WxFxTonightTomorrowSnowAmLow 0-40 
Low snowfall amount (cm) based on 1530h forecast by 
Environment Canada. Tonight applies from 1800h to 0600h 
next day. Tomorrow applies from 0600h-1800h next day. 

WxFxTonightTomorrowSnowAmHigh 0-40 High snowfall amount (cm) based on 1530h forecast by 
Environment Canada. Tonight applies from 1800h to 0600h 
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Independent Variable Valid Values 
Data from Environment Canada and AMEC/MTO  

Weather conditions reported at beginning of the hour 

next day. Tomorrow applies from 0600h-1800h next day. 

WxFxTonightTomorrowPop 0-100 

Probability of precipitation (%) based on 1530h forecast by 
Environment Canada.. Maximum if different probabilities 
issued for sub-periods (e.g., morning/afternoon) or forms of 
precipitation (e.g., rain/snow). Tonight applies from 1800h 
to 0600h next day. Tomorrow applies from 0600h-1800h 
next day. 

WxFxTonightTomorrowBS 0,1 
Blowing snow conditions based on 1530h forecast by 
Environment Canada. Tonight applies from 1800h to 0600h 
next day. Tomorrow applies from 0600h-1800h next day. 

WxRoadEr16Tair -40 to 40 Air temperature (˚C) at MTO RWIS ER-16 recorded closest 
to the top of the hour 

WxRoadEr16Tdew -40 to 30 Dewpoint temperature (˚C) at MTO RWIS ER-16 recorded 
closest to the top of the hour 

WxRoadEr16Psituation 1-15 

Precipitation situation reported at MTO RWIS ER-16 
recorded closest to the top of the hour. Other (1), Unknown 
(2), No Precip (3), Unident Slight (4), Unident Moderate 
(5), Unident Heavy (6), Snow Slight (7), Snow Moderate 
(8), Snow Heavy (9), Rain Slight (10), Rain Moderate (11), 
Rain Heavy (12), Freezing Rain Slight (13), Freezing Rain 
Moderate (14), Freezing Rain Heavy (15) 

WxRoadEr16Tsurface -40 to 70 Pavement surface temperature (˚C) at MTO RWIS ER-16 
recorded closest to the top of the hour 

WxRoadEr16SurfaceStatus 1-14 

Status (condition) of road surface recorded closest to the top 
of the hour. Other (1), Error (2), Dry (3), Trace (4), Wet (5), 
Chemical Wet (6), Ice Warning (7), Ice Watch (8), Snow 
Warning (9), Snow Watch (10), Absorption (11), Dew (12), 
Frost (13), Absorption at Dew 7 (14) 
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