

Projet de reconstruction du complexe Turcot

Étude d'impact sur l'environnement Addenda 2 – Complément d'information

Date: Février 2009

No de projet : 154-030636 No de dossier : 8505-06-AC01

N/Réf.: D: 068-P013202 / SM: F074199-100

PROJET DE RECONSTRUCTION DU COMPLEXE TURCOT

N° de projet : 154-030636 N° de dossier : 8505-06-AC01

Étude d'impact sur l'environnement

Addenda 2 - Complément d'information

février 2009

TABLE DES MATIÈRES

1.	INTRODUCTION	1
	MODIFICATIONS AU PROJET	
3.	ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE	7
	ÉVALUATION DE LA MODIFICATION DE LA QUALITÉ DE L'AIR DU CENTRE RÉCRÉATIF GADBOIS	ç
5.	ADDENDA À L'ÉTUDE DE POTENTIEL ARCHÉOLOGIQUE – PHASE 2	13
6	PRÉCISIONS ET CORRECTIONS	15

ANNEXES:

ANNEXE A: ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE

ANNEXE B: ADDENDA À L'ÉTUDE DE POTENTIEL ARCHÉOLOGIQUE - PHASE 2

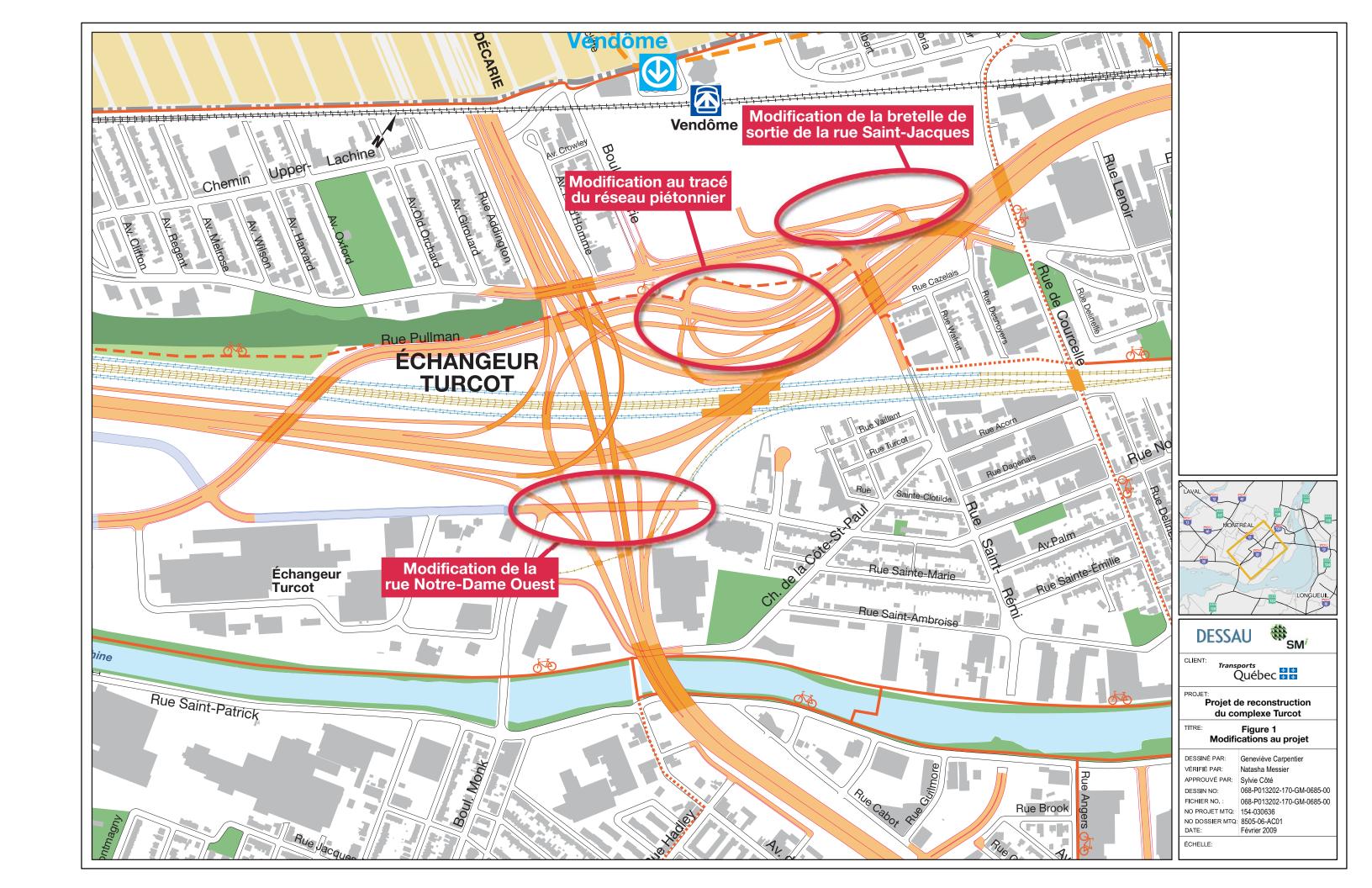
1. INTRODUCTION

Le ministère des Transports du Québec (MTQ) a mandaté le consortium Dessau/Les Consultants S.M. pour la réalisation d'une étude d'impact sur l'environnement pour le projet de reconstruction du complexe Turcot et a collaboré avec la firme à toutes les activités de l'étude. Cette dernière a été présentée au ministère du Développement durable, de l'Environnement et des Parcs (MDDEP) et à l'Agence canadienne d'évaluation environnementale (ACÉE) en mars 2008 pour l'analyse de recevabilité.

Suite au dépôt de l'étude d'impact sur l'environnement, le MDDEP et l'ACÉE ont transmis une série de questions et commentaires au MTQ en juillet et en août 2008. Entre-temps, le MTQ avait apporté des modifications au projet retenu.

Ainsi, une nouvelle version de l'étude d'impact sur l'environnement a été déposée en décembre 2008 afin d'intégrer les modifications qui avaient été apportées au projet. L'addenda 1 à l'étude d'impact qui présente la plupart des réponses aux questions et commentaires du MDDEP et de l'ACÉE a également été déposé en décembre 2008.

Le présent document constitue l'addenda 2 à l'étude d'impact sur l'environnement. Il présente les modifications mineures qui ont été apportées au tracé du complexe Turcot depuis décembre 2008. Trois études complémentaires visant à répondre aux questions et commentaires du MDDEP ou à compléter l'information incluse dans l'étude d'impact y sont également présentées, soit Évaluation des impacts sur la santé humaine, Évaluation de la modification de la qualité de l'air du centre récréatif Gadbois et Addenda à l'étude de potentiel archéologique – phase 2. La dernière section apporte des précisions ou des corrections à certaines informations apparaissant dans l'étude d'impact sur l'environnement et dans l'addenda 1.


2. MODIFICATIONS AU PROJET

À la suite des discussions avec les représentants municipaux et à la poursuite de l'avant-projet, des modifications mineures ont été apportées au projet depuis le dépôt de l'étude d'impact en décembre 2008. Ces modifications sont illustrées à la figure 1 et elles portent sur :

- la bretelle de sortie vers la rue Saint-Jacques de l'autoroute 720 en direction ouest qui a été modifiée de façon à ce que les automobilistes soient amenés à diminuer leur vitesse avant d'arriver sur le réseau local;
- le tracé de la rue Notre-Dame Ouest sous l'échangeur Turcot qui restera dans l'axe existant de la rue (le concept présenté dans l'étude d'impact prévoyait une légère déviation du tracé);
- la localisation des liens piétonniers dans le quadrant nord-est de l'échangeur Turcot le long du nouveau boulevard Pullman et de la rue Saint-Jacques. Ces modifications visent à rendre les déplacements des piétons plus sécuritaires.

Ces modifications n'ont pas pour effet de modifier l'évaluation des impacts.

3. ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE

À la question **QC-15** adressée au MTQ en juillet 2008 dans le cadre de l'analyse de recevabilité de l'étude d'impact sur l'environnement du projet de reconstruction du complexe Turcot, le MDDEP demandait :

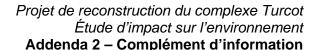
QC-15 Effectuer une évaluation de l'impact sanitaire de l'implantation du projet en fonction du risque existant (tel AQBAT ou Air Quality Benefits Assessment Tool) afin de nous permettre de connaître l'ensemble des impacts du projet.

Le document présenté à l'annexe A montre les résultats de l'évaluation des impacts du projet de reconstruction du complexe Turcot sur la santé humaine. La première partie de l'étude dresse un portrait des effets appréhendés sur la santé de la population vivant à proximité du complexe Turcot, tandis que la deuxième partie présente les effets appréhendés sur la santé à l'échelle de la région de Montréal. Enfin, la dernière partie de l'étude présente les résultats d'une évaluation quantitative des bénéfices/inconvénients et des coûts en matière de santé publique liés à la qualité de l'air.

4. ÉVALUATION DE LA MODIFICATION DE LA QUALITÉ DE L'AIR DU CENTRE RÉCRÉATIF GADBOIS

À la question **QC-19** adressée au MTQ en juillet 2008 dans le cadre de l'analyse de recevabilité de l'étude d'impact sur l'environnement du projet de reconstruction du complexe Turcot, le MDDEP demandait :

QC-19 Modéliser l'impact de l'abaissement des structures sur la qualité de l'air intérieur du Centre Gadbois et prévoir, selon les résultats de la modélisation, les mesures d'atténuation appropriées.


L'une des préoccupations soulevées par les usagers du centre Gadbois, situé à proximité de l'échangeur Turcot, est la possibilité que le rabaissement de l'échangeur puisse influencer la qualité de l'air à l'intérieur du centre. En effet, les voies autoroutières actuelles se trouvent à environ 10 m au-dessus de la prise d'air principale du bâtiment, alors que les voies autoroutières projetées se retrouveront à peu près au même niveau que cette prise d'air.

Des mesures de la concentration des polluants ont été réalisées à divers points à l'intérieur du centre en décembre 2008 et en janvier 2009¹. Les concentrations de CO mesurées allaient de 1,1 à 3,4 ppm, celles des PM₁₀ variaient de 15 à 98 µg/m³, celles des PM_{2.5} allaient de 2 à 25 µg/m³ et les concentrations de NO₂ étaient inférieures à 0,1 ppm (188 µg/m³). À l'exception des lectures faites en continu sur une période de 7 jours dans un bureau situé au rez-dechaussée du centre, toutes les concentrations ont été prises de manière instantanée à trois ou quatre occasions à divers endroits dans le centre sportif. Les mesures instantanées ont été réalisées dans les chambres des joueurs des arénas nord et ouest, le gymnase et la salle de conditionnement physique. Toutes les concentrations mesurées sont inférieures aux normes ou recommandations pour la qualité de l'air intérieur.

Pour vérifier l'impact des modifications aux infrastructures autoroutières à proximité du centre Gadbois, des calculs de modélisation ont été réalisés afin de comparer les concentrations de certains polluants au niveau des prises d'air. De cette façon, on peut obtenir une approximation de la quantité de polluants actuellement générés par la circulation automobile à proximité du centre et la comparer aux situations qui prévaudraient en 2016. Trois scénarios ont donc été étudiés : la situation actuelle, la situation représentative du maintien de la géométrie actuelle (statu quo) à l'horizon 2016, et les concentrations qui seraient obtenues une fois le projet réalisé en 2016.

¹ Étude de la qualité de l'air – Complexe sportif Gadbois – Consortium SNC-Lavalin - Cima +, projet N° 605945, janvier 2009.

Les calculs ont été réalisés à quatre endroits : à la prise d'air du système de ventilation générale du bâtiment, située sur le toit de l'immeuble, et aux trois prises de ventilation locale situées dans chacun des deux arénas et dans le secteur de la piscine du centre Gadbois.

Le logiciel CAL3QHR a été utilisé pour les calculs des concentrations de CO, des particules en suspension totales et des particules en suspension de moins de 2,5 microns (PM_{2.5}), du benzène et du formaldéhyde. Les calculs des concentrations de dioxyde d'azote (NO₂) ont pour leur part été réalisés avec le logiciel CALINE4, qui tient compte de l'interaction entre les concentrations ambiantes d'ozone, de monoxyde d'azote (NO) et de dioxyde d'azote (NO₂).

La configuration des divers tronçons du complexe Turcot, ainsi que les émissions provenant des véhicules qui y circulent, sont les mêmes que celles qui ont été employées dans le rapport sectoriel sur la qualité de l'air [annexe E de l'étude d'impact sur l'environnement du projet de reconstruction du complexe Turcot - Dessau – Les Consultants S.M. (décembre 2008)].

Le tableau 1 présente les concentrations obtenues à proximité des guatre prises d'air du centre. À l'exception du dioxyde d'azote, dont la méthode de calcul tient compte des concentrations ambiantes, les concentrations présentées n'incluent pas les niveaux de contamination ambiants maximaux représentatifs de la zone d'étude. Les concentrations ambiantes maximales retenues sont toutefois présentées séparément dans le tableau. On constate à la lecture des résultats que les concentrations calculées en 2016 avec le maintien du statu quo (sans projet) seraient, dans la plupart des cas, inférieures à celles qui seraient représentatives de la réalisation du projet. Toutefois, les concentrations obtenues avec la réalisation du projet seraient inférieures à celles obtenues pour la situation actuelle, ce qui est dû à la réduction anticipée des émissions des véhicules à l'horizon 2016. De plus, dans tous les cas, la somme des concentrations provenant de la circulation dans l'échangeur Turcot et des concentrations ambiantes demeure inférieure aux normes ou critères d'air ambiant applicables. Il y a donc lieu de croire que les niveaux de contamination à l'intérieur du centre Gadbois suite à la réalisation du projet seraient semblables, voire légèrement inférieurs, à ceux observés présentement. Aucune mesure d'atténuation ne semble donc requise. Il ne faut pas oublier qu'une partie des concentrations de polluants à l'intérieur du centre Gadbois sont attribuables à des sources internes (dont la surfaceuse des patinoires et les émissions provenant de la respiration des utilisateurs).

Tableau 1 : Concentrations de polluants à proximité des prises d'air du centre Gadbois

Polluant	Période	Scénario	Prise d'air Aréna Ouest	Prise d'air Aréna Nord	Prise d'air Piscine	Prise d'air Toit
Monoxyde de	1 heure	Actuel	7,9 ppm	7,8 ppm	8,5 ppm	8,4 ppm
Carbone (CO)	(Norme :	Sans projet 2016	5,2 ppm	4,9 ppm	5,5 ppm	5,7 ppm
Concentration	30 ppm)	Avec projet 2016	7,8 ppm	6,9 ppm	6,3 ppm	7,0 ppm
horaire	8 heures	Actuel	3,14 ppm	2,77 ppm	2,66 ppm	2,93 ppm
ambiante maximale :	(Norme :	Sans projet 2016	2,05 ppm	1,80 ppm	1,68 ppm	1,83 ppm
4,03 ppm	13 ppm)	Avec projet 2016	2,36 ppm	1,97 ppm	1,67 ppm	1,99 ppm
Concentration ambiante maximale sur 8 heures: 2,76 ppm						
Benzène	24 heures	Actuel	3,43 µg/m³	2,32 μg/m³	2,48 µg/m³	3,25 µg/m³
Concentration	(Norme :	Sans projet 2016	1,74 µg/m³	1,21 µg/m³	1,28 μg/m ³	1,67 µg/m³
ambiante maximale : 2,63 μg/m³	10 μg/m³)	Avec projet 2016	2,02 μg/m³	1,30 µg/m³	1,25 μg/m³	1,65 µg/m³
Formaldéhyde	24 heures	Actuel	1,03 µg/m³	0,69 μg/m³	0,74 μg/m³	0,97 µg/m³
Concentration	(Norme:	Sans projet 2016	0,37 μg/m³	0,26 μg/m³	0,27 μg/m³	0,36 μg/m³
ambiante maximale : 4,37 µg/m³	12 μg/m³)	Avec projet 2016	0,43 μg/m³	0,28 μg/m³	0,27 μg/m³	0,35 µg/m³
Particules en	24 heures	Actuel	2,55 µg/m³	1,68 μg/m ³	1,81 µg/m³	2,40 µg/m ³
suspension totales	(Norme :	Sans projet 2016	1,90 µg/m³	1,28 µg/m³	1,34 μg/m³	1,80 µg/m³
Ces concentrations	150 μg/m³)	Avec projet 2016	2,20 µg/m³	1,34 μg/m³	1,28 μg/m³	1,75 µg/m³
ne sont pas mesurées dans le réseau de	1 an	Actuel	0,70 μg/m³	0,43 µg/m³	0,45 μg/m³	0,63 µg/m³
surveillance de la	(Norme :	Sans projet 2016	0,51 µg/m³	0,32 μg/m ³	0,33 µg/m³	$0,47 \mu g/m^3$
qualité de l'air	70 μg/m³)	Avec projet 2016	0,56 μg/m³	0,31 µg/m³	0,31 µg/m³	0,41 µg/m³
Particules en	24 heures	Actuel	1,24 µg/m³	0,80 µg/m³	0,85 μg/m³	1,17 µg/m³
suspension de moins	(Norme :	Sans projet 2016	0,57 µg/m³	0,37 μg/m³	0,38 µg/m³	0,50 µg/m³
de 2,5 microns (PM _{2.5})	30 μg/m³)	Avec projet 2016	0,64 µg/m³	0,35 µg/m³	0,33 µg/m³	0,50 μg/m³
Concentration ambiante maximale: 27,44 µg/m³			3,21, 129	5,55 p.g	o,oo pg	5,55 µg/
Dioxyde d'azote (NO ₂)	1 heure	Actuel	158,7 µg/m³	161,3 μg/m³	226,3 µg/m³	197,5 µg/m³
	(Norme :	Sans projet 2016	94,9 µg/m³	105,6 μg/m ³	150,7 µg/m³	123,0 µg/m ³
	400 μg/m³)	Avec projet 2016	132,5 µg/m³	144,3 µg/m³	192,0 µg/m ³	161,8 µg/m ³
Concentrations ambiantes	24 heures	Actuel	22,3 µg/m³	21,7 μg/m ³	28,0 µg/m³	26,4 µg/m³
maximales 1 heure : 259 µg/m³	(Norme :	Sans projet 2016	14,4 µg/m³	13,2 μg/m³	17,4 μg/m³	15,4 µg/m³
24 heures : 130 µg/m³	200 μg/m³)	Avec projet 2016	18,5 μg/m³	17,5 μg/m³	21,5 µg/m³	19,0 µg/m³
1 an : 35 μg/m³	1 an	Actuel	4,6 µg/m³	3,8 µg/m³	3,9 µg/m³	4,5 μg/m³
	(Norme : 100 µg/m³)	Sans projet 2016	2,8 µg/m³	2,4 µg/m³	2,4 µg/m³	2,7 µg/m³
	100 μg/m²)	Avec projet 2016	3,2 µg/m³	2,6 μg/m³	2,7 μg/m³	2,9 µg/m³
Dioxyde d'azote (NO ₂)	1 heure	Actuel	197,8 µg/m³	200,4 μg/m ³	265,3 μg/m³	236,6 µg/m ³
	(Norme :	Sans projet 2016	133,9 μg/m³	144,6 μg/m³	189,8 μg/m³	162,0 μg/m ³
En incluant le bruit	400 μg/m³)	Avec projet 2016	166,5 μg/m³	183,3 µg/m³	231,1 µg/m³	200,9 μg/m ³
de fond selon la méthode de calcul utilisée	24 heures	Actuel	94,0 μg/m³	93,0 μg/m³	93,0 μg/m³	93,9 μg/m³
de calcul utilisee	(Norme :	Sans projet 2016	92,6 μg/m³	92,0 μg/m³	92,0 μg/m³	92,6 μg/m³
	200 μg/m³)	Avec projet 2016	93,1 µg/m³	92,2 μg/m³	92,2 μg/m³	92,4 μg/m ³
	1 an	Actuel	37,4 μg/m³	36,6 µg/m³	36,7 µg/m³	37,3 µg/m³
	(Norme :	Sans projet 2016	35,6 μg/m³	35,1 µg/m³	35,2 μg/m³	35,5 µg/m³
	100 μg/m³)	Avec projet 2016	35,9 µg/m³	35,4 μg/m³	35,5 µg/m³	35,6 µg/m³

Note : En raison de la proximité des stations d'air ambiant de la zone d'étude ou d'infrastructures routières d'importance, il est probable qu'une partie des concentrations ambiantes maximales retenues pour l'analyse proviennent de la circulation automobile. Ainsi, le fait d'additionner aux concentrations modélisées pour le complexe Turcot les concentrations ambiantes retenues pourrait conduire à une surestimation des concentrations dans la zone d'étude.

5. ADDENDA À L'ÉTUDE DE POTENTIEL ARCHÉOLOGIQUE – PHASE 2

Une étude sur le potentiel archéologique a été réalisée dans le cadre de l'étude d'impact sur l'environnement du projet de reconstruction du complexe Turcot (phase 1 : Ethnoscop 2007 et phase 2 : Ethnoscop 2008). Les résultats de cette étude ont été présentés à la section 6.3.5.5. Patrimoine archéologique et à l'annexe B de l'étude d'impact sur l'environnement.

Tel que mentionné précédemment, des modifications ont été apportées au tracé du complexe Turcot après le dépôt de l'étude d'impact sur l'environnement en mars 2008. Un addenda à l'étude de potentiel archéologique – phase 2 a donc été réalisé afin d'intégrer ces modifications. Deux arrondissements sont touchés par des modifications aux zones de potentiel archéologique, soit Côte-des-Neiges-Notre-Dame-de-Grâce et Sud-Ouest.

L'addenda à l'étude de potentiel archéologique – phase 2 se divise en deux volumes, soit le rapport d'étude et le recueil de plans. Afin de résumer les informations de l'addenda à l'étude de potentiel archéologique, il a été décidé de présenter, à l'annexe B du présent document, le volume 1 en entier ainsi que les plans 3 et 4 du volume 2 qui illustrent les zones à potentiel archéologique préhistorique et historique dans la zone d'étude

6. PRÉCISIONS ET CORRECTIONS

La présente section apporte certaines précisions ou corrections au contenu de l'étude d'impact sur l'environnement et de l'addenda 1.

Étude d'impact sur l'environnement – Rapport principal

> 3.4.2.5 Circulation et sécurité routière (p. 26)

Ajouter à la fin du premier paragraphe la phrase suivante :

« La largeur insuffisante des accotements contribue aussi au manque de visibilité et est donc une lacune importante en termes de sécurité. »

4.4 Optimisation du scénario retenu (p. 35)

Remplacer la dernière phrase du premier paragraphe par la phrase suivante :

« En guise d'exemple, en réponse aux demandes exprimées par la population, le MTQ a modifié le tracé à l'est de l'échangeur Turcot afin de maintenir l'intersection des rues Cazelais et Saint-Rémi. Le tracé a également été modifié afin d'aménager une zone tampon entre la falaise Saint-Jacques et les infrastructures de transport. »

> 4.4.1 Secteur Angrignon – Montréal-Ouest (p. 35)

Ajouter les objectifs suivants concernant la modification de la géométrie du secteur Angrignon – Montréal-Ouest :

- Confirmer la vocation de la rue Notre-Dame Ouest et du futur boulevard Pullman reliant la rue Notre-Dame Ouest à la rue Saint-Jacques comme un axe de transport et de desserte pour les futurs développements de la cour Turcot;
- Protéger la possibilité d'implanter un futur lien routier au-dessus du canal de Lachine pour relier les boulevards Sainte-Anne-de-Bellevue et Senkus.

> 4.4.2 Secteur De La Vérendrye et A-720 (p. 36)

Modifier le titre de la section par le texte suivant :

« Secteur De La Vérendrye ».

4.4.3 Secteur Turcot (p. 36)

Modifier le titre de la section par le texte suivant :

« Secteurs Turcot et A-720 ».

Remplacer le texte de la 5^e puce par le texte suivant :

« Améliorer le profil des ouvrages permanents et les possibilités de raccordement à l'existant sur l'A-720 entre l'échangeur Turcot et la rue Greene; ».

> 5.1.4 Échéancier de réalisation (p. 63)

Remplacer le paragraphe par le texte suivant :

« L'échéancier d'élaboration et de planification du projet s'échelonne sur 10 ans, soit entre 2007 et 2016. Les travaux de construction et de démantèlement s'échelonneront sur 7 ans, soit de la fin de 2009 à la fin de 2016. Toutefois, les ouvrages de l'échangeur Turcot pourraient être fonctionnels en 2015. »

Section 6.3 5.3 Éducation – institutions d'enseignement (p. 138)

Remplacer le texte du dernier paragraphe de la section par le texte suivant :

- « Par ailleurs, on note la présence de onze (11) centres de la petite enfance (CPE) et de trois (3) garderies dans la zone d'étude, soit :
- Le CPE Vive l'enfant, situé au 3711, rue Saint-Antoine Ouest, dans la ville de Montréal;
- Le CPE Enfankiri, situé au 5795, rue Beaulieu, dans la ville de Montréal;
- Le CPE Biscuit, situé au 3773, rue Workman, dans la ville de Montréal;
- Le CPE Enfance de la dame, situé au 4700, rue Dagenais, dans la ville de Montréal;
- Le CPE Paillasson inc., situé au 95, carré Sir-Georges-Etienne-Cartier, dans la ville de Montréal;
- Le CPE Enfants soleil inc., situé au 5656, rue Laurendeau, dans la ville de Montréal;
- Le CPE Petites chenilles, situé au 5851, chemin Upper-Lachine, dans la ville de Montréal;
- Le CPE Le train de bourgogne, situé au 2515, rue Delisle, dans la ville de Montréal;
- Le CPE Narnia, situé au 20, chemin Academy, dans la ville de Westmount;
- Le CPE St-Andrew, situé au 151, avenue Hillside, dans la ville de Westmount;
- Le CPE Terre des enfants, situé au 1090, avenue Greene, dans la ville de Westmount;

- La garderie K.I.D.S. Westmount II, située au 4795, rue Sainte-Catherine Ouest, dans la ville de Westmount;
- La garderie K.I.D.S. Westmount, située au 4467, rue Sainte-Catherine Ouest, dans la ville de Westmount;
- La garderie Les Petits Débutants inc.-Little Learners Daycare, située au 19, promenade Ronald, dans la ville de Montréal-Ouest. »

> 6.3.6.2.2 A-20 et échangeur Angrignon (p. 164)

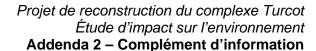
Remplacer le débit de « 63 030 véh./h » indiqué dans la deuxième phrase du premier paragraphe par « 6 300 véh./h ».

> 10.2 Description et évaluation des impacts potentiels (p. 349)

Remplacer le texte des mesures d'atténuation 82 et 83 par le texte suivant :

- 82. « Le MTQ mettra en place une procédure de communication permettant aux citoyens d'être informés au sujet de la gestion du bruit du chantier et de formuler des plaintes ou commentaires le cas échéant. »
- 83. « Le MTQ devra aussi effectuer un suivi acoustique ponctuel durant les travaux dans les zones sensibles au bruit, afin de s'assurer du respect des niveaux autorisés et de l'efficacité des mesures d'atténuation mises en place. »

> 10.3.2.4.5 Climat sonore (p. 389)


Remplacer le texte de la 3^e puce par le texte suivant :

« Le MTQ devra aussi effectuer un suivi acoustique ponctuel durant les travaux dans les zones sensibles au bruit, afin de s'assurer du respect des niveaux autorisés et de l'efficacité des mesures d'atténuation mises en place. »

Remplacer le texte de la 7^e puce par le texte suivant :

« Le MTQ mettra en place une procédure de communication permettant aux citoyens d'être informés au sujet de la gestion du bruit du chantier et de formuler des plaintes ou commentaires le cas échéant. »

Étude d'impact sur l'environnement – Annexes

Remplacer le tableau 12 de l'annexe E par le paragraphe et le tableau qui suivent :

« Quelques modifications ont été apportées au tableau 12 par rapport à la version présentée dans le rapport sectoriel sur la qualité de l'air. Une colonne a été ajoutée pour présenter la valeur maximale observée dans la zone d'étude. La concentration moyenne dans la zone d'étude a été recalculée pour tous les polluants afin d'exclure quelques récepteurs qui étaient localisés au niveau des emprises des autoroutes. Dans le tableau, on présente aussi les concentrations obtenues dans divers secteurs (De La Vérendrye, Lachine, canal de Lachine, etc.). Dans chacun de ces secteurs, des récepteurs ont été choisis en raison de leur exposition aux émissions provenant des véhicules circulant sur le réseau autoroutier et de leur représentativité du secteur. Les valeurs présentées dans le tableau sont la moyenne des valeurs obtenues à ces récepteurs, qui sont particulièrement affectés par les émissions provenant des divers tronçons du complexe Turcot. »

Tableau 12 : Résumé des résultats des modélisations pour les polluants les plus importants

Polluant	Période	Concentration Ambiante	Scénario	Maximum Zone d'étude	Moyenne Zone d'étude	Secteur De la Vérendrye	Autoroute 720	CDN NDG	Lachine	Canal de Lachine		
CO	1 heure (norme :	4,03 ppm (Poste n° 28)	Actuel	20,0 ppm	3,57 ppm	3,27 ppm	4,96 ppm	5,56 ppm	3,20 ppm	3,78 ppm		
	30 ppm)	,	Sans projet 2016	14,2 ppm	2,14 ppm	2,44 ppm	3,58 ppm	2,30 ppm	1,33 ppm	3,44 ppm		
			Projeté 2016	21,6 ppm	1,98 ppm	2,58 ppm	4,65 ppm	2,95 ppm	2,08 ppm	3,39 ppm		
	8 heures (norme :	2,76 ppm (Poste n° 28)	Actuel	5,73 ppm	0,89 ppm	1,25 ppm	1,15 ppm	1,80 ppm	0,73 ppm	0,90 ppm		
	13 ppm)	,	Sans projet 2016	4,15 ppm	0,52 ppm	1,18 ppm	0,90 ppm	0,67 ppm	0,33 ppm	0,82 ppm		
			Projeté 2016	5,80 ppm	0,48 ppm	0,70 ppm	1,08 ppm	0,72 ppm	0,51 ppm	0,82 ppm		
PM _{2.5}	24 heures	27,44 μg/m³ (Poste n° 28)	Actuel	1,64 μg/m³	0,12 μg/m³	0,068 μg/m³	0,098 μg/m³	0,146 µg/m³	0,062 μg/m³	0,065 μg/m³		
	(norme : 30 µg/m³)		Sans projet 2016	1,10 µg/m³	0,05 µg/m³	0,065 μg/m³	0,071 μg/m³	0,018 µg/m³	0,012 μg/m³	0,040 µg/m³		
					Projeté 2016	1,46 µg/m³	0,05 μg/m³	0,065 μg/m³	0,079 μg/m³	0,025 μg/m³	0,034 μg/m³	0,035 μg/m³
NO ₂		, , ,	Actuel	519 μg/m ³	202 μg/m³	195 µg/m³	158 µg/m³	156 μg/m³	98 μg/m³	187 μg/m³		
		400	Sans projet 2016	380 μg/m³	142 μg/m³	141 μg/m³	98 μg/m³	98 μg/m³	61 µg/m³	124 µg/m³		
			Projeté 2016	378 μg/m³	168 μg/m³	185 µg/m³	154 µg/m³	144 μg/m³	87 μg/m³	158 μg/m³		
	24 heures			130,1 µg/m³ (Poste n° 68)	Actuel	60,6 µg/m³	28,1 μg/m³	29,6 μg/m³	25,7 μg/m³	24,8 μg/m³	16,1 μg/m³	30,4 μg/m³
	(norme : 200 µg/m³)	(norme : 200	Sans projet 2016	37,2 μg/m ³	17,6 μg/m³	18,8 µg/m³	14,9 µg/m³	15,6 μg/m³	9,6 μg/m³	18,6 μg/m³		
			Projeté 2016	52,2 μg/m³	20,9 μg/m³	22,5 μg/m³	16,1 µg/m³	23,8 µg/m³	12,5 μg/m³	21,2 µg/m³		
	Annuel (norme :	35,2 µg/m³ (Poste n° 68)	Actuel	11,7 μg/m³	4,6 μg/m³	4,7 μg/m³	4,7 μg/m³	5,1 μg/m³	2,8 μg/m³	4,6 μg/m³		
	100 µg/m³)	,	Sans projet 2016	6,2 µg/m³	2,7 μg/m³	2,8 µg/m³	2,9 µg/m³	3,0 µg/m³	1,8 μg/m³	2,8 µg/m³		
			Projeté 2016	11,4 µg/m³	3,3 µg/m³	3,1 µg/m³	2,8 μg/m³	3,6 µg/m³	2,2 μg/m³	3,0 µg/m³		

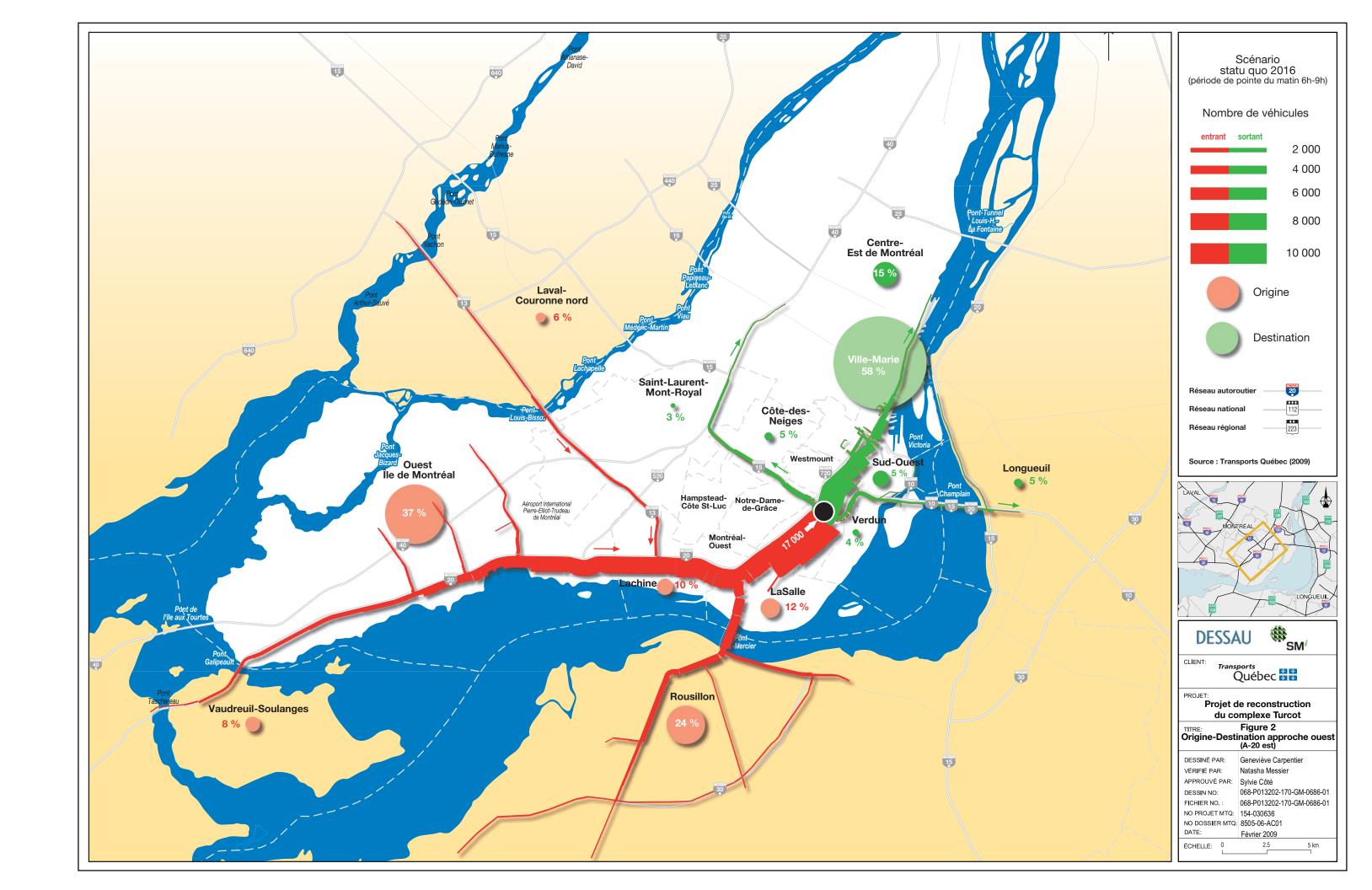
CDN/NDG: Côte-des-Neiges-Notre-Dame-de-Grâce

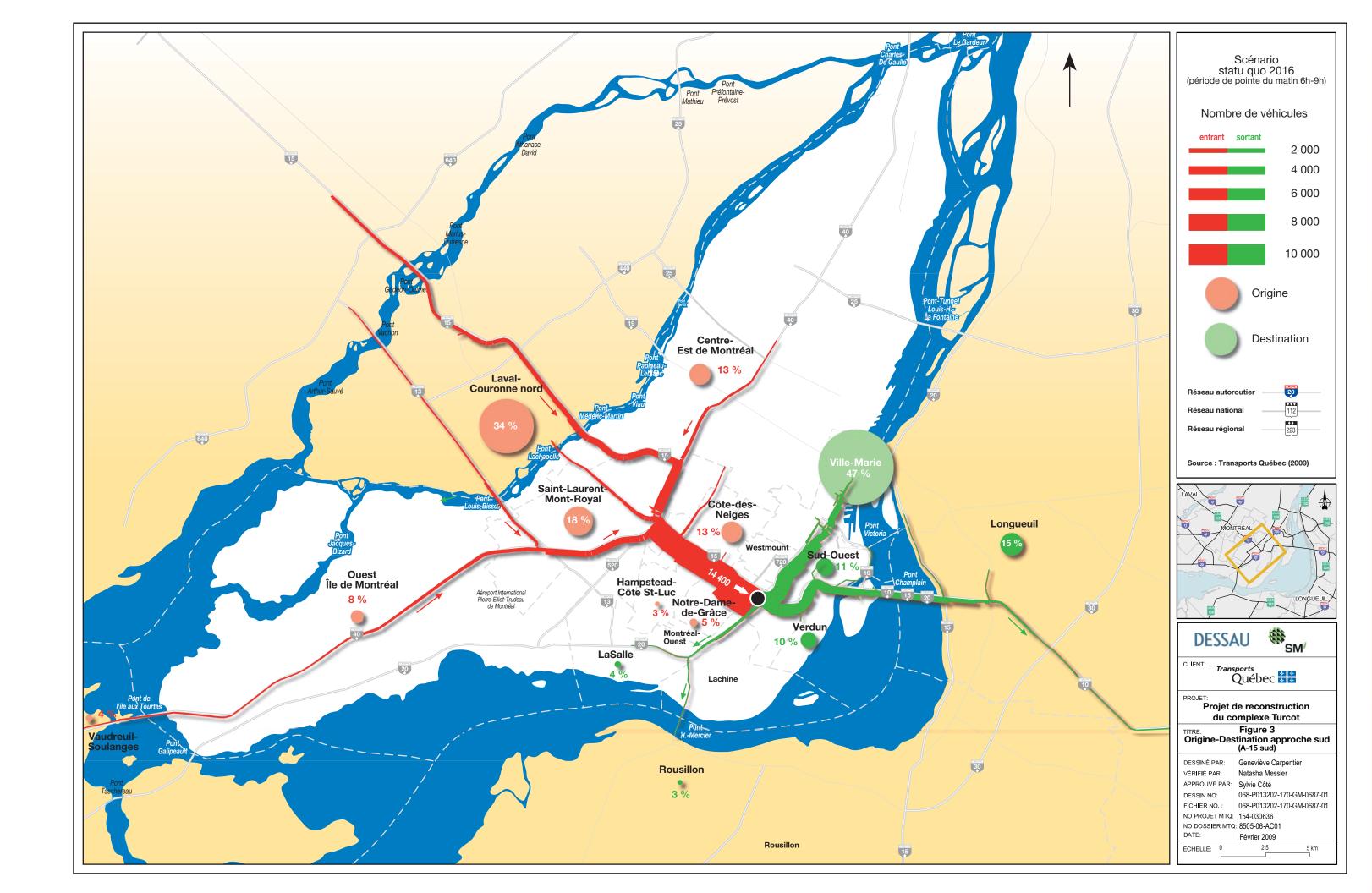
Note : Le modèle utilisé pour le calcul des concentrations de NO2, CALINE4, tient compte des concentrations ambiantes d'ozone, de monoxyde d'azote et de dioxyde d'azote. La portion des valeurs maximales obtenues par le modèle attribuable au bruit de fond a été retirée pour obtenir la seule contribution des véhicules, et c'est cette contribution qui est montrée au tableau 12.

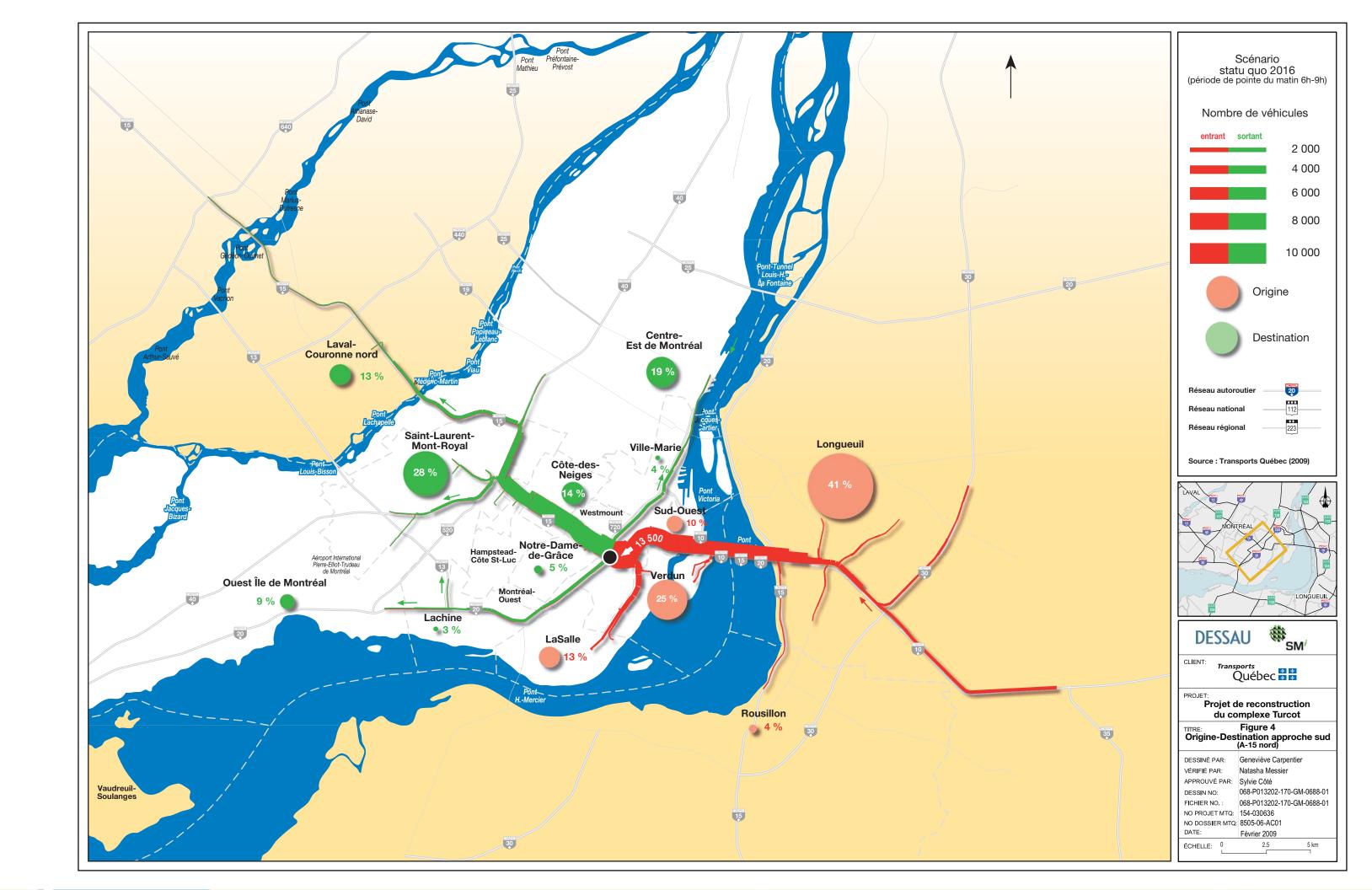
Addenda 1 : Réponses aux questions et commentaires du MDDEP et de l'ACÉE

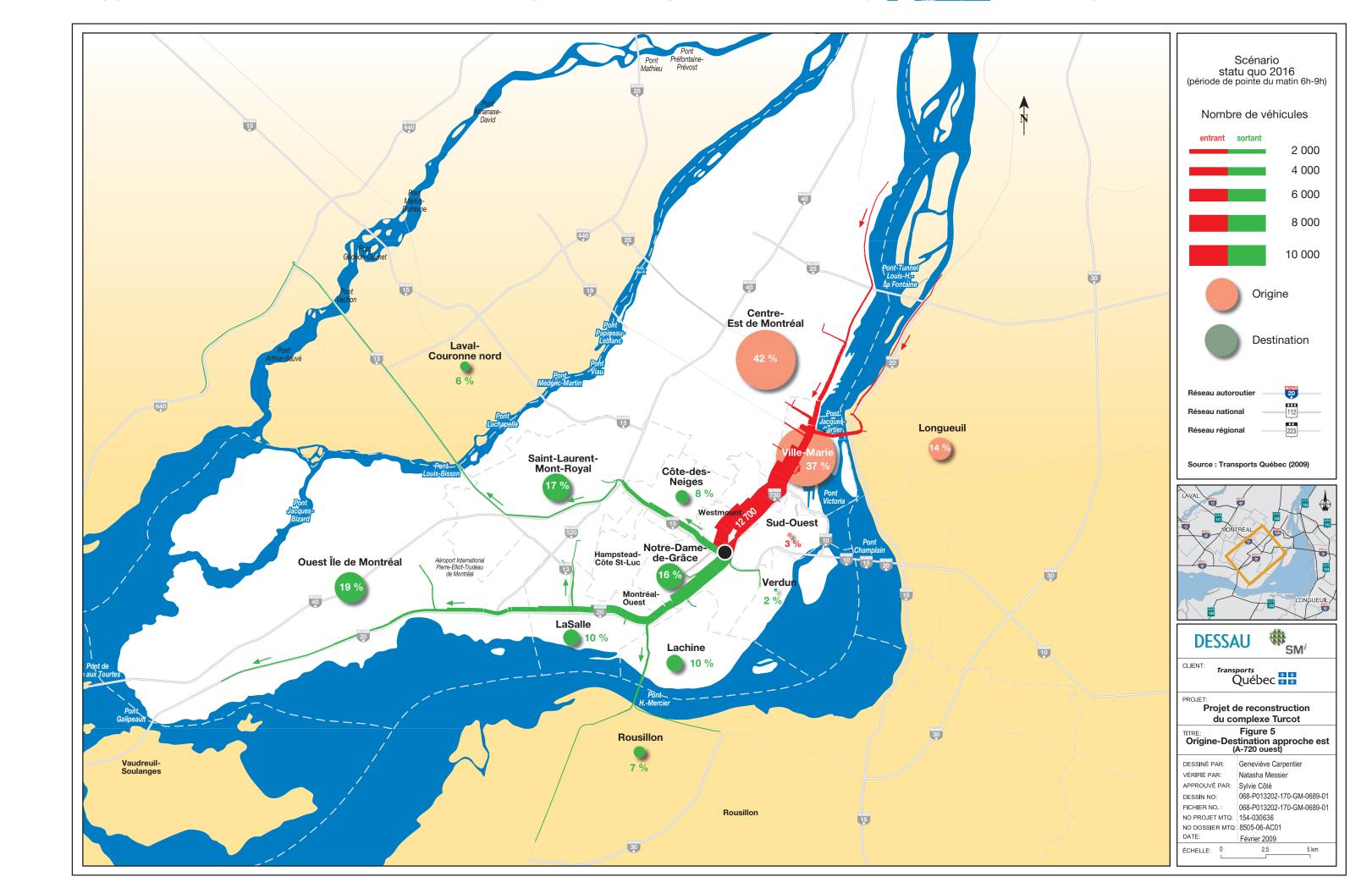
> QC-35 (p. 22)

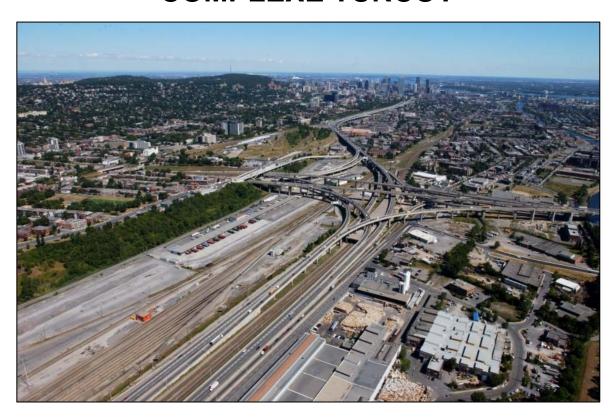
En complément d'information à la question/commentaire 35, les figures 2 à 5 présentent les origines et destinations des usagers (véhicules) de l'échangeur Turcot en période de pointe du matin (6 h à 9 h) ainsi que leur distribution sur le réseau routier, et ce, pour le statu quo (scénario de référence) en 2016. Il y a une figure pour chacune des quatre approches de l'échangeur.


Pour chaque approche, on retrouve en rouge les véhicules qui entrent dans l'échangeur Turcot et les principales routes utilisées pour y accéder. Après l'entrée dans l'échangeur, la dispersion des véhicules sur le réseau routier est indiquée en vert. Aussi, chaque figure présente en rouge les principales origines des usagers de l'approche illustrée et en vert leurs destinations, le tout illustré par des pastilles. Par exemple, sur la figure 2, les véhicules accédant à l'échangeur Turcot par l'approche Ouest proviennent à 37 % de l'ouest de Montréal. Les véhicules accédant par cette approche se destinent au secteur Ville-Marie à 58 %.


QC-46 (p. 31) et QC-2 (p. 36)


La deuxième partie des réponses aux questions et commentaires du MDDEP concernant la relocalisation de certains locataires et le processus d'acquisition devrait se lire :


« En ce qui concerne la relocalisation des résidents déplacés, le Ministère travaille avec la Société d'habitation du Québec et l'Office municipal d'habitation de Montréal afin d'identifier et mettre en place des mesures qui permettraient aux résidents déplacés involontairement dans le cadre du projet de demeurer dans le quartier et d'avoir accès à un logement abordable. »



ANNEXE A : ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE

RECONSTRUCTION DU COMPLEXE TURCOT

ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE

Final

29 janvier 2009

RECONSTRUCTION DU COMPLEXE TURCOT

ÉVALUATION DES IMPACTS SUR LA SANTÉ HUMAINE

Final

29 janvier 2009

3950, boul. de la Chaudière, Bureau 140 Québec (Québec) Canada, G1X 4M8 Tél. : (418) 657-6859

Fax.: (418) 657-1325 info@cjb-environnement.com

Table des matières

1	Int	troduction	1
2	Év	aluation des impacts à proximité du complexe Turcot	1
	2.1	Monoxyde de carbone	2
	2.2	Dioxyde d'azote	4
	2.3	Composés organiques volatils	7
	2.3	.1 Benzène	8
	2.3	.2 Formaldéhyde	10
	2.4	Particules	13
	2.5	Ozone troposphérique	17
3	Éν	valuation des impacts régionaux	17
4		valuation quantitative à l'aide du logiciel AQBAT des effets sur la santé	18
	4.1	Description du modèle AQBAT	18
	4.2	Résultats d'études réalisées à l'aide de AQBAT	20
	4.3	Application au projet du complexe Turcot	21
5	Co	onclusion	28
6	Ré	eférences et documentation consultée	30

Équipe de travail

Jacques Bérubé, biol. Jonathan M. Olson, biol., M.Sc.

1 Introduction

Le projet de reconstruction du complexe Turcot consiste à remplacer une bonne partie des voies qui le constituent par de nouvelles voies dont la position précise sera un peu déplacée par rapport à la configuration actuelle, autant sur le plan horizontal que vertical. Le repositionnement a pour but de permettre la reconstruction progressive de nouveaux segments de route tout en maintenant l'utilisation des voies actuelles tout au long de la durée des travaux. À terme, la configuration légèrement décalée du complexe fera en sorte que les conditions de dispersion des contaminants atmosphériques émis par les véhicules seront légèrement modifiées. Le nouveau patron de dispersion aura des incidences sur l'exposition de la population résidant dans les secteurs localisés à proximité du complexe et la présente étude vise à évaluer les effets que ces changements pourront avoir sur la santé de ces récepteurs.

La première partie de l'étude dresse un portrait des effets appréhendés sur la santé de la population vivant à proximité du complexe Turcot. La deuxième partie présente les effets appréhendés sur la santé à l'échelle de la région de Montréal. Pour les deux types d'échelles d'analyse, les effets sur la santé sont évalués pour cinq contaminants ou familles de contaminants, soient le monoxyde de carbone (CO), le dioxyde d'azote (NO₂), les composés organiques volatils (COV), les particules et l'ozone troposphérique (O₃), qui représentent les principaux contaminants émis par le transport routier et pouvant avoir un impact sur la santé humaine. L'évaluation des COV est réalisée en fonction des effets de deux substances représentatives : le benzène et le formaldéhyde.

La dernière partie de l'étude présente les résultats d'une évaluation quantitative des bénéfices/inconvénients et des coûts en matière de santé publique liés à la qualité de l'air, réalisée à l'aide d'un outil de calcul mis au point par Santé Canada.

2 Évaluation des impacts à proximité du complexe Turcot

Cette section présente une évaluation des impacts du projet de reconstruction du complexe Turcot sur la santé des personnes résidant à proximité sur la base de leur exposition aux contaminants émis par les véhicules utilisant l'échangeur, avant et après la réalisation du projet.

L'évaluation présentée ici est essentiellement basée sur les résultats de l'étude de modélisation de la dispersion atmosphérique préparée par le Consortium Dessau / Les Consultants S.M. (2008) et qui décrit les conditions d'émission de même que les patrons de dispersion avant et après la finalisation du projet de reconstruction. La modélisation a porté sur une période totale de cinq années (2002 à 2006) et, de façon systématique, les concentrations maximales calculées pour des durées de 1 heure, 8 heures, 24 heures et annuelles ont été retenues, selon le paramètre.

Il faut souligner que l'incidence et l'importance réelle des effets décrits ici de façon générale dépendent par ailleurs de la sensibilité des individus, des concentrations précises auxquelles ils sont exposés et de la durée de la période d'exposition considérée.

2.1 Monoxyde de carbone

Le monoxyde de carbone n'est pas un irritant des voies respiratoires comme plusieurs des gaz émis par les véhicules, il s'agit plutôt d'un gaz asphyxiant. La toxicité du CO est le résultat de son affinité à se lier à l'hémoglobine¹ pour former de la carboxyhémoglobine, une molécule qui ne peut transporter l'oxygène aux tissus. L'affinité du monoxyde de carbone à se lier à l'hémoglobine, de 200 à 250 fois supérieure à celle de l'oxygène, entraîne une diminution de la capacité de transport de l'oxygène vers les différents tissus. En d'autres termes, le CO va, en quelque sorte, mobiliser l'hémoglobine qui normalement devrait servir à transporter l'oxygène vers les tissus.

Les symptômes d'intoxication au CO sont caractéristiques de l'hypoxie. L'importance des effets est habituellement corrélée avec le niveau de carboxyhémoglobine dans le sang. Il est important de souligner toutefois que la formation de carboxyhémoglobine est un processus réversible, qui ne produit généralement pas de séquelles lors d'expositions aiguës, à condition toutefois que l'exposition tissulaire ne soit pas assez importante pour avoir provoqué une dégénérescence des cellules nerveuses.

Selon l'Organisation mondiale de la santé (OMS, 2000), pour assurer la protection de la santé de tous les citoyens (incluant les individus qui ne sont pas en parfaite santé et les fœtus), le taux de carboxyhémoglobine ne devrait pas excéder 2,5 %. Cette valeur est sensiblement plus faible que la teneur de 11 % que l'on peut observer chez les gros fumeurs (OMS, 1987). Dans le but de s'assurer que le taux de carboxyhémoglobine demeure inférieur à 2,5 %, même lors de périodes d'activités physiques légères ou modérées, des critères de qualité de l'air ont été établis par l'OMS (2000) pour le monoxyde de carbone : ils sont de 100 mg/m³ (90 ppm), 60 mg/m³ (50 ppm), 30 mg/m³ (25 ppm) et 10 mg/m³ (10 ppm) pour des périodes respectives de 15 minutes, 30 minutes, 1 heure et 8 heures. Les normes de la Ville de Montréal pour le monoxyde de carbone sont comparables aux critères de l'OMS (2000), bien que légèrement plus élevées : elles sont de 35 mg/m³ (30 ppm) pour une période de 1 heure et de 15 mg/m³ (13 ppm) pour une période de 8 heures.

Les tableaux ci-dessous présentent l'évolution des concentrations de CO résultant de la circulation sur l'ensemble des voies du complexe Turcot (Consortium Dessau / Les Consultants S.M., 2008). Il faut noter que ces données constituent la somme (1) des concentrations maximales résultant de la modélisation des émissions du complexe Turcot et (2) de la concentration « bruit de fond » pour ce secteur de Montréal qui a été considérée, de façon conservatrice, équivalente à la concentration maximale mesurée à l'échangeur Décarie (Poste n° 28), soit de 4,03 ppm sur une période de 1 heure et de 2,76 ppm sur une période de 8 heures. Les résultats de la modélisation sont fournis pour 10 récepteurs ponctuels choisis en raison de leur proximité par rapport aux voies et de leur représentativité en fonction des différents segments du complexe Turcot. Les résultats sont présentés pour les conditions actuelles (2007) et pour les conditions futures (2016). Deux scénarios ont été développés pour les conditions futures en 2016 : le scénario « statu quo », sans modification de la configuration actuelle du tracé, et le scénario « avec le projet » qui comprend une modification de la configuration du tracé.

_

¹ L'hémoglobine est une molécule responsable du transport de l'oxygène servant au métabolisme des cellules dans les divers tissus.

Évolution de la concentration maximale de CO (1 h)

				2016	
Récepteur	Secteur	2007 (ppm)	Statu quo (ppm)	Avec (ppm)	Écart (ppm)
1	De la Vérendrye (rue de Roberval)	11,330	8,530	7,330	-1,200
2	De la Vérendrye (rue Cabot)	8,730	10,130	10,430	0,300
3	Sud de l'autoroute 720 (rue de Richelieu)	11,930	13,130	16,930	3,800
4	Montréal-Ouest entre Ballantyne et Brynmor	10,130	6,830	8,630	1,800
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	15,530	12,230	15,230	3,000
6	Nord de l'autoroute 720 (avenue Hillside)	15,030	11,630	13,030	1,400
7	Lachine (rue Ouellette)	9,130	7,130	9,230	2,100
8	Lachine (entre Camille et Vincent)	10,330	5,930	6,930	1,000
9	Canal de Lachine (près du complexe Turcot)	12,430	12,830	11,730	-1,100
10	Centre Gadbois	8,330	6,988	7,430	0,442
	Moyenne	11,290	9,536	10,690	1,154

Source: Consortium Dessau / Les Consultants S.M. (2008)

La norme de la Ville de Montréal pour le monoxyde de carbone est de 30 ppm pour une période de 1 heure

Évolution de la concentration maximale de CO (8 h)

	oteur Secteur		,	2016	
Récepteur		2007 (ppm)	Statu quo (ppm)	Avec (ppm)	Écart (ppm)
1	De la Vérendrye (rue de Roberval)	6,060	4,960	3,810	-1,150
2	De la Vérendrye (rue Cabot)	4,540	5,190	4,491	-0,699
3	Sud de l'autoroute 720 (rue de Richelieu)	4,335	4,666	5,148	0,481
4	Montréal-Ouest entre Ballantyne et Brynmor	4,779	3,616	4,123	0,506
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	5,623	5,166	5,291	0,125
6	Nord de l'autoroute 720 (avenue Hillside)	5,729	4,810	5,029	0,219
7	Lachine (rue Ouellette)	3,916	3,698	3,685	-0,013
8	Lachine (entre Camille et Vincent)	4,179	3,304	3,366	0,063
9	Canal de Lachine (près du complexe Turcot)	4,604	4,591	4,323	-0,269
10	Centre Gadbois	4,753	4,207	3,687	-0,520
	Moyenne	4,852	4,421	4,295	-0,126

Source: Consortium Dessau / Les Consultants S.M. (2008)

La norme de la Ville de Montréal pour le monoxyde de carbone est de 13 ppm pour une période de 8 heures

Selon ces résultats, quel que soit le scénario, les concentrations de CO seront nettement inférieures aux normes en vigueur. En effet, selon les estimations réalisées, les concentrations totales de CO sur une durée de 1 heure n'excéderont pas, dans le pire des cas, 16,930 ppm en 2016. Les concentrations de CO prévues sur une durée de 8 heures seront, dans le pire des cas, de 5,291 ppm en 2016.

Les concentrations attendues seront donc nettement plus basses que les niveaux à partir desquels des effets sur la santé humaine peuvent être appréhendés même chez les individus les plus sensibles. De plus, en 2016, les écarts entre les concentrations « avec le projet » et celles du statu quo seront généralement très faibles. En effet, pour la moyenne des concentrations maximales modélisées sur une période de 8 heures, la concentration est moins élevée avec le projet que dans le cas du maintien du statu quo. L'impact associé aux émissions de CO peut donc être considéré nul ou même légèrement positif.

2.2 Dioxyde d'azote

Le dioxyde d'azote (NO₂) appartient à la famille des oxydes d'azote (NO₂). Le NO₂ est relativement peu soluble et, par conséquent, n'est pas absorbé par les cloisons nasales humides. La faible hydrosolubilité du dioxyde d'azote lui permet de pénétrer profondément dans le tractus respiratoire pour former de l'acide nitreux (HNO₂) et de l'acide nitrique (HNO₃), deux substances irritantes qui peuvent endommager la muqueuse tapissant l'arbre bronchique (USEPA, 1993). La cinétique d'absorption de ce toxique apparaît déterminée beaucoup plus par sa réactivité chimique que par sa solubilité. De plus, l'absorption du dioxyde d'azote au niveau pulmonaire est saturable et très dépendante de la température, suggérant que les réactions avec les constituants de la surface pulmonaire représentent un important, voire unique mécanisme de l'absorption. Des concentrations de 2 à 17 ppm (3 760 à 32 470 µg/m³) s'avèrent être sub-létales pour certaines cellules alvéolaires et les cellules épithéliales ciliées. Après absorption, le dioxyde d'azote est transformé en acide nitrique puis en ions nitrites dans la circulation sanguine et induit la formation de methémoglobine, résultant de l'oxydation du fer ferreux (+2) de l'hémoglobine pour le fer ferrique (+3), selon une relation dose-dépendante linéaire. L'incapacité de la méthémoglobine à se combiner avec l'oxygène entraîne des effets cliniques dus à une hypoxie tissulaire (Troncy et al., 1997).

De façon générale, lors d'exposition au NO₂, des changements substantiels dans la fonction pulmonaire des sujets en bonne santé peuvent être observés lorsque les concentrations de la substance dans l'air excèdent 4700 μg /m³ (Linn *et al.*, 1985; Mohsenin, 1988; Goings *et al.*, 1989; Frampton *et al.*, 1991). Lorsque les concentrations dans l'air sont inférieures à cette concentration, on observe des résultats plus mitigés chez les individus en bonne santé (Helleday *et al.*, 1995). Les bronchitiques réagissent cependant plus au NO₂ que les sujets sains puisque des effets sur la fonction pulmonaire peuvent être observés chez ce groupe lors d'expositions relativement courtes (5 minutes) à des concentrations d'environ 2800 μg /m³. Les asthmatiques seraient encore plus sensibles aux effets du NO₂. En effet, des symptômes tels une sensation d'oppression de la poitrine ont été ressentis par certains asthmatiques à des concentrations de seulement 900 μg /m³ (Avol *et al.*, 1988). En deçà de cette concentration, les changements de la fonction pulmonaire seraient toutefois faibles.

Le United States Environmental Protection Agency (USEPA), tout comme l'Agency for Toxic Substances and Disease Registry (ATSDR) et l'Organisation Mondiale de la Santé (OMS), ne proposent pas d'estimateurs de risques pour une exposition chronique au dioxyde d'azote car il se transforme en acide nitrique ou nitreux lorsqu'il entre en contact avec l'eau, puis en nitrates et en nitrites en milieu alcalin (USEPA, 1994). À défaut d'estimateur de risque, l'évaluation peut être réalisée en comparant la concentration modélisée dans l'air ambiant avec une concentration sécuritaire assurant une protection de la santé humaine.

Sur la base des résultats de diverses études démontrant que des effets sur le système respiratoire sont observés à partir de concentration en NO_2 de $375-565 \mu g/m^3$ (0,20-0,30 ppm), l'OMS (2000), recommande que la concentration de NO_2 dans l'air n'excède pas 200 $\mu g/m^3$ sur une période d'une heure. L'écart que l'on observe entre le critère de l'OMS et les concentrations les plus faibles où un effet a été observé s'explique par le fait que l'OMS applique un facteur de sécurité supplémentaire de 2 (divise la concentration par 2). Ce facteur de protection est retenu pour prendre en compte une augmentation significative de la réaction à une substance bronchoconstrictrice à une exposition de 190 $\mu g/m^3$ ainsi qu'une méta-analyse qui indique des effets sur les voies respiratoires à une concentration inférieure à 365 $\mu g/m^3$. L'OMS présente, par ailleurs, un critère de 40 $\mu g/m^3$ de NO_2 pour une exposition annuelle (OMS, 2000). Ce critère n'est pas basé sur une évaluation scientifique des effets chroniques du NO_2 , mais vise plutôt l'utilisation du NO_2 comme un indicateur du mélange de substances polluantes duquel il fait

généralement partie. Les critères de l'OMS (2000) ont été retenus de nouveau lors de la réévaluation réalisée en 2005 (OMS, 2006).

De son côté, la Ville de Montréal présente une norme de 400 $\mu g/m^3$ de NO_2 pour une durée de 1 heure, de 200 $\mu g/m^3$ de NO_2 pour une durée de 24 heures et de 100 $\mu g/m^3$ pour une période annuelle.

Les tableaux ci-dessous présentent l'évolution des concentrations de NO₂ résultant de la circulation sur les voies du complexe Turcot (Consortium Dessau / Les Consultants S.M., 2008). Il faut noter que ces données constituent la somme (1) des concentrations maximales résultant de la modélisation des émissions du complexe Turcot et (2) de la concentration « bruit de fond » pour ce secteur de Montréal qui a été considérée, de façon conservatrice, équivalente à la concentration maximale mesurée à Verdun (Poste n° 68) de 2003 à 2007 pour les périodes de 1 heure, de 24 heures et d'un an. Ces concentrations « bruit de fond » sont respectivement de 259,4 µg/m³ 130,2 µg/m³ et 35,2 µg/m³. Les résultats de la modélisation sont fournis pour 10 récepteurs ponctuels choisis en raison de leur proximité par rapport aux voies et de leur représentativité en fonction des différents segments du complexe Turcot. Les résultats sont présentés pour les conditions actuelles (2007) et pour les conditions futures (2016). Deux scénarios ont été développés pour les conditions futures : le scénario « statu quo », sans modification de la configuration actuelle du tracé, et le scénario « avec le projet » qui comprend une modification de la configuration du tracé.

Évolution de la concentration maximale de NO₂ (1 h)

	septeur Secteur		2016			
Récepteur		2007 (µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)	
1	De la Vérendrye (rue de Roberval)	<u>588,2</u>	378,2	359,6	-18,5	
2	De la Vérendrye (rue Cabot)	449,3	399,3	<u>432,0</u>	32,7	
3	Sud de l'autoroute 720 (rue de Richelieu)	<u>667,6</u>	<u>452,8</u>	<u>528,7</u>	75,9	
4	Montréal-Ouest entre Ballantyne et Brynmor	<u>471,8</u>	340,2	353,9	13,7	
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	<u>657,7</u>	368,0	<u>425,8</u>	57,8	
6	Nord de l'autoroute 720 (avenue Hillside)	744,4	394,5	<u>405,5</u>	11,0	
7	Lachine (rue Ouellette)	450,0	344,2	381,2	37,1	
8	Lachine (entre Camille et Vincent)	<u>563,1</u>	315,9	342,0	26,0	
9	Canal de Lachine (près du complexe Turcot)	<u>559,1</u>	441,7	<u>439,1</u>	-2,6	
10	Centre Gadbois	<u>590,6</u>	<u>413,1</u>	<u>434,9</u>	21,8	
	Moyenne	<u>574,2</u>	384,8	<u>410,3</u>	25,5	

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse le critère de l'OMS pour le dioxyde d'azoté de 200 µg/m³ pour une période de 1 heure.

Soulignée: dépasse la norme de la Ville de Montréal pour le dioxyde d'azote de 400 µg/m³ pour une période de 1 heure.

Évolution de la concentration maximale de NO₂ (24 h)

				2016	
Récepteur	Secteur	2007 (µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)
1	De la Vérendrye (rue de Roberval)	157,5	142,3	138,0	-4,3
2	De la Vérendrye (rue Cabot)	143,1	146,5	149,6	3,1
3	Sud de l'autoroute 720 (rue de Richelieu)	194,8	142,8	145,4	2,6
4	Montréal-Ouest entre Ballantyne et Brynmor	148,3	136,4	137,5	1,1
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	156,2	136,7	139,7	3,0
6	Nord de l'autoroute 720 (avenue Hillside)	175,5	137,2	138,3	1,1
7	Lachine (rue Ouellette)	149,8	140,3	146,0	5,7
8	Lachine (entre Camille et Vincent)	155,5	133,3	136,4	3,1
9	Canal de Lachine (près du complexe Turcot)	153,9	142,4	141,3	-1,0
10	Centre Gadbois	169,7	148,5	146,9	-1,6
	Moyenne	160,4	140,6	141,9	1,3

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras: Dépasse la norme de la Ville de Montréal pour le dioxyde d'azote de 200 µg/m³ pour une période de 24 heures.

Évolution de la concentration maximale de NO2 (annuel)

	Secteur		2016			
Récepteur		2007 (μg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)	
1	De la Vérendrye (rue de Roberval)	43,5	39,2	37,2	-2,0	
2	De la Vérendrye (rue Cabot)	38,3	41,1	42,2	1,1	
3	Sud de l'autoroute 720 (rue de Richelieu)	58,0	39,7	40,3	0,6	
4	Montréal-Ouest entre Ballantyne et Brynmor	39,0	36,5	36,9	0,4	
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	43,5	36,7	37,3	0,5	
6	Nord de l'autoroute 720 (avenue Hillside)	51,4	36,4	36,6	0,2	
7	Lachine (rue Ouellette)	39,7	37,8	39,9	2,1	
8	Lachine (entre Camille et Vincent)	44,4	35,6	36,4	0,7	
9	Canal de Lachine (près du complexe Turcot)	40,7	38,2	37,6	-0,6	
10	Centre Gadbois	49,4	42,5	41,1	-1,4	
	Moyenne	44,8	38,4	38,5	0,2	

Source : Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse le critère de l'OMS pour le dioxyde d'azoté de 40 µg/m³ pour une période annuelle.

Soulignée : dépasse la norme de la Ville de Montréal pour le dioxyde d'azote de 100 µg/m³ pour une période annuelle.

Selon ces données, les concentrations maximales de NO₂ en 2016 dépasseront le critère de l'OMS pour une période de 1 heure (200 µg/m³) à tous les récepteurs modélisés. Ce résultat est peu surprenant puisque la concentration « bruit de fond » retenue dans le cadre de la présente étude (259,4 µg/m³), qui est additionnée au résultat de la modélisation des émissions spécifiques au complexe Turcot, dépasse elle-même ce critère. Toutefois, il faut souligner que les concentrations pour 2016 sont moins élevées que celles modélisées pour les conditions

actuelles. Cette amélioration est surtout causée par la diminution prévue des émissions de NO₂ par les automobiles.

En ce qui concerne les effets liés à la nouvelle position des voies, ceux-ci peuvent être évalués en fonction de l'écart entre la modélisation pour 2016 « avec le projet » et le statu quo. Pour la plupart des récepteurs, une augmentation est observée en lien avec la nouvelle configuration du complexe Turcot. Ceci a comme effet de faire passer les concentrations maximales aux récepteurs 2, 5 et 6 à un niveau supérieur à la norme de la Ville de Montréal pour une période de 1 heure (400 μg/m³). En effet, la concentration maximale moyenne pour l'ensemble des récepteurs a une valeur de 410,3 μg/m³ et dépasse la norme de la Ville de Montréal lorsque le nouveau trajet est considéré, tandis qu'elle serait de 384,8 μg/m³ en 2016 avec le trajet actuel. Les concentrations de NO₂ dépassent donc, pour certains récepteurs, la concentration recommandée par l'OMS ainsi que la norme de la Ville de Montréal pour des effets aigus et le projet contribue à ces dépassements. En moyenne, les effets du projet (scénario « avec ») comptent pour 6 % de la concentration totale en NO₂.

En ce qui concerne les concentrations modélisées sur une période de 24 heures, la norme de la ville de Montréal est respectée en tout temps pour tous les récepteurs et les impacts du projet sont faibles par rapport à cette norme.

Dans le cas d'une exposition annuelle, les concentrations modélisées pour 2016, avec le projet, dépassent le critère de l'OMS au niveau de 3 récepteurs seulement (2, 3 et 10). Dans le cas des récepteurs 2 et 3, le projet a un effet très faible sur la qualité de l'air. Dans le cas du récepteur 10, le projet amène une diminution de la concentration, mais celle-ci demeure plus élevée que le critère de l'OMS. De façon générale, le projet a peu d'effet sur l'exposition chronique des récepteurs au NO₂.

En conclusion, en 2016, les concentrations de NO_2 seront généralement plus faibles que celles qui sont observées actuellement dans le secteur du complexe Turcot. Cependant, la nouvelle disposition des voies fera en sorte que les diminutions attendues seront moins importantes que dans un scénario où la disposition actuelle des voies serait maintenue. En 2016, la nouvelle configuration fera en sorte que les normes quotidiennes et annuelles de la Ville de Montréal seront respectées en tout temps alors que les concentrations horaires de NO_2 dépasseront occasionnellement la norme de la Ville de Montréal. Il s'agira de dépassements ponctuels dont la moyenne s'établira à environ 410 μ g/m³, une valeur qui s'inscrit dans le bas de la fourchette des résultats de diverses études démontrant des effets sur le système respiratoire (375–565 μ g/m³).

2.3 Composés organiques volatils

Les composés organiques volatils (COV) sont des produits formés de carbone qui ont la propriété de se volatiliser facilement. Les COV se retrouvent donc sous forme de gaz dans l'atmosphère. Les véhicules de transport sont responsables de l'émission de plusieurs types de COV. Selon la CUM (1999), 50 % des COV retrouvés dans l'air ambiant originent du transport routier. Sur le plan toxicologique, les effets des différents COV peuvent être très variables et dépendent en partie de la structure chimique de la substance en cause. Il est donc impossible de définir une concentration pouvant être jugée sécuritaire pour l'ensemble des COV. L'impact sur la santé humaine associé à la présence de COV dans l'air ambiant ne peut, par conséquent, être quantifié à moins de connaître les quantités relatives des différents COV émis par les véhicules.

Les COV comprennent divers composés ayant des effets toxicologiques variables et, de tous les produits émis par les gaz d'échappement des véhicules mesurés sur le territoire de la CMM, le benzène est, sans contredit, le plus préoccupant (CUM, 1999). C'est pour cette raison que le

benzène a été retenu comme représentatif des COV. En plus du benzène, le formaldéhyde a également été retenu. Tout comme le benzène, le formaldéhyde est une substance toxique produite par la combustion et présente dans les gaz d'échappement des véhicules, quoique le transport routier soit devenu une source beaucoup moins importante de formaldéhyde dans l'environnement depuis l'ajout des catalyseurs dans les systèmes d'échappement des véhicules (ATSDR, 1999).

2.3.1 Benzène

Le benzène est reconnu comme un agent leucémiant (leucémie non-lymphoïde). Plusieurs études ont en effet démontré qu'une exposition soutenue à des concentrations élevées de benzène en milieu de travail pouvait induire une augmentation des incidences de leucémies chez les personnes exposées. Selon l'USEPA (2008a), une personne qui est exposée à une concentration de 0,13 à 0,45 μg/m³ pendant 70 ans (24 heures par jour, 365 jours par année) verrait son risque de décéder d'un cancer augmenter par un facteur de un sur un million. Cette relation peut également être représentée par un risque cancérigène unitaire (RCU) de 2,2E-06 (μg/m³)-¹ à 7,8E-06 (μg/m³)-¹, c'est-à-dire que le risque de développer un cancer augmente de 2,2E-06 à 7,8E-06 pour chaque μg/m³ de benzène dans l'air respiré par une personne sur toute une vie. L'EPA (2008a) présente également une concentration de référence dans l'air de 30 μg/m³ pour des effets hémotoxiques non cancérigènes. Cette concentration de référence constitue un seuil sous lequel aucun effet autre que cancérigène n'est appréhendé.

Les tableaux ci-dessous présentent l'évolution des concentrations de benzène résultant de la circulation sur les voies du complexe Turcot (Consortium Dessau / Les Consultants S.M., 2008). Il faut noter que ces données constituent la somme (1) des concentrations maximales résultant de la modélisation des émissions du complexe Turcot et (2) de la concentration « bruit de fond » pour ce secteur de Montréal qui a été considérée, de façon conservatrice, équivalente à la concentration maximale mesurée entre 2003 et 2007 à la station Maisonneuve (Poste n° 61) pour les périodes de 24 heures et d'un an. Ces concentrations « bruit de fond » sont respectivement de 15,35 µg/m³ et de 2,63 µg/m³. Les résultats de la modélisation sont fournis pour 10 récepteurs ponctuels choisis en raison de leur proximité par rapport aux voies et de leur représentativité en fonction des différents segments du complexe Turcot. Les résultats sont présentés pour les conditions actuelles (2007) et pour les conditions futures (2016). Deux scénarios ont été développés pour les conditions futures : le scénario « statu quo », sans modification de la configuration actuelle du tracé, et le scénario « avec le projet » qui comprend une modification de la configuration du tracé.

Les concentrations modélisées sur une période de 24 heures sont toutes supérieures au critère provisoire du MDDEP pour le benzène (10 μ g/m³). Cependant, ces concentrations sont presque entièrement associées au bruit de fond. En effet, la concentration modélisée maximale liée directement à la circulation sur le complexe Turcot (1,172 μ g/m³ pour le récepteur 5 en 2007) est largement inférieure au critère provisoire et l'impact du projet, mesuré en fonction de l'écart entre les concentrations statu quo et les concentrations « avec le projet », est encore plus faible (écart maximal de 0,184 μ g/m³). De plus, le bruit de fond utilisé représente la pire période de 24 heures sur 5 années de mesures (2003 à 2007), ce qui n'est pas représentatif des conditions typiques dans le secteur. Les concentrations de benzène pour la pire période de 24 h au cours des 4 autres années étaient de 4,52, 5,16, 12,38 et 2,64 μ g/m³ tandis que les moyennes annuelles étaient de 2,63, 1,90, 1,71, 1,80 et 1,38 μ g/m³. On peut aussi noter que dans tous les cas où le « bruit de fond » ne dépasse pas déjà le critère provisoire, l'ajout des émissions de la circulation sur l'échangeur Turcot ne résulte pas en un dépassement.

En ce qui concerne les effets chroniques autres que cancérigènes, toutes les concentrations modélisées sur une période annuelle sont inférieures à la concentration de référence de l'EPA

(2008a). Aucun effet non cancérigène n'est donc anticipé pour les personnes vivant à proximité du complexe Turcot en lien avec une exposition chronique au benzène dans l'air.

Évolution de la concentration maximale de benzène (24 h)

				2016	
Récepteur	Secteur	2007 (μg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)
1	De la Vérendrye (rue de Roberval)	16,283	15,882	15,769	-0,112
2	De la Vérendrye (rue Cabot)	15,844	15,992	16,156	0,164
3	Sud de l'autoroute 720 (rue de Richelieu)	15,891	16,019	16,102	0,083
4	Montréal-Ouest entre Ballantyne et Brynmor	15,732	15,667	15,838	0,171
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	16,522	15,985	16,190	0,205
6	Nord de l'autoroute 720 (avenue Hillside)	16,424	15,947	15,923	-0,023
7	Lachine (rue Ouellette)	16,024	15,787	15,971	0,184
8	Lachine (entre Camille et Vincent)	16,164	15,516	15,631	0,115
9	Canal de Lachine (près du complexe Turcot)	16,160	15,916	15,916	0,000
10	Centre Gadbois	16,584	16,098	16,105	0,007
	Moyenne	16,163	15,881	15,960	0,079

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse le critère provisoire du MDDEP pour le benzène de 10 μg/m³ pour une période de 24h.

Évolution de la concentration maximale de benzène (annuel)

Récepteur	Secteur	2007		2016		addition	lues nnels de s au projet
Recepteur	ocotcui	(µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)	RCU de 2,2E-06	RCU de 7,8E-06
1	De la Vérendrye (rue de Roberval)	2,935	2,822	2,776	-0,046	-1,0E-07	-3,6E-07
2	De la Vérendrye (rue Cabot)	2,776	2,887	2,960	0,073	1,6E-07	5,7E-07
3	Sud de l'autoroute 720 (rue de Richelieu)	2,790	2,931	2,950	0,019	4,2E-08	1,5E-07
4	Montréal-Ouest entre Ballantyne et Brynmor	2,710	2,708	2,791	0,084	1,8E-07	6,5E-07
5	Entrée de l'autoroute 720 Est (Entre St-Rémi et Walnut)	3,055	2,862	2,939	0,077	1,7E-07	6,0E-07
6	Nord de l'autoroute 720 (avenue Hillside)	2,971	2,822	2,810	-0,013	-2,8E-08	-9,9E-08
7	Lachine (rue Ouellette)	2,801	2,761	2,817	0,057	1,2E-07	4,4E-07
8	Lachine (entre Camille et Vincent)	2,956	2,666	2,693	0,027	5,9E-08	2,1E-07
9	Canal de Lachine (près du complexe Turcot)	2,855	2,819	2,810	-0,008	-1,8E-08	-6,3E-08
10	Centre Gadbois	3,120	2,955	2,953	-0,002	-4,1E-09	-1,5E-08
	Moyenne	2,897	2,823	2,850	0,027	5,9E-08	2,1E-07

Source: Consortium Dessau / Les Consultants S.M. (2008)

Le risque cancérigène associé à l'écart entre les concentrations 2016 statu quo et les concentrations « avec le projet » a été calculé dans le but d'évaluer l'importance du risque additionnel cancérigène spécifiquement lié au projet. Dans le pire des cas, la contribution additionnelle maximale attribuable au projet est de 0,084 µg/m³. La moyenne de cette contribution pour tous les récepteurs résidentiels modélisés est de 0,027 µg/m³.

Une augmentation de 0,084 µg/m³ correspond à un risque cancérigène additionnel de 1,8E-07 à 6,5E-07 pour une personne qui serait exposée de façon continue pendant 70 ans. Ce niveau de risque cancérigène additionnel est inférieur à la valeur seuil sous laquelle le risque est considéré négligeable par les autorités en matière de santé. Il faut souligner que ce résultat s'applique au récepteur le plus touché, soit le récepteur 4 (Montréal-Ouest entre Ballantyne et Brynmor) et que tous les autres récepteurs sont soumis à des risques additionnels de cancer liés au projet qui sont inférieurs à ces valeurs. Pour la moyenne des récepteurs, le risque s'établit entre 5,9E-08 et 2,1E-07. Le risque additionnel peut donc être considéré négligeable pour l'ensemble des récepteurs. Dans le cas des récepteurs 1, 6, 9 et 10, la modélisation prévoit, en 2016, une concentration plus faible « avec le projet » que dans le cas du statu quo. Pour ces secteurs, les impacts sont donc positifs en ce qui concerne le benzène.

En conclusion, les apports en benzène pouvant être liés au projet sont très faibles et ne sont pas à l'origine de risques significatifs en ce qui a trait à la santé des récepteurs résidant à proximité du complexe Turcot.

2.3.2 Formaldéhyde

Le USEPA (2008a) classe le formaldéhyde dans la catégorie B1 des substances probablement cancérigènes chez l'humain tandis que le CIRC (2008) le classe dans le groupe 1 des substances cancérigènes chez l'humain. La classification du USEPA est basée sur des données limitées provenant d'études auprès d'humains et de données « suffisamment probantes » provenant d'études chez les animaux. Les types de cancer liés à l'exposition au formaldéhyde sont des cancers des voies respiratoires. Le risque cancérigène unitaire présenté par le USEPA (2008a) est de 1,30E-05 (μg/m³)-1, c'est-à-dire que le risque de développer un cancer augmente de 1,30E-05 pour chaque μg/m³ de formaldéhyde dans l'air respiré par une personne sur toute une vie (70 ans, 24 heures par jour, 365 jours par année). Pour sa part, le critère provisoire du MDDEP pour le formaldéhyde est de 37 μg/m³ pour une période de 15 minutes.

En ce qui concerne les effets autres que cancérigènes, le formaldéhyde sous forme gazeuse est reconnu comme un irritant des yeux, du nez et de la gorge (CIRC, 2006). Ces symptômes sont rares à des concentrations inférieures à 0,5 ppm (610 μg/m³). Nous notons que le USEPA (2008a) ne présente aucune valeur de référence autre que cancérigène pour l'exposition par les voies respiratoires, faute d'information. De son côté, l'ATSDR (1999) présente des concentrations de référence de 0,04 ppm (50 μg/m³), 0,03 ppm (40 μg/m³) et 0,008 ppm (10 μg/m³) respectivement pour des expositions aiguë, intermédiaire et chronique. La concentration de référence pour une exposition aiguë (exposition de 1 à 14 jours) est basée sur l'apparence de symptômes d'irritation aux yeux et aux muqueuses nasales et inclut un facteur d'incertitude de 9 (3 pour l'utilisation d'un LOAEL² et 3 pour la variabilité intraspécifique). La concentration de référence fournie pour une exposition intermédiaire, de plus de 14 jours à 364 jours, est basée sur l'apparence d'irritation du nasopharynx et de lésions à l'épithélium nasal chez des singes et inclut un facteur d'incertitude de 30 (3 pour variation interspécifique et 10 pour variation

² LOAEL : « Lowest Observed Adverse Effect Level », qui peut être traduit par la « Dose Minimale avec Effet Nocif Observé ». En analyse de risque, on favorise l'utilisation des NOAEL (« No Observed Adverse Effect Level ») pour établir des doses de référence, lorsque de telles valeurs sont disponibles. L'incertitude associée à l'utilisation d'un LOAEL est compensée par l'introduction d'un facteur d'incertitude.

intraspécifique). La concentration fournie pour une exposition chronique, d'un an ou plus, est basée sur l'apparence de dommages mineurs à l'épithélium nasal de travailleurs exposés au formaldéhyde et inclut un facteur d'incertitude de 30 (3 pour l'utilisation d'un LOAEL et 10 pour la variabilité intraspécifique).

Les tableaux ci-dessous présentent l'évolution des concentrations de formaldéhyde résultant de la circulation sur les voies du complexe Turcot (Consortium Dessau / Les Consultants S.M., 2008). Il faut noter que ces données constituent la somme (1) des concentrations maximales résultant de la modélisation des émissions du complexe Turcot et (2) de la concentration « bruit de fond » pour ce secteur de Montréal qui a été considérée, de facon conservatrice, équivalente à la concentration maximale mesurée entre 2003 et 2007 à la station de l'Aéroport de Montréal (Poste n° 66) pour les périodes de 24 heures et d'un an. Ces concentrations « bruit de fond sont respectivement de 11,57 μg/m³ et de 4,37 μg/m³. Aucune mesure du bruit de fond n'est disponible pour une période de 1h; seules les concentrations modélisées seront présentées pour la période horaire. Les résultats de la modélisation sont fournis pour 10 récepteurs ponctuels choisis en raison de leur proximité par rapport aux voies et de leur représentativité en fonction des différents segments du complexe Turcot. Les résultats sont présentés pour les conditions actuelles (2007) et pour les conditions futures (2016). Deux scénarios ont été développés pour les conditions futures : le scénario « statu quo », sans modification de la configuration actuelle du tracé, et le scénario « avec le projet » qui comprend une modification de la configuration du tracé.

Évolution de la concentration maximale de formaldéhyde (1 h)

				2016	
Récepteur	Secteur	2007 (µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)
1	De la Vérendrye (rue de Roberval)	6,171	1,714	1,257	-0,457
2	De la Vérendrye (rue Cabot)	4,343	2,286	2,971	0,686
3	Sud de l'autoroute 720 (rue de Richelieu)	6,400	3,543	4,686	1,143
4	Montréal-Ouest entre Ballantyne et Brynmor	4,686	1,143	2,743	1,600
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	9,371	2,743	4,800	2,057
6	Nord de l'autoroute 720 (avenue Hillside)	8,686	2,514	3,657	1,143
7	Lachine (rue Ouellette)	5,257	1,486	3,200	1,714
8	Lachine (entre Camille et Vincent)	4,686	1,029	1,714	0,686
9	Canal de Lachine (près du complexe Turcot)	5,029	3,314	3,543	0,229
10	Centre Gadbois	6,171	1,829	2,286	0,457
	Moyenne	6,080	2,160	3,086	0,926

Source : Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse le critère provisoire du MDDEP pour le formaldéhyde de 37 µg/m³ pour une période de 15 minutes.

Note : Le bruit de fond n'est pas ajouté aux valeurs modélisées pour le formaldéhyde (1h).

Évolution de la concentration maximale de formaldéhyde (24 h)

				2016	
Récepteur	Secteur	2007 (μg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)
1	De la Vérendrye (rue de Roberval)	11,856	11,688	11,664	-0,025
2	De la Vérendrye (rue Cabot)	11,720	11,715	11,751	0,037
3	Sud de l'autoroute 720 (rue de Richelieu)	11,737	11,719	11,739	0,019
4	Montréal-Ouest entre Ballantyne et Brynmor	11,686	11,641	11,680	0,039
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	11,928	11,712	11,758	0,046
6	Nord de l'autoroute 720 (avenue Hillside)	11,900	11,705	11,700	-0,005
7	Lachine (rue Ouellette)	11,777	11,668	11,710	0,041
8	Lachine (entre Camille et Vincent)	11,818	11,607	11,633	0,026
9	Canal de Lachine (près du complexe Turcot)	11,818	11,696	11,696	0,000
10	Centre Gadbois	11,948	11,738	11,739	0,001
	Moyenne	11,819	11,689	11,707	0,018

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras: Dépasse le critère provisoire du MDDEP pour le formaldéhyde de 37 μg/m³ pour une période de 15 minutes. Souligné: Dépasse la concentration de référence pour une exposition aiguë de l'ATSDR de 50 μg/m³ (0,04 ppm).

Évolution de la concentration maximale de formaldéhyde (annuel)

				2016	•	Risques
Récepteur	Secteur	2007 (µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)	additionnels de cancer liés au projet
1	De la Vérendrye (rue de Roberval)	4,464	4,413	4,403	-0,010	-1,34E-07
2	De la Vérendrye (rue Cabot)	4,414	4,428	4,444	0,017	2,15E-07
3	Sud de l'autoroute 720 (rue de Richelieu)	4,419	4,437	4,442	0,004	5,78E-08
4	Montréal-Ouest entre Ballantyne et Brynmor	4,394	4,388	4,407	0,019	2,46E-07
5	Entrée de l'autoroute 720 Est (Entre St-Rémi et Walnut)	4,500	4,422	4,440	0,017	2,25E-07
6	Nord de l'autoroute 720 (avenue Hillside)	4,475	4,414	4,411	-0,003	-3,73E-08
7	Lachine (rue Ouellette)	4,422	4,400	4,412	0,013	1,65E-07
8	Lachine (entre Camille et Vincent)	4,469	4,378	4,384	0,006	7,88E-08
9	Canal de Lachine (près du complexe Turcot)	4,439	4,412	4,410	-0,002	-2,29E-08
10	Centre Gadbois	4,520	4,443	4,442	0,000	-5,54E-09
	Moyenne	4,452	4,413	4,419	0,006	7,89E-08

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse la concentration de référence pour une exposition chronique de l'ATSDR de 10 μg/m³ (0,008 ppm).

La concentration modélisée sur une période de 24 heures, incluant le bruit de fond, est toujours plus petite que la concentration de référence de l'ATSDR pour une exposition aiguë. Elle est également toujours plus petite que le critère provisoire du MDDEP. De plus, l'écart entre les concentrations statu quo en 2016 et les concentrations « avec le projet » est minime. En effet,

l'écart le plus élevé, pour le récepteur 5 (0,046 μg/m³), équivaut à seulement 0,12 % du critère provisoire du MDDEP. Dans le cas des valeurs pour une période d'une heure, l'écart maximum (2,057 μg/m³) équivaut à environ 5,6 % du critère provisoire. Donc, malgré l'absence de donnée sur le bruit de fond horaire, il est permis de conclure que le projet ne contribue pas suffisamment aux concentrations en formaldéhyde dans l'air pour avoir un effet notable sur la santé des récepteurs via une exposition aiguë.

En ce qui concerne les effets chroniques, autres que cancérigènes, toutes les concentrations modélisées sur une période annuelle sont inférieures à la concentration de référence de l'ATSDR (1999). Aucun effet autre que cancérigène n'est donc anticipé pour les personnes vivant à proximité du complexe Turcot en lien avec une exposition chronique au benzène dans l'air.

Pour évaluer l'importance du risque additionnel cancérigène lié au projet, le risque cancérigène associé à l'écart entre les concentrations statu quo en 2016 et les concentrations « avec le projet » a été calculé (voir le tableau ci-dessus). Dans le pire des cas, la contribution additionnelle maximale attribuable au projet est de 0,019 µg/m³. La moyenne de cette contribution pour tous les récepteurs résidentiels modélisés est de 0,006 µg/m³.

Une augmentation de 0,019 µg/m³ correspond à un risque cancérigène additionnel de 2,46E-07 pour une personne exposée de façon continue pendant 70 ans. Ce niveau de risque cancérigène additionnel est inférieur à la valeur seuil sous laquelle le risque est considéré négligeable par les autorités en matière de santé. Comme dans le cas du benzène, ce résultat s'applique au récepteur le plus touché, soit le récepteur 4 (Montréal-Ouest entre Ballantyne et Brynmor). Tous les autres récepteurs sont donc soumis à des risques additionnels de cancer encore plus faibles. Pour la moyenne des récepteurs, ce risque est de 7,89E-08. Le risque additionnel peut donc être considéré négligeable pour l'ensemble des récepteurs. Dans le cas des récepteurs 1, 6, 9 et 10, la modélisation prévoit une concentration plus faible en 2016 « avec le projet » par rapport à la situation statu quo. Pour ces secteurs, les impacts sont donc positifs en ce qui concerne le formaldéhyde.

En conclusion, aucun effet autre que cancérigène n'est anticipé en lien avec l'exposition au formaldéhyde des personnes résidant à proximité du complexe Turcot. De plus, les risques cancérigènes additionnels liés au formaldéhyde et pouvant être attribuable au projet de reconstruction du complexe Turcot peuvent être considérés négligeables.

2.4 Particules

Les particules se distinguent des autres constituants atmosphériques en ceci qu'elles ne sont pas définies en fonction de leur composition chimique. Elles peuvent comprendre un large éventail d'espèces chimiques, y compris le carbone élémentaire et les composés organiques du carbone, les oxydes de silicium, d'aluminium et de fer, les métaux à l'état de traces, les sulfates, les nitrates et l'ammoniac (Seinfeld, 1986). Les particules peuvent être rejetées directement dans l'atmosphère ou se former secondairement à partir de gaz précurseurs, à la suite de transformations physiques et chimiques (Lowenthal *et al.*, 1994). Le dépôt sec et le lessivage par les précipitations sont les principaux processus par lesquels ces particules sont éventuellement éliminées de l'atmosphère (Wallace et Hobbs, 1977). La taille des particules est considérée comme l'un des plus importants paramètres de la caractérisation du comportement physique des particules dans l'atmosphère. En général, ces dernières comprennent deux fractions : les particules grossières et fines, de moins de 10 microns (PM₁₀) (1/8 du diamètre d'un cheveu) et les particules fines, de 2,5 microns ou moins (PM_{2,5}). En raison de leur taille minuscule, la plus grande partie des particules grossières et fines en suspension dans l'air contribuent peu à la charge massique totale des particules. Elles sont sujettes à des processus

de mouvement aléatoire et de coagulation dans lesquels elles entrent en collision pour former rapidement de plus grosses particules. Par conséquent, les particules fines ne séjournent généralement pas longtemps dans l'atmosphère.

Les PM_{10} sont généralement générées par les activités anthropiques telles que les procédés industriels, le chauffage domestique ou encore la circulation automobile. Les particules plus fines (inférieures à 2,5 microns) sont, pour leur part, souvent le produit de réactions chimiques entre les précurseurs suivants : les NOx, les COV, les oxydes de soufre et l'ammoniac. Au Canada, les véhicules à moteur contribuent dans une proportion moyenne de 9 à 39 % aux émissions de $PM_{2,5}$ (Lowenthal, 1997). Dans la région de Toronto, cette contribution peut grimper jusqu'à environ 50 % (Lowenthal, 1997). Dans les endroits éloignés de l'Amérique du Nord, les concentrations naturelles de particules mesurées annuellement ou sur une longue période sont comprises entre 4 et 11 μ g/m³ dans le cas des PM_{10} et entre 1 et 5 μ g/m³ pour ce qui est des $PM_{2,5}$ (Trijonis, 1982; NAPAP, 1991; Malm *et al.*, 1994).

Selon leur taille, les particules pénètrent plus ou moins profondément dans l'arbre pulmonaire (Lippmann, 1977; Anderson *et al.*, 1990). Les poussières dites « respirables » sont celles qui ont un diamètre aérodynamique moyen inférieur à 10 µm. Leur taille est suffisamment faible pour entrer dans les poumons. Dans la région extrathoracique des voies respiratoires humaines (le nez et la bouche), presque toutes les particules de plus de 10 microns se déposent dans la région nasale lorsqu'elles sont inhalées par le nez, et lorsque la respiration se fait par la bouche, 65 % environ des particules se déposent. Seules les particules de 10 microns ou moins se déposent dans la région trachéobronchique (Miller *et al.*, 1979). Des particules de type PM_{2,5} par exemple arrivent jusqu'au niveau des alvéoles pulmonaires. Environ 25 à 60 % des PM_{2,5} peuvent se déposer dans la région alvéolaire humaine, comparativement à moins de 5 % pour les plus grosses particules d'environ 10 microns (Lippmann, 1977). Ces particules les plus fines peuvent, à des concentrations relativement basses, irriter les voies respiratoires inférieures et altérer la fonction respiratoire dans son ensemble. Les PM de taille inférieure à 2,5 micromètres (PM_{2,5}) sont d'ailleurs les plus dangereuses pour la santé humaine.

En ce qui concerne les effets cancérigènes, certaines études tendent à démontrer qu'il existe une association entre l'exposition à long terme aux particules fines présentes dans l'air et le cancer du poumon. Dans une étude de cohortes, l'exposition à des concentrations annuelles moyennes de $PM_{2,5}$ variant entre 11 et 29,6 μ g/m³ (Dockery *et al.*, 1993) a été associée à un risque accru de mortalité causée par le cancer du poumon (19,9 % pour une augmentation de 10 μ g/m³ de la concentration de $PM_{2,5}$), après ajustement pour les facteurs confusionnels potentiels ou les covariables. Cependant, plusieurs autres études n'ont démontré aucun lien entre l'exposition aux particules et le développement d'un cancer (Abbey *et al.*, 1995). Bien que le USEPA classe les matières particulaires comme étant susceptibles d'être cancérigènes, cet organisme, tout comme le CIRC (2007) et la Communauté Européenne, ne propose aucun estimateur de risque pour ce contaminant. À défaut d'informations pertinentes, le potentiel cancérigène des particules ne peut pas être considéré.

Pour ce qui est des effets autres que cancérigènes, de nombreuses études épidémiologiques réalisées partout dans le monde, indiquent que des associations positives ont été observées entre les concentrations ambiantes de particules (PM₁₀ et PM_{2.5}) et divers effets sur la santé, y compris le taux de mortalité, les troubles respiratoires et cardiovasculaires, les jours d'activités restreintes et la fréquence des maladies respiratoires chroniques déclarées (Thurston *et al.*, 1994; Burnett *et al.*, 1997; Hefflin *et al.*, 1994; Gordian *et al.*, 1996). Cette augmentation s'expliquerait par l'exacerbation des maladies préexistantes ou par une réaction accrue d'une sous-population d'individus prédisposés. Les groupes qui sont particulièrement sensibles à la présence de particules fines en suspension dans l'air sont les personnes âgées, les jeunes enfants et les personnes souffrant de problèmes cardiaques et respiratoires chroniques (Pope,

1991; Gordian *et al.*, 1996). Des restrictions d'activité occasionnées par des troubles respiratoires et assez importantes pour accroître le taux d'absentéisme au travail chez les travailleurs adultes et à l'école chez les enfants ont été associées à des concentrations ambiantes élevées de $PM_{2.5}$, dont la moyenne variait entre 20 et 25 μ g/m³ (Ostro, 1987, 1990; Ostro et Rothschild, 1989).

Les études où l'effet sur la santé de l'exposition à long terme aux particules a été examiné sont relativement rares. D'importantes diminutions de la fonction pulmonaire ou une augmentation des ratios d'incidence de bronchite ont été associées à l'exposition chronique d'enfants à des particules pendant une grande partie ou la totalité de leur vie. À chaque augmentation de 10 μg/m³ de PM₁0 ou de PM₂,5 correspondaient des diminutions de la capacité vitale forcée de 1,4 et 2,2 % respectivement (Raizenne *et al.*, 1996). On a aussi observé chez les enfants exposés à des particules l'apparition de nouveaux cas de bronchite chronique (Dockery *et al.*, 1989, 1996). Un accroissement de la gravité des symptômes de la maladie respiratoire obstructive, de la bronchite chronique et de l'asthme a été associé à l'exposition aux PTS (Particules Totales en Suspension), aux PM₁0, aux PM₂5 et aux sulfates pendant 10 ans (Abbey *et al.*, 1995).

Le Conseil canadien des ministres de l'environnement (CCME) présente un standard pancanadien pour les $PM_{2,5}$ de 30 $\mu g/m^3$ pour une durée de 24 heures (CCME, 2000). De son côté, l'EPA a adopté des standards (NAAQS) de 150 $\mu g/m^3$ (sur 24 heures) pour les PM_{10} et de 35 $\mu g/m^3$ (sur 24 heures) pour les $PM_{2,5}$ (USEPA, 2008b). Il présente également une concentration standard de 15 $\mu g/m^3$ pour la moyenne annuelle des $PM_{2,5}$ (USEPA, 2008b).

Les tableaux ci-dessous présentent l'évolution des concentrations en PM_{2.5} résultant de la circulation sur les voies du complexe Turcot (Consortium Dessau / Les Consultants S.M., 2008). Il faut noter que ces données constituent la somme (1) des concentrations maximales résultant de la modélisation des émissions du complexe Turcot et (2) de la concentration « bruit de fond » pour ce secteur de Montréal qui a été considérée, de façon conservatrice, équivalente à la moyenne des 98° percentiles sur trois ans à l'échangeur Décarie (Poste n° 28) pour la période de 24 heures et à la concentration maximale sur une base annuelle à ce même poste. Le bruit de fond retenu est de 27,44 µg/m³ sur une période de 24 heures et de 10,11 µg/m³ sur une période annuelle. Les résultats de la modélisation sont fournis pour 10 récepteurs ponctuels choisis en raison de leur proximité par rapport aux voies et de leur représentativité en fonction des différents segments du complexe Turcot. Les résultats sont présentés pour les conditions actuelles (2007) et pour les conditions futures (2016). Deux scénarios ont été développés pour les conditions futures : le scénario « statu quo », sans modification de la configuration actuelle du tracé, et le scénario « avec le projet » qui comprend une modification de la configuration du tracé.

Les concentrations maximales sont inférieures aux normes applicables à tous les récepteurs indépendamment du scénario pris en compte, autant pour les expositions relativement aiguë (période 24 heures) que pour une exposition chronique (période annuelle). Lorsque l'écart entre les concentrations modélisées pour 2016 « statu quo » et « avec le projet » est considéré, les résultats indiquent que le projet mène à une augmentation minime des concentrations en PM_{2.5} pour la plupart des récepteurs. Pour la moyenne des récepteurs, cette augmentation est de 0,029 µg/m³ pour une période de 24 heures et de 0,008 µg/m³ pour une période annuelle. Ces augmentations ainsi que l'apport total des émissions liées aux voies du complexe Turcot sont si faibles par rapport au bruit de fond que les impacts du projet peuvent être considérés négligeables. Nous notons également qu'aux récepteurs 1, 9 et 10, les concentrations sont plus faibles avec le projet que dans la situation du statu quo. Dans ces cas, le projet a un très faible effet positif sur la qualité de l'air.

Évolution de la concentration maximale de PM_{2.5} (24 h)

			2,5 (= 1	2016	
Récepteur	Secteur	2007 (μg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)
1	De la Vérendrye (rue de Roberval)	27,780	27,613	27,557	-0,056
2	De la Vérendrye (rue Cabot)	27,601	27,674	27,733	0,058
3	Sud de l'autoroute 720 (rue de Richelieu)	27,644	27,681	27,703	0,022
4	Montréal-Ouest entre Ballantyne et Brynmor	27,551	27,547	27,613	0,065
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	27,763	27,533	27,584	0,050
6	Nord de l'autoroute 720 (avenue Hillside)	28,003	27,541	27,562	0,022
7	Lachine (rue Ouellette)	27,683	27,585	27,678	0,093
8	Lachine (entre Camille et Vincent)	27,754	27,484	27,533	0,049
9	Canal de Lachine (près du complexe Turcot)	27,734	27,615	27,608	-0,007
10	Centre Gadbois	27,931	27,703	27,692	-0,011
	Moyenne	27,744	27,598	27,626	0,029

Source : Consortium Dessau / Les Consultants S.M. (2008)

Gras : Dépasse le standard pancanadien de 30 µg/m³ de PM_{2.5} pour une période de 24 heures.

Soulignée : dépasse standard du USEPA (NAAQS) de 35 µg/m³ de PM_{2.5} pour une période de 24 heures.

Évolution de la concentration maximale de PM_{2.5} (annuel)

			2016				
Récepteur	Secteur	2007 (µg/m³)	Statu quo (µg/m³)	Avec (µg/m³)	Écart (µg/m³)		
1	De la Vérendrye (rue de Roberval)	10,209	10,162	10,139	-0,023		
2	De la Vérendrye (rue Cabot)	10,146	10,187	10,211	0,024		
3	Sud de l'autoroute 720 (rue de Richelieu)	10,155	10,208	10,213	0,006		
4	Montréal-Ouest entre Ballantyne et Brynmor	10,125	10,129	10,162	0,033		
5	Entrée de l'autoroute 720 Est (Entre St- Rémi et Walnut)	10,208	10,130	10,140	0,010		
6	Nord de l'autoroute 720 (avenue Hillside)	10,303	10,126	10,130	0,005		
7	Lachine (rue Ouellette)	10,164	10,144	10,177	0,033		
8	Lachine (entre Camille et Vincent)	10,219	10,116	10,127	0,011		
9	Canal de Lachine (près du complexe Turcot)	10,175	10,150	10,145	-0,005		
10	Centre Gadbois	10,279	10,206	10,195	-0,011		
	Moyenne	10,198	10,156	10,164	0,008		

Source: Consortium Dessau / Les Consultants S.M. (2008)

Gras : dépasse standard du USEPA (NAAQS) de 15 µg/m³ de PM_{2.5} pour une période annuelle.

2.5 Ozone troposphérique

L'ozone (O₃) des basses couches de l'atmosphère que l'on appelle l'ozone troposphérique³ est un gaz incolore extrêmement irritant pour les voies respiratoires qui se forme juste au-dessus de la surface de la terre. C'est une des composantes majeures du smog qui se forme quant la lumière réagit avec les contaminants que l'on retrouve souvent au-dessus des centres urbains les jours de canicule estivale. On le considère comme un polluant secondaire parce qu'il est le produit de l'interaction de deux contaminants, les oxydes d'azote et les COV.

Des études ont démontré que dans tous les grands centres urbains du Canada, les concentrations d'ozone troposphérique sont suffisamment élevées pour présenter un risque pour la santé des personnes sensibles. En fait, plus de la moitié de la population canadienne seraient exposées à un moment ou l'autre à des concentrations élevées d'ozone. Au Canada, le corridor Windsor-Québec serait d'ailleurs la région la plus touchée par des concentrations élevées d'ozone (la situation est cependant moins critique que dans le Nord-Est des États-Unis). Le transport transfrontalier des contaminants précurseurs serait en grande partie responsable de la rémanence des épisodes d'ozone dans ce corridor.

Dans le cas de l'ozone, les oxydes d'azote qui sont émis par les véhicules automobiles près des grands axes routiers réagissent avec celui-ci et contribuent à réduire les niveaux d'ozone à l'échelle locale (USEPA, 2006). L'ozone peut toutefois se former à une bonne distance du point d'émission des précurseurs. Les effets de ce contaminant sur la santé sont donc mieux évalués en fonction des impacts à une échelle régionale qu'en fonction d'une exposition locale. L'impact régional associé à la dispersion des gaz d'échappement des véhicules est discuté à la section suivante.

3 Évaluation des impacts régionaux

Les légères modifications qui seront apportées en ce qui concerne le positionnement des voies du complexe Turcot suite à sa reconstruction n'auront pas d'effet sur les débits de circulation dans la région. En effet, l'objectif du projet est essentiellement de remplacer les voies actuelles par des voies équivalentes qui seront légèrement décalées par rapport au tracé actuel. Pour cette raison, les effets du projet sur la qualité de l'air seront limités à un étroit corridor qui suit le tracé des voies actuelles et futures. Les effets sont essentiellement liés au fait que certaines voies se rapprocheront légèrement de certains récepteurs. Puisqu'il n'est pas prévu que le projet modifie à proprement parler le nombre de véhicules circulant dans la région, il est jugé que dans l'ensemble, à l'échelle régionale, l'impact sur la santé humaine sera nul ou, dans le pire des cas, négligeable.

Contrairement à l'ozone qui se forme naturellement dans la strastosphère, l'ozone troposphérique ne fournit aucune protection contre les rayonnements ultraviolets nocifs du soleil; il ne se déplace pas non plus jusqu'à l'atmosphère supérieure.

4 Évaluation quantitative a l'aide du logiciel AQBAT des effets sur la santé publique

L'outil d'évaluation des bénéfices liés à la qualité de l'air AQBAT⁴ (*Air Quality Benefits Assessment Tool*), un logiciel de calcul mis au point par Santé Canada, a été utilisé pour évaluer quantitativement les bénéfices/inconvénients et les coûts en matière de santé publique liés au projet de reconstruction du complexe Turcot.

L'évaluation quantitative à l'aide de l'outil de calcul AQBAT permet d'explorer les enjeux sanitaires sous un angle différent de celui des critères de qualité de l'air. Ainsi, d'une part la comparaison avec les critères doit être faite à partir des valeurs les plus élevées modélisées dans la zone d'étude, en tenant compte, autant que possible, de l'ampleur ou de la fréquence des dépassements. D'autre part, AQBAT permet d'apprécier les effets d'une exposition soutenue à la moyenne des concentrations des contaminants.

Les deux premières sous-sections fournissent une description de l'outil de calcul et de ses composantes de même qu'une courte description de deux études qui s'appuient sur ce modèle. La troisième sous-section présente les résultats générés dans le cas du projet de reconstruction du complexe Turcot.

4.1 Description du modèle AQBAT

AQBAT est un outil de simulation, conçu pour évaluer les avantages et les inconvénients des changements de la qualité de l'air ambiant pour la santé et le bien-être des gens. Ces changements de la qualité de l'air ambiant peuvent être liés à des modifications de la circulation routière, mais aussi à d'autres types de modifications, de politiques ou de programmes ayant des effets sur la qualité de l'air; AQBAT n'est donc pas spécifique au transport. L'utilisation de ce logiciel implique qu'un travail d'estimation/modélisation/prospective précède l'entrée dans AQBAT. Il faut noter que le logiciel AQBAT a été conçu principalement pour comparer des scénarios d'exposition entre eux et non pour évaluer de façon absolue les impacts d'un scénario donné.

AQBAT permet de concevoir des scénarios mettant en scène des relations entre (1) des polluants, (2) des effets sur la santé, (3) des zones géographiques canadiennes et (4) des années pour lesquelles les prédictions sont effectuées.

Le modèle contient des statistiques pour l'ensemble des villes canadiennes, dont Montréal :

- Statistiques démographiques des dernières années (depuis 1991) et projections pour les prochaines décennies (jusqu'en 2026).
- Statistiques de concentrations de polluants mesurées dans les réseaux de suivi de la qualité de l'air à travers le Canada.
- Statistiques des fréquences des problèmes de santé.

Le modèle vise les effets des polluants suivants :

- CO (ppm) (Moyenne annuelle des maximum quotidiens sur 1 heure et concentration moyenne sur 24 heures)
- NO₂ (ppb) (Concentration movenne sur 24 heures)

⁴ Stan Judek et Dave Stieb (2006). Outil d'évaluation des bénéfices lié à la qualité de l'air (en anglais *Air Quality Benefits Assessment Tool* ou AQBAT), Direction générale de la santé environnementale et de la sécurité des consommateurs (DGSESC), Santé Canada.

- O₃ (ppb) (Moyenne annuelle des maximum quotidiens sur 1 heure)
- O₃ (Mai-Sept) (ppb) (Moyenne annuelle des maximum quotidiens sur 1 heure durant la période de mai à septembre)
- PM_{2.5} (μg/m³) (Concentration moyenne sur 24 heures)
- SO₂ (ppb) (Concentration movenne sur 24 heures)

Le modèle vise les effets sur la santé suivants :

- Mortalité par exposition aiguë
- Jours avec symptômes respiratoires aigus
- Cas de bronchite chronique chez l'adulte
- Jours avec symptômes d'asthme
- Consultations aux urgences pour problèmes cardiaques
- Admissions hospitalières pour problèmes cardiaques
- Épisodes de bronchite aiguë chez l'enfant
- Mortalité due à une exposition chronique
- Admissions hospitalières pour des urgences cardiaques chez les personnes âgées
- Jours d'activité restreinte mineure
- Consultations aux urgences pour problèmes respiratoires
- Admissions aux hôpitaux pour problèmes respiratoires
- Jours d'activité restreinte

Le modèle contient deux types de facteurs tirés de la littérature scientifique, qui forment en quelque sorte le cœur des calculs :

- Des « Fonctions Concentration-Réponse » (FCR) qui permettent de calculer l'impact de la concentration d'un polluant sur la fréquence d'un problème de santé. La FCR est une estimation dérivée statistiquement. La FCR permet de traduire une augmentation ou une diminution de la concentration d'un polluant en une augmentation ou une diminution (exprimée en pourcentage) de la fréquence d'un problème de santé.
- Des « Fonctions Évaluation du Paramètre » (FEP) qui permettent d'assigner un coût unitaire à chacun des cas de problème de santé associé à une modification de concentration (en plus ou en moins). Ceci permet de faire une évaluation monétaire reflétant la valeur pour la société d'un changement de fréquence d'un problème de santé.

La première partie du calcul effectué par AQBAT consiste à établir, pour un problème de santé donné, le nombre de cas qui soit attribuable à une concentration donnée d'un polluant atmosphérique. La formulation du comptage, dans sa forme simplifiée, consiste en un produit des 4 éléments suivants :

Nb de cas attribuables = FCR x [polluant] x (Taux d'incidence / million) x Nb de personnes

- FCR: La FCR exprimé en % d'augmentation (ou de diminution) de la fréquence d'un problème de santé donné par unité d'augmentation (ou de diminution) de concentration de polluant.
- **[polluant]**: La concentration ou le changement de concentration (augmentation ou diminution) de polluant. L'approche AQBAT utilise les concentrations moyennes des paramètres. Il faut souligner en contrepartie qu'il n'existe pas de valeur seuil pour les

effets décrits dans AQBAT, c'est-à-dire qu'il est supposé que la première ppm de contaminant engendre un effet sur la santé.

- Taux d'incidence / million: Le taux d'incidence du problème de santé dans la population (exprimé en nombre de cas par tranche de 1 million de personnes). La détermination des taux d'incidence des problèmes de santé dans la population est fournie par AQBAT sur la base de projections à partir des données produites par Statistiques Canada et par Santé Canada. À titre d'exemple, en 2016 au Canada, on estime que le taux d'incidence des mortalités par toutes causes autres qu'accidentelles sera de 13 600 cas par million de personnes.
- **Nb de personnes** : La taille de la population dans l'aire à l'étude.

La seconde partie du calcul consiste à déterminer la valeur économique attribuable à la concentration ou au changement de concentration en multipliant le nombre de cas attribuables (en plus ou en moins) par la Fonction d'Évaluation du Paramètre (FEP) :

Coûts sociaux = Nb de cas attribuables x FEP

En somme, AQBAT permet de traduire les concentrations mesurées ou modélisées dans l'air ambiant en nombre de cas de problèmes de santé dans une population donnée, qui sont ensuite exprimés en termes de valeur économique.

4.2 Résultats d'études réalisées à l'aide de AQBAT

Le ministère des Transports du Canada a réalisé une étude en 2007 :

Évaluation du coût total de la pollution atmosphérique causée par le transport au Canada, Marbek Resource Consultants.

http://www.bv.transports.gouv.gc.ca/mono/0965891.pdf

L'étude avait pour but de fournir une estimation de la valeur économique de la pollution atmosphérique causée par les véhicules de transport, la répartition des coûts par mode de transport et par province et l'estimation du coût moyen attribuable à chaque polluant. La première partie de l'étude cherche à déterminer les changements dans la qualité de l'air ambiant qui sont attribuables aux émissions des véhicules de transport en 2000 dans les divisions de recensement. Dans la seconde partie de l'étude, ces résultats ont servi d'intrant au modèle AQBAT.

La Ville de Toronto a effectué en 2007 le même exercice :

Toronto Public Health. Air Pollution Burden of Illness from Traffic in Toronto – Problems and Solutions. November 2007. Toronto, Canada.

http://www.toronto.ca/health/hphe

Cette étude avait pour but d'établir les impacts et les coûts associés au trafic routier dans la ville de Toronto. Ici encore, les concentrations associées au trafic des véhicules automobiles ont été établies par différentes approches de modélisation et de calcul et les résultats ont servi d'intrant au modèle AQBAT.

Dans les deux cas, la principale difficulté a consisté à déterminer la part de la pollution de l'air ambiant qui est imputable au transport routier. Ensuite, les résultats servent à alimenter le modèle AQBAT. La qualité et la précision des résultats de AQBAT sont donc essentiellement tributaires de la qualité et de la précision des hypothèses et des estimés effectués à la première étape de ces deux études.

4.3 Application au projet du complexe Turcot

Sur la base des informations fournies par Santé Canada (comm. pers. Stan Judek, <u>Stan Judek@hc-sc.gc.ca</u>), nous avons préparé une version simplifiée et validée du modèle AQBAT qui opère à partir des facteurs et algorithmes de la version complète de AQBAT et qui est alimentée par les données de base du modèle⁵.

Les résultats préliminaires de la modélisation effectuée pour le projet de reconstruction du complexe Turcot peuvent être introduits comme intrants dans la version simplifiée du logiciel AQBAT. La résultante fournit un estimé des bénéfices/inconvénients des changements de concentration associés à ce projet pour la population présente dans la zone d'étude. Il faut souligner que les résultats obtenus par la modélisation AQBAT sont entourés d'une bonne part d'incertitude et qu'ils représentent une tendance centrale du même type de celle qui est exprimée par une moyenne arithmétique.

Les hypothèses qui ont été formulées pour supporter les calculs sont les suivantes :

- Le logiciel est conçu pour évaluer les problématiques associées à de grands territoires (provinces, grandes villes, régions de recensement). Il est toutefois possible de l'utiliser pour des aires plus réduites. Dans le cas qui nous intéresse, nous posons comme hypothèse que la sous-population des individus qui habitent dans la zone d'étude présente les mêmes caractéristiques démographiques et sanitaires que la population de l'ensemble de la ville de Montréal, ce qui est vraisemblable.
- La répartition des classes d'âge dans la population est tirée des bases de données de AQBAT pour l'année 2016. Les taux d'incidences des problèmes de santé projetés en 2016 sont également tirés des bases de données de AQBAT.

Les données qui ont servi d'intrant aux calculs AQBAT sont les suivantes :

- D'une part, les données de « bruit de fond » provenant des stations de mesure localisées à proximité de l'aire à l'étude ont été introduites dans le modèle.
- D'autre part, le modèle a été alimenté avec les résultats des calculs de modélisation de la dispersion atmosphérique des émissions liées à la circulation routière dans le complexe Turcot dans la situation actuelle, dans la situation 2016 « statu quo » et dans la situation 2016 avec le projet. Il s'agit des résultats fournis par le Consortium Dessau / Les Consultants S.M. (2008). La moyenne des concentrations obtenues à l'emplacement des dix récepteurs résidentiels rapprochés du complexe Turcot a été retenue (il s'agit des récepteurs qui sont présentés dans les tableaux de la section 2 du présent document).

⁵ Une incompatibilité entre nos logiciels et les différentes versions de Windows, Office et @Risk utilisées par Santé Canada ne nous a pas permis, à court terme, d'utiliser la version complète d'AQBAT. La version simplifiée que nous avons développée a toutefois été validée en la comparant à une sortie AQBAT fournie par Santé Canada ; les résultats obtenus sont fiables et correspondent à ce que produirait la version complète de AQBAT. L'implantation de la version complète de AQBAT serait possible mais demanderait des efforts qui dépassent le cadre du présent mandat et son contexte « exploratoire ».

Le tableau suivant présente les valeurs utilisées :

	Unité	Bruit de fond	Moyenne des concentrations moyennes annuelles modélisées aux résidences les plus proches du projet						
Paramètres			Actuel 2007	Statu quo 2016	Avec projet 2016	Différence (Avec – Statu quo)			
CO (max 1h)	ppm	nd	7,3	5,5	6,6	1,1			
CO (24h)	ppm	0,442	0,130	0,112	0,087	-0,025			
NO ₂ (24h)	µg/m³	35,2	9,58	3,17	3,34	0,17			
1102 (2411)	ppb*	18,4	5,0	1,66	1,75	0,09			
PM _{2,5} (24h)	μg/m³	10,11	0,088	0,046	0,054	0,008			

^{*} La valeur fournie en μg/m³ par la modélisation a été convertie en ppb, l'unité utilisée par AQBAT

- Pour ce qui concerne les valeurs « bruit de fond », il faut souligner qu'elles tiennent compte de l'ensemble des sources d'émission urbaines, y compris la circulation sur les grandes artères. Pour le CO et les PM_{2,5}, il s'agit des concentrations moyennes annuelles les plus élevées pour la période de 2003 à 2007 au poste no. 28 (Échangeur Décarie) et, pour le NO₂, de la concentration moyenne annuelle la plus élevée pour la période de 2003 à 2007 au poste no. 68 (Verdun). Ces moyennes annuelles ont été retenues pour représenter les concentrations moyennes sur 24 heures. Aucune donnée « bruit de fond n'est disponible pour le CO (1h).
- En ce qui a trait aux résultats de la modélisation, ils ne concernent quant à eux que les émissions des véhicules dans le complexe Turcot. Ils ne tiennent pas compte de toutes les autres sources telles que le chauffage et la circulation sur les voies locales.
- Pour les paramètres CO (24h), NO₂ (24h) et PM_{2,5} (24h), comme la modélisation n'est pas conçue pour fournir des séries de 365 valeurs discrètes sur 24 heures, la valeur moyenne annuelle a été retenue pour représenter la journée moyenne⁶. Pour ce qui concerne le CO (1h), faute de données permettant de générer une moyenne des valeurs maximales 1h sur les 365 journées d'une année, nous avons retenu la valeur 1h maximale sur une base annuelle, ce qui constitue une approche conservatrice qui entraîne une surestimation des effets.
- En plus du CO, des PM_{2,5} et du NO₂, le modèle AQBAT peut intègre les paramètres O₃ et SO₂. Des données ne sont toutefois pas disponibles pour ces paramètres.

L'examen des résultats graphiques de la modélisation de la dispersion atmosphérique a permis de déterminer que les émissions associées à la circulation des véhicules dans le complexe Turcot sont susceptibles d'affecter la qualité de l'air dans une bande de 300 mètres de part et d'autre du centre de la voie. Au-delà de cette bande, les effets ne sont plus mesurables. La taille de la population résidant dans cette zone de 600 mètres de largeur sur toute la longueur du complexe Turcot est estimée à 19 347 personnes⁷ (comm. pers. Sylvie Tanguay, MTQ).

⁶ La valeur moyenne annuelle (obtenue à partir des résultats horaires sur une année) est mathématiquement équivalente à la moyenne quotidienne. Il aurait aussi été possible de retenir la valeur maximum sur 24 h (la pire journée de l'année) pour représenter la moyenne de toutes les journées de l'année. Ces valeurs sont généralement de 3 à 6 fois plus élevées que la valeur moyenne annuelle. Cette approche aurait été beaucoup trop conservatrice et aurait conduit à une surestimation des effets.

⁷ La largeur de la bande de part et d'autre de la voie principale peut varier légèrement de façon à correspondre aux limites des unités de recensement de Statistique Canada. Les donnés de population utilisées sont celles du recensement de l'année 2006.

Les calculs AQBAT ont été réalisés pour trois séries de concentrations :

Série 1 : Les concentrations « bruit de fond » pour chaque paramètre. Cet estimé présente en quelque sorte l'appréciation des effets des conditions présentes, qui sont sous l'influence de l'ensemble des émissions atmosphériques dans le secteur à l'étude, y compris celles de la circulation actuelle sur le réseau routier. Cet estimé permet de mettre en perspective les résultats issus des deux autres séries de concentrations.

Série 2: Les concentrations moyennes annuelles modélisées attribuables au projet (situation 2016 avec projet). Les résultats de la modélisation ne concernent que la contribution de la circulation sur le complexe Turcot. Il serait possible d'additionner les valeurs du bruit de fond actuel aux valeurs modélisées pour tenir compte des autres sources. Cette approche nous paraît cependant redondante et trop conservatrice. En contrepartie, les résultats de cette série permettent de mettre en lumière la contribution spécifique de la présence du complexe Turcot aux enjeux liés à la santé dans le secteur à l'étude en 2016.

Série 3: La différence entre les concentrations moyennes annuelles modélisées en 2016 (situation 2016 « avec projet » moins situation 2016 « statu quo »). Cette série est la plus utile puisqu'elle vise l'écart entre la situation « avec » et la situation « statu quo », indépendamment des autres contributions. Toutes les autres sources étant égales, les valeurs générées permettent d'évaluer l'impact net du projet de reconstruction par rapport au statu quo.

Le tableau présenté à la page 25 présente la liste des effets considérés par AQBAT, les données de base (en marron) de même que les résultats des calculs effectués pour les trois séries de concentrations (vert, rouge et violet) :

- Les six premières colonnes (marron) présentent les données de base déterminées et fournies par AQBAT spécifiquement pour 2016 et pour une population de 19 347 personnes.
 - La première colonne marron à l'extrême gauche fait référence aux 13 effets considérés par AQBAT.
 - Dans la seconde colonne marron, le nombre de cas dans la population de la zone d'étude en 2016 (baseline) réfère au taux d'incidence de chacun des effets sur la santé. Le taux d'incidence par tranche de 1 million de personnes a préalablement été multiplié par la taille de la population à l'étude. Ainsi, à titre d'exemple, étant donné que le taux d'incidence des mortalités sera de 13 600 cas par million de population en 2016, on calcule que 263 décès seront attendus dans une population de 19 347 personnes. Tel que mentionné plus haut, ceci couvre toutes les causes de mortalité (environnementales, maladies, infections, dégénérescence, etc.) à l'exception des décès causés par des accidents.
 - La troisième colonne marron présente les paramètres. Pour chaque effet, AQBAT détermine qu'un ou plusieurs paramètres environnementaux peuvent contribuer à générer une certaine proportion de chacun des effets décrits dans la première colonne.
 - Dans la quatrième colonne marron, pour chaque effet, une Fonction Concentration-Réponse (FCR) est attribuée par AQBAT à chacun des paramètres pouvant avoir un effet sur la santé. La FCR correspond à la proportion des cas excédentaires qui sont attribuables à une unité (ppb ou μg/m³) de chacun des paramètres de qualité de l'air ambiant. À titre d'exemple, de façon simplifiée, si on se réfère à la première ligne du tableau (effet no. 1, mortalité par

exposition aiguë), AQBAT considère qu'une proportion de 0,0748% des 263 décès prévus en 2016 seront attribuables à la présence dans l'air ambiant d'une concentration moyenne sur 24 heures de 1 ppb de NO₂. Ceci représente donc 0,19 décès sur 263 dans la population de 19 347 personnes, les 262,81 autres décès étant attribuables à d'autres causes environnementales et aux maladies, infections, etc.

- La cinquième colonne marron présente les unités qui sont utilisées par AQBAT pour chaque paramètre.
- La sixième colonne marron présente les Fonctions Évaluation du Paramètre (FEP) établies par AQBAT. Il s'agit d'une évaluation globale de l'ensemble des coûts qui sont attribuables à un cas de chacun des effets sur la santé. Par exemple, AQBAT estime qu'un décès comporte un coût global de 4,1 millions de dollars et qu'une journée avec symptômes respiratoires aigus représente un coût de 13 dollars.
- Les colonnes en vert (série 1) fournissent les résultats générés par AQBAT à partir des concentrations dans l'air ambiant qui correspondent aux valeurs « bruit de fond ».
 - o La première colonne verte reprend les concentrations tirées du tableau des concentrations présenté à la page 22.
 - La seconde colonne verte présente le nombre de cas attribuables au « bruit de fond ». À titre d'exemple, toujours en considérant la première ligne, AQBAT estime qu'une concentration de 18,4 ppb de NO₂ contribuera en 2016 à l'occurrence de 3,6 décès sur les 263 qui surviendront dans la zone d'étude.
 - La troisième colonne verte présente un estimé des coûts attribuables au « bruit de fond ». Par exemple, les 3,6 décès dont il est fait mention au point précédent se traduisent par des coûts de 14,8 millions \$, à raison de 4,1 millions \$ par décès.
- Les colonnes en rouge (série 2) fournissent les résultats obtenus en entrant dans AQBAT les concentrations moyennes annuelles modélisées attribuables au projet (situation 2016 avec projet). Les résultats de la modélisation mettent en évidence la contribution individuelle du complexe Turcot aux problèmes de santé dans le secteur à l'étude en 2016.
- Les colonnes en violet (série 3) fournissent les résultats obtenus en entrant dans AQBAT les valeurs qui correspondent à la différence entre les concentrations moyennes annuelles modélisées en 2016 (situation 2016 avec projet moins situation 2016 « statu quo ». Toutes les autres participations étant égales, les valeurs générées permettent d'évaluer l'impact net du projet par rapport au statu quo.

Calculs effectués avec le logiciel AQBAT pour la population résidant dans une bande de 300 m de part et d'autre du complexe Turcot (2016)

Effets visés par AQBAT		Données de base fournies par AQBAT					Série 1			Série 2			Série 3		
		Nombre de cas dans la population de 19 347 personnes habitant la zone d'étude en 2016 (baseline)	FCR (Selon Admoyenne de l des cas qui sor à une unité de paramètres de ambi	a proportion nt attribuables chacun des qualité de l'air	Unité de mesure dans AQBAT	FEP Coût déterminé par AQBAT pour chaque cas attribuable aux paramètres de qualité de l'air ambiant	Valeur moyenne annuelle "bruit de fond" la plus élevée pour la période de 2003 à 2007	Nb de cas attribuables au "bruit de fond"	Coûts attribuables au "bruit de fond"	Concentrations moyennes annuelles modélisées attribuables au projet (situation 2016 avec projet)	Nb de cas associés aux concentrations moyennes annuelles modélisées attribuables au projet (situation 2016 avec projet)	Coûts des cas associés aux concentrations moyennes annuelles modélisées attribuables au projet (situation 2016 avec projet)	Différence entre les concentrations moyennes annuelles modélisées (situation 2016 avec projet moins situation 2016 statu quo)	Nb de cas associés à la différence entre les concentrations moyennes annuelles modélisées	Coûts des cas associés à la différence entre les concentrations moyennes annuelles modélisées
			NO ₂ (24h)	7,48E-04	ppb	4 100 000 \$	18,4	3,6	14 847 585 \$	1,75	0,3	1 412 134 \$	0,09	0,02	72 624 \$
1	Mortalité par exposition aiguë	263	O ₃ (1h max)	8,39E-04	ppb	4 100 000 \$		Non disponible			Non disponible			Non disponible	
'	mortaine par exposition argue	203	SO ₂ (24h)	4,59E-04	ppb	4 100 000 \$		Non disponible			Non disponible			Non disponible	
			CO (24h)*	1,90E-03	ppm	4 100 000 \$	0,442	0,2	905 967 \$	0,087	0,04	178 324 \$	-0,025	-0,01	51 242 \$-
2	Jours avec symptômes	1 238 208	PM2.5 (24h)	2,66E-03	µg/m³	13 \$	10,11	17 543	228 055 \$	0,054	94	1 218 \$	0,008	14	180 \$
	respiratoires aigus	1 200 200	O ₃ (1h max)	7,86E-04	ppb	13 \$		Non disponible	,		Non disponible			Non disponible	
3	Cas de bronchite chronique chez l'adulte	124	PM _{2.5} (24h)	1,32E-02	µg/m³	266 000 \$	10,11	12,4	3 288 820 \$	0,054	0,07	17 566 \$	0,008	0,01	2 602 \$
4	Jours avec symptômes	O ₃ (1h max)	O ₃ (1h max)	1,77E-03	ppb	28 \$		Non disponible			Non disponible			Non disponible	
	d'asthme		PM _{2.5} (24h)	7,93E-04	µg/m³	28 \$	10,11	558	15 635 \$	0,054	3,0	84 \$	0,008	0,4	12 \$
5	Consultation aux urgences pour problèmes cardiaques	219	PM _{2.5} (24h)	7,11E-04	µg/m³	4 400 \$	10,11	0,4	1 652 \$	0,054	0,0	9 \$	0,008	0,0003	1 \$
6	Admissions hospitalières pour problèmes cardiaques	166	PM _{2.5} (24h)	7,11E-04	µg/m³		10,11	1,2	- \$	0,054	0,0	- \$	0,008	0,0009	- \$
/	Épisodes de bronchite aiguë chez l'enfant	1 238	PM _{2.5} (24h)	2,72E-02	µg/m³	310 \$	10,11	62	19 072 \$	0,054	0,3	102 \$	0,008	0,05	15 \$
8	Mortalité due à une exposition chronique	263	PM _{2.5} (24h)	6,76E-03	μg/m³	4 100 000 \$	10,11	18	73 728 305 \$	0,054	0,1	393 801 \$	0,008	0,01	58 341 \$
9	Admissions hospitalières pour des urgences cardiaques chez les personnes agées	166	CO (1h max)	2,77E-02	ppm	5 200 \$		Non disponible		6,60	6,0	30 948 \$	1,1	1	5 158 \$
10	Jours d'activités restreinte mineure	154 776	O ₃ (1h max)	5,30E-04	ppb	22 \$		Non disponible			Non disponible			Non disponible	
11	Consultations aux urgences	762	O ₃ (1h max)	7,91E-04	ppb	2 000 \$		Non disponible			Non disponible			Non disponible	
	pour problèmes respiratoires		PM _{2.5} (24h)	7,54E-04	µg/m³	2 000 \$	10,11	4,7	9 324 \$	0,054	0,02	50 \$	0,008	0,004	7 \$
	Admissions aux hôpitaux pour problèmes respiratoires	151	O ₃ (1h max)	7,91E-04	ppb			Non disponible			Non disponible			Non disponible	
12			PM _{2.5} (24h)	7,54E-04	μg/m³		10,11	1,1	- \$	0,054	0,01	- \$	0,008	0,001	- \$
13	Jours d'activité restreinte	367 593	PM _{2.5} (24h)	4,81E-03	µg/m³	48 \$	10,11	13 758	660 386 \$	0,054	73	3 527 \$	0,008	11	523 \$
									93 704 799 \$			2 037 763 \$			88 222 \$

Le tableau se lit comme suit :

Par exemple, pour l'effet no. 8 (Mortalité due à une exposition chronique au PM_{2,5}), en jaune dans le tableau :

- AQBAT prévoit que 263 décès surviennent annuellement dans l'aire d'étude habitée par 19 347 personnes (toutes causes confondues, autres qu'accidentelles).
- Dans la série 1 en vert, AQBAT estime que, annuellement, 18 de ces 263 mortalités sont dues à une exposition chronique à la concentration bruit de fond de PM_{2,5} (24h) qui caractérise ce secteur de Montréal. En d'autres mots, et de façon simplifiée, AQBAT estime que, si les PM_{2,5} étaient complètement absents de l'air ambiant dans l'aire d'étude, la société éviterait 18 décès et un coût social de 73 728 305 \$ au regard de ce seul aspect.
- Dans la série 2 en rouge, AQBAT prévoit que, en 2016, à lui seul l'échangeur Turcot « reconstruit » contribuera à générer 0,1 décès additionnels liés à une exposition chronique de PM_{2,5} dans l'aire d'étude (par rapport à la situation improbable où l'échangeur serait complètement retiré de ce secteur). Ceci correspond à un coût social de 393 801 \$.
- Dans la série 3 en violet, AQBAT prévoit que, en 2016, la différence entre les émissions de PM_{2,5} liées à la nouvelle configuration et celles qui seraient associées à la configuration actuelle (si elle était laissée en place) fera en sorte de générer une augmentation de 0,01 décès additionnels (correspondant à un coût social de 58 341 \$). Ainsi, suite à reconfiguration de l'échangeur, si le bruit de fond de PM_{2,5} demeurait inchangé en 2016 dans l'aire d'étude, la mortalité annuelle due à une exposition chronique passerait de 18 à 18,01 décès, une augmentation extrêmement faible.

Il est important de rappeler que le logiciel AQBAT a été conçu principalement pour comparer des scénarios d'exposition entre eux et non pour évaluer de façon absolue les impacts d'un scénario donné. Plus particulièrement, les résultats de la première série de données relative au bruit de fond (en vert) doivent donc être considérés avec prudence et ne sont présentés que pour fournir un cadre référentiel permettant en quelque sorte d'apprécier les résultats des deux autres séries de données.

Dans l'ensemble, les résultats mis en évidence par la série 3 (en violet) démontrent que les effets associés à la nouvelle configuration qui serait donnée au complexe Turcot sont marginaux.

Par ailleurs, les sommes monétaires présentées au bas de chacun des trois blocs permettent d'intégrer les effets de chacune des trois séries de données considérées dans la présente étude. Ainsi, il paraît clair que la contribution totale de la présence de l'échangeur Turcot en 2016 (2,037 millions \$) ne constitue qu'une faible fraction (environ 2%) de la contribution des concentrations « bruit de fond » dans l'air ambiant de la zone étudiée (93 millions \$). La contribution de la différence entre les émissions de l'échangeur dans une forme reconfigurée et les émissions de l'échangeur dans sa forme actuelle paraît quant à elle négligeable (88 222 \$).

5 Conclusion

Le projet de reconstruction du complexe Turcot consiste à remplacer une bonne partie des voies qui le constituent par de nouvelles voies dont la position précise sera un peu déplacée par rapport à la configuration actuelle. À terme, la configuration légèrement décalée du complexe fera en sorte que les conditions de dispersion des contaminants atmosphériques émis par les véhicules seront légèrement modifiées. Le nouveau patron de dispersion aura des incidences sur l'exposition de la population résidant dans les secteurs localisés à proximité du complexe. Selon les récepteurs et les substances précises, la nouvelle configuration peut augmenter ou diminuer l'exposition par rapport à la configuration actuelle.

Dans le cas du monoxyde de carbone, les concentrations maximales attendues sont nettement inférieures aux niveaux à partir desquels des effets sur la santé humaine peuvent être appréhendés. De plus, les écarts entre les concentrations futures « avec le projet » et celles du statu quo sont généralement très faibles. En moyenne, en 2016, la concentration « avec le projet » est inférieure à celle du statu quo. L'impact associé aux émissions de CO peut donc être considéré nul ou même légèrement positif.

En 2016, Les concentrations maximales de NO₂ seront généralement plus faibles que celles qui sont observées actuellement dans le secteur du complexe Turcot. Cependant, la nouvelle disposition des voies fera en sorte que les diminutions attendues seront moins importantes que dans un scénario où la disposition actuelle des voies serait maintenue. En 2016, la nouvelle configuration fera en sorte que les normes quotidiennes et annuelles de la Ville de Montréal seront respectées en tout temps alors que des concentrations horaires de NO₂ dépassant légèrement la norme de la Ville de Montréal pourraient être observées occasionnellement, mais moins souvent que dans les conditions actuelles.

Pour ce qui concerne les COV, les apports en benzène et en formaldéhyde pouvant être liés au projet de reconstruction sont très faibles et les risques pour la santé associés à ces apports sont négligeables.

L'effet du projet sur les concentrations de particules fines (PM_{2.5}) est également minime. De plus, les concentrations maximales sont inférieures aux normes applicables à tous les récepteurs indépendamment du scénario pris en compte, autant pour les expositions relativement aiguës (période 24 heures) que pour une exposition chronique (période annuelle). Aucun impact sur la santé des personnes n'est donc appréhendé.

L'évaluation quantitative des bénéfices/inconvénients à l'aide de l'outil de calcul AQBAT, qui explore les enjeux sanitaires sous un angle différent de celui des critères de qualité de l'air, permet d'apprécier les effets d'une exposition soutenue à des concentrations moyennes dans l'air ambiant. Dans l'ensemble, les résultats démontrent que les effets associés à la nouvelle configuration qui serait donnée au complexe Turcot sont marginaux autant en termes de nouveaux enjeux de santé qu'en ce qui concerne les coûts sociaux liés à ces enjeux.

Il est donc permis de conclure que le projet de reconstruction du complexe Turcot aura très peu d'effets négatifs sur la santé des personnes résidant à proximité de celui-ci. De façon générale, les concentrations qui seront observées en 2016 à proximité du complexe Turcot seront équivalentes ou plus faibles que celles qui sont observées actuellement. Les quelques dépassements des critères visant la protection de la santé seront beaucoup plus liés aux concentrations ambiantes qui ont été retenues dans le cadre de la présente étude qu'aux effets spécifiques du projet. Les effets du projet peuvent cependant contribuer à augmenter le nombre de dépassements appréhendés, par rapport à la situation « statu quo » future. Ceci pourra

matamanant ŝtua accesion mellomant la con menur la NO anum uma basa bancina. Las effeta de con
notamment être occasionnellement le cas pour le NO_2 sur une base horaire. Les effets de ces dépassements sur la santé de la population seront minimes et très peu fréquents.

6 Références et documentation consultée

Abbey, D.E., B.E. Ostro, F. Petersen et R.J. Burchette. 1995. Chronic respiratory symptoms associated with estimated long-term ambient concentrations of fine particulates less than 2.5 microns in aerodynamic diameter (PM2.5) and other air pollutants. *J. Expos. Anal. Environ. Epidemiol.*, 5(2): 137-159.

Anderson, P.J., J.D. Wilson et F.C. Hiller. 1990. Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. *Chest*, 97: 1115-1120.

ATSDR (Agency for Toxic Substances & Disease Registry). 1999. *Toxicological Profile for Formaldehyde*. [En ligne] http://www.atsdr.cdc.gov/toxprofiles/tp111.html (site consulté le 7 janvier 2009).

Avol, E.L., W.S. Linn, R.C. Peng, G. Valencia, D. Little et J.D. Hackney. 1988. Laboratory study of asthmatic volunteers exposed to nitrogen dioxide and to ambient air pollution. *Am Ind Hyg Ass J.* 49: 143-149.

Burnett, R.T., J.R. Brook, S. Cakmak et D. Krewski. 1997. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases. *Environ Health Perspect.*, 105: 614-620.

CCME (Conseil canadien des ministres de l'Environnement). 2000. Standards pancanadiens relatifs aux particules (PM) et à l'ozone.

CIRC (Centre international de Recherche sur le Cancer). 2008. Evaluations Globales de la cancérogénicité pour l'Homme - Liste de tous les agents évalués à ce jour (classement par ordre alphabétique) (en anglais). Mise à jour le 12 mai 2008. [En ligne] http://monographs.iarc.fr/FR/Classification/crthallalph.php (site consulté le 8 janvier 2009).

CIRC. (Centre international de Recherche sur le Cancer). 2007. Volumes 1-98. Agents Reviewed by the IARC Monographs. In International Agency for Research on Cancer (IARC). IARC monographs. Classifications. Site de l'IARC, [En ligne]. http://monographs.iarc.fr/ENG/Classification/index.php (site consulté le 14 avril 2008).

CIRC (Centre international de Recherche sur le Cancer). 2006. *IARC Monographs on the Evaluation of Carcinogenic Risks to Humans*Volume 88 (2006). Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. [En ligne] http://monographs.iarc.fr/ENG/Monographs/vol88/index.php (site consulté le 6 janvier 2009).

Consortium Dessau / Les Consultants S.M. 2008. Projet de reconstruction du complexe Turcot. Qualité de l'air. Rapport sectoriel. Décembre 2008.

CUM (Communauté urbaine de Montréal). 1999. Rapport 1999 de la qualité de l'air. (Service de l'environnement –Assainissement de l'air et de l'eau).

Dockery, D.W., J. Cunningham, A.I. Damokosh, L.M. Neas, J.D. Spengler, P. Koutrakis, J.H. Ware, M. Raizenne et F.E. Speizer. 1996. Health effects of acid aerosols on North American children: Respiratory symptoms. *Environ. Health Perspect.*, 104: 500-505.

Dockery, D.W., C.A. Pope, X. Xu, J.D. Spengler, J.H. Ware, M.E. Fay, B.G. Ferris et F.E. Speizer. 1993. An association between air pollution and mortality in six U.S. cities, *N. Engl. J. Med.*, 329(24): 1753-1759.

Dockery, D.W., F.E. Speizer, D.O. Stram, J.H. Ware, J.D. Spengler et B.G. Ferris. 1989. Effects of inhalable particles on respiratory health of children. *Am. Rev. Respir. Dis.*, 139(3): 587-594.

- Frampton M.W., P.E. Morrow, C. Cox C., F.R. Gibb, D.M. Speers et M.J. Utell. 1991. Effects of nitrogen dioxide exposure on pulmonary function and airway reactivity in normal humans. *Am Rev Respir Dis*, 143 (3): 522-527.
- Goings, S.A.J., T.J. Kulle, R. Bascom, L.R. Sauder, D.J. Grren, J.R. Hebel et M.L. Clements. 1989. Effect of nitrogen dioxide exposure on suceptibility to influenza A virus infection in healthy adults. *Am Rev Respir Dis*, 139: 1075-1081.
- Gordian, M.E., H. Özkaynak, J. Xue, S.S. Morris et J.D. Spengler. 1996. Particulate air pollution and respiratory disease in Anchorage, Alaska. *Environ. Health Perspect.*, 104: 290-297.
- Hefflin, B.J., B. Jalaludin, E. McClure, N. Cobb, C.A. Johnson, L. Jecha et R.A. Etzel. 1994. Surveillance for dust storms and respiratory diseases in Washington State, 1991. *Arch. Environ. Health*, 49 (3): 170-174.
- Helleday R., D. Huberman, A. Blomberg, N. Stjernberg et T. Sandstrom. 1995. Nitrogen dioxide exposure impairs the frequency of the mucociliary activity in healthy subjects. *Eur Respir J*, 8 (10): 1664-8.
- Judek, S. et D. Stieb (2006). Outil d'évaluation des bénéfices lié à la qualité de l'air (en anglais Air Quality Benefits Assessment Tool ou AQBAT), Direction générale de la santé environnementale et de la sécurité des consommateurs (DGSESC), Santé Canada.
- Linn W.S., J.C. Solomon, S.C. Trim, C.E. Spier, D.A. Shamoo, T.G. Venet, E.L. Avol et J.D. Hackney. 1985. Effects of exposure to 4 ppm nitrogen dioxide in healthy and asthmatic volunteers. *Arch Environ Health*, 40: 234-239.
- Lippmann, M. 1977. Regional deposition of particles in the human respiratory tract, dans D.H.K. Lee, H.L. Falk, S.D. Murphy et S.R. Geiger (éd.), *Handbook of physiology*. Section 9: Reactions to environmental agents, American Physiological Society, Bethesda (Md.), p. 213-232.
- Lowenthal, D.H. 1997. *Motor vehicle contributions to PM2.5 aerosol in Canadian urban areas*. Préparé pour la Commission d'experts en sciences atmosphériques des « Études sur le soufre dans l'essence » réalisées conjointement par l'industrie et le gouvernement.
- Lowenthal, D.H., D. Whittorff et A.W. Gertler. 1994. *CMB source apportionment during REVEAL*. Préparé pour la Direction des ressources atmosphériques, ministère de l'Environnement, des Terres et des Parcs de la C.-B. (rapport no 484410/10/94).
- Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred et T.A. Cahill. 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. *J. Geophys. Res.*, 99: 1346-1370.
- Miller, F.J., C.E. Gardner, J.A. Graham, R.R. Lee, W.E. Wilson et J.D. Bachman. 1979. Size considerations for establishing a standard for inhalable particles. *J. Air Pollut. Control Assoc.*, 29: 610-615.
- Mohsenin, V. 1988. Airway responses to 2.0 ppm nitrogen dioxide in normal subjects. *Arch Environ Health*, 43 (3): 242-6.
- NAPAP (National Acid Precipitation Assessment Program). 1991. *Visibility, existing and historical conditions causes and effects*. Office of the Director, Acid Deposition, State of Science and Technology, Washington (D.C.), (rapport no 24).
- OMS (Organisation mondial de la Santé). 2006. Lignes directrices OMS relatives à la qualité de l'air : particules, ozone, dioxyde d'azote et dioxyde de soufre Mise à jour mondiale 2005 Synthèse de l'évaluation des risques. [En ligne]

http://whqlibdoc.who.int/hq/2006/WHO_SDE_PHE_OEH_06.02_fre.pdf (site consulté le 29 avril 2008).

OMS (Organisation mondial de la Santé). 2000. *Air quality guidelines for Europe* – Second Edition. WHO regional publications. European Series, No. 91 [En ligne] http://www.euro.who.int/document/e71922.pdf (site consulté le 17 juillet 2008).

OMS (Organisation mondial de la Santé). 1987. *Air quality guidelines for Europe*. WHO regional publications. European series. No. 23.

Ostro, B.D. 1990. Associations between morbidity and alternative measures of particulate matter, *Risk Anal.*, 10 (3): 421-427.

Ostro, B.D. et S. Rothschild. 1989. Air pollution and acute respiratory morbidity: an observational study of multiple pollutants, *Environ. Res.*, 50: 238-247.

Ostro, B.D. 1987. Air pollution and morbidity revisited: a specification test, *J. Environ. Econ. Manage*, 14: 87-98.

Pope, C.A. 1991. Respiratory hospital admissions associated with PM10 pollution in Utah, Salt Lake, and Cache valleys. *Arch. Environ. Health*, 46 (2): 90-97.

Raizenne, M., L.M. Neas, A.I. Damokosh, D.W. Dockery, J.D. Spengler, P. Koutrakis, J.H. Ware et F.E. Speizer. 1996. Health effects of acid aerosols on North American children: pulmonary function. Environ. *Health Perspect.*, 104: 506-514.

Seinfeld, J.H. 1986. *Atmospheric chemistry and physics of air pollution*, John Wiley & Sons, New York (N.Y.)

Thurston, G.D., K. Ito, C.G. Hayes, D.V Bates et M. Lippmann. 1994. Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: consideration of the role of acid aerosols. *Environ. Res.*, 65: 271-290.

Trijonis, J. 1982. Visibility in California, J. Air Pollut. Control Assoc., 32: 165-169.

Troncy, E., M. Francoeur et G. Blaise. 1997. Inhaled nitric oxide: clinical applications, indications and toxicology. *Can J Anaesth*, 44, (9), 973-88.

USEPA. 2008a. IRIS *Integrated Risk Information System*. [En ligne] http://cfpub.epa.gov/ncea/iris/index.cfm (site consulté le 21 juillet 2008).

USEPA. 2008b. *PM Standards*. Mise à jour le 9 mai 2008. [En ligne] http://www.epa.gov/air/particles/standards.html (Site consulté le 22 juillet 2008).

USEPA (United States Environmental Protection Agency). 2006. *Air Quality Criteria for Ozone and Related Photochemical Oxidants*. Volume I of III. National Center for Environmental Assessment-RTP Office, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC. EPA 600/R-05/004aF [En ligne] http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=149923 (site consulté le 21 janvier 2009)

USEPA (United States Environmental Protection Agency), 1994. Nitrogen dioxide (CASRN 10102-44-0) - Reference Dose for Chronic Oral Exposure (RfD), U.S. Environmental Protection Agency - Integrated Risk Information System. http://www.epa.gov/ngispgm3/iris/

USEPA (United States Environmental Protection Agency), 1993. *Air Quality criteria for oxides of nitrogen*. Research Triangle Park. U S Environmental Protection Agency. EPA/600/8-91/049aF-cF.3v.

Wallace, J.M. et P.V. Hobbs. 1977. Atmospheric science: an introductory survey, Academic Press, Orlando (Fla.), 467 p.

ANNEXE B : ADDENDA À L'ÉTUDE DE POTENTIEL ARCHÉOLOGIQUE – PHASE 2

COMPLEXE TURCOT

Étude de potentiel archéologique – phase 2 Addenda

VOLUME 1

Table des matières

Volume 1

Table	e des m	atières	
Liste	des tab	onsbleauxéalisation	i\
1.0	Intro	duction	
	1.1		1
	1.2	Zone d'étude	1
2.0	Pote	ntiel archéologique préhistorique	3
3.0	Pote	ntiel archéologique historique	5
	3.1		
		3.1.1 Arrondissement Côte-des-Neiges/Notre-Dame-de-Grâce	
		3.1.2 Arrondissement Le Sud-Ouest	
	3.2		
Bibli	ograph	ie	

Volume 2

Plans 1 à 39

Illustration des pages couvertures (volumes 1 et 2) :

Échangeur Turcot à Montréal vers 1965-1966, Bibliothèque et archives nationales du Québec, Montréal, fonds Armour Landry, P97S1D6974-6977

Liste des plans

Plan 1	Zone d'étude archéologique et sites archéologiques préhistoriques
Plan 2	Localisation générale de la zone d'étude archéologique
Plan 3	Zones à potentiel archéologique préhistorique
Plan 4	Secteurs à potentiel archéologique historique
Plan 5	Secteur H1, superposition du plan de H. S. Sitwell de 1865-1871
Plan 6	Secteur H1, superposition du plan de Charles Edward Goad de 1890
Plan 7	Secteur H1, superposition du plan de A. R. Pinsonneault de 1907
Plan 8	Secteur H1, superposition des plans d'assurance de 1915, révisés en 1926
Plan 9	Secteur H1, zones à potentiel archéologique historique
Plan 10	Secteur H2, superposition du plan de H. S. Sitwell de 1865-1871
Plan 11	Secteur H2, superposition du plan de Charles Edward Goad de 1890
Plan 12	Secteur H2, superposition du plan de A. R. Pinsonneault de 1907
Plan 13	Secteur H2, superposition des plans d'assurance de 1915, révisés en 1926
Plan 14	Secteur H2, zones à potentiel archéologique historique
Plan 15	Secteur H3, superposition du plan de H. S. Sitwell de 1865-1871
Plan 16	Secteur H3, superposition du plan de Charles Edward Goad de 1890
Plan 17	Secteur H3, superposition du plan de Charles Edward Goad de 1913
Plan 18	Secteur H3, superposition des plans d'assurance de 1912 révisés en 1938
Plan 19	Secteur H3, superposition du plan de Underwriters' Survey Bureau de 1955
Plan 20	Secteur Décarie, superposition du plan de H. S. Sitwell de 1865-1871
Plan 21	Secteur H3, zones à potentiel archéologique historique

Liste des plans

Plan 22	Secteurs H4 et H5, zones à potentiel archéologique historique
Plan 23	Secteur H6 ouest, superposition du plan de H. S. Sitwell de 1865-1871
Plan 24	Secteur H6 sud-est, superposition du plan de H. S. Sitwell de 1865-1871
Plan 25	Secteur H6 nord-est, superposition du plan de H. S. Sitwell de 1865-1871
Plan 26	Secteur H6 nord-est, superposition du plan de H. W. Hopkins de 1879
Plan 27	Secteur H6 ouest, superposition du plan de Charles Edward Goad de 1890
Plan 28	Secteur H6 ouest, superposition des plans d'assurance de Charles Edward Goad de 1907
Plan 29	Secteur H6 sud-est, superposition du plan d'assurance de Charles Edward Goad de 1907
Plan 30	Secteur H6 ouest, superposition des plans de Underwriters' Survey Bureau de 1940
Plan 31	Secteur H6 sud-est, superposition des plans de Underwriters' Survey Bureau de 1940
Plan 32	Secteur H6 nord-est, superposition des plans de Underwriters' Survey Bureau de 1940
Plan 33	Secteur H6 ouest, superposition des plans de Underwriters' Survey Bureau de 1954
Plan 34	Secteur H6 sud-est, superposition des plans de Underwriters' Survey Bureau de 1954
Plan 35	Secteur H6 nord-est, superposition des plans de Underwriters' Survey Bureau de 1954
Plan 36	Secteur H6 ouest, zones à potentiel archéologique historique
Plan 37	Secteur H6 sud-est, zones à potentiel archéologique historique
Plan 38	Secteur H6 nord-est, zones à potentiel archéologique historique
Plan 39	Secteurs H5 et H7, superposition du plan de H. S. Sitwell de 1865-1871 et zone à potentiel archéologique historique

Liste des tableaux

Tableau 2	Description préhistorique		•	archéologique	4
Tableau 4	Description historique H6		•	archéologique	8

Note : Les modifications à l'aire d'étude n'entraînent pas de changements au tableau 1 et 3 de l'étude de potentiel présentée en avril 2008.

Équipe de réalisation

Le Consortium Dessau/Les consultants SM

Sylvie Côté Géographe, M. Env., chargée de projet, études

environnementales

Ministère des Transports du Québec

Direction générale de Montréal et de l'Ouest Direction de l'Île-de-Montréal Service des Inventaires et du Plan

Sylvie Tanguay Urb., M. Env., chargée de projet, étude d'impact sur

l'environnement

Direction générale de Québec et de l'Est Direction de la Coordination, de la Planification et des Ressources Service de la Planification et de la Programmation

Denis Roy Archéologue

Marie-Pier Desjardins Archéologue

Ethnoscop inc.

Jean Poirier Coordonnateur et géomorphologue

Gilles Brochu Archéologue (histoire)

Roland Tremblay Archéologue (préhistoire)

Laurence Johnson Assistante de recherche

Liliane Carle Géographe cartographe

Armelle Ménard Adjointe administrative et chargée d'édition

Isabelle Hade Chargée d'édition

1.0 Introduction

1.1 Mandat et objectifs

Le ministère des Transports du Québec projette la reconstruction de l'échangeur Turcot, qui constitue l'un des carrefours importants du réseau routier montréalais, à la jonction des autoroutes 15, 20 et 720 (plan 1). Le projet, nommé « Complexe Turcot », est l'objet d'une étude d'impact sur l'environnement dont la zone d'étude couvre une distance de près de neuf kilomètres. Le Ministère a mandaté le Consortium Dessau/Les consultants SM afin de réaliser cette étude d'impact qui comprend une évaluation du potentiel archéologique.

Le Consortium Dessau/Les consultants SM a confié un premier mandat à la firme Ethnoscop en 2007, afin de réaliser la phase 1 de cette évaluation (Ethnoscop 2007), qui se présente comme une revue de littérature de l'ensemble des données archéologiques et historiques connues concernant le secteur de l'île de Montréal où se situe le projet de reconstruction. Les résultats de cette première phase d'analyse ont permis de statuer sur la pertinence de poursuivre la recherche sous la forme d'une étude de potentiel archéologique historique et préhistorique (phase 2).

Certaines corrections au tracé du projet du complexe Turcot ont modifié les limites de la zone d'étude établies lors de l'étude de potentiel archéologique (phase 2) déposée au printemps 2008. Ces changements sont mineurs mais dans certains cas, impliquent une réflexion quant au potentiel archéologique autant préhistorique qu'historique. Le présent rapport propose un addenda à l'étude qui reprend le potentiel archéologique et les tableaux 2 et 4 (description des zones à potentiel archéologique préhistorique et historique et plans d'interventions) et qui réédite les plans¹.

1.2 Zone d'étude

La zone d'étude traverse cinq arrondissements de la Ville de Montréal et deux municipalités de l'Île de Montréal et inclut les échangeurs Montréal-Ouest, Angrignon, de la Vérendrye et Turcot (plans 1 et 2). Pour les fins de la présente étude de potentiel archéologique, la zone d'étude se limite aux modifications apportées au tracé du projet du complexe Turcot. Deux arrondissements sont touchés par ces modifications : Côte-des-Neiges/Notre-Dame-de-Grâce et Le Sud-Ouest.

Dans l'arrondissement Côte-des-Neiges/Notre-Dame-de-Grâce Côte-des-Neiges/Notre-Dame-de-Grâce, dans le secteur de l'emprise de l'autoroute Décarie, la zone d'étude a été élargie vers le nord pour inclure la rue Saint-Jacques ainsi que de petites avancées perpendiculaire, dans l'axe de la rue Addington, de la rue Girouard, de l'avenue Prud'homme, du boulevard Décarie et dans l'ancienne cour Glen.

¹ Seuls les plans 5, 6, 7, 8 et 9 n'ont pas été modifiés par les changements au tracé et six nouveaux plans ont été ajoutés. Ces ajouts entrainant la renumérotation de pratiquement toute la série, il a été jugé préférable de la rééditer au complet.

Les autres modifications concernent l'arrondissement Le Sud-Ouest, soit le prolongement vers le nord-est de la section de l'autoroute 15 qui sera touché par les travaux, l'ajout de la rue Saint-Rémi, de la rue de l'Église jusqu'au tunnel Saint-Rémi et enfin, l'ajout d'un corridor situé dans un secteur industriel entre les rues Angers et Pitt. À l'extrémité ouest de cet arrondissement, la zone d'étude a également été élargie à la hauteur du pont du boulevard Angrignon au-dessus du canal de Lachine.

2.0 Potentiel archéologique préhistorique

Les données concernant le cadre naturel ancien et le cadre culturel de la période préhistorique, présentées aux points 2.1 et 2.2 dans le rapport d'avril 2008, ont été réexaminées, ce qui a permis d'identifier une nouvelle zone à potentiel archéologique préhistorique, la zone P4. Les zones P1 et P3, présentées dans le rapport d'avril 2008, ont aussi été modifiées en tenant compte du nouveau tracé de l'aire d'étude (plan 3).

Zone P4

La zone P4 couvre une superficie de 8 023 m². Il s'agit d'une zone qui est naturellement plus vaste mais qui, en raison de la configuration de la limite de l'emprise des travaux, se divise en trois petits secteurs sur la terrasse Sherbrooke, de part et d'autre du prolongement vers l'autoroute Décarie (plan 3). Un premier secteur concerne l'extension de la limite de l'emprise vers le nord-ouest sur une longueur d'environ 100 mètres sur le boulevard Décarie, à partir du milieu de la chaussée de la rue Saint-Jacques. Le terrain de l'ancienne cour de triage Glen est toutefois exclut de ce prolongement, qui a déjà fait l'objet d'interventions archéologiques et qui est aujourd'hui un site archéologique répertorié. Il reste donc la partie sous la chaussée actuelle du boulevard Décarie et son intersection avec la rue Saint-Jacques Un second secteur concerne une extension de la limite de l'emprise vers le nord-ouest le long de l'avenue Prudhomme, sur environ 85 mètres et une petite partie qui longe la chaussée nord de la rue Saint-Jacques sur une guarantaine de mètres, à partir de l'intersection de l'avenue Prudhomme et de la rue Saint-Jacques. Enfin, un troisième et dernier secteur concerne un prolongement de l'emprise des travaux, le long de la rue Saint-Jacques, à l'ouest du viaduc passant au-dessus de l'autoroute Décarie. Ce prolongement fait environ 135 mètres de longueur et comprend également deux petites parties vers le nord-ouest le long des rues Addington (±15 m) et Girouard (±35 m). Ces trois petits secteurs forment donc une zone à potentiel qui se retrouve sur le rebord de la terrasse Sherbrooke. L'intérêt de la terrasse Sherbrooke réside dans sa position élevée dominant la plaine lacustre de l'ancien lac à la Loutre (lac Saint-Pierre). Du haut de cette terrasse, les Amérindiens auraient pu avoir un point de vue dominant sur l'ensemble du sud-est, entre la pointe sud de l'île Sainte-Hélène et la pointe sud de l'île des Sœurs, et auraient aussi maîtrisé un territoire de chasse exceptionnel. L'altitude du rebord de cette terrasse se situe entre 47 et 50 mètres NMM et le potentiel préhistorique y remonte jusqu'à la fin de l'épisode Paléoindien, il y a environ 8000 ans. Toutefois, cette terrasse a été fortement modifiée par l'urbanisation et les secteurs de la zone sont tous situés sous la chaussée des rues actuelles. Il faudra donc vérifier l'état des sols et effectuer au moins trois tranchées mécaniques lors de l'inventaire (une par secteur). Par la suite, selon l'état des sols, des sondages manuels pourront être effectués.

Tableau 2 : Description des zones à potentiel archéologique préhistorique et plan d'intervention

Identification de la zone	Localisation	Superficie	Recommandations	Plan d'intervention
	A Payest du guertier Caint Henri eu	2 2 2 2 2	Inventoire	Candagas manuals dans des
P1	À l'ouest du quartier Saint-Henri, au pied du talus où se situait jadis le ruisseau Glen.	± 85 000 m ²	Inventaire archéologique	Sondages manuels dans des aires décapées mécaniquement réparties aux endroits peu ou pas perturbés, suite à des évaluations de l'état des sols par des tranchées mécaniques
P2	Tronçon de la bretelle du boulevard Angrignon située au sud-ouest de la cour de triage Turcot	± 8 000 m ²	Inventaire archéologique	Sondages manuels suite à une évaluation des sols à l'aide de tranchées mécaniques
P3	Quadrilatère formé par les rues Saint-Patrick, Cabot, Hadley, Roberval et l'avenue de l'Église (plan 31)	± 161 000 m ²	Inventaire archéologique	Sondages mécaniques effectués lors des interventions en archéologie historique dans le secteur H6. Une attention particulière devra être apportée aux indices d'une présence préhistorique.
P4	Trois petits secteurs de part et d'autre de l'autoroute Décarie: le début du boulevard Décarie à partir de la rue Saint-Jacques, le début de l'avenue Prudhomme à partir de la rue Saint-Jacques et environ 135 m de la rue Saint-Jacques à partir de l'autoroute Décarie vers l'ouest, incluant deux petits prolongement le long des rues Addington et Girouard.	± 8 000 m ²	Inventaire archéologique	Sondages manuels suite à une évaluation des sols à l'aide de tranchées mécaniques

3.0 Potentiel archéologique historique

3.1 Contexte historique

3.1.1 Arrondissement Côte-des-Neiges/Notre-Dame-de-Grâce

Dans le secteur de l'autoroute Décarie, la zone d'étude a été élargie vers le nord pour inclure la rue Saint-Jacques ainsi que de petites avancées perpendiculaires, dans l'axe de la rue Addington, de la rue Girouard, de l'avenue Prud'homme, du boulevard Décarie et dans l'ancienne cour Glen, où sera bâtie le futur Centre universitaire de santé McGill (CUSM) (plan 4). Cette nouvelle configuration permet de reconsidérer le potentiel associé au peuplement euro-canadien du coteau Saint-Pierre, qui est concédée par les Sulpiciens à partir des années 1660. Notons que dans ce secteur, le potentiel archéologique a en bonne partie été évalué dans le cadre des études d'impacts réalisées pour le CUSM (Ethnoscop 2005; Ethnoscop 2006).

Le plan de Sitwell réalisée vers 1865-1871 est la meilleure représentation cartographique pour localiser les complexes agricoles qui, encore à cette date, correspondent probablement à leur emplacement original. Une nouvelle superposition de ce plan a été réalisée afin d'évaluer si le nouveau tracé de l'aire d'étude recouperait une de ces anciennes fermes. Le plan 20 permet de constater que l'axe de prolongement situé sur le terrain du CUSM est inclus dans le site BiFj-82. Les interventions archéologiques de 2005 et 2006 ont donné lieu à la mise au jour de nombreux vestiges architecturaux qui permettent de comprendre l'évolution de ce site du milieu du XIX^e siècle jusqu'au début du XX^e siècle, soit de son occupation par la famille du manufacturier de briques Décarie jusqu'à celle des entrepreneurs en bâtiment Hénault. À la fin des travaux d'archéologie, de concert avec le ministère de la Culture, des Communication et de la Condition féminine du Québec (MCCCFQ), il fut considéré que les vestiges du site BiFj-82 avaient livré toutes les informations utiles. Aucune nouvelle intervention archéologique n'y a donc été recommandée (Ethnoscop 2006).

Les travaux d'archéologie dans la cour Glen ont également révélé les vestiges de la maison de Joseph Décarie, construite à partir de 1722 et modifiée au cours des années. La maison de ferme qui peut être localisée sur le plan 20, dans les limites du site BiFj-83, persiste jusqu'en 1911 alors qu'elle fut démolie par le Canadien Pacifique. La localisation de ce complexe agricole au nord de l'aire d'étude vient appuyer le constat fait, dans l'étude d'avril 2008, à l'effet que si le front des concessions commençait sur le bord du lac Saint-Pierre (Roy 1943 : 84), le bâti a été érigé au haut du talus. La figure 12-3 de l'étude d'avril 2008 montre le plan de Sitwell sans la superposition et il est possible d'y voir la succession des fermes situées au bout du chemin commençant sur la route de Lachine [rue Saint-Jacques /Upper Lachine Road] (Ethnoscop 2008, vol. 2 : figure 12-3). La superposition de ce plan sur le plan actuel dans le secteur Décarie (plan 20) met en évidence que celles-ci sont situées en dehors de l'aire d'étude. Il n'y a donc pas lieu d'y créer une nouvelle zone à potentiel.

3.1.2 Arrondissement Le Sud-Ouest

Dans l'arrondissement Le Sud-Ouest, la zone d'étude a été prolongée vers le nord-est dans l'axe de l'autoroute 15 et agrandie par l'ajout de la rue Saint-Rémi jusqu'au tunnel Saint-Rémi et d'un corridor reliant l'autoroute 15 et la rue Saint-Patrick, dans une zone industrielle située entre les rues Angers et Pitt (plans 36 à 38). Ces trois ajouts sont localisés dans le secteur du village de Côte-Saint-Paul (H6) où plusieurs zones à potentiel historique ont été identifiées par l'étude de potentiel présenté en avril 2008.

Le secteur industriel situé entre les rues Angers et Pitt présente un intérêt distinct. On y retrouve le bassin dans lequel aboutissait le canal d'alimentation construit en 1854 par William Parkyn et qui a alimenté au moins huit canaux d'alimentation pour roues ou turbines hydrauliques. Parkyn aménage divers bâtiments le long du canal et près du bassin dont un moulin à farine, un moulin à scie, des manufactures de haches et de pelles. Ce bassin sera réutilisé comme cale sèche dans les années 1920 et 1940, d'abord par Fraser Brace Shipyard qui n'y opère que deux années, puis pendant la Seconde guerre mondiale, par la Canadian Power Boat qui y construit des bateaux rapides pour la Marine royale canadienne et peut-être aussi des sous-marins. La compagnie, dont les édifices sont toujours en place à l'angle des rues Anger et Saint-Patrick, cesse ses activités après la guerre. La manufacture de jouets Line Brothers prend alors la relève dans les bâtiments, et ce jusqu'en 1989 (Archémi et al. 1995 : vol 2, fiches 4B105S et 4V103S).

3.2 Potentiel archéologique historique

Cinq des secteurs à potentiel archéologique historique (H2, H3, H4, H5 et H6), identifiés dans l'étude précédente, sont touchés par les modifications apportées à la zone d'étude du projet de reconstruction du complexe Turcot. L'examen du dossier archéologique de ces cinq secteurs a mené à des changements de configuration pour certaines zones à potentiel archéologique déjà délimitées ainsi qu'à la création d'une nouvelle zone dans le secteur H6.

Dans le secteur de Saint-Henri-des-Tanneries (H2), où la zone d'étude a été prolongée vers l'est dans l'axe de la rue Saint-Jacques (plan 14), l'examen de la cartographie ancienne mène au prolongement de la zone à potentiel H2-1 vers l'est, du côté nord de la rue Saint-Jacques, où des bâtiments sont présents vers le milieu du XIX^e siècle (plan 10).

En ce qui a trait au secteur de la cour Turcot (H3), la zone d'étude a été élargie vers le nordouest, ce qui entraîne l'agrandissement de la zone H3-1, également vers le nord-ouest (plan 21). Cet agrandissement permet d'inclure la totalité de la rotonde Turcot dans la zone à potentiel H3-1 (plans 17 à 19).

Le secteur de l'échangeur Turcot (H4) a pour sa part été prolongé vers le nord-est, dans l'axe du chemin de la Côte-Saint-Paul. La présence de deux bâtiments à cet endroit, vers le milieu du XIX^e siècle (plan 22), mène à l'élargissement de la zone H4-1 qui englobe la totalité de la modification à la zone d'étude. De plus, dans le secteur du canal de Lachine (H5), la zone H5-2 dans l'axe du pont du boulevard Angrignon, a été élargie vers le nord-est.

Enfin, dans le secteur du village de Côte-Saint-Paul (H6), les modifications apportées aux limites de la zone d'étude entraînent des changements à une zone à potentiel et en créent une nouvelle. La zone (H6-7) est prolongée vers le nord dans l'axe de l'autoroute 15, parallèlement au canal de l'Aqueduc (plan 38). La nouvelle zone (H6-8) est localisée à l'emplacement d'un ancien bassin (plans 24, 25, 26, 29, 31, 32, 34, 35, 37 et 38). Cette nouvelle zone est présentée au tableau 4 ainsi que le plan d'intervention.

Secteur	Contexte historique	Zone	Localisation	Superficie	Potentiel archéologique	Plan d'intervention
Н6	Le secteur H6 est constitué d'une dizaine d'îlots, entre le canal de Lachine à l'ouest et le canal de l'Aqueduc à l'est, qui font partie de l'ancien village de Côte-Saint-Paul. Ce village s'est développé à partir des années 1850, suite à l'aménagement d'un réseau de canaux qui fournissaient de l'énergie hydraulique en utilisant la dénivellation de l'écluse de Côte-Saint-Paul. L'actuel tracé de l'autoroute 15 traverse ce secteur, selon un axe est-ouest (plan 4). Quelques bâtiments industriels ont d'abord été construits près du canal d'amenée qui prend sa source en amont de l'écluse. Un quartier ouvrier s'est par la suite développé autour de ce pôle industriel. Ce secteur du village de Côte-Saint-Paul n'a toutefois pas atteint une très grande densification, contrairement aux îlots localisés plus au sud, dans Ville-Émard. L'examen de la cartographie ancienne permet d'observer la mixité de l'occupation, qui est partagée entre des bâtiments à fonction industrielle, commerciale, institutionnelle et résidentielle. Au tout début du XX° siècle deux lignes de chemin de fer traversaient le secteur, celle du grand Tronc, à l'est, qui desservait la gare de Côte-Saint-Paul et celle du Canadien Pacifique, à l'ouest, qui se rend jusqu'au secteur industriel en bordure du canal d'amenée. Le nombre de voies de chemin de fer augmenta progressivement au cours du XX° siècle, tant à l'est qu'à l'ouest, alors que la partie nord du secteur devient pratiquement une cours de triage au moment de la construction de l'autoroute 15 à la fin des années 1960. La présence du canal de Lachine et tout particulièrement la section des écluses de Côte-Saint-Paul, a donné lieu à plusieurs interventions archéologique historique des lieux. Deux sites archéologiques sont d'ailleurs répertoriés (BiFj-27 et BiFj-28) dans le secteur H6 (plans 36 et 37). À ces endroits, des vestiges de murs de fondation de bâtiments ont été mis au jour, confirmant que les perturbations causées par les travaux de construction de l'autoroute 15 n'ont pas complètement détrui	H6-8	Quadrilatère formé par les rues Angers, Saint-Patrick, Pitt et l'autoroute 15 (plan 38)	4 564 m²	actuel (plans 25, 26, 32), permet de constater que l'emplacement de cette zone recoupe celui d'un bassin	Tranchées archéologiques excavées mécaniquement. Les tranchées devraient cibler le mur nord-est du bassin ainsi que l'espace aménagé en bordure, du même côté. Deux tranchées de 2,00 m x 20,00 m devraient être réalisées

Bibliographie

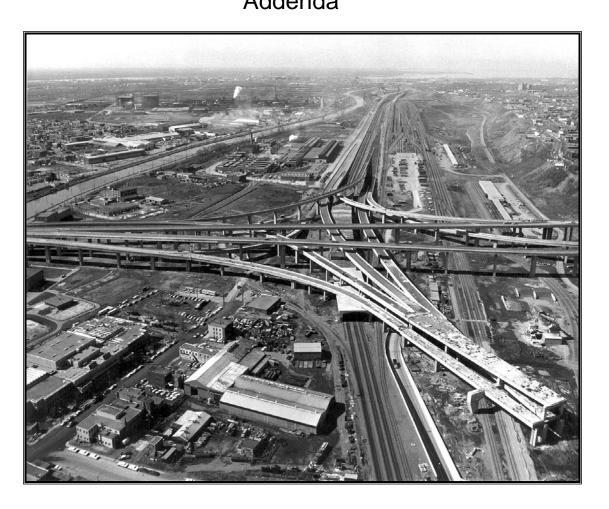
ARCHÉMI ET AL.

1995 Inventaire et évaluation des ressources culturelles, canal de Lachine. Parcs Canada, 155 pages, 3 volumes.

ETHNOSCOP

- 2005 Étude de potentiel archéologique, Centre universitaire de santé McGill, le site de la cour Glen. Daniel Arbour et Associés, 31 pages.
- Interventions archéologiques (MTL05-05-1, BiFj-82, BiFj-83 et BiFj-84) 2005, 2006. Centre universitaire de santé McGill, cour Glen, Montréal. Centre universitaire de santé McGill, Corporation d'hébergement du Québec et L.A. Hébert Ltée, 202 pages, 2 volumes et annexes.
- 2007 Complexe Turcot, étude en archéologie phase 1, revue de littérature. Le Consortium Dessau/Les consultants Sm, 29 pages.
- 2008 Complexe Turcot, étude en archéologie phase 2. Le Consortium Dessau/Les consultants Sm, 2 volumes.

ROY, Antoine


1943 L'île de Montréal en 1731 : aveu et dénombrement des messieurs de Saint-Sulpice, seigneurs de Montréal. Québec, Archives de la Province.

COMPLEXE TURCOT

Étude de potentiel archéologique – phase 2 Addenda

VOLUME 2

DÉCEMBRE 2008