

Réhabilitation sismique des poteaux en béton armé de viaduc à l'aide de matériaux composites

Nathalie Roy, Patrick Paultre et Jean Proulx

CRGP

INFRA2007

5 au 7 novembre 2007 Sheraton Laval et Centre des congrès de Laval

Earthquake Engineering and Structural Dynamics Research Center Centre de recherche en génie parasismique et en dynamique des structures Département de génie civil, Faculté de génie

Objectifs

- Optimiser une méthode de renforcement consistant à confiner les poteaux à l'aide de polymères renforcés de fibres de carbone (PRFC)
 - Objectifs de performance
 - Critères de déplacement
- Évaluer la capacité sismique des poteaux
- Évaluer la performance de la réhabilitation à l'aide d'essais pseudo-dynamique par sous-structures

Sélection du pont type

- CNBC 1995 :
 - 475 ans

2500 ans

CNBC 2005

PGA = 0,40 g

Ruaumoko 3D Modèle numérique non-linéaire

> Analyse statique: Méthode N2 (Fajfar, 1999) Analyse dynamique: Prédiction des essais

Essais dynamiques sous-vibrations ambiantes

- Calibration du modèle dans le domaine linéaire
- Décomposition dans le domaine fréquentiel avec le logiciel ARTeMIS Extractor

Matrice de performance

Objectifs de performance

- Opérationnel
- Objectif intermédiaire
 - Limiter les dommages
- Survie et sécurité

Critères de performance

- Endommagement mineur, moyen ou important
- Aléa sismique
 - Spectre d'aléa sismique uniformisé

Programme expérimental

Critères de performance typiques et endommagement correspondant (Ghobarah, 2004)

Évaluation de la capacité sismique

- Réhabilitation de la structure pour l'aléa sismique sévère :
 - Demande en ductilité μ_Δ=1,92

Comportement des sections confinées

- Prédiction de la réponse de la section confinée :
 - modèle de Eid et Paultre (2006)

- Considère l'effet de confinement par :
 - L'armature transversale
 - Les PRFC
- WMNPhi (programme d'analyse sectionnelle)

sans PRF

Analyse sectionnelle à l'aide de WMNPhi

Réhabilitation basée sur des critères de déplacement

1. Déterminer la demande cyclique en déplacement

$$\mu_{\Delta,\text{requis}} = \frac{\Delta_u}{\Delta_y} = 1,92$$

2. Calculer la demande en ductilité sectionnelle correspondante (Park et Paulay, 1975)

$$\mu_{\varphi,\text{requis}} = \frac{\varphi_u}{\varphi_y} = 1 + \frac{\mu_\Delta - 1}{3\frac{l_p}{l}\left(1 - \frac{l_p}{2l}\right)}$$

où la longueur de rotule plastique équivalente est calculée à partir de la relation suivante (Priestley et al. 1996)

$$l_p = g + 0,044d_b f_y$$

Réhabilitation basée sur des critères de déplacement

3. Calculer la déformation du béton à la fibre comprimée maximum requise

 $\varepsilon_{\text{requis}} = \varphi_{\text{requis}} c$

où l'axe neutre *c* est calculé à l'aide du logiciel de calcul de réponse sectionnelle moment-courbure WMNPhi

4. Calculer la déformation du béton à la fibre comprimée maximum fournie et l'épaisseur *t* de PRFC correspondante (Lam et Teng 2004)

$$\varepsilon_{\text{fourni}} \geq \varepsilon_{\text{requis}}$$

$$\varepsilon_{\text{requis}} = \varepsilon_{c0} \left[1,75+5,53 \left(k_e \frac{A_{sh} f_{hy}}{sD_c f_{c0}} + \frac{2tE_f \varepsilon_{fu}}{Df_{c0}} \right) \left(\frac{\varepsilon_{fu}}{\varepsilon_{c0}} \right)^{0,45} \right]$$

5. Calculer la ductilité cyclique en déplacement de la section confinée

$$\mu_{\Delta, \text{ section confinée}} = 2,80$$

Réponse moment-courbure

Comportement prévu à l'aide du modèle de Eid et Paultre

Dispositions constructives

Échelle 1:3

Montage et instrumentation

Construction

Sous-structure virtuelle

- Matlab
- Comportement linéaire
- Échelle 1:3
- Calibration à l'aide des essais sous vibrations ambiantes

Programme expérimental

Essai No.	Détails	Période de retour (years)	Activité sismique	PGA (g)
1	CHBDC 2000 Avant réhabilitation	475	Modérée	0,18
2	CHBDC 2000 Après réhabilitation	475	Modérée	0,18
3	CNBC 2005	2500	Modérée	0,37
4	El Centro (pondéré)	-	-	0,40
5	CNBC 2005	2500	Élevée	1,45

Essais pseudo-dynamiques par sous-structures

Sous-structure testée

Prédictions Ruaumoko

Intégration temporelle du système non-linéaire

- Accélération moyenne constante de Newmark
- Amortissement
 - Rayleigh modifié
 - 1,5% sur les deux premiers modes transversaux
- Comportement non-linéaire concentré dans les zones de rotules plastiques
 - Relations moment-courbure générées avec le logiciel WMNPhi
 - Détérioration de la rigidité avec le modèle de Takeda

- Avant et après réhabilitation
- CHBDC (S6-2000)
- Région d'activité sismique modérée
- 475 ans
- PGA = 0,18 g
- Endommagement mineur

- Avant et après réhabilitation
- CHBDC (S6-2000)
- Région d'activité sismique modérée
- 475 ans
- PGA = 0,18 g
- Endommagement mineur

- CNBC 2005
- Région d'activité sismique modérée
- 2500 ans
- PGA = 0,37 g
- Dommages réparables
- Essai no. 3 (i2a) 12 Expérimental $T_{app} = 0,127 \text{ s}$ 8 **Déplacement (mm)** $u_{max} = 10,28 \text{ mm}$ 4 0 -4 -8 -12 2.5 0 0.5 1 1.5 2 3 3,5 Temps (s)

- El Centro
- PGA = 0,40 g
- Dommages réparables

- CNBC 2005
- Région d'activité sismique modérée
- 2500 ans
- PGA = 0,37 g
- Dommages réparables
- Essai no. 3 (i2a) Expérimental 12 $T_{app} = 0,127 \text{ s}$ 8 Déplacement (mm) $u_{max} = 10,28 \text{ mm}$ 4 0 -4 Ruaumoko -8 $T_{app} = 0,126 \text{ s}$ $u_{\rm max} = 10,66 \, {\rm mm}$ -12 0,5 2,5 1.5 2 3,5 0 1 3 Temps (s)

- El Centro
- PGA = 0,40 g
- Dommages réparables

- CNBC 2005
- Région d'activité sismique élevée
- 2500 ans
- PGA = 1,45 g
- Dommages importants

- CNBC 2005
- Région d'activité sismique élevée
- 2500 ans
- PGA = 1,45 g
- Dommages importants

Résultats

Essai No.	K (kN/mm)	u _{max} (mm)	u _{max} / u _{max, essai1} (%)	V _{max} (kN)	V _{max} /V _{max, essai1} (%)	μ_{Δ}
1 (0,18g)	18,0*	3,77	100	90,0	100	0,36
2 (0,18g)	18,0	4,52	120	85,4	95	0,43
3 (0,37g)	14,2	10,28	273	162,5	180	0,98
4 (0,40g)	13,2	12,38	328	174,8	194	1,18
5 (1,45g)	7,2	31,67	840	262,9	292	3,01

*Rigidité avant l'essai: 26,0 kN/mm

Déplacement relatif vs comportement, endommagement et performance

Essai No.	Déplacement relatif (%)	Comportement	Endommagement	Performance
1 (0,18g)	0,17	Élastique	Mineur	Utilisation immédiate
2 (0,18g)	0,21	Élastique	Mineur	Utilisation immédiate
3 (0,37g)	0,40	Limite élastique	Réparable	Opérationnel
4 (0,40g)	0,50	Limite élastique	Réparable	Opérationnel
5 (1,45g)	1,51	Inélastique	Important	Sauvegarde de vie humaine

Conclusions

- Méthode de dimensionnement de réhabilitation basée sur des critères de déplacement
 - Mise en oeuvre
 - Validation
- Nouveau modèle de confinement (Eid et Paultre, 2006):
 - Effet de confinement par l'acier transversal et les PRFC
- Analyse non-linéaire
 - RUAUMOKO et WMNPhi
- Essais dynamiques : un outil utile pour la calibration des modèles
- Essais pseudo-dynamiques par sous-structuration
 - Mise en oeuvre

Remerciements

- CRSNG
- FQRNT
- Ministère des transports du Québec
- ISIS Canada
- Ville de Québec
- CERIU
- Sika Canada
- Dr Benedikt Weber
- Dr Rami Eid
- Université de Sherbrooke, personnel technique